IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社タムロンの特許一覧

<>
  • 特開-ズームレンズ及び撮像装置 図1
  • 特開-ズームレンズ及び撮像装置 図2
  • 特開-ズームレンズ及び撮像装置 図3
  • 特開-ズームレンズ及び撮像装置 図4
  • 特開-ズームレンズ及び撮像装置 図5
  • 特開-ズームレンズ及び撮像装置 図6
  • 特開-ズームレンズ及び撮像装置 図7
  • 特開-ズームレンズ及び撮像装置 図8
  • 特開-ズームレンズ及び撮像装置 図9
  • 特開-ズームレンズ及び撮像装置 図10
  • 特開-ズームレンズ及び撮像装置 図11
  • 特開-ズームレンズ及び撮像装置 図12
  • 特開-ズームレンズ及び撮像装置 図13
  • 特開-ズームレンズ及び撮像装置 図14
  • 特開-ズームレンズ及び撮像装置 図15
  • 特開-ズームレンズ及び撮像装置 図16
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024156046
(43)【公開日】2024-10-31
(54)【発明の名称】ズームレンズ及び撮像装置
(51)【国際特許分類】
   G02B 15/20 20060101AFI20241024BHJP
   G02B 13/18 20060101ALI20241024BHJP
【FI】
G02B15/20
G02B13/18
【審査請求】有
【請求項の数】14
【出願形態】OL
(21)【出願番号】P 2024147723
(22)【出願日】2024-08-29
(62)【分割の表示】P 2023038634の分割
【原出願日】2018-03-30
(71)【出願人】
【識別番号】000133227
【氏名又は名称】株式会社タムロン
(72)【発明者】
【氏名】岩澤 嘉人
(72)【発明者】
【氏名】山中 久幸
(72)【発明者】
【氏名】岡田 圭介
(72)【発明者】
【氏名】山添 純一
(57)【要約】
【課題】本件発明の課題はフォーカス群及び防振群の軽量化を図りつつ、光学性能の高い標準系のズームレンズ及び当該ズームレンズを備えた撮像装置を提供することにある。
【解決手段】上記課題を解決するため、本件発明に係るズームレンズは、広角端における最も広い空気間隔を境に、物体側を前群とし、像側を後群としたとき、前群は全体で負の屈折力を有し、後群は全体で正の屈折力を有し、レンズ群間の空気間隔を変化させることで広角端から望遠端へ変倍し、後群内に配置され、無限遠から近接物体への合焦時に光軸方向に移動するフォーカス群Fと、フォーカス群Fよりも物体側に配置され、光軸と略垂直方向に移動可能な防振群VCとを含み、前群において最も物体側に配置されるレンズ群を第1レンズ群G1としたとき、広角端から望遠端に変倍する際に第1レンズ群G1が光軸方向に移動し、所定の条件を満足させる。
【選択図】図1
【特許請求の範囲】
【請求項1】
広角端における最も広い空気間隔を境に、物体側に配置されるレンズ群を前群とし、像側に配置されるレンズ群を後群としたとき、
前記前群は全体で負の屈折力を有し、前記後群は全体で正の屈折力を有し、少なくとも前記前群と前記後群との間の空気間隔を減少させるようにレンズ群間の空気間隔を変化させることで広角端から望遠端へ変倍し、
前記後群内に配置され、無限遠から近接物体への合焦時に光軸方向に移動するフォーカス群と、
前記フォーカス群よりも物体側に配置され、光軸と略垂直方向に移動可能な防振群と、
を含み、
前記後群は、前記フォーカス群より物体側に少なくとも1枚の負の屈折力を有するレンズLrnを有し、
前記防振群は、少なくとも1枚の負の屈折力を有するレンズLvcnと、少なくとも1枚の正の屈折力を有するレンズLvcpとを有し、
少なくともいずれか1枚の前記レンズLvcnと、少なくともいずれか1枚の前記レンズLvcpとが接合され、
前記前群において最も物体側に配置されるレンズ群を第1レンズ群としたとき、広角端から望遠端に変倍する際に当該第1レンズ群が光軸方向に移動し、
以下の条件を満足することを特徴とするズームレンズ。
(3)22.00<1/|(1/νdLvcn)-(1/νdLvcp)|<70.00
(5)0.00 <(Crff+Crfr)/(Crff-Crfr)< 5.00
(6)4.609≦|{1-(βft×βft)}×βftr×βftr|<15.00
(8)1.860 < NdLrn < 2.10
但し、
νdLvcn:前記レンズLvcnのd線におけるアッベ数
νdLvcp:前記レンズLvcpのd線におけるアッベ数
Crff:フォーカス群の最物体側面の曲率半径
Crfr:フォーカス群の最像側面の曲率半径
βft :望遠端における前記フォーカス群の無限合焦時における横倍率
βftr:望遠端における、前記フォーカス群より像側に配置される全てのレンズの無限合焦時における合成横倍率
NdLrn:前記レンズLrnのd線における屈折率
【請求項2】
前記防振群は非球面を少なくとも1面有し、
当該非球面は、その近軸曲率から求められる屈折力よりも屈折力が弱くなるような非球面形状を有する請求項1に記載のズームレンズ。
【請求項3】
以下の条件を満足する請求項1又は請求項2に記載のズームレンズ。
(4)0.50 < |(1-βvct)×βvctr| < 6.00
但し、
βvct :望遠端における前記防振群の無限遠合焦時の横倍率
βvctr:望遠端における、前記防振群より像側に配置される全てのレンズの無限遠合焦時の合成横倍率
【請求項4】
前記防振群は、前記後群内に含まれる請求項1から請求項3のいずれか一項に記載のズームレンズ。
【請求項5】
前記防振群は、1つの単レンズユニットから構成される請求項1から請求項4のいずれか一項に記載のズームレンズ。
【請求項6】
前記後群は、前記フォーカス群より像側に少なくとも1枚のレンズを有する請求項1から請求項5のいずれか一項に記載のズームレンズ。
【請求項7】
前記後群は、前記フォーカス群より像側に負の屈折力を有するレンズ面Srを少なくとも1面を有し、以下の条件式を満足する請求項6に記載のズームレンズ。
(7)-0.400 <|fw×tanωw|/(fsr-FBw)<-0.002
但し、
ωw :広角端における当該ズームレンズの最軸外主光線の半画角
fsr:前記レンズ面Srの焦点距離
FBw :広角端における当該ズームレンズの最像側面から結像面までの空気換算長
【請求項8】
前記レンズLrnが、以下の条件を満足する請求項1から請求項7のいずれか一項に記載のズームレンズ。
(9)-0.015 < ΔPgF < 0.022
但し、
ΔPgF:部分分散比を縦軸、d線に対するアッベ数νdを横軸とする座標系において、部分分散比が0.5393、νdが60.49の硝材C7の座標と、部分分散比が0.5829、νdが36.30の硝材F2の座標とを通る直線を基準線としたときの、部分分散比の基準線からの偏差
【請求項9】
前記前群は負の屈折力を有するレンズ群を少なくとも1つ有し、当該前群において最も大きな負の屈折力を有するレンズ群を負レンズ群nとしたとき、以下の条件を満足する請求項1から請求項8のいずれか一項に記載のズームレンズ。
(10) -2.00 < fn/fw < -0.55
但し、
fn:前記負レンズ群nの焦点距離
【請求項10】
前記フォーカス群は負の屈折力を有する請求項1から請求項9のいずれか一項に記載のズームレンズ。
【請求項11】
以下の条件を満足する請求項1から請求項10のいずれか一項に記載のズームレンズ。
(11)-0.70 < ff/ft < -0.05
但し、
ff:前記フォーカス群の焦点距離
ft:望遠端における当該ズームレンズの焦点距離
【請求項12】
以下の条件を満足する請求項11に記載のズームレンズ。
(13)0.01 < |X1|/ft < 0.65
但し、
X1:広角端から望遠端に変倍する間に前記第1レンズ群が位置し得る最像側位置から最物体側位置まで当該第1レンズ群が移動する際の移動量
ft:望遠端における当該ズームレンズの焦点距離
【請求項13】
無限遠から近接物体への合焦の際に前記フォーカス群が移動する方向において、当該フォーカス群に最も近接配置されるレンズ面をレンズ面Lnfとしたとき、以下の条件を満足する請求項1から請求項12のいずれか一項に記載のズームレンズ。
(16)0.015 < Drfrt/ft < 1.000
但し、
Drfrt:望遠端における前記フォーカス群と、前記レンズ面Lnfとの間の無限遠合焦時の光軸上の距離
ft:望遠端における当該ズームレンズの焦点距離
【請求項14】
請求項1から請求項13のいずれか一項に記載のズームレンズと、当該ズームレンズの像側に、当該ズームレンズによって形成された光学像を電気的信号に変換する撮像素子とを備えたことを特徴とする撮像装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ズームレンズ及び撮像装置に関し、特に、デジタルスチルカメラやデジタルビデオカメラ等の固体撮像素子(CCDやCMOS等)を用いた撮像装置に好適なズームレンズ及び撮像装置に関する。
【背景技術】
【0002】
従来より、デジタルスチルカメラ、デジタルビデオカメラ、一眼レフカメラ、ミラーレスカメラ等の固体撮像素子を用いた撮像装置が普及している。これらの撮像装置では、標準系ズームレンズと称される撮像レンズが広く用いられている。標準系ズームレンズとは、一般に、35mm判換算において50mmの焦点距離をズーム域に含むズームレンズをいう。
【0003】
例えば、特許文献1には、物体側から順に、正の屈折力を有する第1レンズ群、負の屈折力を有する第2レンズ群、正の屈折力を有する第3レンズ群及び正の屈折力を有する第4レンズ群から構成された標準系ズームレンズが提案されている。当該ズームレンズでは、第2レンズ群を物体側に移動させ、被写体に合焦する。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2008-3195号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、特許文献1に開示のズームレンズでは、主たる変倍作用を担う第2レンズ群をフォーカス群としている。第2レンズ群はレンズ枚数が多く、他のレンズ群と比較すると重い。そのため、迅速なオートフォーカスを行うことが困難である。また、第2レンズ群は重いため、合焦時に第2レンズ群を移動させるための駆動機構も大型化する。そのため、鏡筒を含むレンズユニット全体の大型化、重量化を招くという課題があった。
【0006】
また、近年、光学系に含まれる少なくとも1枚のレンズを防振群とし、撮像時の手振れ等に起因する像ブレ発生時には、防振群を光軸と略垂直方向に移動させることで像をシフトさせることが行われている。このような防振機構をズームレンズに組み込む場合、鏡筒内に防振群を光軸と略垂直方向に移動させるための駆動機構を鏡筒内に配置する必要がある。そのため当該ズームレンズユニット全体の小型化、軽量化を図る上では、防振群の小型化及び軽量化と共に、フォーカス群と防振群との位置関係が重要になる。
【0007】
そこで、本件発明の課題はフォーカス群及び防振群の軽量化を図りつつ、光学性能の高い小型の標準系のズームレンズ及び当該ズームレンズを備えた撮像装置を提供することにある。
【課題を解決するための手段】
【0008】
上記課題を解決するため、本件発明に係るズームレンズは、広角端における最も広い空気間隔を境に、物体側に配置されるレンズ群を前群とし、像側に配置されるレンズ群を後群としたとき、
前記前群は全体で負の屈折力を有し、前記後群は全体で正の屈折力を有し、少なくとも前記前群と前記後群との間の空気間隔を減少させるようにレンズ群間の空気間隔を変化させることで広角端から望遠端へ変倍し、
前記後群内に配置され、無限遠から近接物体への合焦時に光軸方向に移動するフォーカス群と、
前記フォーカス群よりも物体側に配置され、光軸と略垂直方向に移動可能な防振群と、
を含み、
前記後群は、前記フォーカス群より物体側に少なくとも1枚の負の屈折力を有するレンズLrnを有し、
前記防振群は、少なくとも1枚の負の屈折力を有するレンズLvcnと、少なくとも1枚の正の屈折力を有するレンズLvcpとを有し、
少なくともいずれか1枚の前記レンズLvcnと、少なくともいずれか1枚の前記レンズLvcpとが接合され、
前記前群において最も物体側に配置されるレンズ群を第1レンズ群としたとき、広角端から望遠端に変倍する際に当該第1レンズ群が光軸方向に移動し、
以下の条件を満足することを特徴とする。
(3)22.00<1/|(1/νdLvcn)-(1/νdLvcp)|<70.00
(5)0.00 <(Crff+Crfr)/(Crff-Crfr)< 5.00
(6)4.609≦|{1-(βft×βft)}×βftr×βftr|<15.00(8)1.860 < NdLrn < 2.10
但し、
νdLvcn:前記レンズLvcnのd線におけるアッベ数
νdLvcp:前記レンズLvcpのd線におけるアッベ数
Crff:フォーカス群の最物体側面の曲率半径
Crfr:フォーカス群の最像側面の曲率半径
βft :望遠端における前記フォーカス群の無限合焦時における横倍率
βftr:望遠端における、前記フォーカス群より像側に配置される全てのレンズの無限合焦時における合成横倍率
NdLrn:前記レンズLrnのd線における屈折率
【0009】
また、上記課題を解決するために、本件発明に係る撮像装置は、上記本件発明に係るズームレンズと、当該ズームレンズの像側に、当該ズームレンズによって形成された光学像を電気的信号に変換する撮像素子とを備えたことを特徴とする。
【発明の効果】
【0010】
本件発明によれば、フォーカス群の軽量化を図りつつ、光学性能の高い標準系のズームレンズ及び当該ズームレンズを備えた撮像装置を提供することができる。
【図面の簡単な説明】
【0011】
図1】本件発明の実施例1のズームレンズの広角端における無限遠合焦時のレンズ構成例を示す断面図である。
図2】実施例1のズームレンズの広角端における無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。
図3】実施例1のズームレンズの中間焦点距離状態における無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。
図4】実施例1のズームレンズの望遠端における無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。
図5】本件発明の実施例2のズームレンズの広角端における無限遠合焦時のレンズ構成例を示す断面図である。
図6】実施例2のズームレンズの広角端における無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。
図7】実施例2のズームレンズの中間焦点距離状態における無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。
図8】実施例2のズームレンズの望遠端における無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。
図9】本件発明の実施例3のズームレンズの広角端における無限遠合焦時のレンズ構成例を示す断面図である。
図10】実施例3のズームレンズの広角端における無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。
