IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ソフトバンクグループ株式会社の特許一覧

<>
  • 特開-行動制御システム 図1
  • 特開-行動制御システム 図2
  • 特開-行動制御システム 図3
  • 特開-行動制御システム 図4
  • 特開-行動制御システム 図5
  • 特開-行動制御システム 図6
  • 特開-行動制御システム 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024159568
(43)【公開日】2024-11-08
(54)【発明の名称】行動制御システム
(51)【国際特許分類】
   G06N 3/008 20230101AFI20241031BHJP
   G06F 3/01 20060101ALI20241031BHJP
   G06F 16/90 20190101ALI20241031BHJP
   G06F 16/9035 20190101ALI20241031BHJP
【FI】
G06N3/008
G06F3/01 510
G06F16/90 100
G06F16/9035
【審査請求】未請求
【請求項の数】2
【出願形態】OL
(21)【出願番号】P 2024065142
(22)【出願日】2024-04-15
(31)【優先権主張番号】P 2023073762
(32)【優先日】2023-04-27
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】591280485
【氏名又は名称】ソフトバンクグループ株式会社
(74)【代理人】
【識別番号】100079108
【弁理士】
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100109346
【弁理士】
【氏名又は名称】大貫 敏史
(74)【代理人】
【識別番号】100117189
【弁理士】
【氏名又は名称】江口 昭彦
(74)【代理人】
【識別番号】100134120
【弁理士】
【氏名又は名称】内藤 和彦
(74)【代理人】
【識別番号】100139066
【弁理士】
【氏名又は名称】伊藤 健太郎
(72)【発明者】
【氏名】孫 正義
【テーマコード(参考)】
5B175
5E555
【Fターム(参考)】
5B175EA01
5E555AA48
5E555AA72
5E555AA76
5E555BA02
5E555BA05
5E555BA06
5E555BA90
5E555BB02
5E555BB05
5E555BB06
5E555BB40
5E555BC04
5E555CA41
5E555CA42
5E555CA44
5E555CA47
5E555CB20
5E555CB64
5E555CB66
5E555CB67
5E555CC03
5E555DA13
5E555DA23
5E555DA40
5E555EA19
5E555EA22
5E555EA23
5E555EA27
5E555EA28
5E555FA00
(57)【要約】
【課題】ユーザの行動に対して適切な行動をぬいぐるみに実行させる。
【解決手段】行動制御システムは、ユーザの行動を含むユーザ状態を認識するユーザ状態認識部と、ユーザの感情又はぬいぐるみの感情を判定する感情決定部と、ユーザとぬいぐるみを対話させる対話機能に基づき、前記ユーザの行動と、ユーザの感情又はぬいぐるみの感情とに対応するぬいぐるみの行動内容を決定する行動決定部と、を含む。
【選択図】図2
【特許請求の範囲】
【請求項1】
ユーザの行動を含むユーザ状態を認識するユーザ状態認識部と、
前記ユーザの感情又はぬいぐるみの感情を判定する感情決定部と、
前記ユーザと前記ぬいぐるみを対話させる対話機能に基づき、前記ユーザの行動と、前記ユーザの感情又は前記ぬいぐるみの感情とに対応する前記ぬいぐるみの行動内容を決定する行動決定部と、を含む
行動制御システム。
【請求項2】
前記行動決定部は、前記ぬいぐるみの行動内容として、前記ユーザの感情又は前記ぬいぐるみの感情に応じて前記ぬいぐるみの一部の動作を変化させる行動を行う
請求項1に記載の行動制御システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、行動制御システムに関する。
【背景技術】
【0002】
特許文献1には、ユーザの状態に対してロボットの適切な行動を決定する技術が開示されている。特許文献1の従来技術は、ロボットが特定の行動を実行したときのユーザの反応を認識し、認識したユーザの反応に対するロボットの行動を決定できなかった場合、認識したユーザの状態に適した行動に関する情報をサーバから受信することで、ロボットの行動を更新する。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特許6053847号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら従来技術では、ユーザの行動に対して適切な行動をぬいぐるみに実行させる上で改善の余地がある。
【課題を解決するための手段】
【0005】
本発明の第1の態様によれば、行動制御システムが提供される。当該行動制御システムは、ユーザの行動を含むユーザ状態を認識するユーザ状態認識部と、前記ユーザの感情又はぬいぐるみの感情を判定する感情決定部と、前記ユーザと前記ぬいぐるみを対話させる対話機能に基づき、前記ユーザ状態と、前記ユーザの感情又は前記ぬいぐるみの感情とに対応する前記ぬいぐるみの行動を決定する行動決定部と、を含む。
【発明の効果】
【0006】
本発明によれば、ユーザの行動に対して適切な行動をぬいぐるみに実行させることが可能な行動制御システムを提供することができる。
【図面の簡単な説明】
【0007】
図1】本実施形態に係るシステム5の一例を概略的に示す。
図2】ぬいぐるみ100の機能構成を概略的に示す。
図3】ぬいぐるみ100による動作フローの一例を概略的に示す。
図4】コンピュータ1200のハードウェア構成の一例を概略的に示す。
図5】複数の感情がマッピングされる感情マップ400を示す。
図6】複数の感情がマッピングされる感情マップ900を示す。
図7】感情テーブルを示す。
【発明を実施するための形態】
【0008】
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
【0009】
(本実施形態)
図1は、本実施形態に係るシステム5の一例を概略的に示す。システム5は、ぬいぐるみ100、ぬいぐるみ101、ぬいぐるみ102、及びサーバ300を備える。ユーザ10、ユーザ11及びユーザ12は、それぞれぬいぐるみ100、ぬいぐるみ101、ぬいぐるみ102のユーザである。ユーザ10、ユーザ11及びユーザ12は、例えばぬいぐるみ100が配置された家の家族や、その家を訪れた他人である。ぬいぐるみ100、ぬいぐるみ101及びぬいぐるみ102は、各家庭の家店舗や事務所の受付等に配置され、来訪した顧客に応対する利用形態等にも適用できる。なお、本実施形態の説明において、ぬいぐるみ101及びぬいぐるみ102は、ぬいぐるみ100と略同一の機能を有する。そのため、ぬいぐるみ100の機能を主として取り上げてシステム5を説明する。
【0010】
ぬいぐるみ100は、ユーザ10と会話を行ったり、ユーザ10に映像を提供したりするロボットのぬいぐるみである。このとき、ぬいぐるみ100は、通信網20を介して通信可能なサーバ300等と連携して、ユーザ10との会話や、ユーザ10への映像等の提供を行う。例えば、ぬいぐるみ100は、自身で適切な会話を学習するだけでなく、サーバ300と連携して、ユーザ10とより適切に会話を進められるように学習を行う。また、ぬいぐるみ100は、撮影したユーザ10の映像データ等をサーバ300に記録させ、必要に応じて映像データ等をサーバ300に要求して、ユーザ10に提供する。図1では、ぬいぐるみ100として、ユーザが持ち運び可能なぬいぐるみを想定しているが、以下に示すAI感情エンジンやAIチャットエンジン等を搭載したあらゆる端末(例えば、車載端末や携帯端末等)に適用可能である。
