IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 王子ホールディングス株式会社の特許一覧

<>
  • 特開-分散液 図1
  • 特開-分散液 図2
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024166217
(43)【公開日】2024-11-28
(54)【発明の名称】分散液
(51)【国際特許分類】
   D06M 11/70 20060101AFI20241121BHJP
   C08K 5/00 20060101ALI20241121BHJP
   C08L 1/00 20060101ALI20241121BHJP
   C08B 5/00 20060101ALI20241121BHJP
   C08B 5/14 20060101ALI20241121BHJP
   C08B 15/02 20060101ALI20241121BHJP
【FI】
D06M11/70
C08K5/00
C08L1/00
C08B5/00
C08B5/14
C08B15/02
【審査請求】有
【請求項の数】7
【出願形態】OL
(21)【出願番号】P 2024151867
(22)【出願日】2024-09-04
(62)【分割の表示】P 2020171468の分割
【原出願日】2020-10-09
(71)【出願人】
【識別番号】000122298
【氏名又は名称】王子ホールディングス株式会社
(74)【代理人】
【識別番号】110000109
【氏名又は名称】弁理士法人特許事務所サイクス
(72)【発明者】
【氏名】磯貝 拓也
(57)【要約】
【課題】本発明は、有機溶媒に微細繊維状セルロースを分散させてなる分散液であって、高いチキソトロピー性を有する分散液を提供することを課題とする。
【解決手段】本発明は、繊維幅が1000nm以下の繊維状セルロース及び有機溶媒を含有する分散液であって、繊維状セルロースはアニオン性基を有し、アニオン性基の含有量は0.50mmol/g以上であり、繊維状セルロースはアニオン性基の対イオンとして有機オニウムイオンを有し、測定方法(A)で測定されるB型粘度が50Pa・s以上である分散液に関する。
【選択図】なし
【特許請求の範囲】
【請求項1】
アニオン性基を0.50mmol/g以上有し、かつ繊維幅が1000nm以下の繊維状セルロースを含有するスラリーに、有機オニウムイオンまたは、中和により有機オニウムイオンを形成する化合物を添加して、繊維状セルロース凝集物を得る工程と、
分散装置を用いて前記繊維状セルロース凝集物を有機溶媒に分散させて懸濁液を得る再分散工程と、を有し、
前記再分散工程では、前記分散装置通過後の前記懸濁液の液温が40℃以上である、分散液の製造方法。
【請求項2】
前記再分散工程では、高圧ホモジナイザー又は超高圧ホモジナイザーを用いて前記繊維状セルロース凝集物の分散を行う、請求項1に記載の分散液の製造方法。
【請求項3】
前記再分散工程では、前記高圧ホモジナイザー又は前記超高圧ホモジナイザーに供試する懸濁液を40℃以上に事前加温する、請求項2に記載の分散液の製造方法。
【請求項4】
下記測定方法(A)で測定される前記分散液のB型粘度が80Pa・s以上である請求項1~3のいずれか1項に記載の分散液の製造方法;
測定方法(A):
前記分散液の繊維状セルロース濃度を3質量%(w/w)とし、回転数を0.6rpmとし、温度を23℃とした場合のB型粘度をJIS Z 8803(2011)に準拠して測定する。
【請求項5】
下記測定方法(B)で測定される前記分散液の光線透過率が80%以上である、請求項1~4のいずれか1項に記載の分散液の製造方法;
測定方法(B):
前記分散液の繊維状セルロース濃度を3質量%(w/w)とし、光路長10mmの石英セルに封入して、波長660nmにおける光線透過率を紫外・可視分光分析装置を用いて測定する。
【請求項6】
前記分散液に含まれる前記繊維状セルロースの繊維幅は10nm以下である、請求項1~5のいずれか1項に記載の分散液の製造方法。
【請求項7】