図11】実施例3のズームレンズの中間焦点距離状態における無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。
図12】実施例3のズームレンズの望遠端における無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。
図13】本件発明の実施例4のズームレンズの広角端における無限遠合焦時のレンズ構成例を示す断面図である。
図14】実施例4のズームレンズの広角端における無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。
図15】実施例4のズームレンズの中間焦点距離状態における無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。
図16】実施例4のズームレンズの望遠端における無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。
【発明を実施するための形態】
【0012】
以下、本件発明に係るズームレンズ及び撮像装置の実施の形態を説明する。但し、以下に説明するズームレンズ及び撮像装置は本件発明に係るズームレンズ及び撮像装置の一態様であって、本件発明に係るズームレンズ及び撮像装置は以下の態様に限定されるものではない。
【0013】
1.ズームレンズ
1-1.ズームレンズの光学構成
まず、本実施の形態のズームレンズの光学構成を説明する。本実施の形態のズームレンズは、広角端における最も広い空気間隔を境に、物体側に配置されるレンズ群を前群とし、像側に配置されるレンズ群を後群としたとき、前群は全体で負の屈折力を有し、後群は全体で正の屈折力を有する。広角端から望遠端へ変倍する際には、少なくとも前群と後群との間の空気間隔を減少させるようにレンズ群間の空気間隔を変化させる。また、当該ズームレンズは、無限遠から近接物体への合焦時に光軸方向に移動するフォーカス群と、フォーカス群よりも物体側に配置され、光軸と略垂直方向に移動可能な防振群とを含み、フォーカス群は後群内に配置される。
【0014】
当該ズームレンズでは、広角端における最も広い空気間隔を境に、前群に発散作用を持たせ、後群に収束作用を持たせたレトロフォーカス型のパワー配置を採用している。そのため、当該ズームレンズの大型化を抑制しつつ、広角端における画角を広くすることが容易になる。すなわち、当該ズームレンズは、標準系ズームレンズに適したパワー配置を採用しているため、広角端では広画角化を達成しつつ、一眼レフカメラ等の交換レンズシステムに適したバックフォーカスを確保すると共に全体を小型に構成することができる。但し、当該ズームレンズは、35mm判換算において50mmの焦点距離をズーム域に含みつつ、広角端における当該ズームレンズの半画角(ω)が24°よりも大きいものとする。
【0015】
当該ズームレンズでは、前群に負の屈折力を配置し、後群に正の屈折力を配置し、広角端から望遠端への変倍時に、前群と後群との間の空気間隔を減少させる。変倍に伴い前群に対する光線入射角は変動するが、後群に対する光線入射角の変動は小さい。そのため、フォーカス群を後群に配置することにより、合焦時の画角変動を抑えることができる。従って、ウォブリングを行う際も画角変動が小さくなるため、動画撮像にも好適なズームレンズを実現することができる。
【0016】
さらに、当該ズームレンズでは、後群に対する入射光束の径は、前群に対する入射光束の径よりも小さい。そのため、フォーカス群を後群に配置することにより、前群にフォーカス群を配置する場合と比較すると、フォーカス群の小型化及び軽量化を図ることができる。
【0017】
さらに、当該ズームレンズは、フォーカス群よりも物体側に、光軸と略垂直方向に移動可能な防振群を備える。いわゆる手振れ等により撮像時に撮像装置に振動が伝わり、像ブレが生じたとき、防振群を光軸と略垂直方向に移動させることで像をシフトさせることができる。すなわち、像ブレ補正を行うことができる。当該ズームレンズでは、フォーカス群が当該ズームレンズの像側に配置されている。そこで、フォーカス群よりも物体側に防振群を配置することで、フォーカス群を光軸方向に移動させるための駆動機構(メカ部材、モータ、電装部品等含む。以下、「フォーカス駆動機構」と称する。)と、防振群を光軸と略垂直方向に移動させるための駆動機構(メカ部材、マグネット、コイル、電装部品等含む。以下、「防振駆動機構」と称する。)とを鏡筒内にコンパクトに配置することが容易になる他、各種配線も容易になり、当該ズームレンズの鏡筒を含むズームレンズユニット全体の小型化を図ることができる。これに対して、フォーカス群よりも像側に防振群を配置する場合、上記フォーカス駆動機構と防振駆動機構とを鏡筒内にコンパクトに配置するには、防振群の配置に制限が生じ、要求される光学性能を実現することが困難になる他、当該ズームレンズユニットの小型化を図ることが困難になる。但し、フォーカス駆動機構、防振駆動機構の構成は特に限定されるものではない。以下、当該ズームレンズの光学構成についてより詳細に説明する。
【0018】
(1)広角端における最も広い空気間隔
まず、前群と後群との間の空気間隔について説明する。当該ズームレンズは複数のレンズ群から構成される。広角端から望遠端へ変倍する際に各レンズ群間の空気間隔は変化する。当該ズームレンズのズームポジションによって各レンズ群間の空気間隔の大きさは変化する。そこで、本件発明では、当該ズームレンズを構成する各レンズ群間の空気間隔のうち、当該ズームレンズの広角端において最も広い空気間隔を上記「広角端における最も広い空気間隔」と称するものとする。
【0019】
なお、当該ズームレンズのズームポジションによって変化するレンズ群間の空気間隔を可変間隔と称する。このとき、「広角端における最も広い空気間隔」は、当該ズームレンズにおいて最も物体側に配置されるレンズ群と最も像側に配置されるレンズ群との間の可変間隔のうち、広角端における最大の可変間隔をいい、当該ズームレンズにおいて最も像側に配置されるレンズ群と結像面との間の空気間隔(バックフォーカス)は含まれないものとする。そして、「広角端における最も広い空気間隔」を境に、物体側に配置される1又は複数のレンズ群を前群と称し、像側に配置される1又は複数のレンズ群を後群と称する。
【0020】
(2)前群
前群は、上記「広角端における最も広い空気間隔」よりも物体側に配置される1又は複数のレンズ群の総称である。前群は全体で負の屈折力を有するため、前群は少なくとも一つの負の屈折力を有するレンズ群を有する。
【0021】
前群に含まれる負の屈折力を有するレンズ群のうち、最も大きな負の屈折力を有するレンズ群を負レンズ群nと称する。当該前群はこの負レンズ群nを有し、且つ、全体で負の屈折力を有する限り、他のレンズ群構成は特に限定されない。例えば、前群は、負の屈折力を有するレンズ群を2つ以上有していてもよいし、正の屈折力を有するレンズ群を1つ以上有していてもよい。
【0022】
しかしながら、当該ズームレンズの大口径化を図る上で有効であるという観点から、前群は、最も物体側に正の屈折力を有するレンズ群を備えることが好ましい。そして、前群において、この正の屈折力を有するレンズ群の像側に、負の屈折力を有するレンズ群を配置することは、当該ズームレンズの高倍率化を図る上でも有効である。
【0023】
(3)後群
後群は、上記「広角端における最も広い空気間隔」よりも像側に配置される1又は複数のレンズ群の総称である。後群は全体で正の屈折力を有するため、後群は少なくとも一つの正の屈折力を有するレンズ群を有する。後群は、上記フォーカス群を含み、且つ、全体で正の屈折力を有する限り、他のレンズ群構成は特に限定されない。例えば、正の屈折力を有するレンズ群を2つ以上有していてもよいし、負の屈折力を有するレンズ群を1つ以上有していてもよい。また、当該ズームレンズの小型化を図る上で、後群の最も物体側には正の屈折力を有するレンズ群を配置することが高倍率化や大口径化の点で好ましいが、この点についても特に限定されるものではない。
【0024】
後群は、フォーカス群の像側に少なくとも1枚のレンズを有することが好ましい。フォーカス群の像側に少なくとも1枚のレンズを配置することにより、合焦時のフォーカス群の移動に伴う収差変動をフォーカス群の像側で補正することが容易になる。このとき、当該レンズの屈折力は正であってもよいが、当該レンズは負の屈折力を有するレンズ面Srを少なくとも1面有することが好ましい。当該レンズ面Srを少なくとも1面有するレンズをフォーカス群の像側に配置することで、像面湾曲を小さくすることが容易になる。
【0025】
また、後群は、フォーカス群の物体側に、少なくとも1枚の負の屈折力を有するレンズLrnを有することが好ましい。フォーカス群よりも物体側に、負の屈折力を有するレンズLrnを配置することで、像面湾曲を小さくすることができ、色収差を低減することが容易になる。これと共にフォーカス群で発生する収差を当該レンズLrnにより低減することができる。そのため、合焦時に補正すべき収差発生量が小さく、合焦域全域において光学性能の高いズームレンズを実現することが容易になる。
【0026】
(4)フォーカス群
フォーカス群は、後群を構成するレンズ群のいずれか一のレンズ群、又は、その一部である。フォーカス群の構成は特に限定されるものではないが、後述する理由から、フォーカス群は1つの単レンズユニットから構成されることが好ましい。ここで、単レンズユニットとは、1枚の単レンズ、或いは、複数の単レンズを空気間隔を介することなく一体化した接合レンズなどのレンズユニットをいう。すなわち、単レンズユニットは、複数の光学面を有する場合であっても、その最物体側面及び最像側面のみ空気と接し、その他の面は空気とは接していないものとする。また、当該明細書において、単レンズは、球面レンズ及び非球面レンズのいずれであってもよい。また、非球面レンズには、表面に非球面フィルムが貼設されたいわゆる複合非球面レンズも含まれるものとする。
【0027】
フォーカス群を、上記1つの単レンズユニットから構成した場合、フォーカス群には空気間隔が含まれない。そのため、フォーカス群を複数の単レンズが空気間隔を介して配置された構成と比較すると、当該ズームレンズではフォーカス群の小型化及び軽量化を図ることができる。その結果、フォーカス駆動機構を構成する各種メカ部材やモータ、電装部品等の小型化を図ることができ、フォーカス駆動機構の軽量化を図ることができる。
【0028】
また、フォーカス群を複数枚の単レンズを空気間隔を介して配置した構成と比較すると、フォーカス群を上記1つの単レンズユニットから構成することにより、偏芯誤差や、単レンズ間の空気間隔の誤差等、種々の製造誤差を小さくすることができる。そのため、製造誤差に起因する光学性能の低下を小さくすることができ、製品毎の性能のバラツキを小さくすることができる。従って、光学性能の高いズームレンズを歩留まりよく製造することができる。
【0029】
さらに、当該フォーカス群は負の屈折力を有することが好ましい。すなわち、上記単レンズユニットの合成屈折力が負であることが好ましい。フォーカス群が負の屈折力を有することで、負の屈折力を有する前群で発生する像面湾曲や歪曲収差を当該フォーカス群により相殺することができる。そのため、より光学性能の高いズームレンズを得ることができる。
【0030】
ここで、フォーカス群は1つの単レンズユニットから構成されていればよく、1枚の単レンズから構成されていてもよいし、複数枚の単レンズが接合されてユニット化された1つの接合レンズから構成されていてもよく、いずれの場合も上述した一連の効果を得ることができる。フォーカス群を接合レンズから構成した場合と比較して、単レンズ1枚のみから構成した方が、フォーカス群の軽量化及び小型化を図ることができる。
【0031】
一方、フォーカス群を接合レンズから構成した場合には、フォーカス群を単レンズ1枚のみから構成した場合と比較して、光学性能の高性能化を図ることができる。例えば、フォーカス群を正の屈折力を有するレンズ(レンズLp)及び負の屈折力を有するレンズ(レンズLn)を含む接合レンズから構成することにより、近接被写体への合焦時の色収差の発生を抑制することができ、より光学性能の高いズームレンズを実現することができる。
【0032】
なお、フォーカス群を上記接合レンズから構成する場合、レンズLp、レンズLnの配置の順序は特に限定されるものではないが、当該接合レンズは物体側から、上記レンズLp、上記レンズLnの順に接合されたものであることが好ましい。上述したとおり、フォーカス群は後群に配置される。この場合、軸上光線と比較したとき、軸外光線は、フォーカス群を構成する単レンズユニットのより周辺部を通過する。倍率色収差をより良好に補正するためには、像側に負の屈折力を有するレンズを配置することが好ましいためである。
【0033】
(5)開口絞り
当該ズームレンズにおいて、開口絞りの配置は特に限定されるものではない。但し、ここでいう開口絞りは、当該ズームレンズの光束径を規定する開口絞り、すなわち当該ズームレンズのFnoを規定する開口絞りをいう。
【0034】
しかしながら、開口絞りを後群の物体側或いは後群内に配置することが、合焦域全域において良好な光学性能を得る上で好ましい。上述したとおり、後群に対する入射光束の径の変動は小さい。そのため、後群の物体側又は後群内に開口絞りを配置することで、合焦時における収差変動を抑制することができる。
【0035】
(6)防振群
防振群はフォーカス群より物体側に配置される。そのため、上述したとおり、鏡筒内に各駆動機構をコンパクトに配置することが容易になる他、各種配線も容易になり、ズームレンズユニットの小型化を図ることができる。
【0036】
当該ズームレンズにおいて、防振群はフォーカス群よりも物体側に配置されればよい。従って、防振群は前群に配置されてもよいし、後群に配置されてもよい。しかしながら、上述したとおり、当該ズームレンズでは、後群に対する入射光束の径は、前群に対する入射光束の径よりも小さい。そのため、防振群を後群に配置することにより、防振群を前群に配置する場合と比較すると、防振群の小型化及び軽量化を図ることができる。
【0037】
また、防振群は開口絞りより像側に配置されることがより好ましい。開口絞りとフォーカス群との間は、変倍時における光線高さの変動が小さく、変倍時の収差変動も小さい。そのため、開口絞りとフォーカス群との間に防振群を配置することで、像ブレ補正時(防振時)における収差変動も小さくすることができる。よって、変倍域全域において、防振時も収差変動の小さい高性能なズームレンズを実現することができる。
【0038】
防振群を構成するレンズの枚数は1枚であってもよいし、複数枚であってもよい。防振時の収差変動を抑制する上では、防振群を構成するレンズは複数枚であることが好ましい。特に、防振群は、少なくとも1枚の負の屈折力を有するレンズLvcnと、少なくとも1枚の正の屈折力を有するレンズLvcpとから構成されることが防振時における色収差の発生を抑制し、光学性能のより高いズームレンズを実現する上で好ましい。
【0039】
また、当該防振群は、1枚の負の屈折力を有するレンズLvcnと、1枚の正の屈折力を有するレンズLvcpとから構成されることが好ましい。防振群を正と負の2枚のレンズで構成することにより、防振時の色収差の発生を抑制しつつ、当該防振群の小型化及び軽量化を図ることができる。その結果、防振駆動機構の小型化及び軽量化を図ることができ、当該ズームレンズユニット全体の小型化及び軽量化を図ることができる。
