(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024156695
(43)【公開日】2024-11-06
(54)【発明の名称】生物学的構造の腔と管との間の接続およびシャントを形成するための方法および技術
(51)【国際特許分類】
A61F 2/02 20060101AFI20241029BHJP
【FI】
A61F2/02
【審査請求】有
【請求項の数】1
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2024111633
(22)【出願日】2024-07-11
(62)【分割の表示】P 2021515145の分割
【原出願日】2019-09-19
(31)【優先権主張番号】62/733,533
(32)【優先日】2018-09-19
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/747,649
(32)【優先日】2018-10-18
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/779,380
(32)【優先日】2018-12-13
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/802,656
(32)【優先日】2019-02-07
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】521065469
【氏名又は名称】エヌエックスティー バイオメディカル,エルエルシー
【氏名又は名称原語表記】NXT BIOMEDICAL,LLC
【住所又は居所原語表記】9 Executive Circle, Suite 290, Irvine, California 92614, United States of America
(74)【代理人】
【識別番号】100109634
【弁理士】
【氏名又は名称】舛谷 威志
(74)【代理人】
【識別番号】100160831
【弁理士】
【氏名又は名称】大谷 元
(72)【発明者】
【氏名】シュワルツ,ロバート エス.
(72)【発明者】
【氏名】ローウェ,スタントン ジェイ.
(72)【発明者】
【氏名】タフト,ロバート シー.
(72)【発明者】
【氏名】ラビト,グレン
(72)【発明者】
【氏名】シーゲル,アレクサンダー
(72)【発明者】
【氏名】パスマン,ジョセフ
(57)【要約】 (修正有)
【課題】1つの体腔または管から別の体腔または管へ過剰な流体圧をシャントすることにより、肺高血圧症等の過剰な流体圧または残留によって引き起こされるか、または悪化する状態を治療する装置および方法を提供する。
【解決手段】2つの体腔の間を接続するための置は、接続されるべき腔のそれぞれの中にそれ自体を固定する能力と、これらの腔の壁を一緒に押し込みまたは加圧して、内部流体の漏れを防止するシールを作り出す能力と、圧力差、流量差(flow differential)、または流れの物理学に関連する他のパターンに基づいて、一方の腔から他方の腔への流体または気体の流れを可能にする接続を作り出す能力と、を有する。
【選択図】
図1
【特許請求の範囲】
【請求項1】
身体の第1の領域を治療する方法であって、前記第1の領域と、前記第1の領域よりも低い圧力を有する第2の領域との間にシャントを形成するステップを含み、ここで、前記第1および第2の領域は、前記シャントを形成する前に接続されていないことを特徴とする方法。
【請求項2】
前記シャントを形成するステップは、前記第1の領域と前記第2の領域との間に、管腔を有するステントを配置するステップを含む請求項1に記載の方法。
【請求項3】
前記第1および第2の領域は、前記シャントを形成する前に、互いに同一平面にある請求項1に記載の方法。
【請求項4】
前記第1および第2の領域は、前記シャントを形成する前に離間されている請求項1に記載の方法。
【請求項5】
前記第1および第2の領域は、前記シャントを形成する前および後に離間されている請求項4に記載の方法。
【請求項6】
前記管腔が流れ制御機構を含む請求項2に記載の方法。
【請求項7】
前記流れ制御機構が前記管腔であり、前記管腔が非円筒形である請求項6に記載の方法。
【請求項8】
前記管腔がH字形であり、増加した圧力を受けたときに拡張する請求項7に記載の方法。
【請求項9】
前記流れ制御機構が、適応可能な流れ制御機構を含む請求項6に記載の方法。
【請求項10】
前記第1および第2の領域の少なくとも一方が、体腔を含む請求項1に記載の方法。
【請求項11】
前記第1および第2の領域の少なくとも一方が管を含む請求項1に記載の方法。
【請求項12】
前記第1の領域が上大静脈を含み、前記第2の領域が肺動脈を含む請求項1に記載の方法。
【請求項13】
前記第1の領域が右心房または心耳を含み、前記第2の領域が肺動脈を含む請求項1に記載の方法。
【請求項14】
前記シャントを形成することにより、前記シャントを介する流量が0.1L/分と3.0L/分との間になる請求項1に記載の方法。
【請求項15】
第1の領域と、前記第1の領域よりも低い圧力を有する第2の領域との間にシャントを形成するための装置であって、前記第1および第2の領域は前記シャントを形成する前に接続されておらず、
前記シャントは、第1の端部および第2の端部と、前記第1の端部および前記第2の端部の間に延在する管腔とを有するステントと、少なくとも1つの固定機構とを含むことを特徴とする装置。
【請求項16】
前記少なくとも1つの固定機構は、前記第1の端部で第1の固定機構を含み、前記第2の端部で第2の固定機構を含む請求項15に記載の装置。
【請求項17】
前記第1および第2の固定機構の少なくとも一方がフランジを含む請求項16に記載の装置。
【請求項18】
前記フランジが自己拡張式である請求項17に記載の装置。
【請求項19】
前記フランジがバルーン拡張可能である請求項17に記載の装置。
【請求項20】
前記少なくとも1つの固定機構が、前記ステントによって移植部位に及ぼされる外向きの半径方向の力を含む請求項15に記載の装置。
【請求項21】
前記少なくとも1つの固定機構は、前記第1の端部で第1の複数の花弁部を含み、前記第2の端部で第2の複数の花弁部を含む請求項15に記載の装置。
【請求項22】
前記第1の複数の花弁部の少なくとも一部は、前記第2の複数の花弁部の少なくとも一部よりも長い請求項21に記載の装置。
【請求項23】
前記第1の複数の花弁部は、8つの花弁部を含む請求項21に記載の装置。
【請求項24】
前記第2の複数の花弁部は、8つの花弁部を含む請求項21に記載の装置。
【請求項25】
前記ステント上に被覆部をさらに備える請求項15に記載の装置。
【請求項26】
前記ステントが完全に拡張されると、前記第1の複数の花弁部は、前記第2の複数の花弁部から離間される請求項21に記載の装置。
【請求項27】
第1の領域と、前記第1の領域よりも低い圧力を有する第2の領域との間にシャントを形成するためのシステムであって、前記第1および第2の領域は前記シャントを形成する前に接続されておらず、
前記シャントは、
第1の端部および第2の端部と、前記第1の端部および前記第2の端部の間に延在する管腔とを有するステントと、
前記第1の端部における第1の固定機構と、前記第2の端部における第2の固定機構と、
前記ステントを移植部位へ運ぶための供給装置と、を含むことを特徴とするシステム。
【請求項28】
前記供給装置は、前記ステント内で拡張されたときに前記第1および第2の端部の少なくとも一方で前記ステント内にフランジを形成するバルーンをさらに含む請求項27に記載のシステム。
【請求項29】
前記ステントが、前記管腔内に流れ制御機構をさらに含む請求項27に記載のシステム。
【請求項30】
前記ステントが、前記第1および第2の端部の少なくとも一方で、自己拡張フランジを含む請求項27に記載のシステム。
【請求項31】
前記ステントは第1の拡張サイズまで拡張可能であり、その後、前記第1の拡張サイズよりも大きい第2の拡張サイズまで拡張可能である請求項27に記載のシステム。
【発明の詳細な説明】
【関連出願】
【0001】
本出願は、2018年9月19日に出願された「Methods And Technology For Creating Connections And Shunts Between Vessels And Chambers Of Biologic Structures」という発明の名称の米国仮出願第62/733,533号に対して、2018年10月18日に出願された「Methods And Technology For Creating Connections And Shunts Between Vessels And Chambers Of Biologic Structures」という発明の名称の米国仮出願第62/747,649号に対して、2018年12月13日に出願された「Methods And Technology For Creating Connections And Shunts Between Vessels And Chambers Of Biologic Structures」という発明の名称の米国仮出願第62/779,380号に対して、および2019年2月7日に出願された「Methods And Technology For Creating Connections And Shunts Between Vessels And Chambers Of Biologic Structures」という発明の名称の米国仮出願第62/802,656号に対して優先権を主張し、それらの全体が参照により本明細書に組み込まれる。
【技術分野】
【0002】
本発明は、自然には接続されていない体腔(bodily chambers)または管の間に流体接続を形成することによって、様々な医学的状態(medical conditions)を治療するための方法および装置に関する。
【背景技術】
【0003】
肺高血圧症(Pulmonary Hypertension)は、肺の高血圧を表す状態である。上昇した肺血圧には、肺の小動脈の閉塞、高い左心圧(high left-sided heart pressures)、慢性肺疾患等、様々な原因がある。
【0004】
心不全を含む二次的状態として高肺血圧を作り出す多くの医学的状態がある。心不全では、心臓が、体から来る血液の要求を満たすことができない。これは、心臓内の圧力上昇につながることが多く、肺に逆流して、安静時または運動時に肺高血圧症を引き起こす。
【0005】
いずれの場合も、この上昇した肺血圧によって、右心室(RV)は、肺および心臓の左側に血液を供給するためにより激しく働く。時間が経つにつれて、この付加的な負荷は、心臓に損傷を与え、効率を低下させ、特に運動中に身体の要求に追従する能力を制限する。
【0006】
肺血圧を低下させることは、肺動脈高血圧症(PAH)の患者において特に、多数の治療法のターゲットとなっている。ここでは、いくつかの薬剤が有る程度の成功を示している。しかし、これらの薬剤はしばしば非常に高価で患者に負担をかけ、時間の経過にともないその有効性を失う可能性がある。
【0007】
この点に関して、必要なことは、肺血圧および他の高血圧状態を低減するための改善された治療オプションである。
【発明の目的および概要】
【0008】
本出願は、本明細書中に教示された装置を使用し、本方法を実施して達成された驚くべき肯定的な結果を利用する追加の方法および実施形態を対象とする。