【0011】
ぬいぐるみ100は、人間の感情を疑似的に生成する機能を有するAI感情エンジン(後述)を搭載し、自身の感情の種類を表す感情値を決定・保持する。例えば、ぬいぐるみ100は、「喜」、「怒」、「哀」、「楽」、「快」、「不快」、「安心」、「不安」、「悲しみ」、「興奮」、「心配」、「安堵」、「充実感」、「虚無感」及び「普通」のそれぞれの感情の強さを表す感情値を持つ。ぬいぐるみ100は、例えば興奮の感情値が大きい状態でユーザ10と会話するときは、早いスピードで音声を発する。このように、ぬいぐるみ100は、自己の感情を行動で表現することができる。
【0012】
また、ぬいぐるみ100は、AIチャットエンジン(チャットエンジン)とAI感情エンジン(感情エンジン)をマッチングさせることで、ユーザ10の感情に対応するぬいぐるみ100の行動を決定するように構成してよい。具体的には、ぬいぐるみ100は、ユーザ10の行動を認識して、当該ユーザの行動に対するユーザ10の感情を判定し、判定した感情に対応するぬいぐるみ100の行動を決定するように構成してよい。
【0013】
より具体的には、ぬいぐるみ100は、ユーザ10の行動を認識した場合、予め設定されたチャットエンジンを用いて、当該ユーザ10の行動に対してぬいぐるみ100がとるべき行動内容を自動で生成する。チャットエンジンは、文字による自動対話処理のためのアルゴリズム及び演算と解釈してよい。チャットエンジンは、例えば特開2018-081444号公報やchatGPT(インターネット検索<URL: https://openai.com/blog/chatgpt>)に開示される通り公知であるため、その詳細な説明を省略する。このような、チャットエンジンは、大規模言語モデル(LLM:Large Language Model)により構成されている。
【0014】
以上、本実施形態は、大規模言語モデルと感情エンジンとを組み合わせることにより、ユーザ10やぬいぐるみ100の感情と、様々な言語情報とをぬいぐるみ100の行動に反映させるということができる。つまり、本実施形態によれば、チャットエンジンと感情エンジンとを組み合わせることにより、相乗効果を得ることができる。
【0015】
また、ぬいぐるみ100は、ユーザ10の行動を認識する機能を有する。ぬいぐるみ100は、カメラ機能で取得したユーザ10の顔画像や、マイク機能で取得したユーザ10の音声を解析することによって、ユーザ10の行動を認識する。ぬいぐるみ100は、認識したユーザ10の行動等に基づいて、ぬいぐるみ100が実行する行動を決定する。
【0016】
ぬいぐるみ100は、ユーザ10の感情、ぬいぐるみ100の感情、及びユーザ10の行動に基づいてぬいぐるみ100が実行する行動を定めたルールを記憶しており、ルールに従って各種の行動を行う。
【0017】
具体的には、ぬいぐるみ100には、ユーザ10の感情、ぬいぐるみ100の感情、及びユーザ10の行動に基づいてぬいぐるみ100の行動を決定するための反応ルールを有している。反応ルールには、例えば、ユーザ10の行動が「笑う」である場合に対して、「笑う」という行動が、ぬいぐるみ100の行動として定められている。また、反応ルールには、ユーザ10の行動が「怒る」である場合に対して、「謝る」という行動が、ぬいぐるみ100の行動として定められている。また、反応ルールには、ユーザ10の行動が「質問する」である場合に対して、「回答する」という行動が、ぬいぐるみ100の行動として定められている。反応ルールには、ユーザ10の行動が「悲しむ」である場合に対して、「声をかける」という行動が、ぬいぐるみ100の行動として定められている。
【0018】
ぬいぐるみ100は、反応ルールに基づいて、ユーザ10の行動が「怒る」であると認識した場合、反応ルールで定められた「謝る」という行動を、ぬいぐるみ100が実行する行動として選択する。例えば、ぬいぐるみ100は、「謝る」という行動を選択した場合に、「謝る」動作を行うと共に、「謝る」言葉を表す音声を出力する。
【0019】
また、ぬいぐるみ100の感情が「普通」(すなわち、「喜」=0、「怒」=0、「哀」=0、「楽」=0)であり、ユーザ10の状態が「1人、寂しそう」という条件が満たされた場合に、ぬいぐるみ100の感情が「心配になる」という感情の変化内容と、「声をかける」の行動を実行できることが定められている。
【0020】
ぬいぐるみ100は、反応ルールに基づいて、ぬいぐるみ100の現在の感情が「普通」であり、かつ、ユーザ10が1人で寂しそうな状態にあると認識した場合、ぬいぐるみ100の「哀」の感情値を増大させる。また、ぬいぐるみ100は、反応ルールで定められた「声をかける」という行動を、ユーザ10に対して実行する行動として選択する。例えば、ぬいぐるみ100は、「声をかける」という行動を選択した場合に、心配していることを表す「どうしたの?」という言葉を、心配そうな音声に変換して出力する。
【0021】
また、ぬいぐるみ100は、この行動によって、ユーザ10からポジティブな反応が得られたことを示すユーザ反応情報を、サーバ300に送信する。ユーザ反応情報には、例えば、「怒る」というユーザ行動、「謝る」というぬいぐるみ100の行動、ユーザ10の反応がポジティブであったこと、及びユーザ10の属性が含まれる。
【0022】
サーバ300は、ぬいぐるみ100から受信したユーザ反応情報を記憶する。なお、サーバ300は、ぬいぐるみ100だけでなく、ぬいぐるみ101及びぬいぐるみ102のそれぞれからもユーザ反応情報を受信して記憶する。そして、サーバ300は、ぬいぐるみ100、ぬいぐるみ101及びぬいぐるみ102からのユーザ反応情報を解析して、反応ルールを更新する。
【0023】
ぬいぐるみ100は、更新された反応ルールをサーバ300に問い合わせることにより、更新された反応ルールをサーバ300から受信する。ぬいぐるみ100は、更新された反応ルールを、ぬいぐるみ100が記憶している反応ルールに組み込む。これにより、ぬいぐるみ100は、ぬいぐるみ101やぬいぐるみ102等が獲得した反応ルールを、自身の反応ルールに組み込むことができる。
【0024】
図2は、ぬいぐるみ100の機能構成を概略的に示す。ぬいぐるみ100は、センサ部200と、センサモジュール部210と、格納部220と、ユーザ状態認識部230と、ユーザ感情決定部231と、感情決定部232と、行動認識部234と、行動決定部236と、記憶制御部238と、行動制御部250と、制御対象252と、通信処理部280と、を有する。
【0025】
制御対象252は、ぬいぐるみ100に搭載されている表示装置、スピーカ及び目部のLED、並びに、腕、手及び足等を駆動するモータ等を含む。ぬいぐるみ100の姿勢や仕草は、腕、手及び足等のモータを制御することにより制御される。ぬいぐるみ100の感情の一部は、これらのモータを制御することにより表現できる。また、ぬいぐるみ100の目部のLEDの発光状態を制御することによっても、ぬいぐるみ100の表情を表現できる。なお、ぬいぐるみ100の姿勢、仕草及び表情は、ぬいぐるみ100の態度の一例である。
【0026】
センサ部200は、マイク201と、3D深度センサ202と、2Dカメラ203と、距離センサ204とを含む。マイク201は、音声を連続的に検出して音声データを出力する。なお、マイク201は、ぬいぐるみ100の頭部に設けられ、バイノーラル録音を行う機能を有してよい。3D深度センサ202は、赤外線パターンを連続的に照射して、赤外線カメラで連続的に撮影された赤外線画像から赤外線パターンを解析することによって、物体の輪郭を検出する。2Dカメラ203は、イメージセンサの一例である。2Dカメラ203は、可視光によって撮影して、可視光の映像情報を生成する。距離センサ204は、例えばレーザや超音波等を照射して物体までの距離を検出する。なお、センサ部200は、この他にも、時計、ジャイロセンサ、タッチセンサ、モータフィードバック用のセンサ等を含んでよい。
【0027】
なお、図2に示すぬいぐるみ100の構成要素のうち、制御対象252及びセンサ部200を除く構成要素は、ぬいぐるみ100の行動制御システムが有する構成要素の一例である。ぬいぐるみ100の行動制御システムは、制御対象252を制御の対象とする。