【0040】
ここで、防振群は、上記レンズLvcnと、上記レンズLvcpとが接合された接合レンズから構成されることが好ましい。この場合、防振群には空気間隔が含まれない。そのため、例えば上記レンズLvcnと、上記レンズLvcpとを空気間隔を介して配置された構成と比較すると、当該ズームレンズでは防振群の小型化及び軽量化を図ることができる。
【0041】
また、防振群を上記レンズLvcnと上記レンズLvcpとを空気間隔を介して配置した構成と比較すると、防振群を上記レンズLvcn及び上記レンズLvcpを接合した1つの単レンズユニットから構成することにより、偏芯誤差や、レンズ間の空気間隔の誤差等、種々の製造誤差を小さくすることができる。そのため、製造誤差に起因する光学性能の低下を小さくすることができ、製品毎の性能のバラツキを小さくすることができる。従って、光学性能の高いズームレンズを歩留まりよく製造することができる。
【0042】
さらに、当該防振群は非球面を少なくとも1面有することが好ましい。防振群が非球面を少なくとも1面有することにより、防振時におけるコマ収差発生量を抑制することができる。そのため、少ないレンズ枚数で、収差発生量の少ない防振群を構成することができるため、防振群の小型化及び軽量化を図ることができる。光学性能の高いズームレンズを実現することができ、防振群の小型化及び軽量化を図ることができ、防振駆動機構の小型化及び軽量化を図ることができる。
【0043】
また、上記非球面は、その近軸曲率から求められる屈折力よりも屈折力が弱くなるような非球面形状を有することが好ましい。そのような形状の非球面を防振群に配置することにより、防振時におけるコマ収差や片ボケを補正することが容易になり、より光学性能の高いズームレンズを実現することができる。なお、防振時における片ボケとは、防振時に防振群が偏芯した場合、理想像面に対して、実際の像面が防振群が偏芯した方向に傾斜するような状態で現れる収差をいう。
【0044】
(7)レンズ群構成
当該ズームレンズを構成するレンズ群の数は特に限定されるものではないが、例えば、正の屈折力を有する第1レンズ群、負の屈折力を有する第2レンズ群、正の屈折力を有する第3レンズ群、負の屈折力を有する第4レンズ群及び正の屈折力を有する第5レンズ群からなり、第3レンズ群以降が後群である5群構成のズームレンズ、または、負の屈折力を有する第1レンズ群、正の屈折力を有する第2レンズ群、負の屈折力を有する第3レンズ群及び正の屈折力を有する第4レンズ群からなり、第2レンズ群以降が後群である4群構成のズームレンズ、または、正の屈折力を有する第1レンズ群、負の屈折力を有する第2レンズ群、正の屈折力を有する第3レンズ群、正の屈折力を有する第4レンズ群、負の屈折力を有する第5レンズ群及び正の屈折力を有する第6レンズ群からなり、第3レンズ群以降が後群である6群構成のズームレンズなど種々のレンズ群構成を採用することができる。広角端において最も広い空気間隔を境に、物体側に負の屈折力を有する前群と、像側に正の屈折力を有する後群とを備える構成であれば、当該ズームレンズの具体的なレンズ群構成は特に限定されるものではない。
【0045】
1-2.動作
(1)変倍時の動作
当該ズームレンズにおいて、広角端から望遠端への変倍に際して、少なくとも前群と後群との間の空気間隔が減少するようにレンズ群間の空気間隔を変化させる。
【0046】
ここで、前群及び/又は後群が複数のレンズ群を備える場合、変倍に際して各レンズ群間の空気間隔も変化するものとする。広角端から望遠端への変倍に際して、少なくとも前群と後群との間の空気間隔が減少すればよく、その他のレンズ群間の空気間隔の増減は特に限定されるものではない。また、変倍に際して当該ズームレンズを構成する全てのレンズ群を光軸方向に移動させてよいし、一部のレンズ群を光軸方向に固定し、残りのレンズ群を光軸方向に移動させてもよく、個々のレンズ群の移動の有無及び移動の方向は特に限定されるものではない。
【0047】
ここで、広角端から望遠端への変倍に際して、当該ズームレンズにおいて最も物体側に配置される第1レンズ群を物体側に移動させるようにすれば、広角端における当該ズームレンズの光学全長を短くすることができる。この場合、鏡筒を外筒部分に対して内筒部分を繰り出し可能に収容した入れ子状の構造とし、広角端から望遠端への変倍時に例えば内筒部分を繰り出して第1レンズ群を物体側に移動させ、望遠端から広角端への変倍時に内筒部分が外筒部分に収容されるようにすれば、広角端状態における鏡筒長を短くすることができ、当該ズームレンズユニットの小型化を図ることができる。
【0048】
(2)合焦時の動作
当該ズームレンズにおいて、無限遠から近接物体への合焦の際に、後群に配置される上記フォーカス群が光軸方向に移動する。合焦時におけるフォーカス群の移動の方向は特に限定されるものではないが、例えば、無限遠から近接物体に合焦する際に像側に移動することが好ましい。
【0049】
ここで、物体側に配置される前群に負の屈折力を配置し、像側に配置される後群に正の屈折力を配置し、上記フォーカス群を後群に配置した場合、近接被写体撮像時における軸上色収差の発生量や球面収差の発生量は広角端の方が望遠端より少ない。そのため、望遠端における最短撮像距離よりも広角端における最短撮像距離を短くしても広角端における上記収差の各発生量は少ない。従って、望遠端における最短撮像距離に対して、広角端における最短撮像距離を短くすることにより、被写体との距離や被写体の大きさに合わせて、撮像画角を適宜選択することができ、当該ズームレンズにより撮像可能な撮像シーンを拡大することができる。但し、最短撮像距離(最短撮影距離)とは、結像面から被写体までの最短の距離をいう。
【0050】
なお、合焦時に、上記接合レンズからなるフォーカス群の他に、他のレンズ群又はレンズ群の一部も移動させてもよい。すなわち、フローティング方式により合焦してもよい。レトロフォーカス型のパワー配置を採用する撮像レンズでは、フローティング方式を採用すると、合焦時の収差補正が容易になるため、光学性能の高いズームレンズを実現する上で、フローティング方式により合焦することは好ましい。
【0051】
しかしながら、フローティング方式では合焦時に複数のレンズ群を移動させるため、フォーカス駆動機構の構成が複雑化する。従って、当該ズームレンズの小型化及び軽量化を図る上では、フローティング方式ではなく、合焦時には上記接合レンズから構成される上記フォーカス群のみを移動させることが好ましい。すなわち、当該ズームレンズは、上記フォーカス群以外に、合焦時に光軸上を移動するレンズ群を含まないことが好ましい。
【0052】
なお、本件発明においては、フローティング方式によって合焦を行う場合であっても、上記フォーカス群が本明細書に記載の構成や条件を満たせばよい。すなわち、合焦時に上記フォーカス群と併せて移動する他のレンズ群又はレンズ群の一部については特に限定されるものではない。
【0053】
1-2.条件式
当該ズームレンズでは、上述した構成を採用すると共に、次に説明する条件式を少なくとも1つ以上満足することが好ましい。
【0054】
1-2-1.条件式(1)
(1) 3.80 < Cr1f/fw
但し、
Cr1f:当該ズームレンズの最物体側面の曲率半径
fw :広角端における当該ズームレンズの焦点距離
【0055】
条件式(1)は、当該ズームレンズの最物体側面の曲率半径と広角端における当該ズームレンズの焦点距離との比を規定するための式である。条件式(1)の値が正であることは、当該ズームレンズの最物体側面が平面又は物体側に凸の形状であることを意味する。条件式(1)を満足することで、当該ズームレンズの最物体側面の曲率半径が広角端における当該ズームレンズの焦点距離に対して適正な範囲内となり、歪曲収差と像面湾曲とをバランスよく補正することができる。
【0056】
これに対して、条件式(1)の数値が下限値以下である場合、広角端における当該ズームレンズの焦点距離に対して、当該ズームレンズの最物体側面の曲率半径が小さくなりすぎ、歪曲収差が過補正になると共に、像面湾曲の補正が困難になるため、好ましくない。
【0057】
これらの効果を得る上で、条件式(1)の下限値は4.00であることがより好ましく、4.20であることがさらに好ましく、4.50であることが一層好ましく、4.80であることがより一層好ましく、5.10であることがさらに一層好ましく、6.50であることが最も好ましい。また条件式(1)の上限値は特に限定されるものではないが、上限値を設けるとすれば、100.00であることが好ましく、50.00であることがさらに好ましく、40.00であることが一層好ましい。
【0058】
1-2-2.条件式(2)
(2)0.50 < (-ffw+Dfrw)/FBw < 2.00
但し、
ffw :広角端における前群の合成焦点距離
Dfrw:広角端における前群の最像側面と後群の最物体側面との光軸上の距離
FBw :広角端における当該ズームレンズの最像側面から結像面までの空気換算長
【0059】
条件式(2)は、広角端において、後群に入射する光束の集光点と後群から射出する光束の集光点との比を規定するための式である。条件式(2)において、分子は後群に入射する光束の集光点から後群の最物体側面までの光軸上の距離を表す。分母はいわゆるバックフォーカスであり、後群から射出する光束の集光点と後群の最像側面との光軸上の距離を表している。条件式(2)を満足することで、交換レンズシステムに好適な適切なバックフォーカスを確保しつつ、当該ズームレンズの小型化を図ることができる。このとき、前群の最物体側面は、前群において最も物体側に配置されたレンズ面のことを指し、後群の最像側面は、後群において最も像側に配置されたレンズ面のことを指す。
【0060】
これに対して、条件式(2)の数値が上限値以上になると、広角端におけるバックフォーカスが短くなる。そのため、交換レンズシステムに適したバックフォーカスを確保することが困難になる。また、条件式(2)の数値が上限値以上であることは、後群に入射する光束の集光点が遠いことを意味する。すなわち、後群に入射する光束の集光点が物体側になり広角端における光学全長が長くなるため、当該ズームレンズの小型化を図ることが困難となる。これらのことから、条件式(2)の数値は上限値未満であることが好ましい。
【0061】
一方、条件式(2)の数値が下限値以下になると、広角端におけるバックフォーカスが長くなるため、交換レンズシステムに適したバックフォーカスを確保することは容易になる。しかしながら、バックフォーカスが長くなりすぎると、広角端における光学全長が長くなる。よって、この場合も当該ズームレンズの小型化を図ることが困難になる。これらのことから、条件式(2)の数値は下限値よりも大であることが好ましい。
【0062】
これらの効果を得る上で、条件式(2)の下限値は0.60であることが好ましく、0.70であることがより好ましく、0.80であることがさらに好ましく、0.90であることが一層好ましく、1.05であることがより一層好ましく、1.15であることがさらに一層好ましい。また条件式(2)の上限値は1.95であることが好ましく、1.92であることがより好ましい。
【0063】
1-2-3.条件式(3)
当該ズームレンズにおいて、防振群は、少なくとも1枚の負の屈折力を有するレンズLvcnと、少なくとも1枚の正の屈折力を有するレンズLvcpとを有することが上記のとおり好ましい。このとき、以下の条件を満足することがより好ましい。
【0064】
(3)22.00<1/|(1/νdLvcn)-(1/νdLvcp)|<70.00
但し、
νdLvcn:レンズLvcnのd線におけるアッベ数
νdLvcp:レンズLvcpのd線におけるアッベ数
【0065】
条件式(3)は、防振群が上記レンズLvcnと上記レンズLvcpとを有するとき、上記レンズLvcnと上記レンズLvcpのアッベ数の差を規定するための式である。条件式(3)を満足する場合、色収差の補正と、硝材コストとのバランスが良くなり、防振時の色収差発生量の少ない光学性能の高いズームレンズを実現しつつ、コストが高くなり過ぎるのを抑制することができる。
【0066】
これに対して、条件式(3)の数値が上限値以上になると、色収差が補正不足となり、防振時における倍率色収差の補正が困難になり好ましくない。一方、条件式(3)の数値が下限値以下になると、色収差が過補正となり、この場合も防振時における倍率色収差の補正が困難になり好ましくない。さらに、条件式(3)の数値が下限値以下となるような硝材は高屈折率材であり、高価である。そのため、コスト的な観点からも、条件式(3)の数値が下限値以下となることは好ましくない。
【0067】
これらの効果を得る上で、条件式(3)の下限値は22.50であることがより好ましく、23.00であることがさらに好ましく、23.50であることが一層好ましく、24.00であることがより一層好ましく、24.20であることがさらに一層好ましい。また条件式(3)の上限値は60.00であることがより好ましく、55.00であることがさらに好ましく、50.00であることが一層好ましく、47.00であることがより一層好ましい。
【0068】
ここで、防振群に上記レンズLvcnと上記レンズLvcpとを少なくとも1枚ずつ含まれていれば上述の効果が得られる。このとき、防振群には条件式(3)を満足しないレンズを含んでいてもよいが、防振群に含まれるレンズがすべて条件式(3)を満足すると色収差とコストの点で好ましい。防振群が1枚のレンズLvcnと1枚のレンズLvcpの2枚のレンズで構成されると色収差とコストの点でさらに好ましい。
【0069】
1-2-4.条件式(4)
(4)0.50 < |(1-βvct)×βvctr| < 6.00
但し、
βvct :望遠端における防振群の無限遠合焦時の横倍率
βvctr:望遠端における、防振群より像側に配置される全てのレンズの無限遠合焦時の合成横倍率
【0070】
条件式(4)は、防振群のブレ補正係数を規定するための式である。ここで、ブレ補正係数は、防振群が単位量移動したときの結像面の移動量を表す。条件式(4)を満足する場合、防振時における防振群の移動量を適切な範囲内とすることができ、高精度で迅速な像ブレ補正を実現すると共に、当該ズームレンズの小型化を図ることが容易になる。
【0071】
これに対して、条件式(4)の数値が下限値以下になると、防振群のブレ補正係数が小さくなりすぎる。そのため、防振時における防振群の移動量が大きくなり、鏡筒の外径を大きくして、防振群が移動可能なスペースを確保する必要がある。また、防振群の移動量が大きくなると、防振駆動機構の大型化も招く。これらのことから当該ズームレンズの小型化が困難になり好ましくない。また条件式(4)の数値が上限値以上になると、防振群のブレ補正係数が大きくなりすぎる。そのため、像ブレ補正時の防振群の移動量が小さくなりすぎるため、高精度の位置制御が必要となり好ましくない。
【0072】
これらの効果を得る上で、条件式(4)の下限値は0.60であることがより好ましく、0.70であることがさらに好ましく、0.85であることが一層好ましく、1.00であることがより一層好ましく、1.10であることがさらに一層好ましい。また条件式(4)の上限値は5.00であることがより好ましく、4.10であることがさらに好ましく、3.00であることが一層好ましく、2.30であることがより一層好ましく、2.20であることがさらに一層好ましい。