【0009】
生物学的および医療用装置は、通常は接続されていない体腔または管の間に接続またはシャントを形成することによって、治療効果をもたらし得る。これらのシャントは、異常な圧力、異常な流れを変化させるために、または血液、リンパ液、または空気もしくは気体を含む他の体液等の物質の量または品質を増加させるために有用である。
【0010】
本発明の1つの態様は、2つの体腔の間を接続するための1つまたは複数の装置のいくつかの実施形態を提供する。1つまたは複数の実施形態では、そのような腔(chambers)/管(vessels)を接続するための装置は、接続されるべき腔のそれぞれの中にそれ自体を固定する能力と、これらの腔の壁を一緒に押し込みまたは加圧して、内部流体の漏れを防止するシールを作り出す能力と、圧力差、流量差(flow differential)、または流れの物理学に関連する他のパターンに基づいて、一方の腔から他方の腔への流体または気体の流れを可能にする接続を作り出す能力と、を有する。
【0011】
別の態様では、壁をそれぞれ有する2つの体腔を、離散的かつ可変サイズに作られたシャント/孔によって接続し得る装置を提供する。これは、(心室を大動脈に接続する場合のように)腔を管に接続する1つ以上の装置を必要とし得る。このパラダイムでは、複数の配列(permutations)が実現可能である。心臓は、多数の腔および管の両方を有し、治療効果は、一方を他方に接続することによって、または複数の腔横断/心室横断の接続(trans-chamber/trans ventricular connections)によって生成され得る。本明細書中で使用される場合、「体腔」は、流体または気体が存在するか、または含まれる体内の任意の空間または空洞を意味する。腔は、心臓、脳、肺、肝臓、腎臓、膀胱、消化管または腹腔の空洞等の空洞を含み得るが、これらに限定されない。「管(Vessels)」は、一般に、他の器官または腔につながるか、または他の器官または腔から流れ、動脈、静脈、リンパ管、気道、尿管等を含むが、これらに限定されない。
【0012】
本発明の一態様は、身体の第1の領域において圧力を解放する方法であって、第1の領域と、第1の領域よりも低い圧力を有する第2の領域との間にシャントを形成するステップを含み、第1の領域および第2の領域はシャントを形成する前に接続されていない方法を提供する。シャントは、例えば、0.1L/分および3.0L/分の間の流量(flow rate)を可能にする。
【0013】
いくつかの実施形態では、第1および第2の領域がシャントを形成する前に互いに同一平面にある。他の実施形態では、第1および第2の領域がシャントを形成する前に離間されている。さらに他の実施形態では、第1および第2の領域がシャントを形成する前および後に離間されている。
【0014】
いくつかの実施形態では、管腔(lumen)が流れ制御機構(flow control mechanism)を備える。当該流れは管腔であってもよく、管腔は非円筒形であってもよい。一態様では、管腔は「H」字形であり、増加した圧力を受けたときに拡張する。
【0015】
1つの態様は、適応可能な流れ制御機構である流れ制御機構を提供する。
【0016】
いくつかの実施形態では、第1および第2の領域が体腔である。いくつかの実施形態では、第1および第2の領域は管である。
【0017】
本発明の一態様は、上大静脈(Superior Vena Cava)を肺動脈(Pulmonary Artery)に接続する。
【0018】
別の態様は、右心房または心耳を肺動脈に接続する。
【0019】
さらに別の態様は、第1の領域と、第1の領域よりも低い圧力を有する第2の領域との間にシャントを形成するための装置であって、第1の領域と第2の領域は、シャントを形成する前に接続されていない装置を提供する。装置は、第1の端部および第2の端部と、第1の端部および第2の端部の間に延在する管腔とを有するステントを備えることができる。
【0020】
装置は、第1の端部で第1の固定機構(anchoring feature)を備え、第2の端部で第2の固定機構を備えてもよい。固定機構の少なくとも1つはフランジであってもよく、フランジは自己拡張式であってもよい。代替的にまたは追加的に、固定機構は、送り出されることによって移植部位に加えられる外向きの半径方向の力(outward radial force)であってもよい。
【0021】
本発明のさらに別の態様は、第1の領域と、第1の領域よりも低い圧力を有する第2の領域との間にシャントを形成するシステムであって、第1の領域および第2の領域はシャントを形成する前に接続されていないシステムを提供する。システムは、第1の端部および第2の端部と、第1の端部および第2の端部の間に延在する管腔とを有するステントを備えることができる。システムは、第1の端部で第1の固定機構を、第2の端部で第2の固定機構をさらに備えることができる。システムは、ステントを移植部位に運ぶための供給装置を備えてもよい。
【0022】
少なくとも1つの実施形態では、供給装置が成形バルーンをさらに備え、成形バルーンは、ステントにおいて拡張されると、第1の端部および第2の端部のうちの少なくとも一方で、ステント内にフランジを形成する。
【0023】
システムのステントは、管腔内に流れ制御機構をさらに備えてもよい。
【0024】
また、システムのステントは、第1および第2の端部の少なくとも一方に自己拡張フランジを備えてもよい。
【図面の簡単な説明】
【0025】
本発明の実施形態が可能であるこれらおよび他の態様、特徴、および利点は、添付の図面を参照して、本発明の実施形態の以下の説明から明らかになり、解明されるであろう。
【0026】
【
図1】
図1は、本発明の方法の一実施形態によって作られた同一平面接続(flush connection)の図である。
【0027】
【
図2】
図2は、本発明の方法の一実施形態によって作られた、管状、非同一平面、または離間した接続の図である。
【0028】
【
図3】
図3は、本発明の方法の一実施形態によって作られた腔と管の接続(chamber-to-vessel connection)の図である。
【0029】
【
図4】
図4は、本発明の方法の一実施形態によって作られた管と管の接続の図である。
【0030】
【
図5】
図5は、本発明の方法の一実施形態によって作られた複数接続の図である。
【0031】
【
図6a】
図6aは、本発明の装置の一実施形態の側面図(side elevation)である。
【0032】
【0033】
【
図7】
図7は、本発明の装置の一実施形態の側面図である。
【0034】
【0035】
【
図9】
図9は、本発明の一実施形態の斜視図である。
【0036】
【0037】
【0038】
【0039】
【0040】
【0041】
【0042】
【
図16】
図16は、閉鎖または収縮構成(closed or constricted configuration)における本発明の一実施形態の斜視図である。
【0043】
【
図17】
図17は、拡張構成(expanded configuration)における
図16の実施形態の斜視図である。
【0044】
【
図18】
図18は、閉鎖または収縮構成における本発明の一実施形態の斜視図である。
【0045】
【
図19】
図19は、開放構成(open configuration)における
図18の実施形態の斜視図である。
【0046】
【
図20】
図20は、閉鎖または収縮構成における本発明の一実施形態の斜視図である。
【0047】
【0048】
【
図22】
図22は、本発明の実施形態の一部についての開口面積対圧力のグラフである。
【0049】
【
図23】
図23は、閉鎖または収縮構成における本発明の一実施形態の斜視図である。
【0050】
【0051】
【
図25】
図25は、閉鎖または収縮構成における本発明の一実施形態の斜視図である。
【0052】
【0053】
【
図27】
図27は、閉鎖または収縮構成における本発明の一実施形態の斜視図である。
【0054】
【0055】
【
図29】
図29は、閉鎖または収縮構成における本発明の一実施形態の斜視図である。
【0056】
【0057】
【
図31】
図31は、本発明の装置の一実施形態の側面図である。
【0058】
【
図32】
図32は、本発明の装置の一実施形態の立面図(elevation)である。
【0059】
【0060】
【0061】
【0062】
【
図36】
図36は、閉鎖または収縮構成における本発明の一実施形態の斜視図である。
【0063】
【0064】
【
図38】
図38は、本発明の装置の一実施形態の斜視図である。
【0065】
【
図39】
図39は、本発明の装置の一実施形態の斜視図である。
【0066】
【
図40】
図40は、本発明の装置の一実施形態の側面図である。
【0067】
【0068】
【0069】
【0070】
【0071】
【
図45】
図45は、本発明の装置の一実施形態の側面図である。
【0072】
【
図46】
図46は、本発明の装置の一実施形態の側面図である。
【0073】
【
図47】
図47は、本発明の装置の一実施形態の側面図である。
【0074】
【
図48】
図48は、本発明の装置の一実施形態の側面図である。
【0075】
【
図49】
図49は、本発明の装置の一実施形態の斜視図である。
【0076】
【
図50】
図50は、本発明の装置の一実施形態の斜視図である。
【0077】
【0078】
【0079】
【0080】
【0081】
【0082】
【
図56】
図56は、本発明の装置の一実施形態の平面図である。
【0083】
【
図57】
図57は、本発明の装置の一実施形態の斜視図である。
【0084】
【
図58】
図58は、本発明の装置の一実施形態の斜視図である。
【0085】
【
図59】
図59は、本発明の装置の一実施形態の斜視図である。
【0086】
【
図60】
図60は、本発明の装置の一実施形態の平面図である。
【0087】
【
図61】
図61は、本発明の装置の一実施形態の平面図である。
【0088】
【
図62】
図62は、本発明の装置の一実施形態の平面図である。
【0089】
【
図63】
図63は、本発明の装置の一実施形態の平面図である。
【0090】
【
図64】
図64は、本発明の方法の一実施形態のステップの図である。
【0091】
【
図65】
図65は、本発明の方法の一実施形態のステップの図である。
【0092】
【
図66】
図66は、本発明の方法の一実施形態のステップの図である。
【0093】
【
図67】
図67は、本発明の方法の一実施形態のステップの図である。
【0094】
【
図68】
図68は、本発明の装置の一実施形態の立面図である。
【0095】
【0096】
【0097】
【0098】
【0099】
【0100】
【
図74】
図74は、本発明の装置の一実施形態の斜視図である。
【0101】
【
図75】
図75は、本発明の装置の一実施形態の斜視図である。
【0102】
【
図76】
図76は、本発明の装置の一実施形態の斜視図である。
【0103】
【
図77】
図77は、本発明の装置の一実施形態の側面図である。
【0104】
【
図78】
図78は、本発明の装置の一実施形態の側面図である。
【0105】
【
図79】
図79は、本発明の装置の一実施形態の端面図である。
【0106】
【
図80】
図80は、本発明の装置の一実施形態の斜視図である。
【0107】