【0028】
格納部220は、反応ルール221及び履歴データ222を含む。履歴データ222は、ユーザ10の過去の感情値及び行動の履歴を含む。この感情値及び行動の履歴は、例えば、ユーザ10の識別情報に対応付けられることによって、ユーザ10毎に記録される。格納部220の少なくとも一部は、メモリ等の記憶媒体によって実装される。ユーザ10の顔画像、ユーザ10の属性情報等を格納する人物DBを含んでもよい。なお、図2に示すぬいぐるみ100の構成要素のうち、制御対象252、センサ部200及び格納部220を除く構成要素の機能は、CPUがプログラムに基づいて動作することによって実現できる。例えば、基本ソフトウェア(OS)及びOS上で動作するプログラムによって、これらの構成要素の機能をCPUの動作として実装できる。
【0029】
センサモジュール部210は、音声感情認識部211と、発話理解部212と、表情認識部213と、顔認識部214とを含む。センサモジュール部210には、センサ部200で検出された情報が入力される。センサモジュール部210は、センサ部200で検出された情報を解析して、解析結果をユーザ状態認識部230に出力する。
【0030】
センサモジュール部210の音声感情認識部211は、マイク201で検出されたユーザ10の音声を解析して、ユーザ10の感情を認識する。例えば、音声感情認識部211は、音声の周波数成分等の特徴量を抽出して、抽出した特徴量に基づいて、ユーザ10の音声及び感情を認識する。発話理解部212は、マイク201で検出されたユーザ10の音声を解析して、ユーザ10の発話内容を表す文字情報を出力する。
【0031】
表情認識部213は、2Dカメラ203で撮影されたユーザ10の画像から、ユーザ10の表情及びユーザ10の感情を認識する。例えば、表情認識部213は、目及び口の形状、位置関係等に基づいて、ユーザ10の表情及び感情を認識する。
【0032】
顔認識部214は、ユーザ10の顔を認識する。顔認識部214は、人物DB(図示省略)に格納されている顔画像と、2Dカメラ203によって撮影されたユーザ10の顔画像とをマッチングすることによって、ユーザ10を認識する。
【0033】
ユーザ状態認識部230は、センサモジュール部210で解析された情報に基づいて、ユーザ10の状態を認識する。例えば、センサモジュール部210の解析結果を用いて、主として知覚に関する処理を行う。例えば、「パパが1人です。」、「パパが笑顔でない確率90%です。」等の知覚情報を生成する。生成された知覚情報の意味を理解する処理を行う。例えば、「パパが1人、寂しそうです。」等の意味情報を生成する。
【0034】
ユーザ感情決定部231は、感情認識エンジン231aを備え、センサモジュール部210で解析された情報、及びユーザ状態認識部230によって認識されたユーザ10の状態に基づいて、ユーザ10の感情を示す感情値を決定する。例えば、センサモジュール部210で解析された情報、及び認識されたユーザ10の状態を、予め学習されたニューラルネットワークに入力し、ユーザ10の感情を示す感情値を取得する。
【0035】
ここで、ユーザ10の感情を示す感情値とは、ユーザの感情の正負を示す値であり、例えば、ユーザの感情が、「喜」、「楽」、「快」、「安心」、「興奮」、「安堵」、及び「充実感」のように、快感や安らぎを伴う明るい感情であれば、正の値を示し、明るい感情であるほど、大きい値となる。ユーザの感情が、「怒」、「哀」、「不快」、「不安」、「悲しみ」、「心配」、及び「虚無感」のように、嫌な気持ちになってしまう感情であれば、負の値を示し、嫌な気持ちであるほど、負の値の絶対値が大きくなる。ユーザの感情が、上記の何れでもない場合(「普通」)、0の値を示す。
【0036】
感情決定部232は、センサモジュール部210で解析された情報、及びユーザ状態認識部230によって認識されたユーザ10の状態に基づいて、ぬいぐるみ100の感情を示す感情値を決定する。感情決定部232は、内分泌制御部232aと、感情生成エンジン232bを備える。内分泌制御部232aは、センサモジュール部210で解析された情報、及びユーザ状態認識部230によって認識されたユーザ10の状態等を利用して、感情生成エンジン232bにおいて用いられるニューラルネットワークのパラメータを調整する。例えば、内分泌制御部232aは、ドーパミンの放出量に対応するパラメータを調整する。ドーパミンは、内分泌物質の一例である。内分泌物質とは、神経伝達物質及びホルモン等、体内で分泌されシグナルを伝達する物質を意味する。ただし、ぬいぐるみ100自身の内分泌物質とは、ぬいぐるみ100の動作に影響を及ぼす情報の1つであり、ぬいぐるみ100が内分泌物質を実際に発生するということを意味していない。なお、ぬいぐるみ自身の感情を決定する際に、内分泌を利用することは、例えば特開2018-81583号公報等に開示されている通り公知であるため、詳細な説明を省略する。
【0037】
感情生成エンジン232bは、センサモジュール部210で解析された情報やユーザ状態認識部230によって認識されたユーザ10の状態、及び内分泌制御部232aによって調整されたパラメータに基づいて、ニューラルネットワークを用いて、ぬいぐるみ100の感情を示す感情値を決定する。ぬいぐるみ100の感情値は、複数の感情分類の各々に対する感情値を含み、本実施形態では、例えば「喜」、「怒」、「哀」、「楽」それぞれの強さを示す値(0~5)を想定する。
【0038】
具体例を挙げて説明すると、例えばユーザ状態認識部230によってユーザ10が寂しそうと認識された場合、内分泌制御部232aによってぬいぐるみ100の「哀」の感情値に対応するパラメータを上げる制御が行われ、これにより、感情決定部232は、ぬいぐるみ100の「哀」の感情値を増大させる。また、ユーザ状態認識部230によってユーザ10が笑顔になったと認識された場合、内分泌制御部232aによってぬいぐるみ100の「喜」の感情値に対応するパラメータを上げる制御が行われ、これにより、感情決定部232は、ぬいぐるみ100の「喜」の感情値を増大させる。
【0039】
なお、感情決定部232は、ぬいぐるみ100の状態を更に考慮して、ぬいぐるみ100の感情を示す感情値を決定してもよい。例えば、ぬいぐるみ100のバッテリー残量が少ない場合やぬいぐるみ100の周辺環境が真っ暗な場合等に、内分泌制御部232aによってぬいぐるみ100の「哀」の感情値に対応するパラメータを上げる制御が行われ、これにより、感情決定部232は、ぬいぐるみ100の「哀」の感情値を増大させてもよい。更にバッテリー残量が少ないにも関わらず継続して話しかけてくるユーザ10の場合は、内分泌制御部232aによってぬいぐるみ100の「怒」の感情値に対応するパラメータを上げる制御が行われ、これにより、感情決定部232は、ぬいぐるみ100の「怒」の感情値を増大させてもよい。
【0040】
行動認識部234は、センサモジュール部210で解析された情報、及びユーザ状態認識部230によって認識されたユーザ10の状態に基づいて、ユーザ10の行動を認識する。例えば、センサモジュール部210で解析された情報、及び認識されたユーザ10の状態を、予め学習されたニューラルネットワークに入力し、予め定められた複数の行動分類(例えば、「笑う」、「怒る」、「質問する」、「悲しむ」)の各々の確率を取得し、最も確率の高い行動分類を、ユーザ10の行動として認識する。
【0041】
以上のように、本実施形態では、ぬいぐるみ100は、ユーザ10を特定したうえでユーザ10の発話内容を取得するが、当該発話内容の取得と利用等に際してはユーザ10から法令に従った必要な同意を取得するほか、本実施形態に係るぬいぐるみ100の行動制御システムは、ユーザ10の個人情報及びプライバシーの保護に配慮する。
【0042】