【0073】
1-2-5.条件式(5)
(5)0.00 <(Crff+Crfr)/(Crff-Crfr)< 5.00
但し、
Crff:フォーカス群の最物体側面の曲率半径
Crfr:フォーカス群の最像側面の曲率半径
【0074】
上記条件式(5)は、フォーカス群の最物体側面と最像側面の形状を規定するための式である。フォーカス群の最物体側面とは、フォーカス群を構成するレンズのうち、最も物体側に配置されるレンズの物体側面をいう。同様に、フォーカス群の最像側面とは、フォーカス群を構成するレンズのうち、最も像側に配置されるレンズの像側面をいう。フォーカス群の最物体側面と最像側面の形状が上記条件式(5)に規定される形状とすることで、球面収差の補正を良好に行うことが可能になり、近接被写体に合焦する際の収差変動を小さくすることができ、合焦域全域において光学性能の高いズームレンズを実現することができる。
【0075】
これらの効果を得る上で、条件式(5)の下限値は0.05であることがより好ましく、0.08であることがさらに好ましく、0.10であることが一層好ましく、0.15であることがより一層好ましい。また条件式(5)の上限値は4.50であることがより好ましく、4.00であることがさらに好ましく、3.00であることが一層好ましい。
【0076】
1-2-6.条件式(6)
(6)1.20 <|{1-(βft×βft)}×βftr×βftr|<15.00
但し、
βft :望遠端におけるフォーカス群の無限遠合焦時の横倍率
βftr:望遠における、フォーカス群より像側に配置される全てのレンズの無限遠合焦時の合成横倍率
【0077】
条件式(6)は、フォーカス群のピント敏感度を規定するための式である。ここで、ピント敏感度は、フォーカス群が単位量移動したときの結像面の移動量を表す。条件式(6)を満足する場合、無限遠物体から近接物体への合焦時におけるフォーカス群の移動量を適切な範囲内とすることができ、迅速なオートフォーカスを実現すると共に、当該ズームレンズの小型化を図ることが容易になる。
【0078】
これに対して、条件式(6)の数値が下限値以下になると、フォーカス群のピント敏感度が小さくなりすぎる。そのため、無限遠物体から近接物体への合焦時におけるフォーカス群の移動量が大きくなり、光学全長が長くなるため、当該ズームレンズの小型化が困難になり好ましくない。また条件式(6)の数値が上限値以上になると、フォーカス群のピント敏感度が大きくなりすぎる。そのため、合焦位置の位置ずれを補正するためのフォーカス群の移動量が小さくなりすぎるため、高精度の位置制御が必要となり好ましくない。
【0079】
これらの効果を得る上で、条件式(6)の下限値は1.50であることがより好ましく、2.00であることがさらに好ましく、2.50であることが一層好ましく、3.00であることがより一層好ましく、3.60であることがさらに一層好ましい。また条件式(6)の上限値は14.00であることがより好ましく、13.00であることがさらに好ましく、12.00であることが一層好ましい。
【0080】
(6-1) |βft|>1
ここで、条件式(6)中の「βft」の絶対値は、1より大であることが好ましい。「βft」は、上述のとおり、望遠端におけるフォーカス群の無限遠合焦時における横倍率をいう。フォーカス群は後群に含まれる。後群に含まれるレンズ群(フォーカス群)が1よりも大きな横倍率をもたせることで、当該ズームレンズの光学全長方向及び径方向を小型化することができる。
【0081】
1-2-7.条件式(7)
当該ズームレンズにおいて、フォーカス群よりも像側に負の屈折力を有するレンズ面Srを少なくとも1面を有することが上記のとおり好ましい。このとき、以下の条件式を満足することがより好ましい。
【0082】
(7)-0.400 <|fw×tanωw|/(fsr-FBw)< -0.002
但し、
ωw :広角端における当該ズームレンズの最軸外主光線の半画角
fsr:レンズ面Srの焦点距離
【0083】
条件式(7)はレンズ面Srの集光点と結像面における最軸外光線像高との比を擬似的に表した式である。ここで、主光線とは絞りの中心を通過する光線のことをいう。フォーカス群の像側に条件式(7)を満足するレンズ面Srを配置することにより、当該レンズ面Srにより像面湾曲を良好に補正することができる。そのため、当該ズームレンズの一層の高性能化を図ることが容易になる。
【0084】
これに対して、条件式(7)の数値が上限値以上になると、レンズ面Srの負の屈折力が小さくなり過ぎる。この場合、像面湾曲がアンダー側に倒れ込みすぎて、当該ズームレンズの高性能化を図ることが困難になるため、好ましくない。一方、条件式(7)の数値が下限値以下になると、レンズ面Srの負の屈折力が大きくなり過ぎる。この場合、ペッツバール和の補正不足となり、当該ズームレンズの高性能化が困難になり好ましくない。また、レンズ面Srを2面以上有していてもよく、このとき、条件式(7)をいずれか1面が満足していればよく、より好ましくは全てのレンズ面Srが条件式(7)を満足することで、高性能化を実現することが容易となる。
【0085】
これらの効果を得る上で、条件式(7)の上限値は-0.004であることがより好ましく、-0.006であることがさらに好ましく、-0.008であることが一層好ましく、-0.010であることがより一層好ましく、-0.012であることがさらに一層好ましい。また条件式(7)の下限値は-0.350であることがより好ましく、-0.300であることがさらに好ましく、-0.250であることが一層好ましく、-0.230であることがより一層好ましく、-0.220であることがさらに一層好ましい。
【0086】
1-2-8.条件式(8)
当該ズームレンズにおいて、後群は、フォーカス群よりも物体側に少なくとも1枚の負の屈折力を有するレンズLrnを有することが上記のとおり好ましい。このとき、以下の条件を満足することが好ましい。
【0087】
(8)1.84 < NdLrn < 2.10
但し、
NdLrn:レンズLrnのd線における屈折率
【0088】
条件式(8)は、レンズLrnのd線における屈折率を規定する式である。ここで、後群は全体で正の屈折力を有する。そのため、ペッツバール和を良好に補正するためには、後群には屈折率の高い硝材からなる負の屈折力を有するレンズを配置する必要がある。条件式(8)を満足する硝材は、ペッツバール和の補正と、硝材コストとを考慮したとき、そのバランスがよい。そのため、後群が、条件式(8)を満足するレンズLrnをフォーカス群の物体側に有することにより、光学性能の高いズームレンズを実現しつつ、コストが高くなり過ぎるのを抑制することができる。
【0089】
これに対して、条件式(8)の数値が下限値以下になると、上記レンズLrnのd線における屈折率が小さく、ペッツバール和の補正を十分に行うことができず、好ましくない。一方、条件式(8)の数値が上限値以上になると、上記レンズLrnのd線における屈折率が大きくなるため、ペッツバール和を補正する上では好ましい。しかしながら、d線における屈折率の大きい硝材は、d線における屈折率の小さい硝材と比較すると、一般に高価である。d線における屈折率が上限値以上の硝材を用いた場合、ペッツバール和の補正に関する効果はあるものの、費用対効果を考えるとその効果は小さい。そのため、条件式(8)の数値が上限値以上になることはコスト的な観点から好ましくない。
【0090】
これらの効果を得る上で、条件式(8)の下限値は1.860であることがより好ましく、1.870であることがさらに好ましく、1.880であることが一層好ましい。また条件式(8)の上限値は2.070であることがより好ましく、2.010であることがさらに好ましく、1.960であることが一層好ましい。
【0091】
1-2-9.条件式(9)
当該ズームレンズにおいて、後群は、フォーカス群よりも物体側に少なくとも1枚の負の屈折力を有するレンズLrnを有することが上記のとおり好ましい。このとき、以下の条件を満足することが好ましい。
【0092】
(9)-0.015 < ΔPgF < 0.022
但し、
ΔPgF:部分分散比を縦軸、d線に対するアッベ数νdを横軸とする座標系において、部分分散比が0.5393、νdが60.49の硝材C7の座標と、部分分散比が0.5829、νdが36.30の硝材F2の座標とを通る直線を基準線としたときの、部分分散比の基準線からの偏差
【0093】
ここで、g線(435.8nm)、F線(486.1nm)、d線(587.6nm)、C線(656.3nm)に対するガラスの屈折率をそれぞれNg、NF、Nd、NCとすると、アッベ数(νd)、部分分散比(PgF)は次のように表すことができる。
νd = (Nd-1) /(NF-NC)
PgF = (Ng-NF)/(NF-NC)
【0094】
条件式(9)は、レンズLrnの異常分散性を規定するための式である。ここで、後群は全体で正の屈折力を有する。正の屈折力を有するレンズ群において色収差の補正を行うには、高分散硝材製の負レンズと、低分散硝材製の正レンズとを組み合わせることが一般的である。しかしながら、高分散硝材の波長に対する分散特性は2次曲線的であり、低分散硝材の波長に対する分散特性は直線的である。そのため、高分散硝材製の負レンズと、低分散硝材製の正レンズとを組み合わせた場合、ある波長では色収差をゼロにすることができても、他の波長では色収差が残り、使用波長域全域において色収差を補正することはできない。
【0095】
そこで、上記条件式(9)を満足する異常分散性が低い硝材からなり、負の屈折力を有するレンズLrnと、例えば、次に説明する異常分散性の高い硝材からなる正レンズとを組み合わせることにより、使用波長域全域において色収差を補正することが可能になる。よって、条件式(9)を満足する負の屈折力を有するレンズLrnをフォーカス群の物体側に配置することにより、使用波長域全域において色収差の良好な光学性能の高いズームレンズを実現することが可能になる。なお、当該レンズLrnは、上記条件式(8)を満足すると共に条件式(9)を満足することが色収差を良好に補正する上でより好ましい。
【0096】
これらの効果を得る上で、条件式(9)の下限値は-0.012であることがより好ましく、-0.010であることがさらに好ましい。また条件式(9)の上限値は0.014であることがより好ましく、0.013であることがさらに好ましく、0.012であることが一層好ましい。
【0097】
ここで、当該ズームレンズにおいて、後群はフォーカス群の物体側に上記条件式(9)を満足するレンズLrnを有すると共に、以下の条件式(9-1)を満足する正の屈折力を有するレンズLrpを有することが好ましい。
【0098】
(9-1) 0.009< ΔPgFp < 0.060
但し、
ΔPgFp:部分分散比を縦軸、d線に対するアッベ数νdを横軸とする座標系において、部分分散比が0.5393、νdが60.49の硝材C7の座標と、部分分散比が0.5829、νdが36.30の硝材F2の座標とを通る直線を基準線としたときの、部分分散比の基準線からの偏差
【0099】
条件式(9-1)を満足する硝材は異常分散性が高く、波長に対する分散特性は2次曲線的である。そのため、後群に、上記条件式(9)を満足するレンズLrnと共に、条件式(9-1)を満足する正の屈折力を有するレンズLrpを配置することで、使用波長域全域において色収差の良好なズームレンズを実現することができる。
【0100】
1-2-10.条件式(10)
当該ズームレンズにおいて、前群は負の屈折力を有するレンズ群を少なくとも1つ有し、当該前群において最も大きな負の屈折力を有するレンズ群を負レンズ群nとしたとき、以下の条件を満足することが好ましい。
【0101】
(10) -2.00 < fn/fw < -0.55
但し、
fn:負レンズ群nの焦点距離
fw:広角端における当該ズームレンズの焦点距離
【0102】
条件式(10)は、前群に含まれる負レンズ群nの焦点距離と、広角端における当該ズームレンズの焦点距離との比を規定する式である。条件式(10)を満足することで、当該ズームレンズの大型化を抑制しつつ、広角端において画角を広げることが容易になる。また、像面湾曲、コマ収差、歪曲収差等の補正を少ないレンズ枚数で行うことができ、光学性能の高い小型のズームレンズを実現することができる。
【0103】
これに対して、条件式(10)の数値が下限値以下になると、当該ズームレンズの広角端における焦点距離に対して前群に含まれる最も屈折力の大きな負レンズ群nの屈折力が小さくなるため、前群に配置される当該負レンズ群nによる画角を広げる効果が小さくなる。その場合、広角端において広角化を図るには、いわゆる前玉の外径を大きくする必要があり、当該ズームレンズの小型化を図ることが困難になる。一方、条件式(10)の数値が上限値以上になると、当該ズームレンズの広角端における焦点距離に対して前群に含まれる最も屈折力の大きな負レンズ群nの屈折力が大きくなる。そのため、像面湾曲、コマ収差、歪曲収差等の諸収差の補正が困難になる。その結果、光学性能の高いズームレンズを実現するには、収差補正のためのレンズ枚数を増やす必要があり、当該ズームレンズの小型化を図ることが困難になる。
【0104】
これらの効果を得る上で、条件式(10)の下限値は-1.90であることがより好ましく、-1.80であることがさらに好ましく、-1.60であることが一層好ましい。また条件式(10)の上限値は-0.58であることがより好ましく、-0.62であることがさらに好ましく、-0.68であることが一層好ましい。
【0105】
1-2-11.条件式(11)
(11)-0.70 < ff/ft < -0.05
但し、
ff:フォーカス群の焦点距離
ft:望遠端における当該ズームレンズの焦点距離
【0106】
上記条件式(11)は、フォーカス群の焦点距離と望遠端における当該ズームレンズの焦点距離との比を規定するための式である。条件式(11)を満足する場合、近接被写体に合焦する際に軸上色収差、球面収差、像面湾曲などの発生を抑制し、合焦域全域において光学性能の高いズームレンズを実現することができる。また、条件式(11)を満足する場合、フォーカス群の屈折力が適正な範囲内となるため、ピント敏感度を適切な範囲内にすることができる。ピント敏感度が適切な範囲内であると、無限遠物体から近接物体への合焦時におけるフォーカス群の移動量を適切な範囲内とすることができ、迅速なオートフォーカスを実現すると共に、当該ズームレンズの小型化を図ることが容易になる。
【0107】
これに対して、条件式(11)の数値が下限値以下になると、フォーカス群の焦点距離が望遠端における当該ズームレンズの焦点距離に対して大きくなる。すなわち、フォーカス群の屈折力が小さくなりすぎる。この場合、フォーカス群のピント敏感度が低くなりすぎるため、近接被写体合焦時のフォーカス群の移動量が大きくなる。そのため、フォーカス群を移動するための空気間隔を確保する必要があり、当該ズームレンズの光学全長の大型化を招き好ましくない。一方、条件式(11)の数値が上限値以上になると、フォーカス群の焦点距離が望遠端における当該ズームレンズの焦点距離に対して小さくなる。すなわち、フォーカス群の屈折力が大きくなりすぎる。この場合、近接被写体合焦時における軸上色収差や球面収差や像面湾曲が大きくなるため、合焦域全域において高い光学性能を維持することが困難になるため好ましくない。また、この場合、フォーカス群のピント敏感度が高くなりすぎる。ピント敏感度が高くなりすぎると、合焦位置の位置ずれを補正するための高精度な位置制御が必要となるため、好ましくない。