【
図81】
図81は、本発明の装置の一実施形態の側面図である。
【0108】
【
図82】
図82は、本発明の装置の一実施形態の側面図である。
【0109】
【
図83】
図83は、本発明の装置の一実施形態の斜視図である。
【0110】
【
図84】
図84は、本発明の装置の一実施形態の立面図である。
【0111】
【0112】
【0113】
【
図87】
図87は、本発明の装置の一実施形態の側面図である。
【0114】
【
図88】
図88は、本発明の装置の一実施形態の側面図である。
【0115】
【
図89】
図89は、本発明の装置の一実施形態の平面図である。
【0116】
【
図90】
図90は、本発明の装置の一実施形態の斜視図である。
【0117】
【
図91】
図91は、本発明の装置の一実施形態の側面図である。
【0118】
【
図92】
図92は、本発明の装置の一実施形態の側面図である。
【0119】
【
図93】
図93は、本発明の装置の一実施形態の平面図である。
【0120】
【0121】
【0122】
【
図96】
図96は、本発明の装置の一実施形態の平面図である。
【0123】
【0124】
【0125】
【0126】
【0127】
【0128】
【0129】
【0130】
【発明を実施するための形態】
【0131】
以下、添付図面を参照して、本発明の具体的な実施形態について説明する。しかしながら、本発明は、多くの異なる形態で具現化されてもよく、本明細書に記載された実施形態に限定されるものとして解釈されるべきではない。むしろ、これらの実施形態は、本開示が徹底的かつ完全であり、本発明の範囲を当業者に十分に伝えるように提供される。添付図面に示される実施形態の詳細な説明で使用される用語は、本発明を限定することを意図するものではない。図面において、同様の番号は同様の要素を指す。
【0132】
本発明のシャント装置は一般に、接続装置、管腔、固定機構、および流れ制御機構を備える。
【0133】
接続装置
【0134】
本発明の装置は一般に、2つ以上の体腔もしくは管、またはそれらの組合せを一緒に接合し、流体または気体がそれらの間を流れることを可能にするコネクタである。コネクタは、金属、ポリマー、それぞれのハイブリッド、またはそれらの組合せで作ることができる。それは、組織壁(tissue walls)に押し付けられ、それらを一緒に圧縮して保持することを可能にする、バネのような特性を有してもよい。それは、拡張可能であり、組織を離間しておくことができ、また、自己拡張式であるか、またはバルーン拡張技術等によって拡張可能であってもよい。コネクタの表面は、以下により詳細に記載されるように、被覆部(covering)として、または、細胞内向き細胞増殖(cell inward cell growth)を促進するよう、適合性(compatibility)を増強するために、テクスチャー加工されてもよい。
【0135】
一般に、接続装置は、組織同士を引き寄せ、互いに同一平面にするか、または指定された所望の距離内にするように機能する。組織は、確実に固定され、流体または気体が所望の経路の外部へ漏れることを防止する。また、組織結合は、圧力封止(pressure sealing)によって形成されてもよく、健康な瘢痕組織(healthy scar tissue)を形成してもよい。瘢痕組織は、接続部に侵入し、時間の経過に伴う線維形成を介して強力な接着剤として機能する。この装置は、線維組織、内皮組織、上皮組織、または身体の任意の他の組織のような特定の種類の組織を促進して、封止、および生物学的機能活性の実行の両方に対して機能する。
【0136】
そのような機能活性は、装置上で発達する薄い組織界面部を介して、装置を生体適合性にすること、またはより生体適合性にすることを含んでもよい。このようにして、装置は、生体適合性のためにそれ自体の上に組織を成長させる。このような適合性には、血液(例えば、血餅または血栓の防止)、または装置の存在により炎症応答または免疫応答が生じるのを防止する生体適合性が含まれてもよい。したがって、装置の表面は、生物学的被覆を促進するが、装置によって完全にまたはほぼ完全に取り囲まれた装置自体の中にも、組織成長を促進することができる。これらの組合せは、機械的構造を設計することによって作られてもよい。機械的構造は、多孔質のままであるが生物学的材料で被覆される隙間内、および被覆に対する両方の隙間(interstices)を有する。生物学的材料は、時間とともに成長して機械的および生物学的な両方のハイブリッド装置(hybrid device-both mechanical and biologic)を形成する。この文脈において、装置は、成長能力のための細胞を有するだけでなく、強度および機能のための機械的構造も有するので、「生きている」ようになる。
【0137】
装置の物理的特性は、意図される用途および患者のサイズに基づいて変化する。例えば、いくつかの例では、2つの体腔または器官が同一平面にあることが望ましい場合がある。他の例では、2つの体腔が離間していることが望ましい場合がある。
【0138】
図1は、体腔Aと体腔Bとの間の同一平面接続10を示す図である。
【0139】
図2は、体腔Aと体腔Bとの間の管状接続部(tubular connection)12のような、非同一平面または離間した接続を示す図である。漏れ防止チューブのような長いコネクタは、互いに対向しない可能性のある器官を接続するのに有用であろう。この実施形態は、例えば、左内乳房動脈(left internal mammary artery)が、罹患した冠状動脈に接続されることが望まれる場合に有用である。この場合、接続部は、血液の輸送路として機能する小さなチューブを使用して作られる。
【0140】
また、本明細書に記載のコネクタは、自然には互いに接触していない器官同士の間に同一平面接続を形成するために使用することができることにも留意されたい。同様に、本明細書に記載されたコネクタは、自然に互いに接触している器官同士の間に非同一平面接続を形成するために使用することができる。換言すれば、コネクタの固定特性は、体腔および管を操作し、それらを他の体腔および/または管に対して所望の位置に保持することができるのに十分である。
【0141】
上述の
図1および
図2は、接続されている2つの体腔を示す。いくつかの例では、体腔を管に接続するか、管を管に接続する、またはそれらの間に複数の接続を形成することが所望される。単なる例として、
図3は体腔Aと管Cとの間の同一平面接続14を示す。
図4は管Cと管Dとの間の非同一平面接続16を示す。また、
図5は、体腔Bと管Cとの間の同一平面接続14、および体腔Aと管Cとの間の非同一平面接続18と組み合わされた、体腔Aと体腔Bとの間の非同一平面接続12を示す。
【0142】
図6aおよび
図6bは、本発明の装置の単純な実施形態20を示す。装置20は、それを介する管腔または吻合(anastomosis)24を画定する本体22と、装置20の両側にある固定機構26および28とを有するシャントである。装置20は、固定機構26および28が単一の腔壁の両側を把持しないので、同一平面接続を形成するために使用されるシャントを表す。より正確に言えば、固定部(anchor)26は、第1の体腔または管の内壁を把持し、固定部28は、第2の体腔または管の内壁を把持する。例として、装置20は編組装置(braided device)として示されている。しかしながら、装置20は、チューブからレーザーカットされるような同様の有窓(fenestrated)であってもよく、あるいは、装置20は、織って作られたものや、ソリッド、メッシュ等であってもよい。
【0143】
例えば、
図88~
図90は、チューブからレーザーカットされた有窓体(fenestrated body)722を有する装置の特定の実施形態720を示す。装置720は、それを介する管腔または吻合724を画定する本体722と、装置720の両側にある固定機構726および728とを有するシャントである。装置720は、固定機構726および728が、単一の腔壁の両側を把持しないので、同一平面接続を形成する。より正確に言えば、固定部726は、第1の体腔または管の内壁を把持し、固定部728は、第2の体腔または管の内壁を把持する。
【0144】
固定機構726および728は、複数の花弁部(petals)として具現化される。
図88~
図90の実施形態は、それぞれ8つの花弁部を含む固定機構726および728を示す。花弁部730および732は、互いに同一である必要はない。例えば、
図88~
図90において、花弁部730は、花弁部732よりも半径方向に長い。特定の設計は、移植部位およびシャントの用途に合わせて調整される。
【0145】
例として、
図88~
図90の装置720は、約2.25mmの長さ、約4.25mmの外径(OD)、および約4mmの内径(ID)を有する本体720を有する。花弁部730および732は、拡張されると、約1mm~1.25mmだけ分離される。上花弁部730の直径は約13mmであり、下花弁部732の直径は約11.5mmである。
【0146】
装置720は、装置720の様々な機構の間にわたるカバー734と共に示されている。カバー734は、装置720を固定し、装置の周囲の流体の漏出を防止するのに有用である。カバー734は、内方成長(ingrowth)をさらに促進することができる。
【0147】
図91および
図92は、カバー734を伴わず、かつチューブの形態の装置720を示す。
図92は、圧縮構成における装置720を示し、
図93は、第1の拡張構成における装置を示す。さらなる拡張は、
図88~
図90に示される第2の拡張構成をもたらす。いくつかの実施形態では、
図91に示される装置は、装置720が切断されたチューブとほぼ同じ寸法を有する静止状態である。次いで、
図92の構成は、圧縮構成であり、装置は、解放されると、
図91の構成へ拡張する。次いで、この装置は例えば、バルーンを用いて、または形状記憶金属(memory metals)が使用される場合には熱膨張を介して、
図88~
図90の第2の拡張構成へさらに拡張される。
【0148】
他の実施形態では、
図92は、切断されたチューブとほぼ同じ直径を有する装置720の静止状態を示す。
図91の構成は、熱的または機械的な第1の拡張の結果であり、当該構成は、熱的または機械的な第2の拡張の結果である。
【0149】
図93~
図95は、実施形態720と同様であるが、カバー無しの状態である装置の実施形態740を示す。装置740は、チューブからレーザーカットされる有窓体742を有する。装置740は、それを介する管腔または吻合744を画定する本体742と、装置740の両側にある固定機構746および748とを有するシャントである。装置740は、固定機構746および748が単一の腔壁の両側を把持しないので、同一平面接続を形成する。より正確に言えば、固定部746は、第1の体腔または管の内壁を把持し、固定部748は、第2の体腔または管の内壁を把持する。
【0150】
固定機構746および748はそれぞれ、複数の花弁部750および752を備える。
図93~
図95の実施形態は、それぞれ8つの花弁部を含む固定機構746および748を示す。花弁部750および752は、互いに同一である必要はない。例えば、
図93~
図95において、花弁部750は、花弁部752よりも半径方向に長い。特定の設計は、移植部位およびシャントの用途に合わせて調整される。
【0151】
例として、
図93~