行動決定部236は、ユーザ感情決定部231により決定されたユーザ10の現在の感情値と、ユーザ10の現在の感情値が決定されるよりも前にユーザ感情決定部231により決定された過去の感情値の履歴データ222と、感情決定部232により決定されたぬいぐるみ100の感情値とに基づいて、行動認識部234によって認識されたユーザ10の行動に対応する行動を決定する。本実施形態では、行動決定部236は、ユーザ10の過去の感情値として、履歴データ222に含まれる直近の1つの感情値を用いる場合について説明するが、開示の技術はこの態様に限定されない。例えば、行動決定部236は、ユーザ10の過去の感情値として、直近の複数の感情値を用いてもよいし、一日前等の単位期間の分だけ前の感情値を用いてもよい。また、行動決定部236は、ぬいぐるみ100の現在の感情値だけでなく、ぬいぐるみ100の過去の感情値の履歴を更に考慮して、ユーザ10の行動に対応する行動を決定してもよい。行動決定部236が決定する行動は、ぬいぐるみ100が行うジェスチャー又はぬいぐるみ100の発話内容を含む。
【0043】
本実施形態に係る行動決定部236は、ユーザ10の行動に対応する行動として、ユーザ10の過去の感情値と現在の感情値の組み合わせと、ぬいぐるみ100の感情値と、ユーザ10の行動と、反応ルール221とに基づいて、ぬいぐるみ100の行動を決定する。例えば、行動決定部236は、ユーザ10の過去の感情値が正の値であり、かつ現在の感情値が負の値である場合、ユーザ10の行動に対応する行動として、ユーザ10の感情値を正に変化させるための行動を決定する。
【0044】
反応ルール221には、ユーザ10の過去の感情値と現在の感情値の組み合わせと、ぬいぐるみ100の感情値と、ユーザ10の行動とに応じたぬいぐるみ100の行動が定められている。例えば、ユーザ10の過去の感情値が正の値であり、かつ現在の感情値が負の値であり、ユーザ10の行動が悲しむである場合、ぬいぐるみ100の行動として、ジェスチャーを交えてユーザ10を励ます問いかけを行う際のジェスチャーと発話内容との組み合わせが定められている。
【0045】
例えば、反応ルール221には、ぬいぐるみ100の感情値のパターン(「喜」、「怒」、「哀」、「楽」の値「0」~「5」の6値の4乗である1296パターン)、ユーザ10の過去の感情値と現在の感情値の組み合わせのパターン、ユーザ10の行動パターンの全組み合わせに対して、ぬいぐるみ100の行動が定められる。すわなち、ぬいぐるみ100の感情値のパターン毎に、ユーザ10の過去の感情値と現在の感情値の組み合わせが、負の値と負の値、負の値と正の値、正の値と負の値、正の値と正の値、負の値と普通、及び普通と普通等のように、複数の組み合わせのそれぞれに対して、ユーザ10の行動パターンに応じたぬいぐるみ100の行動が定められる。なお、行動決定部236は、例えば、ユーザ10が「この前に話したあの話題について話したい」というような過去の話題から継続した会話を意図する発話を行った場合に、履歴データ222を用いてぬいぐるみ100の行動を決定する動作モードに遷移してもよい。
【0046】
なお、反応ルール221には、ぬいぐるみ100の感情値のパターン(1296パターン)の各々に対して、最大で一つずつ、ぬいぐるみ100の行動としてジェスチャー及び発言内容の少なくとも一方が定められていてもよい。あるいは、反応ルール221には、ぬいぐるみ100の感情値のパターンのグループの各々に対して、ぬいぐるみ100の行動としてジェスチャー及び発言内容の少なくとも一方が定められていてもよい。
【0047】
反応ルール221に定められているぬいぐるみ100の行動に含まれる各ジェスチャーには、当該ジェスチャーの強度が予め定められている。反応ルール221に定められているぬいぐるみ100の行動に含まれる各発話内容には、当該発話内容の強度が予め定められている。
【0048】
記憶制御部238は、行動決定部236によって決定された行動に対して予め定められた行動の強度と、感情決定部232により決定されたぬいぐるみ100の感情値とに基づいて、ユーザ10の行動を含むデータを履歴データ222に記憶するか否かを決定する。
具体的には、ぬいぐるみ100の複数の感情分類の各々に対する感情値の総和と、行動決定部236によって決定された行動が含むジェスチャーに対して予め定められた強度と、行動決定部236によって決定された行動が含む発話内容に対して予め定められた強度との和である強度の総合値が、閾値以上である場合、ユーザ10の行動を含むデータを履歴データ222に記憶すると決定する。
【0049】
記憶制御部238は、ユーザ10の行動を含むデータを履歴データ222に記憶すると決定した場合、行動決定部236によって決定された行動と、現時点から一定期間前までの、センサモジュール部210で解析された情報(例えば、その場の音声、画像、匂い等のデータ等のあらゆる周辺情報)、及びユーザ状態認識部230によって認識されたユーザ10の状態(例えば、ユーザ10の表情、感情等)を、履歴データ222に記憶する。
【0050】
行動制御部250は、行動決定部236が決定した行動に基づいて、制御対象252を制御する。例えば、行動制御部250は、行動決定部236が発話することを含む行動を決定した場合に、制御対象252に含まれるスピーカから音声を出力させる。このとき、行動制御部250は、ぬいぐるみ100の感情値に基づいて、音声の発声速度を決定してもよい。例えば、行動制御部250は、ぬいぐるみ100の感情値が大きいほど、速い発声速度を決定する。このように、行動制御部250は、感情決定部232が決定した感情値に基づいて、行動決定部236が決定した行動の実行形態を決定する。
【0051】
行動制御部250は、行動決定部236が決定した行動を実行したことに対するユーザ10の感情の変化を認識してもよい。例えば、ユーザ10の音声や表情に基づいて感情の変化を認識してよい。その他、センサ部200に含まれるタッチセンサで衝撃が検出されたことに基づいて、ユーザ10の感情の変化を認識してよい。センサ部200に含まれるタッチセンサで衝撃が検出された場合に、ユーザ10の感情が悪くなったと認識したり、センサ部200に含まれるタッチセンサの検出結果から、ユーザ10の反応が笑っている、あるいは、喜んでいる等と判断される場合には、ユーザ10の感情が良くなったと認識したりしてもよい。ユーザ10の反応を示す情報は、通信処理部280に出力される。
【0052】
また、行動制御部250は、行動決定部236が決定した行動をぬいぐるみ100の感情に応じて決定した実行形態で実行した後、感情決定部232を制御することで、当該行動が実行されたことに対するユーザの反応に基づき、ぬいぐるみ100の感情値を更に変化させる。具体的には、感情決定部232は、行動決定部236が決定した行動を行動制御部250が決定した実行形態でユーザに対して行ったことに対するユーザの反応が不良でなかった場合に、ぬいぐるみ100の「喜」の感情値を増大させる。また、感情決定部232は、行動決定部236が決定した行動を行動制御部250が決定した実行形態でユーザに対して行ったことに対するユーザの反応が不良であった場合に、ぬいぐるみ100の「哀」の感情値を増大させる。
【0053】
更に、行動制御部250は、決定したぬいぐるみ100の感情値に基づいて、ぬいぐるみ100の感情を表現する。例えば、行動制御部250は、ぬいぐるみ100の「喜」の感情値を増加させた場合、制御対象252を制御して、ぬいぐるみ100に喜んだ仕草を行わせる。また、行動制御部250は、ぬいぐるみ100の「哀」の感情値を増加させた場合、ぬいぐるみ100の姿勢がうなだれた姿勢になるように、制御対象252を制御する。
【0054】
通信処理部280は、サーバ300との通信を担う。上述したように、通信処理部280は、ユーザ反応情報をサーバ300に送信する。また、通信処理部280は、更新された反応ルールをサーバ300から受信する。通信処理部280がサーバ300から、更新された反応ルールを受信すると、反応ルール221を更新する。
【0055】
サーバ300は、ぬいぐるみ100、ぬいぐるみ101及びぬいぐるみ102とサーバ300との間の通信を行い、ぬいぐるみ100から送信されたユーザ反応情報を受信し、ポジティブな反応が得られた行動を含む反応ルールに基づいて、反応ルールを更新する。なお、サーバ300の機能は、1以上のコンピュータによって実装されてよい。サーバ300の少なくとも一部の機能は、仮想マシンによって実装されてよい。また、サーバ300の機能の少なくとも一部は、クラウドで実装されてよい。