前記アニオン性基は、リンオキソ酸基、リンオキソ酸基に由来する置換基、硫黄オキソ酸基及び硫黄オキソ酸基に由来する置換基からなる群から選択される少なくとも1種である、請求項1~6のいずれか1項に記載の分散液の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、分散液に関する。具体的には、本発明は、微細繊維状セルロースと有機溶媒とを含む分散液に関する。
【背景技術】
【0002】
従来、セルロース繊維は、衣料や吸収性物品、紙製品等に幅広く利用されている。セルロース繊維としては、繊維径が10μm以上50μm以下の繊維状セルロースに加えて、繊維径が1μm以下の微細繊維状セルロースも知られている。微細繊維状セルロースは、新たな素材として注目されており、その用途は多岐にわたる。例えば、微細繊維状セルロースを含むシートや樹脂複合体、増粘剤の開発が進められている。
【0003】
一般的に、微細繊維状セルロースは水系溶媒中に安定して分散するため、水分散液の状態で提供され、各種用途に使用されることが多い。一方で、微細繊維状セルロースを樹脂成分と混合して複合体等を製造する際には、微細繊維状セルロースを有機溶媒と混合して使用したいという要望もある。このような要望に応える技術として、有機溶媒を含む分散媒に微細繊維状セルロースを分散させた微細繊維状セルロース含有分散液を製造する技術が検討されている(特許文献1~4)。
【0004】
例えば、特許文献1~3には、カルボキシル基を有する微細繊維状セルロースに界面活性剤を吸着させた微細繊維状セルロース複合体が開示されている。ここでは、水系溶媒中でセルロース繊維を微細化した後に、微細繊維状セルロースを凝集させ有機溶媒に分散させる方法や、有機溶媒中でセルロース繊維を微細化することで微細繊維状セルロースを得る方法が開示されている。また、特許文献4には、セルロース繊維のアニオン性基及び水酸基から選ばれる1種以上に修飾基が結合されてなる疎水変性セルロース繊維と、有機媒体とを含有する、スプレー用組成物が開示されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2011-140738号公報
【特許文献2】特開2016-188375号公報
【特許文献3】特開2019-49091号公報
【特許文献4】特開2020-76054号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
有機溶媒に微細繊維状セルロースを分散させてなる分散液の用途は多岐にわたり、例えば、塗料などの用途においては、分散液が高いチキソトロピー性を有していることが求められる場合がある。
【0007】
そこで本発明者らは、このような従来技術の課題を解決するために、有機溶媒に微細繊維状セルロースを分散させてなる分散液であって、高いチキソトロピー性を有する分散液を提供することを目的として検討を進めた。
【課題を解決するための手段】
【0008】
上記の課題を解決するために鋭意検討を行った結果、本発明者らは、アニオン性基を所定量以上有する微細繊維状セルロースと有機溶媒とを含有する分散液において、微細繊維状セルロースのアニオン性基の対イオンとして有機オニウムイオンを導入し、さらに、所定条件で測定されるB型粘度を50Pa・s以上とすることにより、高いチキソトロピー性を有する分散液が得られることを見出した。
具体的に、本発明は、以下の構成を有する。
【0009】
[1] 繊維幅が1000nm以下の繊維状セルロース及び有機溶媒を含有する分散液であって、
繊維状セルロースはアニオン性基を有し、アニオン性基の含有量は0.50mmol/g以上であり、
繊維状セルロースはアニオン性基の対イオンとして有機オニウムイオンを有し、
下記測定方法(A)で測定されるB型粘度が50Pa・s以上である分散液;
測定方法(A):
分散液の繊維状セルロース濃度を3質量%(w/w)とし、回転数を0.6rpmとし、温度を23℃とした場合のB型粘度をJIS Z 8803(2011)に準拠して測定する。
