(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024158523
(43)【公開日】2024-11-08
(54)【発明の名称】車両用駆動装置
(51)【国際特許分類】
B60K 1/00 20060101AFI20241031BHJP
B60K 11/04 20060101ALI20241031BHJP
B60L 50/60 20190101ALI20241031BHJP
【FI】
B60K1/00
B60K11/04 Z
B60L50/60
【審査請求】未請求
【請求項の数】1
【出願形態】OL
(21)【出願番号】P 2023073784
(22)【出願日】2023-04-27
(71)【出願人】
【識別番号】000000011
【氏名又は名称】株式会社アイシン
(74)【代理人】
【識別番号】110001818
【氏名又は名称】弁理士法人R&C
(72)【発明者】
【氏名】前田 拓洋
【テーマコード(参考)】
3D038
3D235
5H125
【Fターム(参考)】
3D038AB01
3D235AA01
3D235BB18
3D235BB19
3D235CC12
3D235CC13
3D235DD19
3D235FF32
3D235FF38
3D235FF43
3D235HH02
3D235HH52
5H125AA01
5H125AC12
5H125AC24
5H125FF01
5H125FF22
5H125FF23
(57)【要約】
【課題】車両用駆動装置を中核として車両における熱マネジメントシステムを適切に構成すると共に、車両用駆動装置を小型に構成する。
【解決手段】車両用駆動装置100は、回転電機MGと、動力伝達機構GTと、インバータモジュールINVと、電源モジュールPWRと、車載エアコンディショナ用の冷媒を循環させる冷媒回路の少なくとも一部を構成する冷媒回路モジュール2と、ケース9とを備える。ケース9は、インバータモジュールINVを収容する第1収容室E1と、回転電機MG及び動力伝達機構GTを収容する第2収容室E2とを備える。電源モジュールPWRは、第1収容室E1に収容される。冷媒回路モジュール2は、ケース9と一体化された部分である一体化部を備え、一体化部は、ケース9の一部を構成する部品21と、ケース9に取り付けられた部品Vとを含む。
【選択図】
図1
【特許請求の範囲】
【請求項1】
ロータを備えた回転電機と、
車輪に駆動連結される出力部材と、
前記回転電機と前記出力部材との間で駆動力を伝達する動力伝達機構と、
前記回転電機を駆動制御するためのインバータモジュールと、
車載バッテリに電気的に接続される回路を備えた電源モジュールと、
車載エアコンディショナ用の冷媒を循環させる冷媒回路の少なくとも一部を構成する冷媒回路モジュールと、
前記インバータモジュールを収容する第1収容室と、前記回転電機及び前記動力伝達機構を収容する第2収容室と、を備えたケースと、を備え、
前記電源モジュールは、前記第1収容室に収容され、
前記冷媒回路モジュールは、前記ケースと一体化された部分である一体化部を備え、
前記一体化部は、前記ケースの一部を構成する部品と、前記ケースに取り付けられた部品と、を含む、車両用駆動装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、車両用駆動装置に関する。
【背景技術】
【0002】
特開2019-170077号公報には、車輪(803,804)の駆動力源となる回転電機(ロータ(20)、ステータ(30))と、この回転電機を駆動制御する駆動制御装置(131)と、駆動制御装置(131)を介して回転電機に接続されるバッテリ(805)を外部電源(900)から供給される電力によって充電する充電器(136)と、回転電機、駆動制御装置(131)、充電器(136)を収容するケース(10)とを備えた車両用駆動装置(1)が開示されている(背景技術において括弧内の符号は参照する文献のもの。)。ケース(10)には、車両用駆動装置(1)が車両に搭載された車載姿勢での上下方向(Z)における下側に回転電機が収容される第1の収容室が形成され、上側に駆動制御装置(131)及び充電器(136)が収容される第2の収容室が形成されている。第1の収容室は、ケース(10)における円筒状の周壁部(10b)の内側に形成されている。第2の収容室は、周壁部(10b)の径方向外側において、周壁部(10b)の上下方向(Z)の上側に隣接した角筒状の角筒部(10e)の内側に、矩形箱状の空間として形成されている。周壁部(10b)には、さらに、周壁部(10b)に沿って冷媒が流れる冷却流路が形成された冷却部(60)が形成されている。
【0003】
周壁部(10b)に沿って形成された冷却流路は、角筒部(10e)の側に、冷媒が流入する流入口(16)と、冷媒が流出する流出口(17)とを有している。冷媒の流路において流入口(16)に近い側、即ち冷媒の流路の上流側には、駆動制御装置(131)が配置され、冷媒の流路において流出口(17)に近い側、即ち冷媒の流路の下流側には、充電器(136)が配置されている。これにより、回転電機を駆動する際に発熱する駆動制御装置(131)を冷たい冷媒によって効率的に冷やすことができる。外部電源(900)によるバッテリ(805)の充電は車両が停車中に行われるため、駆動制御装置(131)との熱交換によって冷媒の温度が上がりにくく、充電器(136)は冷媒の流路の下流側に配置されていても適切に冷却される。その他、電力系の力率の改善や電圧の安定化のために用いられるリアクトル(140)や平滑コンデンサ(141)も、冷媒の流路に沿って配置され、冷媒によって適切に冷却される。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
上述の通り、上記の文献に開示された車両用駆動装置は、複数の冷却対象を効率的に冷却することができる冷却構造を備えている。しかし、車両には、エアコンディショナなど、熱管理の対象となる装置が他にも存在する。車両の重量が軽いほど車両のエネルギー効率を高くし易く、また適切な熱利用及び廃熱管理も車両におけるエネルギー効率の向上に寄与する。従って、車載装置の中で重量の占める割合が比較的大きい車両用駆動装置を小型に構成すると共に、車両用駆動装置を利用してより総合的に車載装置の熱マネジメントが実施されることが好ましい。
【0006】
上記背景に鑑みて、車両用駆動装置を中核として車両における熱マネジメントシステムを適切に構成すると共に、車両用駆動装置を小型に構成する技術の提供が望まれる。
【課題を解決するための手段】
【0007】
上記に鑑みた車両用駆動装置は、ロータを備えた回転電機と、車輪に駆動連結される出力部材と、前記回転電機と前記出力部材との間で駆動力を伝達する動力伝達機構と、前記回転電機を駆動制御するためのインバータモジュールと、車載バッテリに電気的に接続される回路を備えた電源モジュールと、車載エアコンディショナ用の冷媒を循環させる冷媒回路の少なくとも一部を構成する冷媒回路モジュールと、前記インバータモジュールを収容する第1収容室と、前記回転電機及び前記動力伝達機構を収容する第2収容室と、を備えたケースと、を備え、前記電源モジュールは、前記第1収容室に収容され、前記冷媒回路モジュールは、前記ケースと一体化された部分である一体化部を備え、前記一体化部は、前記ケースの一部を構成する部品と、前記ケースに取り付けられた部品と、を含む。
【0008】
本構成によれば、車両用駆動装置は、回転電機及び動力伝達機構に、回転電機を駆動制御するためのインバータモジュールを一体的に備えるだけでなく、さらに、電源モジュールと、車載エアコンディショナのための冷媒回路モジュールとを、回転電機及び動力伝達機構に一体的に備える。従って、これらの各要素を接続する配線や配管等を少なく抑え、或いは短く抑えることができ、車両用駆動装置の小型化を図り易い。さらに、本構成によれば、回転電機、動力伝達機構、及びインバータモジュールだけでなく、電源モジュールもケースに収容され、冷媒回路モジュールは、ケースと一体化された部分である一体化部を備えている。従って、多くの機能を備えて一体化された車両用駆動装置を実現でき、この点からも、車両用駆動装置の小型化を図り易い。また、本構成によれば、冷媒回路モジュールの一体化部が備える部品を用いて、車両用駆動装置を中核とした熱マネジメントシステムを適切に構成することができる。このように、本構成によれば、車両用駆動装置を中核として車両における熱マネジメントシステムを適切に構成すると共に、車両用駆動装置を小型に構成することができる。
【0009】
車両用駆動装置のさらなる特徴と利点は、図面を参照して説明する例示的且つ非限定的な実施形態についての以下の記載から明確となる。
【図面の簡単な説明】
【0010】
【
図5】車両用駆動装置を前後方向第1側から見た正面図
【
図6】車両用駆動装置を前後方向第2側から見た背面図
【
図7】車両用駆動装置を軸方向第2側から見た側面図
【
図8】冷却ユニットとインバータモジュールと電源モジュールとの配置関係を模式的に示す斜視図
【
図9】冷媒マニホールドにおける冷媒の順路の一例を模式的に示す図
【
図12】
図10とは別の方向から見た車両用駆動装置の構成例を示す斜視図
【
図13】
図11とは別の方向から見た車両用駆動装置の構成例を示す分解斜視図
【発明を実施するための形態】
【0011】
以下、車両用駆動装置の実施形態について図面を参照して説明する。本実施形態の車両用駆動装置100は、体格が大型化することを抑制しつつ、車両用駆動装置100を中核として車両における熱マネジメントシステムを適切に構成している。例えば、欧州等におけるAセグメント車両、日本における軽自動車等の小型車両では、車両用駆動装置100をはじめとして、車載部品をできるだけ小型・軽量化して搭載効率を向上させることが求められる。例えば、車載部品同士を近接して配置するなどにより、配線や配管などの接続部品の長さを短くすることや、異なる装置を一体化して配線や配管を減らすことも好適である。