【0056】
図3は、ぬいぐるみ100において行動を決定する動作に関する動作フローの一例を概略的に示す。図3に示す動作フローは、繰り返し実行される。このとき、センサモジュール部210で解析された情報が入力されているものとする。なお、動作フロー中の「S」は、実行されるステップを表す。
【0057】
まず、ステップS100において、ユーザ状態認識部230は、センサモジュール部210で解析された情報に基づいて、ユーザ10の状態を認識する。
【0058】
ステップS102において、ユーザ感情決定部231は、センサモジュール部210で解析された情報、及びユーザ状態認識部230によって認識されたユーザ10の状態に基づいて、ユーザ10の感情を示す感情値を決定する。
【0059】
ステップS103において、感情決定部232は、センサモジュール部210で解析された情報、及びユーザ状態認識部230によって認識されたユーザ10の状態に基づいて、ぬいぐるみ100の感情を示す感情値を決定する。感情決定部232は、決定したユーザ10の感情値を履歴データ222に追加する。
【0060】
ステップS104において、行動認識部234は、センサモジュール部210で解析された情報及びユーザ状態認識部230によって認識されたユーザ10の状態に基づいて、ユーザ10の行動分類を認識する。
【0061】
ステップS106において、行動決定部236は、ステップS102で決定されたユーザ10の現在の感情値及び履歴データ222に含まれる過去の感情値の組み合わせと、ぬいぐるみ100の感情値と、行動認識部234によって認識されたユーザ10の行動と、反応ルール221とに基づいて、ぬいぐるみ100の行動を決定する。
【0062】
ステップS108において、行動制御部250は、行動決定部236により決定された行動に基づいて、制御対象252を制御する。
【0063】
ステップS110において、記憶制御部238は、行動決定部236によって決定された行動に対して予め定められた行動の強度と、感情決定部232により決定されたぬいぐるみ100の感情値とに基づいて、強度の総合値を算出する。
【0064】
ステップS112において、記憶制御部238は、強度の総合値が閾値以上であるか否かを判定する。強度の総合値が閾値未満である場合には、ユーザ10の行動を含むデータを履歴データ222に記憶せずに、当該処理を終了する。一方、強度の総合値が閾値以上である場合には、ステップS114へ移行する。
【0065】
ステップS114において、行動決定部236によって決定された行動と、現時点から一定期間前までの、センサモジュール部210で解析された情報、及びユーザ状態認識部230によって認識されたユーザ10の状態と、を履歴データ222に記憶する。
【0066】
以上説明したように、ぬいぐるみ100によれば、ユーザ状態に基づいて、ぬいぐるみ100の感情を示す感情値を決定し、ぬいぐるみ100の感情値に基づいて、ユーザ10の行動を含むデータを履歴データ222に記憶するか否かを決定する。これにより、ユーザ10の行動を含むデータを記憶する履歴データ222の容量を抑制することができる。そして例えば、10年後にユーザ状態が10年前と同じ状態であるとぬいぐるみ100が判断したときに、10年前の履歴データ222を読み込むことにより、ぬいぐるみ100は10年前当時のユーザ10の状態(例えばユーザ10の表情、感情等)、更にはその場の音声、画像、匂い等のデータ等のあらゆる周辺情報を、ユーザ10に提示することができる。
【0067】
また、ぬいぐるみ100によれば、ユーザ10の行動に対して適切な行動をぬいぐるみ100に実行させることができる。従来は、ユーザの行動を分類し、例えばロボットの表情や恰好を含む行動を決めていた。これに対し、本実施形態のぬいぐるみ100は、ユーザ10の現在の感情値を決定し、過去の感情値及び現在の感情値に基づいてユーザ10に対して行動を実行する。従って、例えば、昨日は元気であったユーザ10が今日は落ち込んでいた場合に、ぬいぐるみ100は「昨日は元気だったのに今日はどうしたの?」というような発話を行うことができる。また、ぬいぐるみ100は、ジェスチャーを交えて発話を行うこともできる。また、例えば、昨日は落ち込んでいたユーザ10が今日は元気である場合に、ぬいぐるみ100は、「昨日は落ち込んでいたのに今日は元気そうだね?」というような発話を行うことができる。また、例えば、昨日は元気であったユーザ10が今日は昨日よりも元気である場合、ぬいぐるみ100は「今日は昨日よりも元気だね。昨日よりも良いことがあった?」というような発話を行うことができる。また、例えば、ぬいぐるみ100は、感情値が0以上であり、かつ感情値の変動幅が一定の範囲内である状態が継続しているユーザ10に対しては、「最近、気分が安定していて良い感じだね。」というような発話を行うことができる。
【0068】
また、例えば、ぬいぐるみ100は、ユーザ10に対し、「昨日言っていた宿題はできた?」と質問し、ユーザ10から「できたよ」という回答が得られた場合、「偉いね!」等の肯定的な発話をするとともに、拍手又はサムズアップ等の肯定的なジェスチャーを行うことができる。また、例えば、ぬいぐるみ100は、ユーザ10が「一昨日話したプレゼンテーションがうまくいったよ」という発話をすると、「頑張ったね!」等の肯定的な発話をするとともに、上記の肯定的なジェスチャーを行うこともできる。このように、ぬいぐるみ100がユーザ10の状態の履歴に基づいた行動を行うことによって、ユーザ10がぬいぐるみ100に対して親近感を覚えることが期待できる。
【0069】
上記実施形態では、ぬいぐるみ100は、ユーザ10の顔画像を用いてユーザ10を認識する場合について説明したが、開示の技術はこの態様に限定されない。例えば、ぬいぐるみ100は、ユーザ10が発する音声、ユーザ10のメールアドレス、ユーザ10のSNSのID又はユーザ10が所持する無線ICタグが内蔵されたIDカード等を用いてユーザ10を認識してもよい。
【0070】
なお、ぬいぐるみ100は、行動制御システムを備える電子機器の一例である。行動制御システムの適用対象は、ぬいぐるみ100に限られず、様々な電子機器に適用できる。また、サーバ300の機能は、1以上のコンピュータによって実装されてよい。サーバ300の少なくとも一部の機能は、仮想マシンによって実装されてよい。また、サーバ300の機能の少なくとも一部は、クラウドで実装されてよい。
【0071】
図4は、ぬいぐるみ100及びサーバ300として機能するコンピュータ1200のハードウェア構成の一例を概略的に示す。コンピュータ1200にインストールされたプログラムは、コンピュータ1200を、本実施形態に係る装置の1又は複数の「部」として機能させ、又はコンピュータ1200に、本実施形態に係る装置に関連付けられるオペレーション又は当該1又は複数の「部」を実行させることができ、及び/又はコンピュータ1200に、本実施形態に係るプロセス又は当該プロセスの段階を実行させることができる。そのようなプログラムは、コンピュータ1200に、本明細書に記載のフローチャート及びブロック図のブロックのうちのいくつか又はすべてに関連付けられた特定のオペレーションを実行させるべく、CPU1212によって実行されてよい。
【0072】
本実施形態によるコンピュータ1200は、CPU1212、RAM1214、及びグラフィックコントローラ1216を含み、それらはホストコントローラ1210によって相互に接続されている。コンピュータ1200はまた、通信インタフェース1222、記憶装置1224、DVDドライブ1226、及びICカードドライブのような入出力ユニットを含み、それらは入出力コントローラ1220を介してホストコントローラ1210に接続されている。DVDドライブ1226は、DVD-ROMドライブ及びDVD-RAMドライブ等であってよい。記憶装置1224は、ハードディスクドライブ及びソリッドステートドライブ等であってよい。コンピュータ1200はまた、ROM1230及びキーボードのようなレガシの入出力ユニットを含み、それらは入出力チップ1240を介して入出力コントローラ1220に接続されている。
【0073】