【0108】
これらの効果を得る上で、条件式(11)の下限値は-0.65であることがより好ましく、-0.60であることがさらに好ましく、-0.55であることが一層好ましく、-0.45であることがより一層好ましい。また条件式(11)の上限値は-0.08であることがより好ましく、-0.10であることがさらに好ましく、-0.12であることが一層好ましい。
【0109】
1-2-12.条件式(12)
当該ズームレンズにおいて、フォーカス群は少なくとも1枚の負の屈折力を有するレンズLnを有し、以下の条件を満足することが好ましい。
【0110】
(12)45.0 < νdLn < 98.0
但し、
νdLn:レンズLnのd線におけるアッベ数
【0111】
上記条件式(12)は、フォーカス群に含まれる負の屈折力を有するレンズLnのアッベ数を規定するための式である。条件式(12)を満足する場合、色収差の補正が良好になり、光学性能の高いズームレンズを実現することが容易になる。また、条件式(12)を満足する硝材は、比較的比重の小さい硝材が多く、フォーカス群の軽量化を図る上でも効果的である。
【0112】
これに対して、条件式(12)の数値が下限値以下になると、上記レンズLnの色分散が大きく、有限距離物体への合焦時における軸上色収差の補正が困難となり好ましくない。一方、条件式(12)の数値が上限値以上である場合、当該フォーカス群を構成する上記レンズLnの色分散が小さくなるため、色収差を補正する上では好ましい。しかしながら、アッベ数の大きい硝材はアッベ数の小さい硝材と比較すると高価である。アッベ数が上限値以上の硝材を用いた場合、色収差の補正に関する効果はあるものの、費用対効果を考えるとその効果は小さい。そのため、条件式(12)の数値が上限値以上になることはコスト的な観点から好ましくない。
【0113】
これらの効果を得る上で、条件式(12)の下限値は45.5であることがより好ましく、46.0であることがさらに好ましく、47.0であることが一層好ましく、49.0であることがより一層好ましく、51.0であることがさらに一層好ましい。また条件式(12)の上限値は82.0であることがより好ましく、76.0であることがさらに好ましく、68.0であることが一層好ましく、65.0であることがより一層好ましく、62.0であることがさらに一層好ましい。
【0114】
1-2-13.条件式(13)
当該ズームレンズにおいて、広角端から望遠端に変倍する際に第1レンズ群が物体側に移動することが上述のとおり好ましい。この場合、以下の条件式(13)を満足することが好ましい。
【0115】
(13)0.01 < |X1|/ft < 0.65
但し、
X1:広角端から望遠端に変倍する間に第1レンズ群が位置し得る最像側位置から最物体側位置まで当該第1レンズ群が移動する際の移動量
ft:望遠端における当該ズームレンズの焦点距離
【0116】
上記条件式(13)は、広角端から望遠端に変倍する際の第1レンズ群の物体側への移動量を規定するための式である。条件式(13)を満足する場合、第1レンズ群の屈折力が適正であり、且つ、変倍時における当該移動量が適正な範囲内となる。そのため、所定の変倍比を確保しつつ、広角端における当該ズームレンズの光学全長を短くすることができ、当該ズームレンズの小型化を図ることができる。
【0117】
これに対して、条件式(13)の数値が下限値以下になると、変倍時における第1レンズ群の上記移動量が小さくなる。この場合、所定の変倍比を確保するには、各レンズ群の屈折力を強くする必要がある。各レンズ群の屈折力を強くすると、軸上色収差や球面収差等の収差補正の為に多くのレンズ枚数が必要となり、当該ズームレンズの小型化を図ることが困難になる。また、条件式(13)の数値が上限値以上になると、変倍時における第1レンズ群の上記移動量が大きくなる。この場合、鏡筒を外筒部分に内筒部分を収容した入れ子状の構造とした場合、広角端における光学全長に合わせて鏡筒長を設計すると、内筒部分を2重にして外筒部分に収容する必要が生じるなど、鏡筒の構造が複雑となり、鏡筒の外径も大きくなるため好ましくない。
【0118】
但し、「広角端から望遠端に変倍する間に第1レンズ群が位置し得る最像側位置から最物体側位置まで、第1レンズ群が移動する際の移動量」は、「広角端から望遠端に変倍する間に第1レンズ群が位置し得る最も像側の位置と、第1レンズ群が位置し得る最も物体側の位置との間の光軸上の距離(差分)」に等しい。よって、「X1」は「広角端から望遠端に変倍する間に第1レンズ群が位置し得る最も像側の位置と、第1レンズ群が位置し得る最も物体側の位置との間の光軸上の距離」と換言することができる。例えば、広角端から望遠端に変倍する際に第1レンズ群が像側に凸の軌跡を描きながら物体側に移動する場合には、変倍の際に第1レンズ群が描く凸の軌跡の頂点の位置(最像側位置)と、広角端又は望遠端において第1レンズ群が最も物体側となる位置(最物体側位置)との間の距離がX1となる。なお、第1レンズ群の移動の軌跡は、上述のように像側に凸であってもよいし、物体側に凸であってもよいし、S字を描いてもよいし、特に限定されるものではない。第1レンズ群の移動の軌跡が直線的であってもよいのは勿論である。
【0119】
これらの効果を得る上で、条件式(13)の下限値は0.05であることがより好ましく、0.10であることがさらに好ましく、0.15であることが一層好ましく、0.20であるとさらに一層好ましい。また条件式(13)の上限値は0.60であることがより好ましく、0.55であることがさらに好ましく、0.48であることが一層好ましく、0.46であるとさらに一層好ましい。
【0120】
1-2-14.条件式(14)
(14)0.01 < Crrf/ft
但し、
Crrf:後群の最物体側面の曲率半径
ft :望遠端における当該ズームレンズの焦点距離
【0121】
上記条件式(14)は、後群の最物体側面の曲率半径と、望遠端における当該ズームレンズの焦点距離との比を規定するための式である。条件式(14)の値が正であることは、後群の最物体側面が平面又は物体側に凸の形状であることを意味する。条件式(14)を満足する場合、後群の最物体側面の曲率半径が望遠端における当該ズームレンズの焦点距離に対して適正な範囲内となり、球面収差とコマ収差の補正バランスが良好になる。
【0122】
これらの効果を得る上で、条件式(14)の下限値は0.03であることがより好ましく、0.06であることがさらに好ましく、0.09であることが一層好ましく、0.10であることがより一層好ましい。また条件式(14)の上限値は特に限定されるものではないが、上限値を設けるとすれば、500.00であることが好ましく、50.00であることがより好ましく、25.00であることがさらに好ましく、12.00であることが一層好ましい。
【0123】
1-2-15.条件式(15)
(15)0.10 < ffft/ft < 1.00
但し、
ffft:望遠端における、フォーカス群より物体側に配置される全てのレンズの合成焦点距離
ft:望遠端における当該ズームレンズの焦点距離
【0124】
条件式(15)は、上記フォーカス群より物体側に配置される全てのレンズの合成焦点距離と、当該ズームレンズの望遠端における焦点距離との比を規定するための式である。条件式(15)を満足する場合、当該フォーカス群よりも像側に配置される全てのレンズ群の合成横倍率が適正な範囲内となり、所定の変倍比を確保すると共に光学性能が高い小型のズームレンズを実現することが容易になる。
【0125】
これに対して、条件式(15)の数値が下限値以下になると、フォーカス群より物体側に配置される全てのレンズの合成焦点距離が、当該ズームレンズの望遠端における焦点距離に対して短くなる。この場合、フォーカス群よりも像側に配置される全てのレンズ群の合成横倍率が大きくなる。そのため、球面収差や像面湾曲が大きくなり、光学性能が高く、小型のズームレンズを実現することが困難になるため、好ましくない。一方、条件式(15)の数値が上限値以上になると、フォーカス群より物体側に配置される全てのレンズの合成焦点距離が、当該ズームレンズの望遠端における焦点距離に対して長くなる。この場合、フォーカス群よりも像側に配置される全てのレンズ群の合成横倍率が小さくなる。そのため、所定の変倍比を確保するには、変倍時における各レンズ群の移動距離を長くする必要があり、光軸方向の小型化を図ることが困難になるため、好ましくない。
【0126】
これらの効果を得る上で、条件式(15)の下限値は0.15であることがより好ましく、0.20であることがさらに好ましく、0.25であることが一層好ましく、0.30であることがより一層好ましく、0.36であることがさらに一層好ましく、0.40であることが最も好ましい。また条件式(15)の上限値は0.90であることがより好ましく、0.80であることがさらに好ましく、0.70であることが一層好ましく、0.60であることがより一層好ましい。
【0127】
1-2-16.条件式(16)
当該ズームレンズは、無限遠から近接物体への合焦の際にフォーカス群が移動する方向において、当該フォーカス群に最も近接配置されるレンズ面をレンズ面Lnfとしたとき、以下の条件を満足することが好ましい。
【0128】
(16)0.015 < Drfrt/ft < 1.000
但し、
Drfrt:望遠端におけるフォーカス群と、上記レンズ面Lnfとの間の無限遠合焦時の光軸上の距離
ft:望遠端における当該ズームレンズの焦点距離
【0129】
条件式(16)は、フォーカス群と、無限遠から近接物体への合焦の際にフォーカス群が移動する方向において、当該フォーカス群に最も近接配置されるレンズ面Lnfとの間隔(光軸上の距離)を規定するための式である。条件式(16)を満足させることにより、合焦時にフォーカス群が所定の方向に移動するための間隔を確保することができ、最短撮像距離を短くすることが可能になる。また、条件式(16)を満足させることは、広角端における最短撮像距離を短くする上で有効である。
【0130】
これに対して、条件式(16)の数値が下限値以下になると、合焦時にフォーカス群が所定の方向に移動するための間隔を確保することができず、最短撮像距離を短くすることができなくなり、好ましくない。一方、条件式(16)の数値が上限値以上になると、望遠端における光学全長が長くなるため、当該ズームレンズの小型化を図る上で好ましくない。
【0131】
なお、無限遠から近接物体への合焦の際にフォーカス群が移動する方向は、物体側であっても、像側であってもよい。無限遠から近接物体への合焦の際にフォーカス群が移動する方向が物体側である場合、上記レンズ面Lnfは、当該フォーカス群の物体側に最も近接配置されるレンズ面となる。また、無限遠から近接物体への合焦の際にフォーカス群が移動する方向が像側である場合、上記レンズ面Lnfは、当該フォーカス群の像側に最も近接配置されるレンズ面となる。
【0132】
これらの効果を得る上で、条件式(16)の下限値は0.020であることがより好ましく、0.030であることがさらに好ましく、0.040であることが一層好ましい。また、条件式(16)の上限値は0.800であることがより好ましく、0.600であることがさらに好ましく、0.400であることが一層好ましく、0.300であることがより一層好ましく、0.250であることがさらに一層好ましい。
【0133】
1-2-17.条件式(17)
(17)-1.50 < fw/ffw < -0.50
但し、
fw :広角端における当該ズームレンズの焦点距離
ffw:広角端における前群の合成焦点距離
【0134】
条件式(17)は、広角端における当該ズームレンズの焦点距離と、広角端における前群の合成焦点距離との比を規定するための式である。条件式(17)を満足させることにより、少ないレンズ枚数で光学性能の高いズームレンズを実現することがより容易になる。
【0135】
これに対して、条件式(17)の数値が下限値以下になると、広角端における前群の合成焦点距離が広角端における当該ズームレンズの焦点距離に対して短くなるため、像面湾曲、コマ収差、歪曲収差等の収差補正が困難となる。そのため、光学性能の高いズームレンズを実現するには、収差補正のためのレンズ枚数を増やす必要がある。すなわち、少ないレンズ枚数で光学性能の高いズームレンズを実現することができず、当該ズームレンズの小型化が困難となり好ましくない。一方、条件式(17)の数値が上限値以上になると、広角端における前群の合成焦点距離が、広角端における当該ズームレンズの距離に対して長くなるため、前群による画角を広げる効果が小さくなる。そのため、広角端において広画角化を図るには、前玉のレンズ径を大きくする必要があり、当該ズームレンズの小型化を図ることが困難となり好ましくない。
【0136】
これらの効果を得る上で、条件式(17)の下限値は-1.40であることがより好ましく、-1.30であることがさらに好ましく、-1.20であることが一層好ましい。また、条件式(17)の上限値は-0.55であることがより好ましく、-0.60であることがさらに好ましく、-0.63であることが一層好ましい。
【0137】
1-2-18.条件式(18)
当該ズームレンズにおいて、以下の条件式(18)を満足する正の屈折力を有するレンズLpを含むことがより好ましい。
【0138】
(18)15.0 < νdLp < 35.0
νdLp:上記レンズLpのd線におけるアッベ数
【0139】
条件式(18)は、上記レンズLpのアッベ数を規定するための式である。条件式(18)を満足する場合、色収差の補正が良好になり、光学性能の高いズームレンズを実現することできる。
【0140】
これに対して、条件式(18)の数値が下限値以下になると、色収差が過補正になり、有限距離物体への合焦時に軸上色収差を補正することが困難になるため、好ましくない。さらに、条件式(18)の数値が下限値以下の硝材は高屈折率材であり、高価である。そのため、コスト的な観点からも、条件式(18)の数値が下限値以下であることは好ましくない。一方、条件式(18)の数値が上限値以上になると、色収差が補正不足となるため、好ましくない。
【0141】
これらの効果を得る上で、条件式(18)の下限値は18.0であることが好ましく、22.0であることがより好ましい。また条件式(18)の上限値は34.0であることが好ましく、33.0であることがより好ましく、32.0であることがさらに好ましく、31.0であることが一層好ましく、30.0であることがより一層好ましい。
【0142】
なお、上記レンズLpは当該ズームレンズに複数枚含まれていてもよいが、当該ズームレンズを小型に維持しつつ高性能化を達成するという観点から、上記レンズLpは当該ズームレンズに1枚のみ含まれることが好ましい。また、上記レンズLpの配置は特に限定されるものではなく、当該ズームレンズのいずれのレンズ群に配置されていてもよい。上記レンズLpが後群に配置されると、色収差の補正がより良好になるため好ましい。さらに、上記レンズLpはフォーカス群に配置されることがより好ましく、フォーカス群は上記レンズLpを含む単レンズユニットから構成されることが好ましい。上記レンズLpをフォーカス群に配置することで、有限距離物体への合焦時の軸上色収差を補正することがより容易になる。
【0143】