図95の装置740は、約2mmの長さ、約5.4mmのOD(花弁部750の交点に対して測定される)、および約4mmのIDを有する本体740を有する。花弁部750および752は、拡張されると、約1mm~1.25mmだけ分離される。上花弁部750の直径は約13mmであり、下花弁部752の直径は約11.5mmである。
【0152】
図96~
図98は、実施形態740に類似する装置の実施形態760を示す。装置760は、チューブからレーザーカットされる有窓体762を有する。装置760は、それを介する管腔または吻合764を画定する本体762と、装置760の両側にある固定機構766および768とを有するシャントである。装置760は、固定機構766および768が単一の腔壁の両側を把持しないので、同一平面接続を形成する。より正確に言えば、固定部766は、第1の体腔または管の内壁を把持し、固定部768は、第2の体腔または管の内壁を把持する。
【0153】
固定機構766および768は、それぞれ、複数の花弁部770および772を備える。
図96~
図98の実施形態は、それぞれ8つの花弁部を含む固定機構766および768を示す。花弁部770および772は、互いに同一である必要はない。例えば、
図96~
図98において、花弁部770は、花弁部772よりも半径方向に長い。特定の設計は、移植部位およびシャントの用途に合わせて調整される。
【0154】
例として、
図96~
図98の装置760は、約2mmの長さ、約5.7mmのOD(花弁部750の交点に対して測定される)、および約4mmのIDを有する本体760を有する。花弁部770および772は、拡張されると、互いに向かって2mmの最大間隔からカールし、したがって、それらは互いに接触しているか、またはほぼ接触している。このようにして、実施形態740よりも大きなクランプ力が得られる。上花弁部750の直径は約13mmであり、下花弁部752の直径は約11.6mmである。
【0155】
腔または管の間の間隔を維持することが望ましい場合は、非同一平面のコネクタまたはシャント装置が使用される。
図7および
図8は、非同一平面のコネクタまたはシャント装置の単純な実施形態30を提供する。装置30は、それを介する管腔34を画定する本体32を備える。固定機構は、第1の体腔または管の内壁に配置するための第1の固定部36と、第1の固定部36の反対側の第1の体腔の外壁に配置するための第2の固定部38とを備え、第1の体腔または管の壁がそれらの間に挟まれる。第2の体腔または管の外側および内側にそれぞれ同様に配置するための第3の固定部40および第4の固定部42もある。
【0156】
固定機構は、
図5~
図8に示されているフランジのような機械的性質であってもよいし、あるいは、ほんの数例を挙げると、内方成長を促進するコーティング、接着剤、表面テクスチャー、棘(barbs)、フック、クランプ、ネジ、ニチノールの折り曲げ(Nitinol folds)、レバー、フレア(flares)、拡張可能なクロス、クリップ、ワイヤ、バルーン等を含むことができる。あるいは、それらは、これらの例のうちの1つ以上の組合せ、または他の列挙されていない実施形態であってもよい。さらに、固定機構は、移動の可能性が低くなるよう、係合した組織に固定機構が力を及ぼすように、弾性またはバネのような特性を有してもよい。固定機構自体は、ニチノールのような形状記憶金属の場合などの使用される材料によって、組織にバネ力を及ぼしてもよく、または固定機構によって及ぼされるバネのような特性は、2つの体腔または管の間に伸張された弾性体の結果であってもよい。したがって、弾性体が伸張され、元の短縮された長さに向かって付勢されると、固定機構は、互いに引き寄せられ、これにより、固定機構の間の組織をクランプすることができる。
【0157】
図9は、本発明のコネクタまたはシャント100の別の実施形態を示す。シャント100は、第1の端部110および第2の端部120を有する編組管状本体(braided tubular body)101を備える。管状本体101は、本体101を通過し、体液または気体の移動のために使用される管腔106を画定する。
【0158】
固定機構は、接続している腔および/または管のそれぞれの中にそれ自体を固定するために、シャントの第1の端部および第2の端部に設けられ、拡張可能なクロス、フック、棘、フランジ、クリップ、ワイヤ、フレア、バルーン等のような、それを所定の位置に固定するための様々な手段を備えることができる。
【0159】
図9の固定機構は、シングルアームフランジ130、132、134および136の形態である。図示の実施形態では、フランジ130および132は、第1の端部110から放射状に延び、フランジ134および136は、第2の端部120から放射状に延びる。これらのアームは、接続している腔および/または管のそれぞれの中に、シャント管腔100を固定するために使用される。これらのアームは、供給シースから解放された後に自己拡張または自己拡散するように、ヒートセット形状記憶金属(heat-set memory metals)であってもよい。あるいは、これらは、展性(malleable)であってもよく、供給手順の間に手動で配置されてもよい。
【0160】
図10は、本体142の第1の端部146から本体142の第2の端部148まで延在する管腔144を画定する本体142を有するシャント140の実施形態を示す。シャント140は、固定機構として、第1の端部146から放射状に延びる4つのアーム150、152、154および156と、第2の端部148から放射状に延びる4つのアーム158、160、162および164とを備える。これらのアームは、供給シースから解放された後に自己拡張または自己拡散するように、ヒートセット形状記憶金属であってもよい。あるいは、これらは、展性であってもよく、供給手順の間に手動で配置されてもよい。
【0161】
図68~
図87は、追加のステント設計を示す。
図68~
図70は、移植材料(implanted material)の量を最小限に抑えるステント500を示す。ステント500は、固定を可能にし、シャントオリフィス(shunt orifice)504を形成し、半径方向の力を加え、本来の組織を開くクロス(cloth)502を備える。また、半径方向の力は、ステント500を固定するのに役立つ。クロス502は、フレームがその最終形状に達したときに、クロス502が、本来の組織を押し退けることを十分に実行できるように、フレーム500に取り付けられる。
図68は、製造中に切断されたステント500を示す。
図69は、展開状態にあるステント500の上面図である。
図70は、展開状態にあるステント500の側面図である。
【0162】
図71~
図73は、移植材料の量も最小限に抑えるステント510を示す。ステント510は、ステント500と同様であるが、アームを備える。ステント510は、固定を可能にし、シャントオリフィス514を形成し、半径方向の力を加え、本来の組織を開くクロス512を備える。クロス512は、フレームがその最終形状に達したときに、クロス512が、本来の組織を押し退けることを十分に実行できるように、フレーム510に取り付けられる。アーム516は、ステントフレームから延在し、ステントフレームと一体であってもよく、クロスに取り付けられて、追加の力を提供してもよい。
図68は、製造中に切断されたステント510を示す。
図69は、展開状態にあるステント510の上面図である。
図70は、展開状態にあるステント510の側面図である。
【0163】
図74は、単純なニチノールまたは形状記憶のワイヤリング(wire rings)522および524を含む連結部材を使用するシャント520を示す。リング522および524は、クロス片526でブリッジされる。クロス片526は、リングが完全に展開されるときに所望のシャントサイズが形成されるように、リングに取り付けられる。
【0164】
図75~
図76は、リング532および534から延在する固定フランジ538および540をさらに備えることを除いて、シャントまたはステント520と同様のシャント設計530である。
図75は、フランジ538が第1のリング532から上方に延在し、フランジ540が第2のリング534から下方に延在する展開前の状態である装置530を示す。リング532および534はクロス536によって接合されている。
図76は、フランジ538および540が、それぞれ、リング532および534から半径方向または外向きに延在する展開状態の装置530を示す。
【0165】
図77は、クリップ装置550を示す。クリップ装置550は、3つのループ554、556および558に形成されたワイヤ552を備える最小の装置である。中央ループ556は、管腔560を形成し、一方、外側ループ554および558は、固定部材である。実施形態550は、互いに直接対向する固定部材を有する。固定ループは、体腔または管Aと、体腔または管Bとの間に装置を固定するのに十分な大きさである。
【0166】
いくつかの用途では、クリップが異なる形状であってもよい。例えば、
図78は、同様のクリップ装置570を示す。クリップ装置570は、3つのループ574、576および578に形成されたワイヤ572を備える最小の装置である。中央ループ576は、管腔580を形成し、一方、他のループ574および578は、固定部材である。実施形態570は、ループ576の同じ側に固定部材を有し、それにより、固定部材は、1つまたは複数の腔管壁の反対側で互いに対向することができる。
【0167】
同様に、
図79は、3つのループ584、586および588を有するクリップ582の平面図を示す。ループ586は、管腔590を形成し、ループ584および588は、互いに半径方向に90度程度離れている。この実施形態は、SVCおよびRPA等、互いにほぼ垂直である2つの管を接合する場合に有用である。
【0168】
図80は、RPA-SVCシャントの実施形態590を示す。このシャントは、約4mmのIDを有する。この場合、ソリッドチューブ本体592は、チューブ592を圧縮する必要なく、15Frカテーテルから依然として供給可能であるように十分に小さいので、望ましい場合がある。固体金属またはポリマーのシャント本体592は、装置疲労およびうっ血(blood stasis)のリスクを低減する。また、この実施形態は、ステント被覆部(stent covering)の必要性を排除する。装置590は、固定アーム594を備えるものとして示されているが、本明細書に記載されている固定機構のいずれかを使用することができる。チューブ592は、管腔596を画定する。
【0169】
図81は、バルーン拡張可能ステントの実施形態600を示す。ニチノール等の形状記憶構造を使用するのではなく、適切な固定力を生成するように組織の両側にフランジ602および604を形成するために、砂時計形状のバルーン606または最終的に拡張されたフランジ直径以上の直径を有するバルーン、および膨張カテーテル608を用いて、バルーン拡張可能ステント600を展開することができる。
【0170】
図82は、ねじ付きシャントアセンブリ610を示す。アセンブリは、ガイドワイヤ618に追従可能なねじ付きダイレータ(threaded dilator)616を備える供給装置614によって運ばれるねじ付きシャント612を備える。シャントサイズは、装置590と同様に、固定装置として使用される雄ねじを有するソリッドチューブを使用できるように十分に小さい。ねじ付きダイレータは、装置を管腔または腔壁内に押し込み、次いで、ねじ付きシャント612を所定の位置に残して、取り外される。
【0171】