[2] 下記測定方法(B)で測定される光線透過率が80%以上である、[1]に記載の分散液;
測定方法(B):
分散液の繊維状セルロース濃度を3質量%(w/w)とし、光路長10mmの石英セルに封入して、波長660nmにおける光線透過率を紫外・可視分光分析装置を用いて測定する。
[3] 繊維状セルロースの繊維幅は10nm以下である、[1]又は[2]に記載の分散液。
[4] アニオン性基は、リンオキソ酸基、リンオキソ酸基に由来する置換基、硫黄オキソ酸基及び硫黄オキソ酸基に由来する置換基からなる群から選択される少なくとも1種である、[1]~[3]のいずれかに記載の分散液。
【発明の効果】
【0010】
本発明によれば、有機溶媒に微細繊維状セルロースを分散させてなる分散液であって、高いチキソトロピー性を有する分散液を得ることができる。
【図面の簡単な説明】
【0011】
図1図1は、リンオキソ酸基を有する繊維状セルロース含有スラリーに対するNaOH滴下量とpHの関係を示すグラフである。
図2図2は、カルボキシ基を有する繊維状セルロース含有スラリーに対するNaOH滴下量とpHの関係を示すグラフである。
【発明を実施するための形態】
【0012】
以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。
【0013】
(分散液)
本発明は、繊維幅が1000nm以下の繊維状セルロース及び有機溶媒を含有する分散液に関する。ここで、繊維状セルロースはアニオン性基を有し、アニオン性基の含有量は0.50mmol/g以上である。また、繊維状セルロースはアニオン性基の対イオンとして有機オニウムイオンを有する。そして、下記測定方法(A)で測定される分散液のB型粘度は50Pa・s以上である。
測定方法(A):
分散液の繊維状セルロース濃度を3質量%(w/w)とし、回転数を0.6rpmとし、温度を23℃とした場合のB型粘度をJIS Z 8803(2011)に準拠して測定する。なお、分散液の上記B型粘度は、有機溶媒と繊維状セルロースからなる分散液の粘度であることが好ましい。
【0014】
本実施形態の分散液の上記測定方法(A)で測定される分散液のB型粘度は、50Pa・s以上であればよく、55Pa・s以上であることが好ましく、60Pa・s以上であることがより好ましく、70Pa・s以上であることがさらに好ましく、80Pa・s以上であることが一層好ましく、90Pa・s以上であることがより一層好ましく、100Pa・s以上であることが特に好ましい。分散液の上記測定方法(A)で測定される分散液のB型粘度の上限値は特に限定されるものではないが、例えば、500Pa・s以下であることが好ましい。
【0015】
本発明の分散液は、上記構成を有するものであるため、高いチキソトロピー性を有している。すなわち、本発明の分散液は、シェアをかけることによって粘度が低下する性質を有している。分散液のチキソトロピー性は、例えば、下記式で算出されるTI値によって評価できる。
TI値=(0.6rpmにおける粘度の値/60rpmにおける粘度の値)
ここで、0.6rpmにおける粘度の値は、繊維状セルロース濃度が3質量%の有機溶媒分散液を23℃で、24時間静置した後、0.6rpmで3分間回転させた際のB型粘度の値である。また、60rpmにおける粘度の値は、繊維状セルロース濃度が3質量%の有機溶媒分散液を23℃で、24時間静置した後、60rpmで3分間回転させた際のB型粘度の値である。B型粘度はB型粘度計を用いて測定され、B型粘度計としては、例えば、BLOOKFIELD社製のアナログ粘度計T-LVTを用いることができる。
【0016】
上記方法で算出される分散液のTI値は、20.0以上であることが好ましく、30.0以上であることがより好ましく、40.0以上であることがさらに好ましく、50.0以上であることが一層好ましい。なお、分散液のTI値の上限値は特に限定されるものではないが、例えば、500以下であることが好ましい。
【0017】
本実施形態における分散液の下記測定方法(B)で測定される光線透過率は80%以上であることが好ましく、84%以上であることがより好ましく、88%以上であることがさらに好ましく、90%以上であることが特に好ましい。