上記ズームレンズによれば、フォーカス群の軽量化を図りつつ、光学性能の高い標準系のズームレンズ及び当該ズームレンズを備えた撮像装置を提供することができる。特に、当該ズームレンズは、35mm判換算において50mmの焦点距離をズーム域に含みつつ、広角端における当該ズームレンズの半画角(ω)を24°よりも大きくすることができる。
【0144】
2.撮像装置
次に、本件発明に係る撮像装置について説明する。本件発明に係る撮像装置は、上記本件発明に係るズームレンズと、当該ズームレンズの像面側に設けられた、当該ズームレンズによって形成された光学像を電気的信号に変換する撮像素子とを備えたことを特徴とする。
【0145】
ここで、撮像素子等に特に限定はなく、CCD(Charge Coupled Device)センサやCMOS(Complementary Metal Oxide Semiconductor)センサなどの固体撮像素子等も用いることができる。本件発明に係る撮像装置は、デジタルカメラやビデオカメラ等のこれらの固体撮像素子を用いた撮像装置に好適である。また、当該撮像装置は、レンズが筐体に固定されたレンズ固定式の撮像装置であってもよいし、一眼レフカメラやミラーレスカメラ等のレンズ交換式の撮像装置であってもよいのは勿論である。特に、本件発明に係るズームレンズは交換レンズシステムに好適なバックフォーカスを確保することができる。そのため、光学式ファインダーや、位相差センサ、これらに光を分岐するためのリフレックスミラー等を備えた一眼レフカメラ等の撮像装置に好適である。
【0146】
本発明の撮像装置は、撮像素子により取得した撮像画像データを電気的に加工して、撮像画像の形状を変化させる画像処理部や、当該画像処理部において撮像画像データを加工するために用いる画像補正データ、画像補正プログラム等を保持する画像補正データ保持部等を有することがより好ましい。ズームレンズを小型化した場合、結像面において結像された撮像画像形状の歪み(歪曲)が生じやすくなる。その際、画像補正データ保持部に予め撮像画像形状の歪みを補正するための歪み補正データを保持させておき、上記画像処理部において、画像補正データ保持部に保持された歪み補正データを用いて、撮像画像形状の歪みを補正することが好ましい。このような撮像装置によれば、ズームレンズの小型化をより一層図ることができ、秀麗な撮像画像を得ると共に、撮像装置全体の小型化を図ることができる。
【0147】
さらに、本件発明に係る撮像装置において、上記画像補正データ保持部に予め倍率色収差補正データを保持させておき、上記画像処理部において、画像補正データ保持部に保持された倍率色収差補正データを用いて、当該撮像画像の倍率色収差補正を行わせることが好ましい。画像処理部により、倍率色収差、すなわち、色の歪曲収差を補正することで、光学系を構成するレンズ枚数を削減することが可能になる。そのため、このような撮像装置によれば、ズームレンズの小型化をより一層図ることができ、秀麗な撮像画像を得ると共に、撮像装置全体の小型化を図ることができる。
【0148】
次に、実施例を示して本件発明を具体的に説明する。但し、本件発明は以下の実施例に限定されるものではない。以下に挙げる各実施例のズームレンズは、デジタルカメラ、ビデオカメラ、銀塩フィルムカメラ等の撮像装置(光学装置)に適用可能である。また、各レンズ断面図において、図面に向かって左方が物体側、右方が結像面側である。
【実施例0149】
(1)ズームレンズの光学構成
図1は、本件発明に係る実施例1のズームレンズの広角端における無限遠合焦時のレンズ構成を示すレンズ断面図である。当該ズームレンズは、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。無限遠物体から近接物体への合焦の際、第4レンズ群G4が光軸に沿って像側に移動する。開口絞りSは第3レンズ群G3の物体側に配置されている。本実施例では、前群は第1レンズ群G1及び第2レンズ群からなり、後群は第3レンズ群G3、第4レンズ群G4及び第5レンズ群G5からなる。第2レンズ群G2と、第3レンズ群G3との間が「広角端における最も広い空気間隔」である。
【0150】
以下、各レンズ群の構成を説明する。第1レンズ群G1は、物体側から順に、物体側凸形状の負メニスカスレンズL1と凸レンズL2とが接合された接合レンズと、物体側凸形状の正メニスカスレンズL3とから構成される。
【0151】
第2レンズ群G2は、物体側から順に、物体側凸形状の負メニスカスレンズL4と、両凹レンズL5と、両凸レンズL6と、物体側凹形状の負メニスカスレンズL7とから構成されている。負メニスカスレンズL4の物体側面は非球面である。また、負メニスカスレンズL7の両面は非球面である。
【0152】
第3レンズ群G3は、物体側から順に、開口絞りSと、両凸レンズL8と、両凹レンズL9及び両凸レンズL10が接合された接合レンズと、両凹レンズL11及び物体側凸形状の正メニスカスレンズL12が接合された接合レンズと、両凸レンズL13と、両凹レンズL14及び両凸レンズL15が接合された接合レンズと、両凸レンズL16とから構成されている。両凸レンズL8の像側面は非球面であり、両凹レンズL11の物体側面は非球面である。両凹レンズL14が上記レンズLrnであり、両凸レンズL15が上記Lrpである。両凹レンズL14のΔPgFは、0.000であり、両凸レンズのΔPgFpは、0.0375である。
【0153】
第4レンズ群G4は、物体側から順に、像側凸形状の正メニスカスレンズL17と両凹レンズL18とが接合された接合レンズから構成されている。第4レンズ群G4は負の屈折力を有する接合レンズのみから構成されており、正メニスカスレンズL17が上記レンズLpであり、両凹レンズL18が上記レンズLnである。
【0154】
第5レンズ群G5は、物体側から順に、両凸レンズL19と、物体側凹形状の負メニスカスレンズL20とから構成されている。負メニスカスレンズL20の物体側面が上記レンズ面Srである。
【0155】
実施例1のズームレンズでは広角端から望遠端への変倍時に像面に対して、第1レンズ群G1が物体側に移動し、第2レンズ群G2が像側に移動し、第3レンズ群G3が物体側に移動し、第4レンズ群G4が物体側に移動し、第5レンズ群G5は光軸方向に固定されている。
【0156】
撮像時の手振れ等に起因する像ブレ発生時には、第3レンズ群G3に含まれる両凹レンズL11及び物体側凸形状の正メニスカスレンズL12が接合された接合レンズを防振群とし、当該防振群を光軸と略垂直方向に移動させることで像をシフトさせ、像ブレ補正を行う。なお、両凹レンズL11は上記レンズLvcnであり、正メニスカスレンズL12は上記レンズLvcpである。また、両凹レンズL11の物体側面は、その近軸曲率から求められる屈折力よりも屈折力が弱くなるような非球面形状を有する。
【0157】
また、図1に示す「IMG」は結像面であり、具体的にはCCDセンサ、CMOSセンサ等の固体撮像素子の撮像面、或いは、銀塩フィルムのフィルム面等を表す。また、結像面IMGの物体側にはカバーガラスCG等の実質的な屈折力を有さない平行平板を備える。これらの点は、他の実施例で示す各レンズ断面図においても同様であるため、以下では説明を省略する。
【0158】
(2)数値実施例
次に、当該ズームレンズの具体的数値を適用した数値実施例について説明する。表1に当該ズームレンズの面データを示す。表1において、「面番号」は物体側から数えたレンズ面の順番、「r」はレンズ面の曲率半径、「d」はレンズ面の光軸上の間隔、「Nd」はd線(波長λ=587.6nm)に対する屈折率、「νd」はd線に対するアッベ数、「H」は有効半径を示している。また、面番号の次の列に表示する「ASP」は当該レンズ面が非球面であることを表し、「S」は開口絞りを表している。さらに、レンズ面の光軸上の間隔の欄に、「D5」、「D13」等と示すのは、当該レンズ面の光軸上の間隔が変倍時又は合焦時に変化する可変間隔であることを意味する。なお、各表中の長さの単位は全て「mm」であり、画角の単位は全て「°」である。また、曲率半径の「0.0000」は平面を意味する。なお、表1における第37面及び第38面はカバーガラスCGの面データである。
【0159】
表2は、当該ズームレンズの緒元表である。当該緒元表には、無限遠合焦時における当該ズームレンズの焦点距離「f」、Fナンバー「Fno」、半画角「ω」、像高「Y」、光学全長「TL」を示す。但し、表2には、左側から順に、広角端、中間焦点距離状態、望遠端におけるそれぞれの値を示している。
【0160】
表3に、変倍時における当該ズームレンズの光軸上の可変間隔を示す。表3において、左側から順に、広角端、中間焦点距離状態、望遠端における無限遠合焦時におけるそれぞれの値を示している。なお、表中「INF」は「∞(無限大)」であることを示す。
【0161】
表4に、合焦時における当該ズームレンズの光軸上の可変間隔を示す。表4には、広角端、中間焦点距離状態、望遠端において、それぞれ撮影距離(撮像距離)が380.00mm、400.00mm、400.00mmのときの値を示している。これらの撮影距離が各焦点距離における最短撮像距離である。
【0162】
表5は、当該ズームレンズを構成する各レンズ群の焦点距離を示している。
【0163】
表6は、各非球面の非球面係数である。当該非球面係数は、各非球面形状を下記式で定義したときの値である。また、表25に、各条件式(1)~条件式(18)の値を示す。
【0164】
X(Y)=CY2/[1+{1-(1+Κ)・C2Y2}1/2]+A4・Y4+A6・Y6+A8・Y8+A10・Y10+A12・Y12
【0165】
但し、表6において、「E-a」は「×10-a」を示す。また、上記式において、「X」は光軸方向の基準面からの変位量、「C」は面頂点での曲率、「Y」は光軸に垂直な方向の光軸からの高さ、「Κ」はコーニック係数、「An」はn次の非球面係数とする。
これらの表に関する事項は他の実施例で示す各表においても同様であるため、以下では説明を省略する。
【0166】
[表1]
面番号 r d Nd vd H
1 164.8841 1.300 2.00069 25.46 31.000
2 106.9087 5.753 1.59282 68.62 30.327
3 2049.3432 0.200 30.056
4 64.4678 5.097 1.59282 68.62 28.300
5 127.7370 D5 27.808
6 ASP 66.2535 1.400 1.87483 41.12 18.405
7 16.5245 8.916 13.821
8 -116.2454 0.800 1.85680 41.86 13.668
9 56.4149 0.200 13.446
10 61.8227 9.135 1.73319 26.22 13.451
11 -25.7135 0.300 13.288
12 ASP -22.4217 1.200 1.70845 51.27 13.182
13 ASP -103.8458 D13 13.108
14 S 0.0000 1.200 8.858
15 44.2087 3.473 1.69350 53.18 12.906
16 ASP -219.2615 1.536 12.944
17 -866.8618 0.800 1.84984 37.32 13.064
18 94.5183 4.469 1.59282 68.62 13.156
19 -44.7943 0.300 13.283
20 ASP -82.7341 0.900 1.74007 48.57 13.312
21 56.0779 2.635 1.84666 23.78 13.331
22 183.1346 2.578 13.356
23 41.0183 5.387 1.74192 48.43 13.775
24 -63.8393 0.200 13.624
25 -539.6209 0.800 1.97110 29.19 13.071
26 20.6597 6.228 1.49700 81.61 12.253
27 -111.4492 0.238 12.264
28 51.0216 5.332 1.61800 63.39 12.159
29 -79.8317 D29 11.800
30 -139.9604 2.500 1.80809 22.76 9.380
31 -31.1560 0.900 1.69350 53.18 9.408
32 ASP 23.4283 D32 9.411
33 246.3353 7.306 1.59282 68.62 14.773
34 -27.2244 0.200 15.146
35 -31.7701 0.800 1.80897 38.14 15.013
36 -80.5852 D36 15.522
37 0.0000 2.000 1.51680 64.20 20.964
38 0.0000 1.000 21.170
【0167】
[表2]
f 24.695 59.995 101.989
Fno 4.119 4.120 4.119
ω 42.156 19.074 11.409
Y 21.633 21.633 21.633
TL 170.000 186.493 207.607
【0168】
[表3]
f 24.695 59.995 101.989
撮影距離 INF INF INF
D5 1.000 27.253 51.899
D13 38.860 10.474 1.300
D29 1.242 8.791 13.609
D32 7.117 18.194 19.019
D36 36.700 36.700 36.700
【0169】
[表4]
撮影距離 380.000 400.000 400.000
D29 1.825 11.176 19.899
D32 6.535 15.809 12.728
【0170】
[表5]
群 面番号 焦点距離
G1 1-5 150.486
G2 6-13 -21.265
G3 14-29 27.830
G4 30-32 -31.313
G5 33-36 114.076
【0171】
[表6]
面番号 Κ A4 A6 A8 A10 A12
6 0 -1.8735E-06 2.9593E-09 -1.3867E-11 1.5854E-14 -8.4316E-18
12 0 3.0985E-05 -3.0498E-07 2.1696E-09 -7.7151E-12 1.1327E-14
13 0 1.7444E-05 -3.0958E-07 2.0521E-09 -7.3574E-12 1.0024E-14
16 0 1.2534E-05 -6.6064E-09 8.6021E-11 -4.2944E-13 9.2479E-16
20 0 2.1197E-06 -8.9016E-09 6.0935E-11 -2.0221E-13 2.6903E-16
32 0 1.9583E-06 1.0589E-08 -4.3641E-10 3.7956E-12 -1.3630E-14
【0172】
また、図2図4に当該実施例1のズームレンズの広角端、中間焦点距離状態、望遠端における無限遠合焦時の縦収差図をそれぞれ示す。各図に示す縦収差図は、図面に向かって左側から順に、それぞれ球面収差(mm)、非点収差(mm)、歪曲収差(%)である。球面収差を表す図では、縦軸は開放F値との割合、横軸にデフォーカスをとり、実線がd線(波長λ=587.6nm)、一点鎖線がg線(波長λ=435.8nm)、点線がC線(波長λ=656.3nm)における球面収差を示す。非点収差を表す図では、縦軸は像高、横軸にデフォーカスをとり、実線がd線に対するサジタル像面(ds)、点線がd線に対するメリジオナル像面(dm)を示す。歪曲収差を表す図では、縦軸は像高、横軸に%をとり、歪曲収差を表す。これらの縦収差図に関する事項は、他の実施例で示す縦収差図においても同様であるため、以下では説明を省略する。