図83は、互いに垂直であるSVCおよびPAのような2つの管を接続するために使用される最小のシャント620を示す。装置620は、第1の固定リング624および第2の固定リング626を有するチューブ622を備える。これらのリングは、チューブ622の反対側にあるが、管の配向に一致するように互いに垂直に配向されている。複数のループを各端部に使用して、支点または取付の安定性を高めることができる。加えて、ワイヤループは、それらに対する減衰または適合要素(dampening or conformability element)を考慮した幾何学的特徴を有することができる。
【0172】
従来の介入シャントまたは閉鎖装置に対する1つの制限は、隣接する生体構造と装置との間に滑らかな移行(transition)を形成できないことである。この移行ゾーンは、血餅または血栓の形成をもたらし得る、うっ血を引き起こす可能性を有する。被覆されたステントグラフトをより大きなバルーンで過剰に膨張させることによって、グラフトは劇的に縮小し、端部が広がることを見出した。これは、以下のメカニズムのために起こる。すなわち、(1)グラフト被覆部が全径に達すると、それはサイズを増加させることができず、長さは最長である。(2)その結果、より大きな膨張バルーンは、ステントグラフトの周りで砂時計形状をとる。(3)バルーンがさらに膨張すると、バルーンのより大きな端部は、バルーンのためにIDが保持された状態で、直線的にステントを折り畳み始める。(4)グラフトの端部は、最大圧力に達すると広がる。
【0173】
これらのメカニズムは、所望であれば、任意のステントグラフトに適用して、その長さを減少させることができる。さらに、これらのメカニズムを利用するステントの実施形態が本明細書で提供される。
【0174】
図84および
図85は折り畳み可能な材料632で被覆されたステント630を示しているが、最終的な直径に達すると、バルーン圧力の増加にかかわらず、直径はそれ以上増加しない。ステントの幾何学的形状は、半径方向にかつ直線的に折り畳むことができるようなものである。ステント630は、被覆材料を介して接続されるのみの独立したステント構造634を備える。あるいは、半径方向ステント機構(radial stent features)634は、線形変位に対する抵抗が最小になるように、断続的なまたは最小限の機構636を介して取り付けられる。
【0175】
ステント630の端部は、端部フランジ638および640を備え、固定、流動力学および周囲組織との移行を助けて、うっ血を最小限に抑える。ステントの端部は、被覆されなくてもよく、または、被覆材料は、移植本体部と比較してさらなる半径方向の拡張を可能にするように取り付けられるか、または弾性とすることができる。
【0176】
本発明の一態様は、処置内調整可能シャント(interprocedurally adjustable shunts)を含む。シャントの所望のサイズは、患者ごとに変化する。手術前の精密検査は、各患者に最適な所望のシャントサイズを推定するのに有用である。しかしながら、血行力学的状態は予測不可能であり、シャントサイズは最適な結果のために処置中に調整される必要がある。
【0177】
処置内調整機能を達成するための本発明のいくつかの方法は、以下のステップを含むが、これらに限定されるものではない。
【0178】
シャントの本体の周りに縫合糸を提供するステップであって、この縫合糸は緩められるか、または締められ、次いで、所望の直径でロックされるステップと、編組構造を利用するステップであって、その長さに応じて直径が増加または減少し、次いで、所定の位置にロックされるステップと、有効なシャントオリフィスを形成する内部クロス部材を有するシャントを提供するステップと、が含まれる。ここで、このクロス部材は、アヤメ形状(iris shape)を形成するようにねじられ、次いで、所望のサイズでロックされる。また、漏斗形状を有する外部構造および楔形状を有する内部構造を提供するステップが含まれる。ここで、楔が漏斗形状の中または外において動かされると、有効オリフィスのサイズが増加または減少し、次いでロックされる。さらに、バルーン拡張可能シャントを提供するステップであって、バルーン拡張可能シャントは、小さなIDで展開され、バルーン圧力を増加させることによって、より大きいIDに段階的に拡張されるステップが含まれる。
【0179】
図86は、本発明の完全ポリマーのバルーンシャント650の写真である。シャント650は、2つの端部リング状バルーン654および656を支持する垂直ストラットとして、複数の管状バルーン652を使用する。バルーンは、2液型のエポキシまたはUV硬化液で充填され、形状を恒常的に固化および保持することができる。一連のバルーンは、止血のために、クロス、ポリマー、組織等で作られたライニング658で被覆され得る。
【0180】
図87は、調節可能な長さを有するシャント660を示す。シャント660は、第2のステント664の内側で展開可能な第1のステント662を備え、シャント660の全長を延ばすことができる。
【0181】
管腔
【0182】
管腔は、流体または気体が装置を介して流れることを可能にする。管腔は、管腔のサイズおよび/または形状によって、流体の量および/または流体の流量を制御することができる。
【0183】
管腔に通じる接続オリフィスは、円形、楕円形、または、血液もしくは他の流体もしくは気体の効率的かつ安全な流れを促進する任意の他の形状であってもよい。成形された管腔の一実施形態を
図11~
図13に示す。シャント50は、大動脈から上大静脈への流れを制御するのに有用な「H」形状を有する管腔54を画定する本体52を備える。「H」形状は、圧力が増加すると拡張し、肺高血圧症を治療するのに理想的に適合する。この装置の拡張性によって、以下でより詳細に説明される適応シャント(adaptive shunt)が得られる。
【0184】
さらに、管腔は、流量を減少させ、これにより溶血の危険性を減少させるために、アームまたは類似の特徴によって分割されてもよい。
【0185】
管腔には、物体(血餅等)が1つの腔から別の腔に移動するのを防止するスクリーンまたはフィルタがさらに組み込まれてもよい。
【0186】
フィルタリングされた接続の1つの用途は、左心房(左心構造)および肺動脈(右心構造)のような左心および右心構造間の接続である。フィルタリングされた接続を使用することは、粒子が肺静脈および肺動脈R-Lシャントを通って流れることを防止する。この接続は、全身性塞栓(systemic emboli)が右心から脳等の身体構造に移動するのを防止するために、巨視的または大孔フィルタ(macroscopic or large-hole filter)を必要とする。このようなフィルタの細孔(pores)は、100ミクロンから1.5mmのサイズのオーダーであってもよい。
【0187】
いくつかの用途は、細胞が1つの腔を出て別の腔へ入ることを防止する細胞フィルタ(cellular filter)から利益を得るであろう。このようなフィルタの細孔は、10ミクロン以下のオーダーであってもよい。さらに別の装置は、タンパク質または他の生化学物質が接続を横切って移動することを可能にするか、または接続を横切るのを防止することを選択的に可能にする。フィルタは、材料が一方の腔から他方の腔へ移動するのを選択的に防止または促進し、材料を、腔または管内に保持するか、または腔または管に入れないようにするために使用されてもよい。
【0188】
図14は、巨視的フィルタ56の一例を示す。巨視的フィルタ56は、本発明のシャントの入口を覆って使用され、または、シャントの入口内に、もしくは本発明のシャントの管腔全体にわたって配置される。フィルタ56は、スクリーンとして描かれ、フィルタの巨視的、高流量、低抵抗の性質を示している。当業者であれば、ほんの数例を挙げると、織物繊維または不織繊維、多孔質材料、布等の他の設計をこの用途に使用可能であることを理解するのであろう。
【0189】
図15は、材料がシャントを通って移動するのを選択的に防止するために使用され得る細胞または微視的フィルタ(cellular or microscopic filter)58の一例を示す。このフィルタ58は、シャントの入口を覆って使用され、または、シャントの入口内に、もしくはシャントの管腔全体にわたって配置される。このフィルタ58は、
図14と区別するために多孔質材料として描かれているが、当業者であれば、ほんの数例を挙げると、織物繊維または不織繊維、多孔質材料、布等の他の材料をこの用途に使用可能であることを理解するのであろう。
【0190】
流れ制御機構-適応または圧力駆動型シャント設計
【0191】
上記で紹介したように、シャントを介する管腔は、流体または気体が装置を通って流れることを可能にし、装置を介する流れの流体力学を制御するために使用され得る。装置には、流れ制御装置がさらに組み込まれてもよい。流れ制御装置は、一方向のみの管腔を介する流れを可能にし、特定のパラメータが満たされる場合にのみ、一方向のみの管腔を介する流れを可能にする。あるいは、この装置には、特定のパラメータが満たされる場合にのみ、両方向に管腔を介する流れを可能にする流れ制御装置がさらに組み込まれてもよい。流体の流れが確立されるために第1の方向に満たされなければならないパラメータは、流体が第2の方向に流れるために満たされなければならないパラメータと同一であっても異なっていてもよい。
【0192】
適応シャント設計は、装置を横切る圧力降下(pressure drop)に基づいて、流量プロファイル(flow profile)を変化させる。適応シャントの原理は、装置によって付与されるシャントの度合い(degree of shunting)が、装置が配置される周囲の血行力学的パラメータおよび/または生体構造的パラメータ(hemodynamic and/or anatomic parameters)の変化に応答して、固有の局所条件によって、変化可能であるものである。このようなパラメータは、圧力、圧力勾配(pressure gradient)、絶対流量(absolute flow)または流量勾配(flow gradients)を含むことができるが、これらに限定されない。シャントと刺激応答(stimulus-response)との間の関係は、個々の状況の要件に応じて、線形または非線形とすることができる。線形性/非線形性に加えて、特定の局所条件でシャントを開始または停止するように機能するしきい値をそのようなシャントに組み込むことができる。これらは、「オンセット(onset)」または「オフセット(offset)」のしきい値である。各場合において、例えば、圧力または流れは、有効なシャント管腔サイズ(開放、閉鎖、その他)を変化させるように作用する。開口部は、高度に非線形に作られる場合、「スナップ開放」または「スナップ閉鎖」の結果に影響を及ぼすことができ、流れ、圧力、または別の調整されたパラメータのゲート機能(gating function)に有効である。
【0193】
適応シャントの目的は、圧力または流れの損傷から器官または生物学的組織を保護することである。この保護は、接続の供給端または受入端のいずれかで圧力を制限することによって付与されてもよい。例えば、流れの供給源が右心である場合、この腔は、長期の上昇した圧力を維持することができず、「ブリードオフ(bleed off)」シャントを使用して、指定されたしきい値に近づいているか、またはそれを超えている圧力を低下させることができる。そのようなしきい値は、圧力-流量関係が、生理学的利益に適応するように任意の種類の非線形または線形であるように、装置に本質的に組み込まれてもよく、または可変であってもよい。同様に、右心圧の上昇は、肺圧の上昇をもたらし、それが肺組織を損傷し、チェックしないままにしておくと長期的に破滅的な結果を伴う瘢痕および線維症を引き起こす可能性がある。運動中の増加した圧力条件への応答は、適応シャント設計によっても可能である。