【0012】
また、車輪の駆動力源など、車両において発熱する装置を冷却する冷却水は、ラジエータによって廃熱されるが、一般的にラジエータは走行風によって廃熱を行うために車両の最も前方に配置されている。また、Aセグメント車などの小型車では、乗員が搭乗する車内空間を確保するために、多くの場合、前輪駆動され、車輪の駆動力源も車両の前方に配置される。また、冷房や暖房などを行うエアコンディショナが搭載される車両では、エアコンディショナ、並びにエアコンディショナにおいて用いる冷媒が流れる流路の多くの部分や、熱交換を行う機能部品も車両の前方に配置される。特に暖房に関しては、車輪の駆動力源として内燃機関が用いられた従来の車両では、内燃機関を熱源として利用することが容易であったが、電気自動車など内燃機関を持たないような車両では、そのような熱源がなく、暖房には専らヒートポンプ方式が採用され、内燃機関の廃熱を用いる方式に比べて、搭載部品も増加する傾向がある。これらの車載部品を車両の前方の限られた空間で適切に配管、配線することによって、車室などに利用できる空間を広くすることができる。本実施形態の車両用駆動装置100は、このように冷却水や冷媒を用いて熱マネジメントを行う機能部品を車両用駆動装置100と一体的に構成することによって、総合的に車両搭載部品の小型化、軽量化、低コスト化を実現している。
【0013】
以下、そのような車両用駆動装置100の好適な実施形態について説明するが、はじめに車輪Wを駆動するための駆動ユニットとしての機能について説明する。
【0014】
尚、本明細書において「駆動連結」とは、2つの回転要素が駆動力を伝達可能に連結された状態を指し、当該2つの回転要素が一体的に回転するように連結された状態、或いは当該2つの回転要素が1つ又は2つ以上の伝動部材を介して駆動力を伝達可能に連結された状態を含む。このような伝動部材としては、回転を同速で又は変速して伝達する各種の部材、例えば、軸、歯車機構、ベルト、チェーン等が含まれる。尚、伝動部材として、回転及び駆動力を選択的に伝達する係合装置、例えば、摩擦係合装置、噛み合い式係合装置等が含まれていても良い。ただし、遊星歯車機構の回転要素について「駆動連結」という場合には、当該遊星歯車機構の他の回転要素を介することなく駆動連結されている状態を指すものとする。また、本明細書において「一体的に回転」とは、分離可能か分離不可能かは問わず一体的に回転することをいう。即ち、一体的に回転する複数の部材は同一部材から一体的に形成されていてもよいし、別部材によって構成されて溶接やスプライン結合等によって一体化されていてもよい。また、本明細書において、2つの要素の配置に関して、「特定方向視で重複する」とは、その視線方向に平行な仮想直線を当該仮想直線と直交する各方向に移動させた場合に、当該仮想直線が2つの要素の両方に交わる領域が少なくとも一部に存在することを意味する。
【0015】
図1の分解斜視図、
図2のスケルトン図に示すように、車両用駆動装置100は、ロータ12を備えた回転電機MGと、車輪Wに駆動連結される出力部材と、回転電機MGと出力部材との間で駆動力を伝達する動力伝達機構GTとを備えている。後述するように、ロータ12の回転軸心Aに沿う方向を軸方向Lとし、動力伝達機構GTは、ロータ12に対して軸方向Lの一方側である軸方向第1側L1に配置されている。詳細は後述するが、回転電機MGは、車両の駆動力源であり、動力伝達機構GTは、減速機6と差動歯車機構5とを含む。具体的には、車両用駆動装置100は、ロータ12を備えた回転電機MGと、それぞれが車輪Wに駆動連結される一対の出力部材と、ロータ軸13の回転を減速する減速機6と、減速機6を介して差動入力要素(差動ケース50)に伝達される回転電機MGからの駆動力を一対の出力部材に分配する差動歯車機構5と、回転電機MG、減速機6、及び差動歯車機構5を収容する収容室(後述する第2収容室E2)を形成するケース9とを備えている。
【0016】
一対の車輪Wは第1車輪W1及び第2車輪W2を含み、第1車輪W1は第1ドライブシャフトDS1に駆動連結され、第2車輪W2は第2ドライブシャフトDS2に駆動連結されている。本実施形態では、差動歯車機構5の出力ギヤである一対のサイドギヤ52は、第1サイドギヤ53と第2サイドギヤ54とを含む。第1サイドギヤ53は、連結軸Jを介して第1ドライブシャフトDS1に駆動連結され、第2サイドギヤ54は、第2ドライブシャフトDS2に駆動連結されている。例えば、第1サイドギヤ53と連結軸Jとはスプライン結合によって連結されており、第2サイドギヤ54と第2ドライブシャフトDS2ともスプライン結合によって連結されている。これらの連結部はスプライン係合部59である。出力部材は、例えばこれらのスプライン係合部59である。また、出力部材は、第1サイドギヤ53、第2サイドギヤ54、第1ドライブシャフトDS1、第2ドライブシャフトDS2、連結軸Jであってもよい。
【0017】
以下の説明では、上述したようにロータ12の回転軸心Aに沿う方向を「軸方向L」とする。そして、軸方向Lの一方側を「軸方向第1側L1」とし、軸方向Lの他方側を「軸方向第2側L2」とする。本実施形態では、回転電機MGと減速機6と差動歯車機構5とは、互いに同軸上に、軸方向第2側L2から軸方向第1側L1に向けて記載の順に配置されている。本実施形態の車両用駆動装置100は、1軸構成であり、回転電機MGと減速機6と差動歯車機構5とが配置された軸(回転軸心A)は、車両用駆動装置100の回転軸心Aであると共に、回転電機MG、減速機6、差動歯車機構5の回転軸心でもある。また、ロータ12の回転軸心Aに直交する方向を「径方向」とする。そして、径方向において、ロータ12の回転軸心A側を「径方向内側」とし、その反対側を「径方向外側」とする。また、車両用駆動装置100が車両に搭載された車両搭載状態において鉛直方向に沿う方向を「上下方向Z」とし、上方を「上下方向Zの上側Z1」、下方を「上下方向Zの下側Z2」とする。車両用駆動装置100が車両に水平に搭載されている場合、径方向の内の一方向と上下方向Zとは一致する。また、軸方向L及び上下方向Zに直交する方向を「前後方向H」し、前後方向Hの一方側を「前後方向第1側H1」、他方側を「前後方向第2側H2」とする。本実施形態では、前後方向第1側H1が車両のフロント側であり、前後方向第2側H2が車両のリヤ側である。
【0018】
また、本実施形態では、車両搭載状態であるか否かに拘わらず、車両用駆動装置100を基準として後述するように「開口方向X」、「開口面方向Y」、「特定開口面方向Ya(第1方向)」が規定されている。「開口面方向Y」は「開口方向X」に直交する方向であり、「特定開口面方向Ya」は「開口面方向Y」の内の特定の一方向であり「第1方向」に相当する。車両搭載状態において、「開口方向X」は「上下方向Z」に一致し、「特定開口面方向Ya」は「前後方向H」に一致する。また、「開口方向X」の一方側である「開口方向第1側X1」は「上下方向Zの上側Z1」に一致し、他方側である「開口方向第2側X2」は「上下方向Zの下側Z2」に一致する。また、「特定開口面方向Ya(第1方向)」の一方側である「特定開口面方向第1側Ya1(第1方向第1側)」は「前後方向第1側H1」に一致し、他方側である「特定開口面方向第2側Ya2(第1方向第2側)」は「前後方向第2側H2」に一致する。本明細書において説明で用いている各方向は、上記に基づき、車両搭載状態での方向と車両用駆動装置100単独での方向(車両用駆動装置100を基準とした方向)との間で読み替えることができる。
【0019】
図1及び
図3に示すように、車両用駆動装置100は、さらに、回転電機MGを駆動制御するためのインバータモジュールINVと、車載バッテリBTに電気的に接続される回路を備えた電源モジュールPWRと、車載エアコンディショナ用の冷媒を循環させる冷媒回路20(
図4参照)の少なくとも一部を構成する冷媒回路モジュール2とを備えている。ケース9は、インバータモジュールINVを収容する第1収容室E1と、回転電機MG及び動力伝達機構GTを収容する第2収容室E2とを備えている。電源モジュールPWRは、第1収容室E1に収容されている。電源モジュールPWRは、車載バッテリBTに電気的に接続される回路として、車載バッテリBTの電圧変換を行うコンバータ61(電圧変換回路)、外部電源60から車載バッテリBTへの充電を行うための外部充電回路(充電回路)、及び、車載バッテリBTから外部への給電を行うための外部放電回路(給電回路)の少なくとも1つを備える。
図3に示す例では、電源モジュールPWRは、これら3つの回路の全てを備えている。ここでは、電源モジュールPWRが、外部充電回路と外部放電回路との双方の機能を有する充電回路62(双方向充電回路)を備える形態を例示している。
【0020】
図1に示すように、ケース9は、第1収容室E1及び第2収容室E2の中核となる収容部材であるケース本体90と、3つのカバー部材(第1カバー93、第2カバー94、第3カバー95)とを備えている。ケース本体90は、第1ケース部91と、第2ケース部92とを有する。第1ケース部91は、インバータモジュールINV及び電源モジュールPWRを収容する第1収容室E1が形成される部分である。第2ケース部92は、回転電機MG及び動力伝達機構GTを収容する第2収容室E2が形成される部分である。車輪Wの駆動ユニットという機能からは、必ずしも電源モジュールPWRが車両用駆動装置100に搭載されていなくてもよく、この場合、第1ケース部91は、インバータモジュールINVを収容するケースということもできる。
【0021】