CPU1212は、ROM1230及びRAM1214内に格納されたプログラムに従い動作し、それにより各ユニットを制御する。グラフィックコントローラ1216は、RAM1214内に提供されるフレームバッファ等又はそれ自体の中に、CPU1212によって生成されるイメージデータを取得し、イメージデータがディスプレイデバイス1218上に表示されるようにする。
【0074】
通信インタフェース1222は、ネットワークを介して他の電子デバイスと通信する。記憶装置1224は、コンピュータ1200内のCPU1212によって使用されるプログラム及びデータを格納する。DVDドライブ1226は、プログラム又はデータをDVD-ROM1227等から読み取り、記憶装置1224に提供する。ICカードドライブは、プログラム及びデータをICカードから読み取り、及び/又はプログラム及びデータをICカードに書き込む。
【0075】
ROM1230はその中に、アクティブ化時にコンピュータ1200によって実行されるブートプログラム等、及び/又はコンピュータ1200のハードウェアに依存するプログラムを格納する。入出力チップ1240はまた、様々な入出力ユニットをUSBポート、パラレルポート、シリアルポート、キーボードポート、マウスポート等を介して、入出力コントローラ1220に接続してよい。
【0076】
プログラムは、DVD-ROM1227又はICカードのようなコンピュータ可読記憶媒体によって提供される。プログラムは、コンピュータ可読記憶媒体から読み取られ、コンピュータ可読記憶媒体の例でもある記憶装置1224、RAM1214、又はROM1230にインストールされ、CPU1212によって実行される。これらのプログラム内に記述される情報処理は、コンピュータ1200に読み取られ、プログラムと、上記様々なタイプのハードウェアリソースとの間の連携をもたらす。装置又は方法が、コンピュータ1200の使用に従い情報のオペレーション又は処理を実現することによって構成されてよい。
【0077】
例えば、通信がコンピュータ1200及び外部デバイス間で実行される場合、CPU1212は、RAM1214にロードされた通信プログラムを実行し、通信プログラムに記述された処理に基づいて、通信インタフェース1222に対し、通信処理を命令してよい。通信インタフェース1222は、CPU1212の制御の下、RAM1214、記憶装置1224、DVD-ROM1227、又はICカードのような記録媒体内に提供される送信バッファ領域に格納された送信データを読み取り、読み取られた送信データをネットワークに送信し、又はネットワークから受信した受信データを記録媒体上に提供される受信バッファ領域等に書き込む。
【0078】
また、CPU1212は、記憶装置1224、DVDドライブ1226(DVD-ROM1227)、ICカード等のような外部記録媒体に格納されたファイル又はデータベースの全部又は必要な部分がRAM1214に読み取られるようにし、RAM1214上のデータに対し様々なタイプの処理を実行してよい。CPU1212は次に、処理されたデータを外部記録媒体にライトバックしてよい。
【0079】
様々なタイプのプログラム、データ、テーブル、及びデータベースのような様々なタイプの情報が記録媒体に格納され、情報処理を受けてよい。CPU1212は、RAM1214から読み取られたデータに対し、本開示の随所に記載され、プログラムの命令シーケンスによって指定される様々なタイプのオペレーション、情報処理、条件判断、条件分岐、無条件分岐、情報の検索/置換等を含む、様々なタイプの処理を実行してよく、結果をRAM1214に対しライトバックする。また、CPU1212は、記録媒体内のファイル、データベース等における情報を検索してよい。例えば、各々が第2の属性の属性値に関連付けられた第1の属性の属性値を有する複数のエントリが記録媒体内に格納される場合、CPU1212は、当該複数のエントリの中から、第1の属性の属性値が指定されている条件に一致するエントリを検索し、当該エントリ内に格納された第2の属性の属性値を読み取り、それにより予め定められた条件を満たす第1の属性に関連付けられた第2の属性の属性値を取得してよい。
【0080】
上で説明したプログラム又はソフトウェアモジュールは、コンピュータ1200上又はコンピュータ1200近傍のコンピュータ可読記憶媒体に格納されてよい。また、専用通信ネットワーク又はインターネットに接続されたサーバシステム内に提供されるハードディスク又はRAMのような記録媒体が、コンピュータ可読記憶媒体として使用可能であり、それによりプログラムを、ネットワークを介してコンピュータ1200に提供する。
【0081】
本実施形態におけるフローチャート及びブロック図におけるブロックは、オペレーションが実行されるプロセスの段階又はオペレーションを実行する役割を持つ装置の「部」を表わしてよい。特定の段階及び「部」が、専用回路、コンピュータ可読記憶媒体上に格納されるコンピュータ可読命令と共に供給されるプログラマブル回路、及び/又はコンピュータ可読記憶媒体上に格納されるコンピュータ可読命令と共に供給されるプロセッサによって実装されてよい。専用回路は、デジタル及び/又はアナログハードウェア回路を含んでよく、集積回路(IC)及び/又はディスクリート回路を含んでよい。プログラマブル回路は、例えば、フィールドプログラマブルゲートアレイ(FPGA)、及びプログラマブルロジックアレイ(PLA)等のような、論理積、論理和、排他的論理和、否定論理積、否定論理和、及び他の論理演算、フリップフロップ、レジスタ、並びにメモリエレメントを含む、再構成可能なハードウェア回路を含んでよい。
【0082】
コンピュータ可読記憶媒体は、適切なデバイスによって実行される命令を格納可能な任意の有形なデバイスを含んでよく、その結果、そこに格納される命令を有するコンピュータ可読記憶媒体は、フローチャート又はブロック図で指定されたオペレーションを実行するための手段を作成すべく実行され得る命令を含む、製品を備えることになる。コンピュータ可読記憶媒体の例としては、電子記憶媒体、磁気記憶媒体、光記憶媒体、電磁記憶媒体、半導体記憶媒体等が含まれてよい。コンピュータ可読記憶媒体のより具体的な例としては、フロッピー(登録商標)ディスク、ディスケット、ハードディスク、ランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、消去可能プログラマブルリードオンリメモリ(EPROM又はフラッシュメモリ)、電気的消去可能プログラマブルリードオンリメモリ(EEPROM)、静的ランダムアクセスメモリ(SRAM)、コンパクトディスクリードオンリメモリ(CD-ROM)、デジタル多用途ディスク(DVD)、ブルーレイ(登録商標)ディスク、メモリスティック、集積回路カード等が含まれてよい。
【0083】
コンピュータ可読命令は、アセンブラ命令、命令セットアーキテクチャ(ISA)命令、マシン命令、マシン依存命令、マイクロコード、ファームウェア命令、状態設定データ、又はSmalltalk、JAVA(登録商標)、C++等のようなオブジェクト指向プログラミング言語、及び「C」プログラミング言語又は同様のプログラミング言語のような従来の手続型プログラミング言語を含む、1又は複数のプログラミング言語の任意の組み合わせで記述されたソースコード又はオブジェクトコードのいずれかを含んでよい。
【0084】
コンピュータ可読命令は、汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサ、又はプログラマブル回路が、フローチャート又はブロック図で指定されたオペレーションを実行するための手段を生成するために当該コンピュータ可読命令を実行すべく、ローカルに又はローカルエリアネットワーク(LAN)、インターネット等のようなワイドエリアネットワーク(WAN)を介して、汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサ、又はプログラマブル回路に提供されてよい。プロセッサの例としては、コンピュータプロセッサ、処理ユニット、マイクロプロセッサ、デジタル信号プロセッサ、コントローラ、マイクロコントローラ等を含む。
【0085】