【0194】
したがって、適応シャントは、圧力-流量関係の調節器(regulators for a pressure-flow relationship)として使用されてもよく、このため、「自動調節モード」で機能するようにされてもよい。この特徴は、より低い抵抗、またはより高い伸展性がある腔またはチャネルへ流れ(または他のパラメータ)をシャントすることによって、(例えば)健康で安全な圧力または他のパラメータを維持するのに有用である。この例は、肺血管抵抗の上昇により、右心房、右心室および肺組織を重度に損傷する右心および肺高血圧症である。血流を上大静脈のような伸展性のある低圧腔へ部分的にシャントすることによって、肺および右心の両方で、同時に圧力が低下し、上昇した圧力から保護され、これはフローシャント(flow shunting)によって促進される現象である。
【0195】
一例では、適応シャントは、より高い圧力で、より多くの血液を低圧腔へシャントし、供給源にフィードバックし、増加しようとする供給源圧力を低下させる。同様に、圧力がより低いレベルへ降下すると、シャントが収縮し、高圧から低圧になった腔からのより少ない血液をシャントする。このため、肺動脈から大静脈へのシャントの場合に、心拍出量を危険なほど低下させる可能性がある、非常な圧力降下を防止する。
【0196】
大静脈のような低圧腔を使用する別の利点は、それが高度な伸展性を有することである。活動亢進した右心からの突然の血液のボーラス(bolus)は、全流量を損なうことなく、低圧腔の伸展性機能(compliance features)によって、その圧力効果を最小限にする。
【0197】
上述のように、低圧の場合は、より少ない流れがシャントされ、したがって、シャントが大きいままであれば達成されたであろう心拍出量を超える心拍出量がもたらされる。敏感な器官に対する保護効果は、適応シャントを用いると、著しく良好である。
【0198】
これらの流れ制御機構は、グロメットシステム(Grommet system)を組み込むことができる。グロメットシステムは、装置が塑性膨張または収縮変形を受けると拡張し、内管または平面圧力に比例して管腔を開閉する。
【0199】
アロメトリックスケーリング(Allometric scaling)をこれらの装置に適用することができ、その結果、この概念は、乳児(大静脈を検査するための動脈における一時的手術のための軽減処置)等の小型システム、または完全に成長した成人等のスケーリングされた大きな腔で使用することができる。
【0200】
この概念では、1つを超えるシャント接続を行うことができ、装置の集合体を配置して、それらの効果を増幅することができる。この集合体では、すべての装置が、同一の圧力流量適応性(pressure flow adaptability)を有する必要はない。したがって、圧力および流量のスペクトル全体で、潜在的なダイナミックレンジが著しく増加する。
【0201】
種々のシャント設計と共に使用するための種々の適応可能な流れ制御機構(adaptive flow-control mechanisms)が
図16~
図50に示される。
図16~
図17は、流圧を受けると閉鎖位置(
図16)から開放位置(
図17)に広がるストラット62を組み込んだ機構60を示す。
【0202】
図18~
図19は、流圧を受けると、閉鎖位置(
図18)から開放位置(
図19)に回転する羽根部(vanes)66を使用する機構64を示す。
【0203】
図20~
図21は、本質的に弾性ディスクまたは環状体である機構68を示し、この機構は、流圧を受けると、閉鎖されるまたは小さい開口部(
図20)からより大きい開口部(
図21)に広がる開口部70を画定する。圧力の増加についての、開口部70の面積72をグラフ化する
図22のグラフに見られるように、機構68は、しきい値圧力74が満たされると、開放位置にスナップして、迅速に反応するスナップのような挙動を呈する。
【0204】
図23~
図24は、流圧を受けると、より大きな直径に伸張する円錐機構76を示す。
【0205】
図25~
図26は、弾性ディスク78を示し、弾性ディスク78は、その中に形成されたいくつかの孔80、例えば、レーザーカット孔を有する。これは、弾性ディスクが圧力により伸びるまで(
図26)、そこに流れを効果的に通過させない(
図25)ことを示す。伸張によって孔が開き、圧力が解放され、またその時、ディスクの弾性的性質によって穴が閉じる。孔または孔のパターンは、所望の結果である流れ特性に応じて、多くの異なる形態または組合せをとることができる。
【0206】
図27~
図28は、流圧を受けると、広がり、開く1つ以上のスリット84を備える平坦な基板またはディスク82を示す。
【0207】
図29~
図30は、流圧を受けると広がるスリット88を使用する円錐形装置86を示し、これにより、管腔を介する流れを増加させ、装置の側壁を介して流れが逃げることを可能にする。
【0208】
いくつかの実施形態では、シャントを横切る圧力降下とシャントを介する流量との間には直接的な関係がある。圧力降下が増加すると、流量は増加する。
図31を参照すると、シャント本体204の端部に取り付けられた流れ制御装置202を備えたシャント200が示されている。シャント本体204は、ステントであってもよい。流れ制御装置202は、バネ206とディスク208とを備える。バネ206は、本体204の先端部に取り付けられ、ディスク208は、バネ206の先端部に取り付けられる。ディスクは不浸透性であり、可撓性であってもよい。ディスク設計の非限定的な例には、可撓性被覆レーザーカットディスク、厚いリムまたはニチノールワイヤ強化リムを有するポリマー/ファブリックディスク、剛性生体適合性ディスク等が含まれる。バネは、非伸長のタイトなピッチ構成に設定された形状である。ステントまたはシャントを横切る圧力勾配が増加すると、ディスクを横切る流体の抵抗が増加し、張力を発揮し、バネを長くする。また、ディスクは、「閉鎖」状態において最小限の流れが望まれる場合には小さい孔を有することもできる。また、バネは、フィルタとして機能するために、ワイヤラップ(wire wraps)の間に小さなギャップを有する形状に設定することができる。
【0209】
図32~
図35は、ステント212の先端部216から延在する被覆されていないバネ部材214を有する被覆されたステント212を備える装置210を示す。バネ部材214は、流出頂点218に取り付けられている。各バネ部材214の先端部は、楔形の不浸透性および/または折り畳み可能なフラップ220に取り付けられる。フラップはすべて、シャント210の流出をカバーするように形状セットされている。低圧では、フラップ220は、流れを制限または防止する。より高い圧力では、フラップは強制的に開放され、追加の流れを可能にする。これは、
図32と
図34との間の流れの矢印を比較することによって見ることができる。
図33および
図35は、それぞれ、閉鎖位置および開放位置における上面図を示す。
【0210】
図31~
図35の実施形態は、一貫した機械的特性を維持することが困難であるポリマーの歪み(straining of polymers)に変動シャント機構が依存しないため、有利である。好ましくは、歪みは、ニチノールのようなベア金属材料を利用する装置の領域で生じる。
【0211】
図36および
図37は、スロット付きまたはオーバーラップした柔軟なカラー(compliant collar)230を示す。柔軟なカラー230は、開示された装置のいずれかと併せて使用されてもよく、または、独立した装置として使用されてもよい。カラー230は、狭いまたは閉じた端部232と、広いまたは開いた端部234と、重なり合う本体236とを有する。カラー230は、狭い端部232が小さなIDを有するように、形状設定され、これにより、完全に閉じることができる。圧力勾配が増加すると、重なり合う本体236は、
図37に最も良く示されるように、拡張して開き、端部232のIDを増加させ、それによって、流量の増加を可能にする。この装置の他の実施形態は、スロット付き先端部、円錐体およびスロット付き先端部、柔軟なポリマーカバーを有するニチノール本体、スロットの代わりに折り畳まれたポリマー等を組み込むことができる。
【0212】
図38は、Touhy Borst型シャント240を示す。シャント240は、流体の流れに応じてスピンするホイール機構244を伴う流入側部(inflow side)を有する柔軟なチューブ本体242を備える。ホイール244が回転すると、チューブを軸方向に減圧することによって、チューブ242を介する管腔が開く。より低い流量の間、ホイール244に接続されたねじりバネ246が装置を再び閉鎖する。装置240の1つの用途は、肺動脈PAを上大静脈SVCに接合するシャントを形成する。ホイール244はPAにおける収縮期の流れ(systolic flow)の間に回転し、チューブ242を開き、過剰な圧力をSVC内へ解放する。拡張期の流れ(diastolic flow)の間、バネ246は、チューブを閉じ、PAとSVCとの間の漏れを防止する。装置240の端部は、体腔(この場合はSVCおよびPA内)に延在するように示されている。ホイール244を回転させることに加えて、装置の端部を腔内に延在させることは、内方成長等によって管腔が詰まることを防止するのに役立つ。
【0213】
図39は、流出部256でシャントID254に固定されたスペーサー252を有するオーセティックステントシャント(auxetic stent shunt)250を示す。スペーサーは、オーセティックステントに取り付けられた円筒形要素である。円筒形要素は、差圧に曝されると、ステントに引張荷重を与える。引張荷重がかかると、オーセティックステントの直径が拡大する。この直径の拡大は、流れに対するシャントの抵抗を調整および変更し、圧力に応じてシャントの体積流量を変化させる。
【0214】
オーセティックステント250は、軸方向の張力のもとで、ステント250が半径方向に拡張するように設計される。圧力勾配がシャント250を横切って増加すると、スペーサー252は流出部に向かって移動し、したがって、ステント250に軸方向の引張荷重を及ぼし、ステント250を半径方向に拡張させる。圧力勾配が減少すると、ステント250は半径方向に収縮する。
【0215】
図40は、ステント260のIDにおいて変動ODスペーサー262を有する被覆ステント260を示す。スペーサー262のより大きなOD側部264は、シャント流出部266にあり、ODは、流入部268に向かって徐々に減少する。スペーサー262とシャント260とを接続するバネ270は、スペーサー262の大きなOD側部264がシャント流出部266を塞ぐように強制する。圧力勾配が増加すると、スペーサー262は強制的に流出部266に向かって押し出され、流出開口部266の断面積を効果的に増加させ、したがって、流量を増加させることができる。これを
図41~
図43に示す。これらの図は、ステント260とスペーサー262との間に存在する空間272の端面図を示す。
図41では、スペーサーが低流量位置にあり、そこで、スペーサー262は、ステント260の流出を遮断し、その結果、流れのためのより小さな空間272が得られる。