尚、本実施形態では、第1ケース部91と第2ケース部92とが同一部材によって一体的に形成されている形態を例示しているが、ケース9の構造はこれに限定されるものではない。ケース9は、第1ケース部91と第2ケース部92とが別部材によって構成され、ボルト等の締結部材や溶接等によって一体化される形態であってもよい。
【0022】
第1ケース部91は、車両搭載状態で上下方向Zの上側Z1が開口した矩形箱状に形成されている。ここで、第1ケース部91の開口部である第1開口部9aの開口面に直交する方向を「開口方向X」とする。第1ケース部91は、第1開口部9aを囲むと共に、車両搭載状態で上下方向Zに一致する開口方向Xに沿って延在するように配置された周壁部96を備えている。第1開口部9aは、第1カバー93により閉塞される。第1開口部9aは、インバータモジュールINVを収容するケース9(第1ケース部91)の開口部に相当し、第1カバー93は、この開口部(第1開口部9a)を閉塞するカバーに相当する。また、第1収容室E1と第2収容室E2とは、開口方向Xに並ぶように配置されている。
【0023】
第2ケース部92は、軸方向Lの両側が開口した筒状に形成されており、円筒状の筒状周壁部97を備えている。筒状周壁部97は、動力伝達機構GTを径方向外側から囲んでおり、ケース9の第2収容室E2を囲む部分に相当する。軸方向第2側L2に形成された開口部は、第2開口部9bであり、軸方向第1側L1に形成された開口部は、第3開口部9cである。第2開口部9bは、第2カバー94により閉塞され、第3開口部9cは、第3カバー95により閉塞されている。第2カバー94及び第3カバー95には、上述したドライブシャフト(第1ドライブシャフトDS1、第2ドライブシャフトDS2)が貫通する貫通孔が形成されている。
【0024】
回転電機MGは、一対の車輪Wの駆動力源として機能する。
図3に示すように、回転電機MGは、インバータ回路PMを介して、二次電池やキャパシタ等の蓄電装置により構成された直流電源である車載バッテリBTと電気的に接続されている。回転電機MGは、車載バッテリBTから電力の供給を受けて動力を発生するモータ(電動機)としての機能と、車輪Wの側から動力の供給を受けて電力を発生するジェネレータ(発電機)としての機能とを有している。回転電機MGは、車載バッテリBTに蓄えられた電力により力行して駆動力を発生すると共に、一対の車輪Wの側から伝達される駆動力により発電して車載バッテリBTを充電する。車載バッテリBTは、定格電圧が48ボルトから400ボルト程度の高圧直流電源である。
【0025】
尚、本実施形態では、車載バッテリBTは、回転電機MGが発電した電力によって充電されるだけではなく、定格が交流100ボルトから240ボルト程度の商用電源などの外部電源60から供給される電力によっても充電可能に構成されている。このため、車載バッテリBTは、充電回路62を介して外部電源60に接続可能に構成されている。
図3では、外部電源60と充電回路62とが、例えばコネクタ等により有線接続されるような形態を例示しているが、そのような形態には限らない。例えば、電磁誘導等によって非接触で外部電源60から充電回路62に電力が供給される形態であってもよい。尚、充電回路62を制御するために、充電制御部64が備えられている。本実施形態では、充電制御部64は、電源モジュールPWRに含まれる。
【0026】
近年、災害時等において電動車両やハイブリッド車両の車載バッテリBTを非常用電源として用いることが提唱されている。車載バッテリBTをそのような非常用電源として利用することができるように、充電回路62は、上述したように、外部充電回路の機能に加えて外部放電回路の機能も有して構成されている。当然ながら、このような車載バッテリBTの利用を考慮しないような場合には、充電回路62は、外部充電回路の機能のみを有して構成されていてもよい。
【0027】
また、本実施形態では、車載バッテリBTは、定格電圧が12ボルトから24ボルト程度の低圧直流電源Bにも電力を供給する。低圧直流電源Bは、車両のヘッドライト、パワーウィンドウ、パワーステアリング、車載エアコンディショナ、電動オイルポンプなどの補機の電力源、車両内の種々の制御装置の電力源となる。従来、一般的な車両では、車両の駆動力源(例えば内燃機関)に連動するオルタネータにより発電される電力によって低圧直流電源Bが充電されていた。しかし、本実施形態では、低圧直流電源Bよりも高電圧で、蓄電量も多い車載バッテリBT(高圧直流電源)からの電力により低圧直流電源Bが充電されるように構成されている。これによりオルタネータを搭載しなくてもよく、また、オルタネータの駆動に伴う車両の駆動力源(本実施形態の場合は回転電機MG)の動力損失も抑制することができる。
【0028】
このように車載バッテリBTの電力により低圧直流電源Bを充電するために、車載バッテリBTの電圧変換を行うコンバータ61(電圧変換回路)が備えられている。上述したように、車載バッテリBTの定格電圧の方が、低圧直流電源Bの定格電圧よりも高いため、コンバータ61は、例えば降圧型のDC/DCコンバータによって構成されている。DC/DCコンバータは、チョッパ型、チャージポンプ型などの非絶縁型と、トランスを用いた絶縁型とがある。車載バッテリBTから電力を供給される回路と、低圧直流電源Bから電力を供給される回路とが、電気的に絶縁されている方が好ましい場合には、コンバータ61は、絶縁型であるとよい。絶縁型のDC/DCコンバータは、スイッチング素子を備えて構成されており、コンバータ61は、コンバータ制御部63により制御される。本実施形態では、コンバータ制御部63は、電源モジュールPWRに含まれる。
【0029】
尚、車両には、一般的な家電製品等に電力を供給するためのAC電源ソケット(交流電源ソケット)を備えるものもある。そのようなAC電源ソケットは、定格電圧が100ボルトから200ボルトの交流を出力可能に構成されている。AC電源ソケットから供給される交流電力は、車載バッテリBTから不図示のインバータを用いて生成される。このようなインバータも電圧変換回路に相当し、当該インバータを有する場合には、当該インバータ及びこれを制御するインバータ制御部も、電源モジュールPWRに含むことができる。
【0030】
図2に示すように、回転電機MGは、ケース9に固定されたステータ11と、ロータ軸13と一体的に回転するようにロータ軸13に連結されたロータ12とを備えている。回転電機MGは、インナーロータ型の回転電機であり、ステータ11の径方向内側にロータ12が配置されている。回転電機MGは回転界磁型の回転電機であり、ステータ11は、ステータコア11aと、ステータコア11aに巻き回されたステータコイル11bとを含む。また、ロータ12は、ロータコア12aと、ロータコア12aに固定された不図示の永久磁石とを含む。ロータ軸13は、ロータコア12aと同軸の筒状に形成されており、ロータ軸13の軸方向第1側L1における外周側には、減速機6を構成する遊星歯車機構のサンギヤSGがロータ軸13と一体的に回転するように配置されている。後述するように、サンギヤSGは、減速機6の入力要素である。
【0031】
図3に示すように、回転電機MGは、上位の制御装置である車両制御装置300からの指令に従って設定される回転電機MGの目標トルクに基づいて、回転電機制御部17により駆動制御される。回転電機制御部17は、複数のスイッチング素子により構成されたインバータ回路PMをスイッチング制御して、インバータ回路PMに直流と複数相(本実施形態では3相)の交流との間で電力を変換させる。回転電機制御部17の動作電圧は、3.3ボルト~5ボルト程度であり、インバータ回路PMの入出力電圧は、48ボルト~400ボルト程度であり、インバータ回路PMを構成するスイッチング素子のスイッチング制御信号の電圧は15ボルトから24ボルト程度である。このため、回転電機制御部17とインバータ回路PMとの間には、回転電機制御部17から出力されるスイッチング制御信号の電圧を増幅し、駆動力を高めてインバータ回路PMに供給するドライバ18が備えられている。
【0032】
インバータ回路PMは、複数のスイッチング素子を有して構成される。インバータ回路PMは、直流の正極側の上段側スイッチング素子と負極側の下段側スイッチング素子との直列回路により構成された交流1相分のアームを複数組(ここでは3組)備えている。それぞれのスイッチング素子には、負極から正極へ向かう方向(下段側から上段側へ向かう方向)を順方向としてフリーホイールダイオードが備えられている。スイッチング素子には、IGBT(Insulated Gate Bipolar Transistor)やパワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor)やSiC-MOSFET(Silicon Carbide - Metal Oxide Semiconductor FET)やSiC-SIT(SiC - Static Induction Transistor)、GaN-MOSFET(Gallium Nitride - MOSFET)などのパワー半導体素子を適用すると好適である。本実施形態では、インバータ回路PMは、フリーホイールダイオードと共にスイッチング素子が集積されたパワーモジュールとして構成されている。
【0033】
回転電機MGが駆動される際には、インバータ回路PMを構成するスイッチング素子に大電流が流れてスイッチング素子が発熱する。従って、複数のスイッチング素子を備えたインバータ回路PMの発熱量は大きなものとなる。このため、本実施形態では、
図8に示すように、スイッチング素子を冷却する冷却ユニット38が備えられている。後述するように、冷却ユニット38には、冷却水が流通する冷却水路39が形成されている。尚、冷却は冷却対象部位と冷却水との間での直接の熱交換による形態に限らず、油やヒートシンク等の伝熱媒体を介して冷却対象部位と冷却水との間で熱交換される形態も含む。
【0034】