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
【0086】
特許請求の範囲、明細書、及び図面中において示した装置、システム、プログラム、及び方法における動作、手順、ステップ、及び段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、及び図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
【0087】
(その他の実施形態)
ぬいぐるみ100は例えば犬のぬいぐるみであってもよい。その場合、ぬいぐるみ100は、以下のステップ1~ステップ5-2により、ユーザの好み、ユーザの状況、ユーザの反応に合わせて、例えばしっぽを振る処理を実行してもよい。
【0088】
ぬいぐるみ100は、ぬいぐるみ100に設けられるしっぽの部分を動作させるモータ装置を備えている。モータ装置は、ぬいぐるみ100に内蔵されるバッテリーから供給される電力に基づいて駆動することにより、しっぽに各種動作を行わせる。しっぽの動作には、例えばしっぽをくるくる回転させる動作や、しっぽを垂れ下げる動作などが含まれている。本実施形態のぬいぐるみ100は、しっぽの動作を通じて感情を表現する。本実施形態では、しっぽが、ぬいぐるみ100の一部に相当する。
【0089】
(ステップ1)ぬいぐるみ100は、ユーザ10の状態、ユーザ10の感情値、ぬいぐるみ100の感情値、履歴データ222を取得する。具体的には、上記ステップS100~S103と同様の処理を行い、ユーザ10の状態、ユーザ10の感情値、ぬいぐるみ100の感情値、履歴データ222を取得する。
【0090】
(ステップ2)ぬいぐるみ100は、例えばぬいぐるみ100の動作に関するユーザ10の好みを取得する。
具体的には、行動決定部236は、ユーザ10に対してぬいぐるみ100の行動に関する好みを質問する発話を、ぬいぐるみ100の行動として決定し、行動制御部250は、制御対象252を制御し、ユーザ10に対してぬいぐるみ100の行動に関する好みを質問する発話を行う。ぬいぐるみ100の行動には、お手をする動作や、ぐるぐる回るように走るといった動作などが含まれている。ユーザ状態認識部230は、センサモジュール部210で解析された情報(例えば、ユーザの回答)に基づいて、ぬいぐるみ100の行動に関するユーザ10の好みを認識する。
【0091】
(ステップ3)ぬいぐるみ100は、ユーザ10に対して行う行動を決定する。
具体的には、行動決定部236は、ぬいぐるみ100の行動に関するユーザ10の好み、ユーザ10の感情、ぬいぐるみ100の感情、及び履歴データ222に格納された内容を表すテキストに、「このとき、ユーザに対してオススメのぬいぐるみの行動は何?」という固定文を追加して、AIチャットエンジンに入力し、ぬいぐるみ100の行動に関するオススメの内容を取得する。このとき、ぬいぐるみ100の行動に関するユーザ10の好みだけでなく、ユーザ10の感情や履歴データ222を考慮することにより、ユーザ10に適したぬいぐるみ100の行動を決定することができる。また、ぬいぐるみ100の感情を考慮することにより、ぬいぐるみ100が感情を有していることを、ユーザ10に感じさせることができる。
【0092】
(ステップ4)ぬいぐるみ100は、ステップ3で決定した行動をユーザ10に対して行うことにより、ユーザ10の反応を取得する。
具体的には、行動決定部236は、ユーザ10に対して行うぬいぐるみ100の行動を決定し、行動制御部250は、制御対象252を制御し、ユーザ10に対して所定の動作を行う。ユーザ状態認識部230は、センサモジュール部210で解析された情報に基づいて、ユーザ10の状態を認識し、ユーザ感情決定部231は、センサモジュール部210で解析された情報、及びユーザ状態認識部230によって認識されたユーザ10の状態に基づいて、ユーザ10の感情を示す感情値を決定する。行動決定部236は、ユーザ状態認識部230によって認識されたユーザ10の状態、及び、ユーザ10の感情を示す感情値に基づいて、ユーザ10の反応が、ポジティブか否かを判断し、その判断結果に基づいてぬいぐるみ100のしっぽを動作させる。
【0093】
(ステップ5-1)ユーザ10の反応がポジティブである場合、行動決定部236は、しっぽをくるくる回転させる処理を実行する。
具体的には、行動制御部250が、ぬいぐるみ100のしっぽがくるくる回転するようにモータ装置を制御する。これにより、ユーザ10がぬいぐるみ100の仕草を見ている場合には、ユーザ10のポジティブな反応に基づいてぬいぐるみ100があたかも喜んでいるかのような感覚をユーザ10が抱くことが可能である。
【0094】
(ステップ5-2)ユーザ10の反応がポジティブでない場合、行動決定部236は、しっぽを垂れ下げる処理を実行する。
具体的には、行動決定部236は、ぬいぐるみ100のしっぽが垂れ下げられるようにモータ装置を制御する。これにより、ユーザ10がぬいぐるみ100の仕草を見ている場合には、ユーザ10のポジティブでない反応に基づいてぬいぐるみ100があたかも悲しんでいるかのような感覚をユーザ10が抱くことが可能である。
【0095】
このように、ぬいぐるみ100は、ユーザの好み、ユーザの状況、ユーザの反応に合わせて、しっぽを動作させる処理を実行することができる。なお、ぬいぐるみ100は、ユーザ10又はぬいぐるみ100の感情に応じてしっぽの動作を変化させる処理に代えて、例えばユーザ10又はぬいぐるみ100の感情に応じて鳴き声を変化させる処理を実行してもよい。また、ぬいぐるみ100は、ユーザ10の両親のアドバイスを基づいてユーザ10に対して歌を歌ったり、ユーザ10の話相手になったりしてもよい。
【0096】
ユーザ感情決定部231は、特定のマッピングに従い、ユーザの感情を決定してよい。具体的には、ユーザ感情決定部231は、感情認識エンジン231aを利用して、特定のマッピングである感情マップ(図5参照)に従い、ユーザの感情を決定してよい。同様に、感情決定部232は、感情生成エンジン232bを利用して、特定のマッピングである感情マップ(図5参照)に従い、ぬいぐるみ100の感情を決定してよい。なお、感情認識エンジン231a、感情生成エンジン232bを特に区別する必要がない場合には、これらを感情エンジンと総称する。
【0097】
図5は、複数の感情がマッピングされる感情マップ400を示す図である。感情マップ400において、感情は、中心から放射状に同心円に配置されている。同心円の中心に近いほど、原始的状態の感情が配置されている。同心円のより外側には、心境から生まれる状態や行動を表す感情が配置されている。感情とは、情動や心的状態も含む概念である。同心円の左側には、概して、脳内で起きる反応から生成される感情が配置されている。同心円の右側には、概して、状況判断で誘導される感情が配置されている。同心円の上方向及び下方向には、概して、脳内で起きる反応から生成され、かつ、状況判断で誘導される感情が配置されている。また、同心円の上側には、「快」の感情が配置され、下側には、「不快」の感情が配置されている。このように、感情マップ400では、感情が生まれる構造に基づいて複数の感情がマッピングされており、同時に生じやすい感情が、近くにマッピングされている。
【0098】
例えば感情エンジンが、100msec程度で感情を検知している場合、ぬいぐるみ100の反応動作(例えば相槌)の決定は、頻度が少なくとも、感情エンジンの検知頻度(100msec)と同様のタイミングに設定してよく、これよりも早いタイミングに設定してもよい。感情エンジンの検知頻度はサンプリングレートと解釈してよい。
【0099】
100msec程度で感情を検知し、即時に連動して反動動作(例えば相槌)を行うことで、不自然な相槌ではなくなり、自然な空気を読んだ対話を実現できる。ぬいぐるみ100は、感情マップ400の曼荼羅の方向性とその度合い(強さ)に応じて、反動動作(相槌等)を行う。なお、感情認識エンジン231aの検知頻度(サンプリングレート)は、100msに限定されず、シチュエーション(スポーツをしている場合等)、ユーザの年齢等に応じて、変更してもよい。
【0100】