【0173】
また、当該ズームレンズの広角端における無限遠合焦時のバックフォーカス「fb」は以下のとおりである。但し、以下の値は、カバーガラス(Nd=1.5168)を含まない値であり、他の実施例に示すバックフォーカスも同様である。
fb= 39.019(mm)
【実施例0174】
(1)ズームレンズの光学構成
図5は、本件発明に係る実施例2のズームレンズの広角端における無限遠合焦時のレンズ構成を示すレンズ断面図である。当該ズームレンズは、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。無限遠物体から近接物体への合焦の際、第3レンズ群G3が光軸に沿って像側に移動する。開口絞りSは第2レンズ群G2の最も像側に配置されている。本実施例では、前群は第1レンズ群G1からなり、後群は第2レンズ群G2、第3レンズ群G3及び第4レンズ群G4からなる。第1レンズ群G1と、第2レンズ群G2との間が「広角端における最も広い空気間隔」である。
【0175】
以下、各レンズ群の構成を説明する。第1レンズ群G1は、物体側から順に、物体側凸形状の負メニスカスレンズL1と、物体側凸形状の負メニスカスレンズL2と、物体側凸形状の正メニスカスレンズL3とから構成されている。負メニスカスレンズL1の像側面は非球面である。
【0176】
第2レンズ群G2は、物体側から順に、物体側凸形状の正メニスカスレンズL4と、物体側凸形状の負メニスカスレンズL5及び両凸レンズL6が接合された接合レンズと、開口絞りSとから構成されている。正メニスカスレンズL4の両面は非球面である。負メニスカスレンズL5は上記レンズLrnである。また、負メニスカスレンズL5のΔPgFは、0.0137である。
【0177】
第3レンズ群G3は、物体側から順に、像側凸形状の正メニスカスレンズL7と両凹レンズL8とが接合された接合レンズから構成されている。第3レンズ群G3は負の屈折力を有する接合レンズのみから構成されており、正メニスカスレンズL7が上記レンズLpであり、両凹レンズL8が上記レンズLnである。
【0178】
第4レンズ群G4は、物体側から順に、像側凸形状の正メニスカスレンズL9と、両凸レンズL10及び物体側凹形状の負メニスカスレンズL11が接合された接合レンズとから構成されている。正メニスカスレンズL9が上記レンズLrpである。また、正メニスカスレンズL9のΔPgFpは、0.0375である。また、負メニスカスレンズL11の物体側面が上記レンズ面Srである。
【0179】
実施例2のズームレンズでは広角端から望遠端への変倍時に像面に対して、第1レンズ群G1が像側に移動し、第2レンズ群G2が物体側に移動し、第3レンズ群G3が物体側に移動し、第4レンズ群G4が物体側に移動する。
【0180】
撮像時の手振れ等に起因する像ブレ発生時には、第2レンズ群G2を防振群とし、当該防振群を光軸と略垂直方向に移動させることで像をシフトさせ、像ブレ補正を行う。なお、負メニスカスレンズL5は上記レンズLvcnであり、正メニスカスレンズL4及び両凸レンズL6はそれぞれ上記レンズLvcpである。なお、表25の条件式(3)の値(37.770)は、両凸レンズL6のアッベ数をνdLvcpとしたときの値である。正メニスカスレンズL4のアッベ数をνdLvcpとしたときの条件式(3)の値は37.890になる。また、正メニスカスレンズL4の両面は非球面であり、物体側面がその近軸曲率から求められる屈折力よりも屈折力が弱くなるような非球面形状を有する。
【0181】
(2)数値実施例
次に、当該ズームレンズの具体的数値を適用した数値実施例について説明する。表7に、当該ズームレンズの面データを示し、表8に当該ズームレンズの緒元表を示す。なお、表7における第21面及び第22面はカバーガラスCGの面データである。
【0182】
表9に、変倍時における当該ズームレンズの光軸上の可変間隔を示し、表10に、合焦時における当該ズームレンズの光軸上の可変間隔を示す。なお、表10には、広角端、中間焦点距離状態、望遠端において、それぞれ撮影距離(撮像距離)が230.00mm、250.00mm、250.00mmのときの値を示している。これらの撮影距離が各焦点距離における最短撮像距離である。
【0183】
表11は、当該ズームレンズを構成する各レンズ群の焦点距離を示している。表12は、各非球面の非球面係数である。また、表25に各条件式(1)~条件式(18)の値を示す。
【0184】
また、図6図8に、当該実施例2のズームレンズの広角端、中間焦点距離状態、望遠端における無限遠合焦時の縦収差図をそれぞれ示す。
【0185】
さらに、当該ズームレンズの広角端における無限遠合焦時のバックフォーカスは以下のとおりである。
fb= 38.002(mm)
【0186】
[表7]
面番号 r d Nd vd H
1 664.2203 2.000 1.59201 67.02 19.685
2 ASP 12.4206 9.063 14.659
3 99.0474 1.700 1.83400 37.34 14.679
4 44.9342 0.382 14.536
5 27.4552 4.648 1.76182 26.61 15.052
6 82.1402 D6 14.800
7 ASP 27.5225 4.248 1.61881 63.85 8.001
8 ASP 341.9552 3.733 7.928
9 41.6779 1.000 1.84666 23.78 7.889
10 17.5890 4.766 1.51680 64.20 7.701
11 -20.4065 1.000 7.687
12 S 0.0000 D12 6.788
13 -43.8890 2.597 1.84666 23.78 6.245
14 -13.2199 1.000 1.80420 46.50 6.132
15 29.7835 D15 5.859
16 -217.0738 2.391 1.49700 81.61 5.867
17 -18.3135 0.300 5.905
18 63.0476 2.475 1.49700 81.61 5.747
19 -21.3360 1.000 1.83481 42.72 5.607
20 -161.5834 D20 5.569
21 0.0000 2.000 1.51680 64.20 13.865
22 0.0000 1.000 14.225
【0187】
[表8]
f 18.538 28.896 53.339
Fno 3.605 4.550 5.767
ω 38.587 26.428 14.755
Y 14.200 14.200 14.200
TL 133.849 122.674 120.000
【0188】
[表9]
f 18.538 28.896 53.339
撮影距離 INF INF INF
D6 43.626 20.912 1.273
D12 2.450 4.207 10.084
D15 6.788 8.311 7.450
D20 35.683 43.942 55.891
【0189】
[表10]
撮影距離 230.000 250.000 250.000
D12 3.300 5.738 15.028
D15 5.938 6.780 2.500
【0190】
[表11]
群 面番号 焦点距離
G1 1-6 -28.619
G2 7-12 23.772
G3 13-15 -22.745
G4 16-20 44.047
【0191】
[表12]
面番号 Κ A4 A6 A8 A10 A12
2 -0.864 9.3680E-06 2.0539E-09 4.6218E-11 7.4937E-15 0.0000E+00
7 0 -1.1011E-05 5.5255E-08 -2.4435E-09 0.0000E+00 0.0000E+00
8 0 2.2843E-05 7.6512E-08 -2.5280E-09 0.0000E+00 0.0000E+00
【実施例0192】
(1)ズームレンズの光学構成
図9は、本件発明に係る実施例3のズームレンズの広角端における無限遠合焦時のレンズ構成を示すレンズ断面図である。当該ズームレンズは、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6とから構成されている。無限遠物体から近接物体への合焦の際、第5レンズ群G5が光軸に沿って像側に移動する。開口絞りSは第3レンズ群G3の最も物体側に配置されている。本実施例3では、前群は第1レンズ群G1及び第2レンズ群G2からなり、後群は第3レンズ群G3、第4レンズ群G4、第5レンズ群G5及び第6レンズ群G6からなる。第2レンズ群G2と、第3レンズ群G3との間が「広角端における最も広い空気間隔」である。
【0193】
以下、各レンズ群の構成を説明する。第1レンズ群G1は、物体側から順に、物体側凸形状の負メニスカスレンズL1及び凸レンズL2が接合された接合レンズと、物体側凸形状の正メニスカスレンズL3とから構成されている。
【0194】
第2レンズ群G2は、物体側から順に、物体側凸形状の負メニスカスレンズL4と、両凹レンズL5及び両凸レンズL6が接合された接合レンズと、物体側凹形状の負メニスカスレンズL7とから構成されている。負メニスカスレンズL4の物体側面は非球面であり、負メニスカスレンズL7の両面は非球面である。
【0195】
第3レンズ群G3は、物体側から順に、開口絞りSと、物体側凸形状の負メニスカスレンズL8、両凸レンズL9及び物体側凹形状の負メニスカスレンズL10の3枚のレンズが接合された接合レンズと、両凸レンズL11とから構成されている。両凸レンズL11が上記レンズLpである。また、両凸レンズL9が上記レンズLrpである。両凸レンズL9のΔPgFは、0.0194である。
【0196】
第4レンズ群G4は、物体側から順に、両凸レンズL12及び物体側凹形状の負メニスカスレンズL13が接合された接合レンズと、両凹レンズL14及び像側凸形状の正メニスカスレンズL15が接合された接合レンズと、両凸レンズL16とから構成されている。両凸レンズL12の物体側面は非球面であり、両凸レンズL16の両面は非球面である。両凹レンズL14は上記レンズLrnであり、正メニスカスレンズL15は上記レンズLrpである。両凹レンズL14のΔPgFは0.0036であり、正メニスカスレンズL15のΔPgFpは0.0194である。
【0197】
第5レンズ群G5は、両面が非球面の両凹レンズL17から構成されている。すなわち、負の屈折力を有する単レンズ1枚のみから構成されており、当該両凹レンズL17は上記レンズLnに相当する。
【0198】
第6レンズ群G6は、像側凸形状の正メニスカスレンズL18から構成されている。正メニスカスレンズL18の物体側面が上記レンズ面Srである。
【0199】
実施例3のズームレンズでは広角端から望遠端への変倍時に像面に対して、第1レンズ群G1が物体側に移動し、第2レンズ群G2が一旦像側に移動したのち物体側に移動し、第3レンズ群G3が物体側に移動し、第4レンズ群G4が物体側に移動し、第5レンズ群G5が物体側に移動し、第6レンズ群G6は一旦像側に移動したのち物体側に移動する。
【0200】
撮像時の手振れ等に起因する像ブレ発生時には、第4レンズ群G4に含まれる両凸レンズL12と物体側凹形状の負メニスカスレンズL13とが接合された接合レンズを防振群とし、当該防振群を光軸と略垂直方向に移動させることで像をシフトさせ、像ブレ補正を行う。なお、負メニスカスレンズL13は上記レンズLvcnであり、両凸レンズL12は上記レンズLvcpである。また、両凸レンズL12の物体側面は、その近軸曲率から求められる屈折力よりも屈折力が弱くなるような非球面形状を有する。
【0201】
(2)数値実施例
次に、当該ズームレンズの具体的数値を適用した数値実施例について説明する。表13に、当該ズームレンズの面データを示し、表14に当該ズームレンズの緒元表を示す。なお、表13における第33面及び第34面はカバーガラスCGの面データである。
【0202】
表15に、変倍時における当該ズームレンズの光軸上の可変間隔を示し、表16に、合焦時における当該ズームレンズの光軸上の可変間隔を示す。なお、表16には、広角端、中間焦点距離状態、望遠端において、それぞれ撮影距離(撮像距離)が380.00mm、400.00mm、400.00mmのときの値を示している。これらの撮影距離が各焦点距離における最短撮像距離である。
【0203】
表17は、当該ズームレンズを構成する各レンズ群の焦点距離を示している。表18は、各非球面の非球面係数である。また、表25に各条件式(1)~条件式(18)の値を示す。
【0204】
また、図10図12に、当該実施例3のズームレンズの広角端、中間焦点距離状態、望遠端における無限遠合焦時の縦収差図をそれぞれ示す。
【0205】
さらに、当該ズームレンズの広角端における無限遠合焦時のバックフォーカスは以下のとおりである。
fb= 39.000(mm)
【0206】
[表13]
面番号 r d Nd vd H
1 323.7548 1.200 1.92119 23.96 31.000
2 162.8221 5.378 1.59282 68.62 30.511
3 -416.6201 0.200 30.309
4 52.5783 6.103 1.59282 68.62 27.700
5 117.8837 D5 27.204
6 ASP 205.3924 0.300 1.51460 49.96 17.800
7 92.8554 1.000 1.72916 54.67 17.549
8 16.2034 9.149 12.854
9 -33.2034 0.800 1.49700 81.61 12.685
10 23.5127 7.798 1.72047 34.71 11.846
11 -53.7846 2.177 11.330
12 ASP -24.1046 1.000 1.85135 40.10 11.000
13 ASP -39.5928 D13 11.078
14 S 0.0000 1.000 7.350
15 33.5262 0.800 2.00100 29.13 11.263
16 22.1705 7.146 1.59282 68.62 11.130
17 -24.7861 0.800 1.80610 40.73 11.214
18 -1553.7806 0.200 11.601
19 45.5555 3.337 1.94595 17.98 11.975
20 -11420.0602 D20 11.917
21 ASP 73.0633 5.117 1.59282 68.62 11.798
22 -34.4056 0.800 1.94595 17.98 11.608
23 -44.4387 0.200 12.500
24 -252.4796 0.800 2.00100 29.13 11.189
25 21.7316 3.716 1.59282 68.62 10.757
26 44.7795 0.200 10.768
27 ASP 32.9204 6.239 1.82098 42.50 10.900
28 ASP -56.3856 D28 10.951
29 ASP -177.3325 1.000 1.59201 67.02 11.450
30 ASP 29.2491 D30 11.132