インバータモジュールINVは、インバータ回路PMを構成するスイッチング素子と、スイッチング素子を冷却する冷却ユニット38とを少なくとも備えて構成されている。本実施形態では、
図3に示すように、インバータモジュールINVは、回転電機制御部17と、ドライバ18とをさらに備えている。即ち、本実施形態では、回転電機制御部17と、ドライバ18と、インバータ回路PMと、冷却ユニット38とを備えてインバータモジュールINVが構成されている。当然ながら、回転電機制御部17及びドライバ18を含まず、インバータ回路PMを構成するスイッチング素子と、冷却ユニット38とによりインバータモジュールINVが構成されていてもよい。
【0035】
尚、
図3に示すように、インバータ回路PMの直流側、つまり、インバータ回路PMと車載バッテリBTとの間には、インバータ回路PMの直流側の電圧を平滑する直流リンクコンデンサ16(平滑コンデンサ)が備えられている。インバータモジュールINVは、直流リンクコンデンサ16を含んでいてもよい。
【0036】
回転電機制御部17は、ロータ12の回転位置(永久磁石の磁極位置)、ロータ12の回転速度、及び3相各相のステータコイル11bを流れる電流に基づいて、電流フィードバック制御を行ってインバータ回路PMを介して回転電機MGを駆動制御する。ロータ12の回転位置は、例えばレゾルバ等の回転センサ14によって検出される。ステータコイル11bを流れる電流は、電流センサ15によって検出される。電流センサ15は、
図8に示すように、例えばインバータ回路PMと回転電機MGのステータコイル11bとを接続するバスバーなどの動力線の近傍に設置された非接触型電流センサであると好適である。
【0037】
また、電源モジュールPWRは、コンバータ61(電圧変換回路)及び充電回路62を少なくとも備えて構成されている。本実施形態では、
図8に示すように、コンバータ61及び充電回路62が共通の基板を用いて構成されている。また、本実施形態では、電源モジュールPWRは、
図3に示すように、コンバータ61と、コンバータ制御部63と、充電回路62と、充電制御部64とを備えている。
【0038】
尚、本実施形態では、インバータモジュールINVに含まれる回転電機制御部17と、電源モジュールPWRに含まれるコンバータ制御部63及び充電制御部64とが、1つの同一の基板上に形成されて制御基板ECUが構成されている。制御基板ECUは、複数の制御部の機能が統合されている統合制御基板と称することもできる。
【0039】
本実施形態では、
図8に示すように、冷却ユニット38の上面である冷却ユニット第1面38aに、インバータ回路PM(スイッチング素子)と、直流リンクコンデンサ16と、コンバータ61と、充電回路62とが取り付けられている。脈動を生じる直流電圧を平滑する直流リンクコンデンサ16は、電流の出入りにより発熱する。また、コンバータ61はスイッチング素子を備えており、スイッチング動作の際に流れる電流によって当該スイッチング素子も発熱する。また、充電回路62にも外部電源60から供給されて車載バッテリBTを充電するための電流が流れるため、発熱する。冷却ユニット38は、冷却水が流通する冷却水路39を備えており、これらの発熱部材が冷却ユニット第1面38aに取り付けられることによって適切に冷却される。尚、最も発熱量が多く、高い温度となるのはインバータ回路PMである。
【0040】
例えば、冷却水路39は、インバータ回路PMを冷却する部分が下流側となるように、即ち電源モジュールPWRの側からインバータモジュールINVの側に冷却水が流れるように、冷却ユニット38内に形成されている。発熱量が低い領域から発熱量の高い領域へ冷却水を流通させることで、発熱する冷却対象を冷却水の温度上昇を抑えた状態で適切に冷却することができる。また、回転電機MGが駆動されているとき、即ち車両が走行中には、外部電源60から車載バッテリBTを充電することはほぼない。道路を走行中に道路に設置された給電装置から非接触で給電されるような形態はあり得るが、一般的には実用化されていない。従って、回転電機MGが駆動されているとき、充電回路62は停止していることが多い。また、低圧直流電源Bを充電する際に流れる電流は、車載バッテリBTを充電する際に充電回路62を流れる電流に比べて小さく、発熱量も小さい。このため、回転電機MGが駆動中に低圧直流電源Bを充電しても、充電回路62に比べてコンバータ61の発熱量は小さい。従って、このような順路で冷却水を流通させても、インバータ回路PMを適切に冷却することができる。
【0041】
インバータ回路PMの上下方向Zの上側Z1(開口方向第1側X1)には、ドライバ18が配置されている。そして、回転電機制御部17と、コンバータ制御部63と、充電制御部64とに跨がって、制御基板ECUが配置されている。概ね、上下方向視(開口方向視)において、インバータ回路PMとドライバ18と回転電機制御部17とが重複し、コンバータ61とコンバータ制御部63とが重複し、充電回路62と充電制御部64とが重複するように、制御基板ECUが配置される。本実施形態では、
図1及び
図8等に示すように、電源モジュールPWRは、インバータモジュールINVに対して軸方向第1側L1に隣接して配置されている。制御基板ECUは、軸方向Lに沿って、回転電機制御部17と、コンバータ制御部63と、充電制御部64とに跨がって配置されている。そして、制御基板ECUは、
図1に示すように、インバータ回路PM(スイッチング素子)と冷媒回路モジュール2との上下方向Zの間に配置されている。
【0042】
図2に示すように、減速機6は、ロータ軸13と一体的に回転する入力要素と、ケース9に固定された固定要素と、差動入力要素(差動ケース50)と一体的に回転する出力要素と、遊星ギヤを備えた遊星歯車機構として構成されている。この遊星歯車機構は、1つのサンギヤSG、2つのリングギヤ(第1リングギヤRG1、第2リングギヤRG2)と、一体的に回転する2つの遊星ギヤ(第1遊星ギヤPG1、第2遊星ギヤPG2)と、2つの遊星ギヤを回転自在に支持するキャリヤCRとを備えた複合型の遊星歯車機構である。本実施形態では、第1遊星ギヤPG1は、第2遊星ギヤPG2よりも小径に形成されている。
【0043】
サンギヤSGは、ロータ12及びロータ軸13と一体的に回転する。第2リングギヤRG2は、ケース9に固定されている。第1リングギヤRG1は、第2リングギヤRG2に対して軸方向第1側L1に配置され、差動ケース50と一体的に回転するように差動ケース50に連結されている。第2遊星ギヤPG2は、サンギヤSG及び第2リングギヤRG2に噛み合い、第1遊星ギヤPG1は、第2遊星ギヤPG2と一体的に回転すると共に第1リングギヤRG1に噛み合っている。本実施形態では、サンギヤSGが入力要素であり、第2リングギヤRG2が固定要素であり、第1リングギヤRG1が出力要素である。キャリヤCRは、何れの回転要素及び固定要素にも連結されていない。
【0044】
差動歯車機構5は、傘歯車式の差動歯車機構であり、何れも傘歯車のピニオンギヤ51と、サイドギヤ52とを含む。ピニオンギヤ51は、差動ケース50に支持されると共に径方向に沿って延在するように配置されたピニオンシャフト55により回転自在に支持されている。ピニオンシャフト55は、差動ケース50と一体的に回転し、ピニオンギヤ51は、ピニオンシャフト55を中心として回転(自転)自在、かつ、差動ケース50の回転軸心Aを中心として回転(公転)自在に構成されている。複数のピニオンシャフト55は、差動ケース50の回転軸心Aを中心として放射状(例えば十字状)に配置され、複数のピニオンシャフト55のそれぞれに、ピニオンギヤ51が取り付けられている。差動ケース50は、ピニオンギヤ51、サイドギヤ52、ピニオンシャフト55を内部に収容している。
【0045】
サイドギヤ52は、第1サイドギヤ53と第2サイドギヤ54とを備えて軸方向Lに離間して一対配置されている。第1サイドギヤ53及び第2サイドギヤ54は、複数のピニオンギヤ51のそれぞれに噛み合うと共に、差動ケース50の回転軸心Aを中心として回転するように配置されている。
図2に示すように、第1サイドギヤ53は、減速機6及び中空筒状のロータ軸13の径方向内側を通って軸方向Lに沿って延在する連結軸Jに連結されている。連結軸Jは、軸方向第2側L2の車輪Wである第1車輪W1に駆動連結された第1ドライブシャフトDS1と一体的に回転するように連結されている。従って、第1サイドギヤ53は、連結軸Jを介して第1車輪W1に駆動連結されている。また、第2サイドギヤ54は、軸方向第1側L1の車輪Wである第2車輪W2に駆動連結された第2ドライブシャフトDS2と一体的に回転するように連結されている。
【0046】
車輪Wに駆動連結されて、車輪Wと一体的に回転する第1ドライブシャフトDS1、第2ドライブシャフトDS2、連結軸J、第1サイドギヤ53、第2サイドギヤ54は、何れも出力部材に相当する回転部材ということができる。第1サイドギヤ53及び第2サイドギヤ54は、差動歯車機構5であると共に出力部材ということもできる。尚、第1サイドギヤ53及び第2サイドギヤ54は、それぞれ、ピニオンギヤ51に噛み合うギヤ部と、連結軸Jや第2ドライブシャフトDS2に連結されるスプライン係合部59とを備えている。機能的に分けて考える場合、ギヤ部が差動歯車機構5に含まれる回転部材に相当し、スプライン係合部59が出力部材に相当する。
【0047】
このような車両用駆動装置100においては、回転電機MGや動力伝達機構GTが油によって潤滑(冷却を含む)されることが多く、本実施形態の車両用駆動装置100も油によって潤滑される。例えば、ケース9の下側Z2に形成された油溜まりに溜まった油がオイルポンプOP(
図4及び
図7参照)や、動力伝達機構GTのギヤによる掻き上げにより、軸受等の潤滑対象箇所や、回転電機MGのステータコイル11b等の冷却対象箇所に供給される。