感情マップ400と照らし合わせ、感情の方向性とその度合いの強さを予め設定しておき、相槌の動き及び相槌の強弱を設定してよい。例えば、ぬいぐるみ100が安定感、安心等を感じている場合、ぬいぐるみ100は、頷いて話を聞き続ける。ぬいぐるみ100が不安、迷い、怪しい感じを覚えている場合、ぬいぐるみ100は、首をかしげてもよく、首振りを止めてもよい。
【0101】
これらの感情は、感情マップ400の3時の方向に分布しており、普段は安心と不安のあたりを行き来する。感情マップ400の右半分では、内部的な感覚よりも状況認識の方が優位に立つため、落ち着いた印象になる。
【0102】
ぬいぐるみ100が褒められて快感を覚えた場合、「あー」というフィラーが台詞の前に入り、きつい言葉をもらって痛感を覚えた場合、「うっ!」というフィラーが台詞の前に入ってよい。また、ぬいぐるみ100が「うっ!」と言いつつうずくまる仕草等の身体的な反応を含めてよい。これらの感情は、感情マップ400の9時あたりに分布している。
【0103】
感情マップ400の左半分では、状況認識よりも内部的な感覚(反応)の方が優位に立つ。よって、思わず反応してしまった印象を与え得る。
【0104】
ぬいぐるみ100が納得感という内部的な感覚(反応)を覚えながら状況認識においても好感を覚える場合、ぬいぐるみ100は、相手を見ながら深く頷いてよく、また「うんうん」と発してよい。このように、ぬいぐるみ100は、相手へのバランスのとれた好感、すなわち、相手への許容や寛容といった行動を生成してよい。このような感情は、感情マップ400の12時あたりに分布している。
【0105】
逆に、ぬいぐるみ100が不快感という内部的な感覚(反応)を覚えながら状況認識においても嫌悪を覚えるときには、ぬいぐるみ100は、首を横に振る、憎しみを覚えるくらいになると、目のLEDを赤くして相手を睨んでもよい。このような感情は、感情マップ400の6時あたりに分布している。
【0106】
感情マップ400の内側は心の中、感情マップ400の外側は行動を表すため、感情マップ400の外側に行くほど、感情が目に見える(行動に表れる)ようになる。
【0107】
感情マップ400の3時付近に分布する安心を覚えながら、人の話を聞く場合、ぬいぐるみ100は、軽く首を縦に振って「ふんふん」と発する程度であるが、12時付近の愛の方になると、首を深く縦に振るような力強い頷きをしてよい。
【0108】
ユーザ感情決定部231は、センサモジュール部210で解析された情報、及び認識されたユーザ10の状態を、予め学習されたニューラルネットワークに入力し、感情認識エンジン231aを利用して感情マップ400に示す各感情を示す感情値を取得し、ユーザ10の感情を決定してもよい。このニューラルネットワークは、センサモジュール部210で解析された情報、及び認識されたユーザ10の状態と、感情マップ400に示す各感情を示す感情値との組み合わせである複数の学習データに基づいて予め学習されたものである。また、このニューラルネットワークは、図6に示す感情マップ900のように、近くに配置されている感情同士は、近い値を持つように学習される。図6では、「安心」、「安穏」、「心強い」という複数の感情が、近い感情値となる例を示している。
【0109】
感情決定部232は、センサモジュール部210で解析された情報、ユーザ状態認識部230によって認識されたユーザ10の状態、及びぬいぐるみ100の状態を、予め学習されたニューラルネットワークに入力し、感情生成エンジン232bを利用して感情マップ400に示す各感情を示す感情値を取得し、ぬいぐるみ100の感情を決定してもよい。このニューラルネットワークは、センサモジュール部210で解析された情報、認識されたユーザ10の状態、及びぬいぐるみ100の状態と、感情マップ400に示す各感情を示す感情値との組み合わせである複数の学習データに基づいて予め学習されたものである。例えば、タッチセンサ(図示省略)の出力から、ぬいぐるみ100がユーザ10になでられていると認識される場合に、「嬉しい」の感情値「3」となることを表す学習データや、加速度センサ(図示省略)の出力から、ぬいぐるみ100がユーザ10に叩かれていると認識される場合に、「怒」の感情値「3」となることを表す学習データに基づいて、ニューラルネットワークが学習される。また、このニューラルネットワークは、図6に示す感情マップ900のように、近くに配置されている感情同士は、近い値を持つように学習される。
【0110】
行動決定部236は、ユーザの行動と、ユーザの感情、ぬいぐるみの感情とを表すテキストに、ユーザの行動に対応するぬいぐるみの行動内容を質問するための固定文を追加して、対話機能に入力することにより、ぬいぐるみの行動内容を生成してもよい。
【0111】
例えば、行動決定部236は、感情決定部232によって決定されたぬいぐるみ100の感情から、図7に示すような感情テーブルを用いて、ぬいぐるみ100の状態を表すテキストを取得する。ここで、感情テーブルには、感情の種類毎に、各感情値に対してインデックス番号が付与されており、インデックス番号毎に、ぬいぐるみ100の状態を表すテキストが格納されている。
【0112】
感情決定部232によって決定されたぬいぐるみ100の感情が、インデックス番号「2」に対応する場合、「とても楽しい状態」というテキストが得られる。なお、ぬいぐるみ100の感情が、複数のインデックス番号に対応する場合、ぬいぐるみ100の状態を表すテキストが複数得られる。
【0113】
また、ユーザ10の感情に対しても、図7に示すような感情テーブルと同一又は類似の感情テーブルを用意しておく。ここで、ユーザの行動が、「元気ですかと話しかける」であり、ぬいぐるみ100の感情が、インデックス番号「2」であり、ユーザ10の感情が、インデックス番号「3」である場合には、『ぬいぐるみはとても楽しい状態です。ユーザは普通に楽しい状態です。ユーザに「元気ですか」と話しかけられました。ぬいぐるみとして、どのように返事をしますか?』とチャットエンジンに入力し、ぬいぐるみの行動内容を取得する。行動決定部236は、この行動内容から、ぬいぐるみの行動を決定する。
【0114】
このように、ぬいぐるみ100は、ぬいぐるみの感情に応じたインデックス番号に応じて、ぬいぐるみの行動を変えることができるため、ユーザは、ぬいぐるみに心があるような印象を持ち、ぬいぐるみに対して話しかける等の行動をとることが促進される。
【0115】
また、行動決定部236は、ユーザの行動と、ユーザの感情、ぬいぐるみの感情とを表すテキストだけでなく、履歴データ222の内容を表すテキストも追加した上で、ユーザの行動に対応するぬいぐるみの行動内容を質問するための固定文を追加して、対話機能に入力することにより、ぬいぐるみの行動内容を生成するようにしてもよい。これにより、ぬいぐるみ100は、ユーザの感情や行動を表す履歴データに応じて、ぬいぐるみの行動を変えることができるため、ユーザは、ぬいぐるみに個性があるような印象を持ち、ぬいぐるみに対して話しかける等の行動をとることが促進される。また、履歴データに、ぬいぐるみの感情や行動を更に含めるようにしてもよい。
【符号の説明】
【0116】
5 システム、10、11、12 ユーザ、20 通信網、100、101、102 ぬいぐるみ、200 センサ部、201 マイク、202 深度センサ、203 カメラ、204 距離センサ、210 センサモジュール部、211 音声感情認識部、212 発話理解部、213 表情認識部、214 顔認識部、220 格納部、221 反応ルール、222 履歴データ、230 ユーザ状態認識部、232 感情決定部、234 行動認識部、236 行動決定部、238 記憶制御部、250 行動制御部、252 制御対象、280 通信処理部、300 サーバ、1200 コンピュータ、1210 ホストコントローラ、1212 CPU、1214 RAM、1216 グラフィックコントローラ、1218 ディスプレイデバイス、1220 入出力コントローラ、1222 通信インタフェース、1224 記憶装置、1226 DVDドライブ、1227 DVD-ROM、1230 ROM、1240 入出力チップ
図1
図2
図3
図4
図5
図6
図7