31 -331.6955 2.594 1.87070 40.73 13.305
32 -82.1148 D32 13.500
33 0.0000 2.000 1.51680 64.20 21.332
34 0.0000 1.000 21.528
【0207】
[表14]
f 25.752 51.482 101.851
Fno 4.123 4.108 4.120
ω 41.307 22.170 11.633
Y 21.633 21.633 21.633
TL 150.364 161.368 203.864
【0208】
[表15]
f 25.752 51.482 101.851
撮影距離 INF INF INF
D5 1.000 17.096 42.593
D13 25.849 6.747 1.000
D20 4.201 2.583 1.000
D28 0.997 5.217 1.003
D30 9.581 13.836 20.242
D32 36.681 43.834 65.971
【0209】
[表16]
撮影距離 380.000 400.000 400.000
D28 1.933 7.951 7.855
D30 8.645 11.101 13.390
【0210】
[表17]
群 面番号 焦点距離
G1 1-5 114.642
G2 6-13 -20.988
G3 14-20 42.458
G4 21-28 45.184
G5 29-30 -42.335
G6 31-32 124.734
【0211】
[表18]
面番号 Κ A4 A6 A8 A10 A12
6 0 1.2837E-05 -2.1442E-08 5.5949E-11 -1.1996E-13 1.5377E-16
12 0 -8.7531E-06 8.6202E-08 -3.3258E-10 5.1244E-13 -9.3573E-16
13 0 -9.7742E-06 7.6139E-08 -3.0250E-10 3.5047E-13 0.0000E+00
21 0 -5.5002E-06 -1.6789E-08 8.7410E-11 -3.4776E-13 7.7049E-16
27 0 -3.5514E-06 2.9946E-08 3.3719E-10 -1.8317E-12 1.2820E-14
28 0 7.9983E-06 -1.0254E-09 7.7608E-10 -5.3802E-12 2.7034E-14
29 0 -1.2178E-05 1.5756E-07 -1.0359E-09 2.8436E-12 0.0000E+00
30 0 -1.5518E-05 1.5764E-07 -1.0926E-09 2.8672E-12 2.0668E-15
【実施例0212】
(1)ズームレンズの光学構成
図13は、実施例4のズームレンズの広角端における無限遠合焦時のレンズ構成を示すレンズ断面図である。当該ズームレンズは、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6とから構成されている。無限遠物体から近接物体への合焦の際、第5レンズ群G5が光軸に沿って像側に移動する。開口絞りSは第3レンズ群G3の最も物体側に配置されている。本実施例では、前群は第1レンズ群G1及び第2レンズ群G2からなり、後群は第3レンズ群G3、第4レンズ群G4、第5レンズ群G5及び第6レンズ群G6からなる。第2レンズ群G2と、第3レンズ群G3との間が「広角端における最も広い空気間隔」である。
【0213】
以下、各レンズ群の構成を説明する。第1レンズ群G1は、物体側から順に、物体側凸形状の負メニスカスレンズL1及び凸レンズL2が接合された接合レンズと、物体側凸形状の正メニスカスレンズL3とから構成されている。
【0214】
第2レンズ群G2は、物体側から順に、物体側凸形状の負メニスカスレンズL4と、両凹レンズL5と、両凸レンズL6と、物体側凹形状の負メニスカスレンズL7とから構成されている。負メニスカスレンズL4の物体側面は非球面であり、負メニスカスレンズL7の両面は非球面である。
【0215】
第3レンズ群G3は、物体側から順に、開口絞りSと、両凸レンズL8と、両凹レンズL9及び両凸レンズL10が接合された接合レンズと、両凹レンズL11及び物体側凸形状の正メニスカスレンズL12が接合された接合レンズとから構成されている。両凸レンズL8の像側面及び両凹レンズL11の物体側面は非球面である。両凸レンズL10は上記レンズLrpである。また、両凸レンズL10のΔPgFpは0.0194である。
【0216】
第4レンズ群G4は、物体側から順に、両凸レンズL13と、両凹レンズL14及び両凸レンズL15が接合された接合レンズと、両凸レンズL16とから構成されている。両凹レンズL14は上記レンズLrnであり、両凸レンズL15は上記レンズLrpである。両凹レンズL14のΔPgFは0.000であり、両凸レンズL15のΔPgFpは0.0375である。
【0217】
第5レンズ群G5は、物体側から順に、像側凸形状の正メニスカスレンズL17と両凹レンズL18とが接合された接合レンズから構成されている。第5レンズ群G5は負の屈折力を有する接合レンズのみから構成されており、正メニスカスレンズL17が上記レンズLpであり、両凹レンズL18が上記レンズLnである。
【0218】
第6レンズ群G6は、物体側から順に、両凸レンズL19と物体側凹形状の負メニスカスレンズL20とが接合された接合レンズから構成されている。
【0219】
実施例4のズームレンズでは広角端から望遠端への変倍時に像面に対して、第1レンズ群G1が物体側に移動し、第2レンズ群G2が像側に移動し、第3レンズ群G3が物体側に移動し、第4レンズ群G4が物体側に移動し、第5レンズ群G5が物体側に移動し、第6レンズ群G6は光軸方向に固定されている。
【0220】
撮像時の手振れ等に起因する像ブレ発生時には、第3レンズ群G3に含まれる両凹レンズL11と物体側凸形状の正メニスカスレンズL12とが接合された接合レンズを防振群とし、当該防振群を光軸と略垂直方向に移動させることで像をシフトさせ、像ブレ補正を行う。なお、両凹レンズL11は上記レンズLvcnであり、正メニスカスレンズL12は上記レンズLvcpである。また、両凹レンズL11の物体側面は、その近軸曲率から求められる屈折力よりも屈折力が弱くなるような非球面形状を有する。
【0221】
(2)数値実施例
次に、当該ズームレンズの具体的数値を適用した数値実施例について説明する。表19に、当該ズームレンズの面データを示し、表20に当該ズームレンズの緒元表を示す。なお、表19における第36面及び第37面はカバーガラスCGの面データである。
【0222】
表21に、変倍時における当該ズームレンズの光軸上の可変間隔を示し、表22に、合焦時における当該ズームレンズの光軸上の可変間隔を示す。なお、表22には、広角端、中間焦点距離状態、望遠端において、それぞれ撮影距離(撮像距離)が380.00mm、400.00mm、400.00mmのときの値を示している。これらの撮影距離が各焦点距離における最短撮像距離である。
【0223】
表23は、当該ズームレンズを構成する各レンズ群の焦点距離を示している。表24は、各非球面の非球面係数である。また、表25に各条件式(1)~条件式(18)の値を示す。
【0224】
また、図14図16に、実施例4のズームレンズの広角端、中間焦点距離状態、望遠端における無限遠合焦時の縦収差図をそれぞれ示す。
【0225】
さらに、当該ズームレンズの広角端における無限遠合焦時のバックフォーカスは以下のとおりである。
fb= 39.437(mm)
【0226】
[表19]
面番号 r d Nd vd H
1 234.7666 1.300 2.00069 25.46 31.000
2 138.4148 5.791 1.59282 68.62 30.558
3 -680.0462 0.200 30.302
4 69.5724 5.230 1.59282 68.62 28.400
5 161.1477 D5 27.926
6 ASP 79.5439 1.400 1.86791 41.50 18.481
7 16.1943 8.900 13.716
8 -318.2547 0.800 1.87450 36.30 13.541
9 45.1827 0.309 13.327
10 51.2199 8.660 1.73426 26.35 13.336
11 -25.6352 0.451 13.228
12 ASP -20.9608 1.200 1.77115 48.40 13.152
13 ASP -64.5265 D13 13.100
14 S 0.0000 1.200 8.750
15 53.1982 3.548 1.69350 53.18 12.260
16 ASP -79.4200 1.520 12.346
17 -266.2503 0.800 1.82595 41.71 12.461
18 88.0772 4.260 1.59282 68.62 12.571
19 -42.6289 0.624 12.691
20 ASP -78.1987 0.900 1.74974 49.75 12.900
21 60.1253 2.368 1.84666 23.78 12.727
22 185.3061 D22 12.759
23 47.5209 5.193 1.68881 54.43 13.170
24 -55.0964 0.200 13.066
25 -327.0636 0.800 1.96229 29.86 12.625
26 22.8885 6.220 1.49700 81.61 12.075
27 -77.0078 0.350 12.125
28 73.7860 5.020 1.61800 63.39 12.044
29 -73.2609 D29 11.750
30 -207.6716 2.500 1.80809 22.76 9.380
31 -36.7222 0.900 1.69350 53.18 9.429
32 ASP 22.1640 D32 9.493
33 52.7180 6.495 1.59282 68.62 15.993
34 -73.2205 0.800 1.69206 30.32 16.171
35 -416.6667 37.118 16.374
36 0.0000 2.000 1.51680 64.20 21.005
37 0.0000 1.000 21.342
【0227】
[表20]
f 24.839 59.958 102.474
Fno 4.121 4.119 4.120
ω 41.981 18.973 11.267
Y 21.633 21.633 21.633
TL 169.752 174.603 207.241
【0228】
[表21]
f 24.839 59.958 102.474
撮影距離 INF INF INF
D5 1.000 20.275 53.597
D13 38.216 6.180 1.360
D22 4.143 3.278 2.700
D29 1.179 12.168 13.313
D32 7.156 14.643 18.212
【0229】
[表22]
撮影距離 380.000 400.000 400.000
D29 1.849 15.198 20.630
D32 6.486 11.613 10.895
【0230】
[表23]
群 面番号 焦点距離
G1 1-5 140.430
G2 6-13 -21.836
G3 14-22 56.376
G4 23-29 39.322
G5 30-32 -31.033
G6 33-37 86.738
【0231】
[表24]
面番号 Κ A4 A6 A8 A10 A12
6 0 -3.5121E-07 1.2475E-09 -1.8924E-11 2.0318E-14 -9.3027E-18
12 0 3.4527E-05 -2.8731E-07 2.1583E-09 -7.5699E-12 1.1133E-14
13 0 1.8666E-05 -3.0289E-07 2.0678E-09 -7.5735E-12 1.0314E-14
16 0 1.3999E-05 -4.6523E-09 4.5363E-11 -3.1634E-13 9.7102E-16
20 0 2.6081E-06 -9.1362E-09 6.1882E-11 -2.3937E-13 3.9842E-16
32 0 -4.4734E-06 3.3579E-09 -4.8480E-10 4.0227E-12 -1.3728E-14
【0232】
[表25]
実施例1 実施例2 実施例3 実施例4
条件式(1) Cr1f/fw 6.677 35.830 12.572 9.452
条件式(2) (-ffw+Dfrw)/FBw 1.714 1.901 1.422 1.703
条件式(3) 1/|(1/νdLvcn)-(1/νdLvcp)| 46.591 37.770 24.364 45.555
条件式(4) |(1-βvct)×βvctr| 1.194 4.004 1.682 1.198
条件式(5) (Crff+Crfr)/(Crff-Crfr) 0.713 0.191 0.717 0.807
条件式(6) |{1-(βft2)}×βftr2| 5.419 4.437 5.061 4.609
条件式(6-1) |βft| 3.756 5.520 5.034 4.451
条件式(7) |fw×tanωw|/(fsr-FBw) -0.197 -0.141 -0.029 -0.017
条件式(8) NdLrn 1.971 1.847 2.001 1.962
条件式(9) ΔPgF 0.000 0.014 0.004 0.000
条件式(9-1) ΔPgFp 0.038 0.038 0.019 0.038
条件式(10) fn/fw -0.861 -1.544 -0.815 -0.879
条件式(11) ff/ft -0.307 -0.426 -0.416 -0.303
条件式(12) νdLn 53.186 46.503 67.023 53.186
条件式(13) |X1|/ft 0.369 0.260 0.525 0.366
条件式(14) Crrf/ft 0.433 0.516 0.329 0.519
条件式(15) ffft/ft 0.414 0.467 0.435 0.454
条件式(16) Drfrt/ft 0.186 0.140 0.199 0.178
条件式(17) fw/ffw -0.920 -0.648 -0.900 -0.895
条件式(18) νdLp 22.761 23.785 17.980 22.761
【産業上の利用可能性】
【0233】
本件発明によれば、フォーカス群及び防振群の軽量化を図りつつ、光学性能の高い標準系のズームレンズ及び当該ズームレンズを備えた撮像装置を提供することができる。特に、当該ズームレンズは、35mm判換算において50mmの焦点距離をズーム域に含みつつ、広角端における当該ズームレンズの半画角(ω)を24°よりも大きいズームレンズに好適である。
【符号の説明】
【0234】
G1 ・・・第1レンズ群
G2 ・・・第2レンズ群
G3 ・・・第3レンズ群
G4 ・・・第4レンズ群
G5 ・・・第5レンズ群
G6 ・・・第6レンズ群
F ・・・フォーカス群
S ・・・開口絞り
CG ・・・カバーガラス
IMG・・・結像面
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16