図4に示すオイル流路40は、オイルポンプOPから吐出される油が、回転電機MG(ステータコイル11bやロータ軸13の軸受等)及び動力伝達機構GT(各ギヤの軸受等)に供給される形態を例示している。当然ながら、冷却に用いられた油の温度は上昇するため、オイル流路40には油を冷却するためのオイルクーラOCも接続されている。オイルクーラOCは、冷却水と熱交換することによって油を冷却する。
【0048】
上述したように、インバータモジュールINVは、インバータ回路PMを構成するスイッチング素子を冷却する冷却ユニット38を備えている。このため、車両用駆動装置100は、冷却ユニット38とラジエータ37(車載ラジエータ)とを通る経路で冷却水を循環させる冷却水回路30を構成する冷却水回路モジュール3を有している。
図4に示すように、冷却水回路30には、ラジエータ37と、第1ウォーターポンプ36と、冷却ユニット38と、三方向弁35とが接続されている。冷却水回路モジュール3は、ケース9に形成される水路、及び冷却ユニット38を少なくとも含む。また、冷却水回路モジュール3は、さらに三方向弁35や第1ウォーターポンプ36を含んでいてもよい。ラジエータ37によって冷却(放熱)された冷却水は、第1ウォーターポンプ36によって冷却水回路30に送り出され、冷却ユニット38においてインバータモジュールINV及び電源モジュールPWRから熱を奪い、三方向弁35を経てラジエータ37に戻って廃熱される。
【0049】
図4に示すように、冷却水回路30には、上述したオイルクーラOCも接続されている。オイルクーラOCは、冷却水回路30を流れる冷却水と熱交換することによってオイル流路40を流れる油を冷却する。また、冷却水回路30には、水冷コンデンサ31(冷媒用熱交換器)も接続されている。水冷コンデンサ31では、車載エアコンディショナの冷媒と冷却水との間で熱交換を行い、温度が高くなった冷媒を冷却する。
【0050】
冷却ユニット38、オイルクーラOC、水冷コンデンサ31を経て温度が上昇した冷却水は、三方向弁35を経てラジエータ37に戻って廃熱される。しかし、寒冷時などで廃熱の必要が無い場合や、逆に冷却水によって油の温度を上げたい場合、車載エアコンディショナによって急速暖房を行う場合、などでは、ラジエータ37による放熱は必要ない。三方向弁35は、このような場合にラジエータ37を経由することなく、冷却水を循環させるように、冷却水の流路を切り替える。
【0051】
上述したように、水冷コンデンサ31は、車載エアコンディショナの冷媒が流れる冷媒回路20に接続されている。冷媒回路20には、水冷コンデンサ31から第1バルブV1を経由してエバポレータ44を通りアキュムレータ41に至る経路(第1流路20a)と、水冷コンデンサ31から第2バルブV2を経由してアキュムレータ41に至る経路を経て、さらに、コンプレッサ42、キャビンコンデンサ43を経て第3バルブV3を経由して水冷コンデンサ31に戻る経路(第2流路20b)とが形成されている。
【0052】
エバポレータ44は、冷房の中核となる機能部品であり、冷媒を気化させることによって周囲から熱を奪い、冷気を車室内に放出させる。アキュムレータ41は、気体と液体とが混在した冷媒から液体を分離し、気体(冷媒ガス)のみをコンプレッサ42に供給する。コンプレッサ42は、比較的低温・低圧の冷媒ガスを圧縮して、高温・高圧にする。キャビンコンデンサ43は、ヒートポンプ方式による暖房の熱源であり、コンプレッサ42によって凝縮された熱を車室内に放出する。キャビンコンデンサ43を出た冷媒は、膨張弁である第3バルブV3を経由して水冷コンデンサ31に流れる。
【0053】
また、本実施形態では、バッテリヒートシンク34も冷却水との熱交換によって車載バッテリBTを冷却し、温度が上昇した冷却水は、チラー32において冷媒と熱交換することによって冷却される。このため、冷媒が、水冷コンデンサ31から第4バルブV4及びチラー32を経由してアキュムレータ41に至る経路として第3流路20cが形成されている。
【0054】
チラー32には、チラー32から出た冷却水が、バッテリヒートシンク34、第2ウォーターポンプ33を経てチラー32に戻る第2冷却水回路30Bが接続されている。チラー32は、水冷コンデンサ31と同様に、冷却水と冷媒との間で熱交換を行い、冷却水から熱を奪って冷却水を冷却する。バッテリヒートシンク34との熱交換によって温度が上昇した冷却水はチラー32において冷却される。車載バッテリBTを冷却するための第2冷却水回路30B、及び第2冷却水回路30Bを流れる冷却水を冷却する第3流路20cを備えることにより、急速充電や高速走行時など、車載バッテリBTに流れる電流が増加して車載バッテリBTの温度が上昇するような場合にも、車載バッテリBTに対する入出力電流の制限を緩和し易くなる。
【0055】
上述したように、冷媒回路20には、水冷コンデンサ31(冷媒用熱交換器)からエバポレータ44までの冷媒の流路を含む第1流路20aと、コンプレッサ42から水冷コンデンサ31までの冷媒の流路を含む第2流路20bと、チラー32を含む冷媒の流路を含む第3流路20cとが含まれる。第2流路20b及び第3流路20cに比べて第1流路20aを流れる冷媒は低温である。また、第2流路20bに比べて第3流路20cを流れる冷媒は低温である。
【0056】
本実施形態では、冷媒回路20を構成する流路の一部は、ケース9の第1カバー93を利用して形成されている。また、
図1及び
図5等に示すように、冷媒回路20における冷媒の流量又は流路を制御する制御弁V(第1バルブV1、第2バルブV2、第3バルブV3、第4バルブV4)が、第1カバー93の開口方向第2側X2(開口方向ケース側)とは反対側(開口方向第1側X1(開口方向反ケース側))を向く面である第1カバー第1面93aに取り付けられている。
図1及び
図5から
図7に示すように、これら第1カバー93に形成された冷媒回路20及び制御弁Vを備えて、冷媒回路モジュール2が構成されている。第1カバー93において冷媒回路20が形成されている部分を冷媒マニホールド21と称する。
【0057】
このように、冷媒回路モジュール2は、ケース9と一体化された部分である一体化部を備え、当該一体化部は、ケース9の一部を構成する部品と、ケース9に取り付けられた部品と、を含んでいる。ここでは、ケース9(具体的には、第1カバー93)と一体化された冷媒マニホールド21及び制御弁Vが、「一体化部」に相当する。そして、冷媒マニホールド21が、ケース9の一部(具体的には、第1カバー93)を構成する部品であり、制御弁Vが、ケース9(具体的には、第1カバー93)に取り付けられた部品である。
【0058】
冷媒回路モジュール2には、冷媒回路20における冷媒の流路を構成する機能部品としての水冷コンデンサ31、チラー32、アキュムレータ41が取り付けられている。冷媒回路モジュール2と、これらの機能部品とを合わせて、冷媒モジュール1が構成されている。尚、車載バッテリBTが冷却水を用いて冷却されない構成の場合、即ち、第3流路20cが形成されていない場合には、チラー32は備えられていなくてもよい。従って、冷媒回路モジュール2、水冷コンデンサ31、アキュムレータ41により、冷媒モジュール1が構成されていてもよい。尚、冷媒回路モジュール2は、車載エアコンディショナ用の冷媒を循環させる冷媒回路20の少なくとも一部を構成していればよい。また、冷媒マニホールド21に加えて、制御弁Vの他、水冷コンデンサ31、チラー32、アキュムレータ41の少なくとも一部を、冷媒回路モジュール2に含めてもよい。
【0059】
尚、冷媒路構成部材には、制御弁V及び機能部品を含み、機能部品には、水冷コンデンサ31、チラー32、アキュムレータ41を含む。また、本実施形態では、冷媒モジュール1には含まれないが、コンプレッサ42、キャビンコンデンサ43、エバポレータ44、バッテリヒートシンク34も、機能部品である。また、第2ウォーターポンプ33も機能部品であり、例えば
図4に示すように、第2ウォーターポンプ33も車両用駆動装置100に一体的に備えられる場合には、第2ウォーターポンプ33を冷媒モジュール1に含むことができる。アキュムレータ41は、
図1、
図5から
図7、
図9に示すように、第1カバー93に取り付けられた場合には冷媒モジュール1に含まれるが、アキュムレータ41が、車両用駆動装置100とは別に配置されて、冷媒モジュール1には含まれない構成であってもよい。
【0060】
上記において例示した機能部品の内、少なくとも水冷コンデンサ31は、冷媒モジュール1に含まれる特定機能部品に相当する。また、水冷コンデンサ31と共に冷媒モジュール1を構成する場合があるチラー32、アキュムレータ41も、態様によっては特定機能部品に相当する。
【0061】
図9に示すように、冷媒マニホールド21は、第1マニホールド23と第2マニホールド24とに区分されている。第1マニホールド23と第2マニホールド24とは、連絡流路22を介して接続可能に構成されている。上述したように、冷媒回路20には、相対的に低温の冷媒が流れる第1流路20aと、相対的に高温の冷媒が流れる第2流路20bとがある。水冷コンデンサ31からエバポレータ44までの冷媒の流路である第1流路20aは、主に第1マニホールド23に形成されている。また、コンプレッサ42から水冷コンデンサ31までの冷媒の流路である第2流路20bは、主に第2マニホールド24に形成されている。第1マニホールド23は、冷媒回路20の第1流路領域20Aに相当し、第2マニホールド24は、冷媒回路20の第2流路領域20Bに相当する。
【0062】
尚、冷媒マニホールド21には、エバポレータ44、キャビンコンデンサ43など、車両用駆動装置100とは一体化されない機能部品と冷媒マニホールド21とを接続する配管の接続部99(
図10から