図42は、スペーサー262がステント260から変位し、流れのためのより大きな空間272を形成している中流量状態を示す。
図43は、スペーサー262の最大変位位置を示し、スペーサー262とステント260との間に流れのための最大空間272が形成されている。
【0216】
図44は、シャント280の内部に取り付けられた2つの拡張可能な編組構造282および284を有する被覆ステントシャント280を示す。編組構造282および284は、シャント280を閉塞するように形状設定される。シャント280を横切る圧力勾配が増加すると、編組構造282および284は、強制的に離間され、シャント280を介する流れを可能にする。
【0217】
本発明のステント設計のいくつかは、目標圧力範囲が達成されるまで流れを防止する流れ制御機構を有する。この用途は、例えば、心臓のセッティングである。心拍出量は、危険な圧力に達するまで保持され、危険な圧力に達した時点で、流れ制御機構が開いて圧力を解放する。
【0218】
図45は、しきい値圧力に達するまで閉じたままである装置300を示す。装置300は、本体302と、本体302に接続されたキャップ304とを含み、本体302の流出端部にバネ306が設けられている。バネ306は、拡張期の圧力の間、キャップ304を閉じた状態に保持する。
図46に示されるように、より高い収縮期の圧力は、バネ306を伸ばし、血液がバネ306を介して流れることを可能にし、それによって、圧力を解放する。
【0219】
図47は、流入端部にヒンジ付きフラップ314を有する被覆ステント312を備えるシャント310を示す。ヒンジ付きフラップ314は、閉鎖位置に対してバネ荷重をかけられており、閉鎖位置は、フラップが開いて圧力を解放する前に、しきい値圧力によって克服されなければならない。
【0220】
図48は、ヒンジ付きフラップ324を有する被覆ステント322を備えるシャント320の別の実施形態である。シャント320は、ステント322の流出端部にヒンジ付きフラップ324を有する。ヒンジ付きフラップ324は、閉鎖位置に対してバネ荷重をかけられており、閉鎖位置は、フラップが開いて圧力を解放する前に、しきい値圧力によって克服されなければならない。
【0221】
シャントのいくつかの実施形態は、溶血等の特定の状態を防止するために、流速(flow velocities)を最小限に抑える圧力駆動流れ機構(pressure-driven flow mechanisms)を有していてもよい。
図49は、円錐形IDを有する形状の被覆ステントシャント330を示す。より小さいID端部332が流入部であり、より大きいID端部334が流出部である。シャントの間、流体が流出端部334まで通過することにつれて、流速は減少する。
【0222】
図50は、コイル部(coiled section)342を有するシャント340を示す。シャント340は、コイル状の軌道をたどる被覆ステントまたはチューブである。コイル部342は、ステントを介する流れの長さを最大にする。このより長い流れは、抵抗を作り、流速を減少させる。この概念の変形例は、ステントを任意の曲がりくねった経路に従わせ、抵抗を増加させることである。ステント内に抵抗流れ中断器(resistive flow disruptor)を配置する等の追加的特徴も実施することができる。
【0223】
方向性シャント(Directional Shunting)
【0224】
方向性シャントとは、流体またはガスが装置を通過するときの流れの方向および品質の操作を指す。
【0225】
イントロダクションおよびコンベンションとして、
図51~
図55は、様々な形態の方向性シャントを示す。基板350は、矢印によって表されるように、入ってくる流れを操作する一般的で単調な装置を表すために使用される。
【0226】
図51は、装置を出る流れの方向が、装置に入る流れに対して角度付けられるような流れの方向転換を示す。
【0227】
図52は、流れ散乱の一例を示す。層流(Laminar flow)は、装置に入り、装置を出ると、様々な方向に散乱する。
【0228】
図53は、流れの集結の一例を示す。出ていく流れは、入ってくる流れに比較して集結される。流れは、スプレーであってもよく、それによって、全体は、受け入れる腔の必要性に一致するように、適切な速度で不相応な方向に血液を送る効果的なノズルである。また、この特徴は、乱流(turbulent flow)を生成または制限し、エネルギーを消散させてもよく、または、「ジェット」を防止してもよい。ジェットは、先端部位に衝突する場合に望ましくなく、ジェット誘発組織損傷(jet-induced tissue damage)を引き起こし得る。
【0229】
図54は、流れの軟化(flow-softening)の一例を示す。層流は、装置に入って出るが、出ていく流れは、入ってくる流れに比較して、より軟化し、集結度が低い。
【0230】
図55は、出ていく乱流を生成することにより、流れを軟化させる装置の一例を示す。乱流は、フロージェットの内部および位置エネルギー状態の低下に起因して、流れからのエネルギーを消散し、受け入れる腔において安全性を高めるであろう。
【0231】
いくつかの実施形態では、シャントは、有利な結果のために、血流方向を考慮して設計される。例えば、PAからSVCへのシャントの場合、RPA(右肺動脈)分岐の代わりに、メインPA分岐から流れを引き出すシャントが提供される。
【0232】
これらの装置および孔は、腔を満たす目的で、特定の空間的配向に流れを導く能力を有する。その腔は、そうでなければ、満たされない、または、より高い流れを見られない可能性がある。単一または複数の方向が考慮される。この必要性の一例は、左心耳シャントであり、そこでは、流体ジェットが、鋭い付属物(apex appendage)に向けられ、流れを最大に保ち、血栓形成を促進する流れのよどみを防止する。
【0233】
逆流また流れの反転を防止するために、フラップまたは他の一方向機構(one-way mechanism)等の弁構造を使用して、血液の流れがその方向を逆転することを部分的に防止し、一方、うっ血および血栓症を防止するために、心拍間隔シャント(beat to beat shunting)を伴うシャント機能を維持することができる。
【0234】
装置およびそのバネ定数は、しきい値で発生するよりバイナリな方式でアクティブ化されるように、非線形にすることができる。ヒステリシスは、アクティブ化および非アクティブ化の補正しきい値の位置となるように、バネ機構において設計されてもよい。心拍間隔の拡張性(beat to beat expandability)を設計する別の方法は、エラストマーポリマーを被覆部または拡張ゾーンとして使用することである。これは、収縮期の間の拡張および拡張期の間の収縮を付与し、収縮期の間のより大きな流れを付与し、収縮期の圧力を低下させる。
【0235】
球根状エラストマー部(bulbous elastomeric segment)は、シャントの先端部内に設計されて、容積測定シャント(volumetric shunt)を形成してもよい。
【0236】
流れは、方向付け(channeling)を行うように作られてもよいので、ノズルのような特徴を有する単一または複数のオリフィスコネクタを方向付け、複数のチャンネル方向とする。
【0237】
図56を参照すると、シャント360がSVC内で上方向に流れを導くことを可能にする曲げ部362を備えたシャント360が示されている。この潜在的な利点は、右心室の前負荷(preload)を減少させ、潜在的な心房細動(arterial fibrillation)から右心房を保護することである。
【0238】
図57は、流入側372および流出側374に方向可変フラップ(deflectable flaps)を有する被覆ステント370を示す。流入フラップ372は、PAの流れに応じて開閉し、したがって、適応または可変シャント(adaptive or variable shunt)である。流出フラップ374は、SVC内で上方向に流れを向けるとき、方向性シャント(directional shunt)を形成する。
【0239】
人のCTに基づくと、SVCは、RPAでPAを通過することが最も多い。この配置のシャントは、左右の肺への不均一な血液供給をもたらし得る。
図58は、流量変動性(flow rate variability)および流出方向性(outflow directionality)を作り出すために方向可変アーム382を備えた可変シャント380を示す。シャント380は、より長く、可撓性の、被覆シャントであり、メインPA内に配置され、次いで、RPAにおいてSVCと交差する流入部を有する。この構成は、肺の血液供給のそれぞれからのより均等なシャントを保証する。
【0240】
図59は、SVC内に延在する伸展性要素(compliance element)386を有するシャント384を示す。この被覆ステントシャント384は、PA内に存在する部分388よりも高い伸展性を提供する長い柔軟な伸展部(compliant extension)386を有する。一実施形態では、その柔軟なチャンバがSVCに対して閉鎖される。収縮期では、その柔軟なセクションがPA容積(PA volume)を取り込み、拡張期では、その容積をPAに押し戻す。その柔軟なチャンバは、単純なシャントと比較した場合、PA脈圧を低下させ、心拍出量を改善する。これは、バルーンの周期的な再充填を必要とせず、装置が自然弁を通過しないので、Aria CVの概念よりも有益である。別の実施形態では、その柔軟なチャンバがSVC内に流出端部を有する。流出部は、より高いPA圧力では開放され、より低いPA圧力では閉鎖されるようにバルブ制御されるであろう。これにより、PA脈圧がさらに低くなり、平均PA圧が低下することになるので、心拍出量を減少させることができる。
【0241】
図60は、SVC内に延在する伸展性要素392を備えた両弁シャント(bi-valve shunt)390を示す。この変形例は、流入部での弁394と、流出部での弁396とを備える。流出弁は、ピークPA圧力より低いがPA拡張期圧力よりはるかに高い圧力で開くように設定される。流入部は、PA拡張期圧よりわずかに上で開くように設定される。これは、潜在的に、低減されたPA脈圧と、低減された平均PA圧を提供し、依然として心拍出量を維持する。
【0242】
図61は、閉じた二重伸展性チャンバ装置(dual compliance chamber device)400を示す。この装置は、装置が流入側で完全に閉鎖されていることを除いて、
図59の装置384と同様である。PA内のチャンバは、SVC内のチャンバよりも柔軟である。閉じた装置は、生理食塩水等の圧縮性または非圧縮性流体のいずれかで満たされ得る。SVCチャンバは、収縮期ではPA容積を取り込み、拡張期では容積をPAチャンバに押し戻す。この装置は、単純なシャントと比較して、PA脈圧を減少させ、心拍出量を改善する。これは、周期的な再充填を必要としないので、Aria CVの概念よりも有益である。
【0243】
本発明のいくつかの圧力駆動変動シャントは、低圧(拡張期)で閉鎖され、中圧および高圧で開放される。これらの装置は、拡張期の間のシャントを防止することによって、心拍出量の保持を助ける変動シャントを可能にし、また、高いピークPA圧力での潜在的な溶血を防止する。
【0244】