図13も参照)が設けられている。好ましくは、制御弁Vと同様に、第1カバー93における開口方向第1側X1(開口方向ケース側とは反対側)を向く面である第1カバー第1面93aに、接続部99が形成されていると好適である。
【0063】
図9には、第3流路20cが第1マニホールド23に形成されている形態を例示している。しかし、第3流路20cの少なくとも一部が、冷媒マニホールド21に形成される場合、第3流路20cは、第1マニホールド23及び第2マニホールド24の何れに形成されてもよい。当然ながら、第3流路20cは、第1マニホールド23及び第2マニホールド24の双方に跨がって形成されていてもよい。
【0064】
本実施形態では、第1収容室E1及び第2収容室E2が1つの部材であるケース本体90を用いて形成されている。しかし、例えば、第1収容室E1を形成する第1ケース本体と、第2収容室E2を形成する第2ケース本体とが別部材で構成され、第1ケース本体と第2ケース本体とが連結されて第1収容室E1及び第2収容室E2を有するケース9が形成されてもよい。第1カバー93は、インバータモジュールINVを収容する第1収容室E1を閉塞するカバーであり、冷媒回路モジュール2は、第1カバー93を冷媒マニホールド21として用いると共に、第1カバー93に制御弁Vを取り付けて構成されている。また、第1カバー93には複数の冷媒路構成部材(制御弁V,機能部品)が取り付けられて、冷媒モジュール1が構成されている。従って、インバータモジュールINVと、インバータモジュールINVを収容するケース9(第1ケース部91)と、ケース9の開口部(第1開口部9a)を閉塞するカバー(第1カバー93)と、車載エアコンディショナ用の冷媒を循環させる冷媒回路20を構成する冷媒モジュール1とを備えて、車載インバータユニット10が構成されているということもできる。
【0065】
上述したように、冷媒モジュール1は、冷媒回路20における冷媒の流路である冷媒流路29(
図4参照)と、冷媒流路29により互いに接続されて冷媒回路20を構成する複数の機能部品とを備えている。そして、冷媒流路29が、第1カバー93の内部に形成されている。
図1及び
図7に示すように、第1カバー93は、ケース9に対して第1開口部9aの開口面に沿う方向(開口面方向Y)の何れかの側に突出した突出部93pを備える。
図1、
図5、
図7等に示すように、複数の機能部品の少なくとも一部である特定機能部品が、突出部93pにおける第1カバー第2面93b(第1カバー93の開口方向ケース側を向く面)に取り付けられ、冷媒流路29に接続されている。尚、電源モジュールPWRは、第1収容室E1に収容されていてもよいし、収容されていなくてもよい。
【0066】
本実施形態によれば、インバータモジュールINVとインバータモジュールINVを収容するためのケース9及び第1カバー93に対して、冷媒モジュール1を一体的に設けることができる。即ち、インバータモジュールINVと冷媒モジュール1とを一体化することができる。従って、インバータモジュールINVと冷媒モジュール1とが独立している場合に比べて、部品点数の削減を図り易く、比較的小型の車両にもこの車載インバータユニット10を搭載し易い。また、冷媒モジュール1の特定機能部品が、第1カバー第2面93bに取り付けられている。これにより、当該特定機能部品は、ケース9における第1収容室E1の外側に、第1収容室E1に並んで配置されることになる。このため、インバータモジュールINVと冷媒モジュール1とを一体化しつつ、これらを適切に第1収容室E1の内側と外側とに分けて配置することができる。さらに、冷媒モジュール1の特定機能部品とケース9及びインバータモジュールINVとを、第1カバー93に対して同じ側(開口方向第2側X2(開口方向ケース側))に配置することができる。従って、インバータモジュールINVと冷媒モジュール1とを一体化しつつ、車載インバータユニット10の大型化を抑制することができる。
【0067】
上述したように、ケース9の第1ケース部91は、第1開口部9a(ケースの開口部)を囲むと共に開口方向Xに沿って延在するように配置された周壁部96を備えている。本実施形態では、
図1、
図7等に示すように、第1開口部9aの開口面に沿う方向である開口面方向Yの内、特定の方向を特定開口面方向Ya(第1方向)として、突出部93pは、特定開口面方向Ya(第1方向)における一方側である特定開口面方向第1側Ya1(第1方向第1側)に向かってケース9から突出している。特定機能部品は、特定開口面方向Ya(第1方向)に沿う特定開口面方向視(第1方向視)で、周壁部96と重複する位置に配置されている。
【0068】
尚、特定機能部品が複数存在する場合は、全ての特定機能部品が、特定開口面方向視で周壁部96と重複する位置に配置されている。例えば、
図1、
図5等に示すように、特定機能部品として、水冷コンデンサ31、アキュムレータ41、チラー32を含むような場合、水冷コンデンサ31、アキュムレータ41、チラー32の全てが、特定開口面方向視で周壁部96と重複する位置に配置されている。
【0069】
第1開口部9a(開口部)を囲む周壁部96は、ケース9においてインバータモジュールINVを収容する収容区間と特定開口面方向視(第1方向視)で重複する。インバータモジュールINVは、当該収容空間に収容されるので、冷媒モジュール1の特定機能部品と、ケース9と、インバータモジュールINVとを、特定開口面方向視(第1方向視)で互いに重複させて配置することができる。従って、車載インバータユニット10が例えば開口方向Xや、開口方向X及び特定開口面方向Ya(第1方向)に直交する方向(ここでは、軸方向L)へ大型化することを抑制し易い。即ち、本構成によれば、インバータモジュールINVと冷媒モジュール1とを一体化しつつ、車載インバータユニット10の大型化を抑制することができる。
【0070】
本実施形態の車両用駆動装置100は、車載インバータユニット10と、回転電機MGと、車輪Wに駆動連結される出力部材と、回転電機MGと出力部材との間で駆動力を伝達する動力伝達機構GTとを備えて構成することができる。上述したように、ケース9は、インバータモジュールINVを収容する第1収容室E1と、回転電機MG及び動力伝達機構GTを収容する第2収容室E2とを備える。
図1、
図5から
図7に示すように、第1収容室E1と第2収容室E2とは、開口方向Xに並ぶように配置されている。そして、
図1及び
図7に示すように、特定機能部品は、開口方向Xに沿う開口方向視で、ケース9の第2収容室E2を囲む部分である筒状周壁部97と重複する位置に配置されている。
【0071】
第1カバー93(カバー)の突出部93pにおける開口方向ケース側を向く面(第1カバー第2面93b)には、特定機能部品が取り付けられている。特定機能部品とケース9の第2収容室E2を囲む部分(筒状周壁部97)とが開口方向視で重複しない場合には、突出部93p及び特定機能部品は、ケース9の第2収容室E2を囲む部分(筒状周壁部97)に対して、突出部93pが突出する方向に突出することになる。即ち、ケース9の外形に対して、特定機能部品が取り付けられた状態の車両用駆動装置100は、突出部93pが突出する方向に大きくなり易い。本構成によれば、特定機能部品とケース9の第2収容室E2を囲む部分(筒状周壁部97)とが開口方向視で重複しているため、これらが重複していない場合に比べて、開口方向視での車両用駆動装置100の小型化を図り易い。
【0072】
図1及び
図7に示すように、第2ケース部92において第2収容室E2を囲む部分である筒状周壁部97は、第1ケース部91(第1ケース部91の周壁部96)に対して特定開口面方向第1側Ya1(第1方向第1側)に膨出している。従って、突出部93pと筒状周壁部97との間、少なくとも特定機能部品と筒状周壁部97との間には、車両用駆動装置100に外接する仮想的な直方体を考えた場合に、当該直方体の面と特定機能部品と筒状周壁部97とに囲まれたケース外配置領域E3が形成される。このケース外配置領域E3に、例えば、三方向弁35や第1ウォーターポンプ36を含むことで、上述した冷却水回路モジュール3の多くの構成要素を車両用駆動装置100と一体化することもできる。
【0073】
また、ケース外配置領域E3には、三方向弁35や第1ウォーターポンプ36に代えて、或いは、三方向弁35や第1ウォーターポンプ36に加えて、オイルポンプOPやオイルクーラOCが配置されてもよい。オイルポンプOPがケース9内に配置される場合には、オイルクーラOCのみがケース外配置領域E3に配置されてもよい。
【0074】
図7に示す例や、
図10及び
図11に示す例では、三方向弁35及び第1ウォーターポンプ36は、第2ケース部92(具体的には、筒状周壁部97)における前後方向第1側H1の外面に取り付けられている。すなわち、三方向弁35及び第1ウォーターポンプ36は、第2ケース部92とラジエータ37との前後方向Hの間に配置されている。また、これらの例では、オイルポンプOP及びオイルクーラOCは、ケース9内に配置されている。具体的には、オイルポンプOPは、第2収容室E2に収容されている。ここでは、オイルポンプOPは、回転軸心Aに対して前後方向第1側H1且つ下側Z2に配置されている。また、オイルポンプOPは、上下方向視で突出部93pと重複する位置に配置されている。オイルクーラOCは、第1収容室E1に収容されている。ここでは、オイルクーラOCは、インバータモジュールINVと回転電機MGとの上下方向Zの間に配置され、より詳しくは、冷却ユニット38と回転電機MGとの上下方向Zの間に配置されている。
【0075】
また、本実施形態の車両用駆動装置100は、第2収容室E2に収容された油を冷却するためのオイルクーラOCと、オイルクーラOCとラジエータ37とを通る経路で冷却水を循環させる冷却水回路30を構成する冷却水回路モジュール3とをさらに備えている。本実施形態では、三方向弁35、第1ウォーターポンプ36、冷却ユニット38により冷却水回路モジュール3が構成されている形態を例示している。しかし、冷却水回路モジュール3は、冷却ユニット38を経由することなく構成されていてもよい。また、特定機能部品には、車載エアコンディショナ用の冷媒と冷却水との熱交換により冷媒を冷却するための冷媒用熱交換器である水冷コンデンサ31が含まれている。
【0076】
このような構成により、冷媒回路20を流れる車載エアコンディショナ用の冷媒を冷却水により冷却することができる。冷却水は、ラジエータ37(車載ラジエータ)を通る経路で循環するので、車載エアコンディショナ用の冷媒の熱をラジエータ37により車外に排出することができる。また本構成によれば、このような水冷コンデンサ31(冷媒用熱交換器)が冷媒路構成部材を介してケース9に一体的に固定される。従って、冷媒回路20を構成する機能部品を接続する配管等を少なく抑え、或いは短く抑えることができる。
【0077】
また、上述したように、機能部品には、冷媒回路20における冷媒の流量又は流路を制御する制御弁Vが含まれる。また、特定機能部品には、冷媒を液体と気体とに分離するためのアキュムレータ41を含むことができる。制御弁Vは、第1カバー93(カバー)における開口方向第2側X2(開口方向ケース側)とは反対側を向く面(第1カバー第1面93a)に取り付けられている。そして、水冷コンデンサ31(冷媒用熱交換器)とアキュムレータ41とは、ケース9の第1収容室E1を囲む壁部(周壁部96)に沿って並ぶように配置されている。
【0078】
制御弁Vが第1カバー93(カバー)における開口方向第2側X2(開口方向ケース側)とは反対側を向く面(第1カバー第1面93a)に取り付けられることで、例えば、第1カバー93(カバー)を挟んで制御弁Vと特定機能部品とを比較的近づけて配置することができる。また、複数の特定機能部品を壁部(周壁部96)に沿って並べることによって、これら複数の特定機能部品を効率的に配置することができる。従って、本構成によれば、車両用駆動装置100の大型化を抑制しつつ、冷媒モジュール1の複数の機能部品を適切に配置することができる。
【0079】
上述したように、本実施形態では、車載バッテリBTに電気的に接続される回路を備えた電源モジュールPWRも、インバータモジュールINVと共に、第1収容室E1に収容されている。この場合、上述した車載インバータユニット10に、電源モジュールPWRを含んでいてもよい。
【0080】
即ち、車両用駆動装置100は、ロータ12を備えた回転電機MGと、車輪Wに駆動連結される出力部材と、回転電機MGと出力部材との間で駆動力を伝達する動力伝達機構GTと、回転電機MGを駆動制御するためのインバータモジュールINVと、車載バッテリBTに電気的に接続される回路を備えた電源モジュールPWRと、車載エアコンディショナ用の冷媒を循環させる冷媒回路20の少なくとも一部を構成する冷媒回路モジュール2と、インバータモジュールINV及び電源モジュールPWRを収容する第1収容室E1と、回転電機MG及び動力伝達機構GTを収容する第2収容室E2とを備えたケース9とを備えている。
図1及び
図2に示すように、動力伝達機構GTは、ロータ12に対して軸方向第1側L1に配置されている。インバータモジュールINVは、インバータ回路PMを構成するスイッチング素子と、スイッチング素子を冷却する冷却ユニット38とを備える。
【0081】
図1、
図5、
図6等に示すように、インバータモジュールINVは、回転電機MGより上側Z1であって、上下方向Zに沿う上下方向視で回転電機MGと重複する位置に配置されている。また、
図1、
図5、
図6、
図8、
図9等に示すように、電源モジュールPWRは、インバータモジュールINVに対して軸方向第1側L1に隣接して配置されている。冷媒回路モジュール2は、
図1、
図5、
図6、
図7に示すように、インバータモジュールINV及び電源モジュールPWRに対して上下方向Zの上側Z1であってインバータモジュールINV及び電源モジュールPWRと上下方向視で重複する位置に配置されている。且つ、冷媒回路モジュール2は、
図5から
図7等に示すように、ケース9に一体的に固定されている。
【0082】
尚、
図1、
図5、
図6等に示すように、電源モジュールPWRは、動力伝達機構GTより上側Z1であって、上下方向Zに沿う上下方向視で動力伝達機構GTと重複する位置に配置されている。
【0083】
本実施形態では、車両用駆動装置100は、回転電機MG及び動力伝達機構GTを含む駆動ユニットに、回転電機MGを駆動制御するためのインバータモジュールINVを一体的に備えるだけでなく、さらに、電源モジュールPWRと、車載エアコンディショナのための冷媒回路モジュール2とを、駆動ユニットに一体的に備える。従って、駆動ユニット及びインバータモジュールINVと電源モジュールPWR及び冷媒回路モジュール2とを接続する配線や配管等を少なく抑え、或いは短く抑えることができると共に、これらを収容或いは支持するケース9を一体化することで多くの機能を備えた車両用駆動装置100の全体の小型化を図り易い。また、この構成によれば、大電流がステータコイル11bを流れるために発熱量の多い回転電機MGの上側Z1に冷却ユニット38を備えたインバータモジュールINVが配置され、電源モジュールPWRは、インバータモジュールINVに対して軸方向第1側L1、すなわち、回転電機MGに対して動力伝達機構GTが配置された側に隣接して配置されている。冷媒回路モジュール2は、インバータモジュールINV及び電源モジュールPWRに対して上側Z1に配置されており、回転電機MGにより生じた熱が冷媒回路モジュール2に伝わることは、冷却ユニット38を備えたインバータモジュールINV及び電源モジュールPWRにより阻害される。従って、冷媒回路モジュール2が回転電機MGの発熱により受ける影響を少なく抑え易い。よって、車両用駆動装置100を中核として車両における熱マネジメントシステムを適切に構成し易い。
【0084】
また、車両用駆動装置100は、
図4に示すように、第2収容室E2に収容された油を冷却するためのオイルクーラOCと、オイルクーラOCとラジエータ37(車載ラジエータ)とを通る経路で冷却水を循環させる冷却水回路30を構成する冷却水回路モジュール3とをさらに備えている。また、冷媒回路モジュール2は、冷媒回路20における冷媒の流路を構成する冷媒マニホールド21(冷媒路構成部材)と、冷媒マニホールド21に取り付けられる制御弁Vとを備えている。冷媒マニホールド21には、冷媒回路20を構成する機能部品として、さらに、冷媒と冷却水との熱交換により冷媒を冷却するための水冷コンデンサ31(冷媒用熱交換器)が取りけられている。
【0085】
この構成によれば、冷媒回路20を流れる車載エアコンディショナ用の冷媒を冷却水により冷却することができる。冷却水は、ラジエータ37(車載ラジエータ)を通る経路で循環するので、車載エアコンディショナ用の冷媒の熱をラジエータ37により車外に排出することができる。また、この構成によれば、このような水冷コンデンサ31(冷媒用熱交換器)が冷媒マニホールド21(冷媒路構成部材)を介してケース9に一体的に固定される。従って、冷媒回路20を構成する機能部品を接続する配管等を少なく抑え、或いは短く抑えることができる。
【0086】
図4及び
図9を参照して上述したように、本実施形態では、冷媒回路20に、水冷コンデンサ31(冷媒用熱交換器)からエバポレータ44までの冷媒の流路である第1流路領域20Aと、コンプレッサ42から水冷コンデンサ31(冷媒用熱交換器)までの冷媒の流路である第2流路領域20Bとが含まれる。そして、第1流路領域20Aは、インバータモジュールINVと上下方向視で重複するように配置され、第2流路領域20Bは、電源モジュールPWRと上下方向視で重複するように配置されている。
【0087】
インバータ回路PMを構成するスイッチング素子には大電流が流れるために発熱し易い。このため、放熱を考慮すると当該スイッチング素子の近傍の温度は高くならないことが好ましい。また、インバータモジュールINVに、インバータ回路PMを制御する制御回路(回転電機制御部17、ドライバ18:
図3参照)が含まれる場合、当該制御回路を構成する電子部品は比較的熱に弱いことが多い。このため、当該制御回路の近傍の温度も高くならないことが好ましい。本構成によれば、冷媒回路20における比較的低温となる第1流路領域20AがインバータモジュールINVに近い位置に配置され、冷媒回路20における比較的高温となる第2流路領域20Bが電源モジュールPWRに近い位置に配置される。従って、インバータモジュールINVにおいてインバータ回路PMを構成するスイッチング素子や、インバータ回路PMの制御回路に冷媒回路モジュール2からの熱が伝わりにくいようにすることができる。
【0088】
図4を参照して上述したように、冷媒回路20は、冷媒を液体と気体とに分離するためのアキュムレータ41を備えている。そして、
図1、
図7、
図9等に示すように、水冷コンデンサ31(冷媒用熱交換器)とアキュムレータ41とは、上下方向視でインバータモジュールINV及び電源モジュールPWRと重複せず、
図7に示すように、上下方向Zの配置領域がインバータモジュールINV及び電源モジュールPWRと重複する位置に配置されている。
【0089】
冷媒回路20を構成する部品の内、水冷コンデンサ31(冷媒用熱交換器)とアキュムレータ41とは比較的大型になり易い。この構成によれば、そのような水冷コンデンサ31(冷媒用熱交換器)とアキュムレータ41とを、インバータモジュールINV及び電源モジュールPWRと水平方向(ここでは、前後方向H)に並べて配置することができる。従って、車両用駆動装置100の上下方向Zの寸法の小型化を図り易い。
【0090】
尚、
図4を参照して上述したように、本実施形態では、冷媒回路20は、第2冷却水回路30Bを流れる冷却水と冷媒との熱交換によって当該冷却水を冷却するための冷却水用熱交換器であるチラー32を備えている。