図62は、バネ414によって駆動される流出側のスペーサー412を有する被覆ステントシャント410を示す。被覆ステントの側壁には、複数の孔セット416が存在する。低圧では、1組の孔のみが露出する。圧力が増加すると、使用されるスペーサーの数と露出した側孔の組合せに基づいて、出力側の圧力が制御される。
【0245】
図63は、ストッパ424および426によって選択的に被覆される端部を有する本体422を備える装置420を示す。ストッパは、本体422よりも僅かに長いシャフト428によって接続されている。ストッパ424は、バネ430によって開放位置に付勢されている。装置を介する圧力が十分に増加する場合、流れは、プランジャ426の内面に衝突し、プランジャ424の外面上の圧力と組み合わされて、バネ力を克服し、プランジャ424が着座する。これにより、装置を介する流れを遮断する一方、プランジャ426の周囲の流れによって、圧力がそこから解放されることを可能にする。
方法および用途
【0246】
本発明の様々な装置について説明したが、ここで、装置によって提供される利点を実施する方法について説明する。
【0247】
本発明の方法の一実施形態は、主肺動脈PAを、右心房または心耳(right atrium or atrial appendage (RAA))にシャントすることによって肺高血圧症を軽減するための方法である。この方法では、PA内のより高い圧力の領域からの右右シャント(right-to-right shunt)が、RAA内のより低い圧力の領域に接続される。そうすることは、RAAの高い伸展性を利用して、シャントから受け取った追加の容積を「吸収」する。RAAは、自然で柔軟なリザーバである。RAAとメインPAが両方とも心膜の内側にあり、したがって、不適切に装着されたシャントの合併症として生じる漏れを包含するという事実から、さらなる利点が生じる可能性がある。別の利点は、大動脈を破裂させる危険性が最小限に抑えられることである。
【0248】
図64~
図67を参照すると、この手順が詳細に示されている。
図64は、この方法の第1のステップを示す。経皮供給装置(percutaneous delivery device)600が使用され、スネア602をガイドとして用いて、RAAからPAへの開孔(puncture)が行われる。供給装置600は、針604およびガイドワイヤ606を備える。開孔は針604を用いて行われる。
【0249】
第2のステップは、
図65に見られるように、針604を後退させるステップである。
【0250】
図66に示される第3のステップは、供給装置600を介し、かつガイドワイヤ606に沿って展開されたステントシース608を用いて、針604で作られた開孔を通過するステップを含む。
【0251】
最後のステップは、
図67に示され、本発明のシャントまたはステントを展開するステップを含む。
【0252】
他の設置方法を使用して、本明細書に記載のシャントおよびステントを設置することができる。ここで、本発明のシャントの配置地点およびその結果得られる利点について説明する。
【0253】
本発明のいくつかの用途は、肺高血圧症を軽減するためのPAシャントに特異的である。例えば、上大静脈における肺動脈の間に接続を作り、右心不全および進行性肺線維症(progressive pulmonary fibrosis)の組合せを生じる右心および動脈の上昇した加圧を防止することができる。上大静脈等の柔軟な腔への接続は、収縮期の血液ボーラスの結果として、上昇した圧力を減少させる。
【0254】
また、この接続は、血液を肺から遠ざけてシャントさせ、低い後負荷抵抗(afterload resistance)を作り出し、したがって、負荷抵抗が減少し、右心圧を低下させる。この構成は、右心の容積を高めると同時に、肺において血液を再循環させるように機能する。血液の一部は、肺で肺動脈から迂回され、右心房に再挿入され、再び肺動脈に送り込まれる。
【0255】
この戦略は、圧力過負荷を減少させるために、右心/右心室の容積増加を効果的に置き換える。このため、肺を過度の圧力から保護し、右心および肺の微小血管疾患(microvascular disease)の進行を遅らせる。このような治療的介入により、心臓および肺の微小血管は、圧力の低下にともない治癒される。
【0256】
PA-PV
【0257】
PAとPVの間に作られる接続は、肺高血圧症や、右心不全または機能不全の治療に用いられてもよい。全肺血管抵抗(total pulmonary vascular resistance)と右心室の後負荷を減少させるために、RPAとRPVの間にシャントを形成する。あるいは、シャントは、LPAとLPVとの間に配置され得る。
【0258】
PA-LAA
【0259】
肺高血圧症や、右心不全または機能不全、またはAfibを治療するために、肺動脈と左心耳(left atrial appendage)LAAとの間に接続を形成することができる。全肺血管抵抗と右心室の後負荷を減少させるために、PAとLAAの間にシャントを形成することができる。右室後負荷の減少に対する付加的な利点は、脳卒中のリスクがある患者におけるLAAのウォッシュアウトである。
【0260】
SVC-RPA
【0261】
RPAとSVCとの間になされる接続は、肺高血圧症や、右心不全または機能不全を治療するために使用されてもよい。全肺血管抵抗と右心室の後負荷を減少させるために、RPAとSVCの間にシャントを形成する。そのようにする方法は、
図99~
図104に記載されている。
【0262】
図99は、本発明の方法1000の概要を示す。当該方法は、一般に、RPA1010を標的とするステップと、ガイドワイヤ1020を用いてRPAを介してSVCに交差するステップと、ステント1030を位置決めするステップと、ステント1040を膨張させるステップと、供給システムを除去して、RPA-SVCシャント1050を確立するステップと、を含む。
【0263】
図100~
図104は、手順1000をより詳細に示す。ステップ1100は、移植前の血行動態の収集を含み、10Frカテーテルシース1110を用いて右IJにアクセスするサブステップを含む。次に、1120において、例えばSwan-GanzカテーテルをLPA内に浮遊させる。最後に、1130において、血行動態データが、「休息」および「脚上げ」の姿勢で、収集される。
【0264】
図101は、標的をRPAに配置するステップ1200を示す。ステップ1200は、最初に、1210において、右IJアクセスを介してピグテール(pigtail)を挿入するサブステップを含む。これはまた、SVCの血管造影を実行するステップを含んでもよい。次に、1220において、12Frシースを用いて大腿静脈にアクセスする。次に1230で、アローバルーンカテーテル(arrow balloon catheter)をRPAに浮遊させる。次のサブステップ1240は、0.035インチのAmplatz Super Stiff GWを挿入するステップを含む。これは好ましいガイドワイヤであるが、限定として解釈されるべきではない。このディスクレーマーは、本方法で使用される他の特定の装置にも適用される。最後に、1250において、Merit EnSnare装置が挿入され、標的部位に配置される。
【0265】
図102は、開孔システム(puncture system)を導入するステップ1300を示す。まず、1310において、12Frカテーテルシースを用いて大腿静脈にアクセスする。次に、1320において、0.035インチのガイドワイヤがSVCに進められる。次に、1330において、アジリス(Agilis)は、ガイドワイヤGWを介してSVC内へ、ダイレータを用いて追跡される。次に、1340において、ダイレータは開孔システムと交換される。
【0266】
図103は、RPAに対してSVCを開孔するステップ1400を示す。最初に、1410において、ダイレータの先端は、開孔位置を標的とするように操縦され、先端の角度および位置が、APおよび側方位置において蛍光で確認される。次に、1420において、マイクロカテーテルおよびRFワイヤを一緒に前進させながら、RFが起動される。次に、1430において、スネアがガイドワイヤを捕捉したことが確認される。次に、1440において、スネアは、ガイドワイヤ上で使用され、RPA内の開孔部位の基端に配置される。
【0267】
図104は、シャント展開ステップ1500を示す。最初に、1510において、シャントが、ガイドワイヤを介して供給システムとともに前進させられる。次に、1520において、シャントは、開孔部位を横切って中心に置かれる。最後に、1530において、シャントが展開され、供給システムが除去される。
【0268】
本出願に開示されるシャントのうち、
図88~
図98に示され、説明されるシャントでは、この方法で優れた結果をもたらすことが証明されている。シャント720、740および760は、上側フレア726、746および766と、それぞれ対応する下側フレア728、748および768とを有する。上側フレアは、それぞれ、下側フレアよりも長い。良好な結果はより長いフレアをSVCに配置し、より短いフレアをPAに配置することで達成された。「上側」および「下側」という用語は、本明細書では図面におけるそれらの位置を説明するためにのみ使用され、実際の使用の体におけるものではない。
【0269】
PV-SVC
【0270】
心不全を治療するために、PVとSVCとの間にシャントを形成することができる。現在、心不全患者で評価中の心房内シャントがいくつかある。これらの患者では、左心房圧が上昇し、肺において液体が逆流し、患者は呼吸困難または息切れを患う。心房内シャントは、LAからRAへ流れを迂回させる。
【0271】
本開示では、左心房圧を低減するために、RPVとSVCとの間をシャントすることが提案される。SVCおよびLPV内にあるシャント位置に起因して、この解決策は、塞栓保護(embolic protection)のさらなる利益を有するはずである。
【0272】
複数のシャント
【0273】
多くの心不全患者は、肺高血圧症および抵抗性高血圧症(resistant hypertension)に罹患している。したがって、特定の患者では、複数のシャントを複数の異なる位置に配置することが理想的であり得ることが提案される。特定の集団において、RPA-SVCシャントならびに心房シャントを設置する利点があり得る。RPA-SVCシャントはRV後負荷を低減するのに役立ち、LAシャントは、LA圧力およびLV充填圧力を低く保ちながらPVRを低減するのに役立つ。同じ効果を得るために、特定の患者において、RPA-VC、心房内および動静脈末梢シャント(arteriovenous peripheral shunt)の併用に利益があると考えられる。
【0274】
特定の実施形態および用途に関して本発明を説明したが、当業者であれば、本教示に照らして、特許請求の範囲の発明の精神から逸脱することなく、または、その範囲を超えることなく、追加の実施形態および修正を生成することができるであろう。したがって、本明細書の図面および説明は、本発明の理解を促進するように一例として提供され、その範囲を限定するものと解釈されるべきでないことを理解されたい。
【手続補正書】
【提出日】2024-08-09
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
身体の第1の領域を治療する方法であって、前記第1の領域と、前記第1の領域よりも低い圧力を有する第2の領域との間にシャントを形成するステップを含み、ここで、前記第1および第2の領域は、前記シャントを形成する前に接続されていないことを特徴とする方法。
【外国語明細書】