図1、
図7、
図9等に示すように、チラー32も、上下方向視でインバータモジュールINV及び電源モジュールPWRと重複せず、
図7に示すように、上下方向Zの配置領域がインバータモジュールINV及び電源モジュールPWRと重複する位置に配置されている。冷媒回路20を構成する部品の内、チラー32も比較的大型になり易い。この構成によれば、そのようなチラー32も、インバータモジュールINV及び電源モジュールPWRと水平方向(ここでは、前後方向H)に並べて配置することができる。従って、車両用駆動装置100の上下方向Zの寸法の小型化を図り易い。
【0091】
詳細な経路は省略するが、
図1、
図8に示すように、冷却ユニット38は、冷却水が流通する冷却水路39を備えている。インバータ回路PMを構成するスイッチング素子は、冷却ユニット38の上面である冷却ユニット第1面38aに取り付けられている。そして、インバータ回路PMを制御する制御基板ECUが、スイッチング素子と冷媒回路モジュール2との上下方向Zの間に配置されている。
【0092】
インバータ回路PMを構成するスイッチング素子には大電流が流れるために発熱し易い。また、インバータ回路PMを制御する制御基板ECUに搭載されて、インバータ回路PMを制御する制御回路を構成する電子部品は比較的熱に弱いことが多い。本構成によれば、冷却ユニット38により、回転電機MGからの熱が伝わりにくい場所に、スイッチング素子及び制御基板ECUを配置することができ、冷却ユニット38の上面(冷却ユニット第1面38a)に取り付けられたスイッチング素子を冷却ユニット38によって適切に冷却すると共に、回転電機MGからの熱が制御基板ECUに伝わりにくくすることができる。
【0093】
図10から
図13は、上述した車両用駆動装置100の構成例を示している。
図1等では省略しているが、
図10から
図13に示すように、車両用駆動装置100は、マウント部材70を介して車両の車体(例えば、クロスメンバ)に支持される。マウント部材70は、マウントブラケット71を介してケース9に連結される。本例では、軸方向Lに離間して配置される2つのマウント部材70と、これら2つのマウント部材70よりも下側Z2に配置されたマウント部材70との、3つのマウント部材70を介して、車両用駆動装置100が車体に支持される。1つのマウント部材70は、第1ケース部91に対して軸方向第1側L1からマウントブラケット71を介して連結され、別の1つのマウント部材70は、第1ケース部91に対して軸方向第2側L2からマウントブラケット71を介して連結され、残りの1つのマウント部材70は、第2ケース部92に対して下側Z2からマウントブラケット71を介して連結される。
【0094】
図12及び
図13に示すように、ケース9(具体的には、第1ケース部91)には、ケース9の外部に配置された不図示のケーブルと、インバータモジュールINV、電源モジュールPWR、又は制御基板ECUと、を電気的に接続するためのコネクタ67が設けられている。ここでは、第1ケース部91(具体的には、周壁部96)における前後方向第2側H2の壁部に形成された貫通孔に、コネクタ67が配置されている。図示の例では、複数のコネクタ67(具体的には、5つのコネクタ67)が、軸方向Lに沿って並ぶように配置されている。コネクタ67には、例えば、制御基板ECUに制御信号を伝達するためのケーブル、制御基板ECUに電力を供給するためのケーブル、インバータ回路PMに電力を供給するためのケーブル、充電回路62に電力を供給するためのケーブルが接続される。
【0095】
〔その他の実施形態〕
以下、その他の実施形態について説明する。尚、以下に説明する各実施形態の構成は、それぞれ単独で適用されるものに限られず、矛盾が生じない限り、他の実施形態の構成と組み合わせて適用することも可能である。
【0096】
(1)上記においては、動力伝達機構GTとして、減速機6と差動歯車機構5とを備える形態を例示した。しかし、動力伝達機構GTは、このような構成に限らない。動力伝達機構GTは、例えば、減速機6を備えることなく、差動歯車機構5のみを備える形態であってもよい。また、動力伝達機構GTは、差動歯車機構5を備えることなく、減速機6のみを備え、1つの車輪Wに1つの回転電機MGからの動力を伝達する構成であってもよい。また、本実施形態では、減速機6として固定変速比の遊星歯車機構を例示したが、減速機6は複数段の変速比を有していてもよい。
【0097】
(2)
図8に示すように、直流リンクコンデンサ16が、冷却ユニット第1面38aに、インバータ回路PMと並んで配置されるような形態では、インバータモジュールINVに直流リンクコンデンサ16が含まれていてもよい。しかし、例えば、冷却ユニット38の裏面(冷却ユニット第1面38aとは反対側の面)の側に直流リンクコンデンサ16が配置されるような場合には、インバータモジュールINVに直流リンクコンデンサ16が含まれていなくてもよい。例えば、直流リンクコンデンサ16は、冷却ユニット38よりも下側Z2であって、動力伝達機構GTと上下方向視で重複する位置に配置されていてもよい。直流リンクコンデンサ16は、比較的熱に強い部品であり、そのような部品を、上下方向Zの配置位置において冷却ユニット38よりも回転電機MGに近く、軸方向Lの配置位置において回転電機MGから離れた動力伝達機構GTの側に配置することで、冷却ユニット38よりも下側Z2の空間を有効活用することができ、車両用駆動装置100の全体の小型化を図り易い。
【0098】
尚、車載インバータユニット10は、直流リンクコンデンサ16の配置位置に拘わらず、直流リンクコンデンサ16を含んで構成されていると好適である。
【0099】
(3)電源モジュールPWRに備えられるコンバータ61及び充電回路62が共にトランス型の場合などでは、体格が大きくなり易いトランス部品を共用すると好適である。また、直流リンクコンデンサ16と同様に、トランスも比較的熱に強い部品である。従って、トランスも、冷却ユニット38よりも下側Z2であって、動力伝達機構GTと上下方向視で重複する位置に配置されていると好適である。このように冷却ユニット38よりも下側Z2の空間を有効活用することで、車両用駆動装置100の全体の小型化を図り易い。
図11及び
図13に示す例では、電源モジュールPWRに備えられるコンデンサ66が、冷却ユニット38よりも上側Z1に配置され、電源モジュールPWRに備えられるトランス65が、冷却ユニット38よりも下側Z2に配置されている。
【0100】
(4)上記においては、
図5等に示すように、インバータモジュールINV及び電源モジュールPWRに対して上下方向Zの上側Z1に配置される冷媒回路モジュール2が、冷媒回路20における冷媒の流路を構成する冷媒マニホールド21(冷媒路構成部材)と、冷媒マニホールド21に取り付けられる制御弁Vとを備えて構成され、水冷コンデンサ31(冷媒用熱交換器)は冷媒回路モジュール2に含まれずに、冷媒マニホールド21の下側Z2の第1カバー第2面93bに取り付けられている形態を例示した。しかし、制御弁Vと同様に、水冷コンデンサ31が冷媒マニホールド21の上側Z1の第1カバー第1面93aに取り付けられている場合には、冷媒回路モジュール2に水冷コンデンサ31が含まれていてもよい。
【0101】
(5)上記においては、冷媒流路29が冷媒マニホールド21として第1カバー93の内部に形成される形態を例示した。当然ながら、冷媒流路29のほぼ全てが第1カバー93の内部に形成される必要はなく、冷媒流路29の一部がケース9の他の部材や、ケース9とは別の部材により構成される配管等を用いて構成されていてもよい。
【0102】
(6)上記においては、第1カバー93の突出部93pが、特定開口面方向Ya(第1方向)における一方側である特定開口面方向第1側Ya1(第1方向第1側)に向かってケース9から突出している形態を例示した。しかし、突出部93pは、開口面方向Yの複数の方向に向かって突出するように形成されていてもよい。上記においては、矩形箱状に形成された第1ケース部91の1つの辺(面)から、第1開口部9aの外側に向かって突出する突出部93pを例示した。しかし、第1ケース部91の複数の辺から、第1開口部9aの外側に向かって突出するように突出部93pが形成されていてもよい。
【0103】
(7)上記においては、突出部93pにおける開口方向第2側X2(開口方向ケース側)を向く面(第1カバー第2面93b)に取り付けられて、冷媒流路29に接続されている複数の機能部品の少なくとも一部である特定機能部品が、水冷コンデンサ31、アキュムレータ41、チラー32である形態を例示した。また、上記においては、全ての制御弁Vが、突出部93pにおける開口方向第1側X1の面(第1カバー第1面93a)に配置されている形態を例示した。しかし、これらの制御弁Vの内の少なくとも一部が、特定機能部品に含まれ、当該制御弁Vが第1カバー第2面93bに取り付けられていてもよい。
【符号の説明】
【0104】
2:冷媒回路モジュール、9:ケース、12:ロータ、20:冷媒回路、21:冷媒マニホールド(一体化部、ケースの一部を構成する部品)、52:サイドギヤ(出力部材)、53:第1サイドギヤ(出力部材)、54:第2サイドギヤ(出力部材)、59:スプライン係合部(出力部材)、61:コンバータ(車載バッテリに電気的に接続される回路)、62:充電回路(車載バッテリに電気的に接続される回路)、100:車両用駆動装置、BT:車載バッテリ、DS1:第1ドライブシャフト(出力部材)、DS2:第2ドライブシャフト(出力部材)、E1:第1収容室、E2:第2収容室、GT:動力伝達機構、INV:インバータモジュール、J:連結軸(出力部材)、MG:回転電機、PWR:電源モジュール、V:制御弁(一体化部、ケースに取り付けられた部品)、W:車輪