測定方法(B):
分散液の繊維状セルロース濃度を3質量%(w/w)とし、光路長10mmの石英セルに封入して、波長660nmにおける光線透過率を紫外・可視分光分析装置を用いて測定する。なお、紫外・可視分光分析装置としては、例えば、日本分光株式会社製のV-770を用いることができる。また、ゼロ点測定は、同ガラスセルに入れたイオン交換水で行う。
【0018】
(有機溶媒)
本発明の分散液は有機溶媒を含む。本発明の分散液は、後述する微細繊維状セルロースが、有機溶媒を含む分散媒中に分散した微細繊維状セルロース含有分散液である。なお、本発明の分散液は、分散媒として有機溶媒の他に水をさらに含有していてもよいが、分散液の全質量に対する水の含有量は5質量%以下であることが好ましく、3質量%以下であることがより好ましく、1質量%以下であることがさらに好ましい。本実施形態においては、分散媒には実質的に水が含まれていないことが好ましく、分散液の全質量に対する水の含有量は0質量%であることが特に好ましい。
【0019】
分散液の有機溶媒の25℃における比誘電率は、60以下であることが好ましく、50以下であることがより好ましい。分散液に含まれる繊維状セルロースは、比誘電率の低い有機溶媒中においても優れた分散性を発揮することができるため、有機溶媒の25℃における比誘電率は、45以下であってもよく、40以下であってもよく、35以下であってもよい。
【0020】
有機溶媒のハンセン溶解度パラメーター(Hansen solubility parameter,HSP)のδdは、5MPa1/2以上20MPa1/2以下であることが好ましく、10MPa1/2以上19MPa1/2以下であることが好ましい。また、δhは、1MPa1/2以上40MPa1/2以下であることが好ましく、2MPa1/2以上30MPa1/2以下であることがより好ましい。また、δpが0MPa1/2以上4MPa1/2以下の範囲であり、δhが0MPa1/2以上6MPa1/2以下の範囲であることを同時に満たすことも好ましい。
【0021】
有機溶媒としては、例えば、メタノール(比誘電率32.6)、エタノール(比誘電率24.3)、n-プロピルアルコール(比誘電率20.1)、イソプロピルアルコール(IPA)(比誘電率18.62)、1-ブタノール(比誘電率18)、m-クレゾール(比誘電率11.8)、グリセリン(比誘電率42.5)、酢酸(比誘電率6.15)、ピリジン(比誘電率12.3)、テトラヒドロフラン(THF)(比誘電率7.5)、アセトン(比誘電率20.7)、メチルエチルケトン(MEK)(比誘電率15.45)、酢酸エチル(比誘電率6.4)、アニリン(比誘電率6.89)、N-メチル-2-ピロリドン(NMP)(比誘電率32.2)、ジメチルスルホキシド(DMSO)(比誘電率45)、N,N-ジメチルホルムアミド(DMF)(比誘電率38)、ヘキサン(比誘電率1.8)、シクロヘキサン(比誘電率2.0)、ベンゼン(比誘電率2.3)、トルエン(比誘電率2.4)、p-キシレン(比誘電率2.3)、スチレン(比誘電率2.3~3.4)、ジエチルエーテル(比誘電率4.3)、クロロホルム(比誘電率4.8)、等を挙げることができる。中でも、有機溶媒は、トルエン、キシレン及びスチレンからなる群から選択される少なくとも1種であることが好ましい。
【0022】
有機溶媒の含有量は、分散液中に含まれる固形分の全質量に対して、10質量%以上であることが好ましく、50質量%以上であることがより好ましい。また、有機溶媒の含有量は、分散液中に含まれる固形分の全質量に対して、99.9質量%以下であることが好ましく、99.0質量%以下であることがより好ましく、95.0質量%以下であることがさらに好ましい。
【0023】
(微細繊維状セルロース)
本発明の分散液は繊維幅が1000nm以下の繊維状セルロースを含む。繊維状セルロースの繊維幅は、100nm以下であることが好ましく、50nm以下であることがより好ましく、20nm以下であることがさらに好ましく、10nm以下であることが一層好ましく、8nm以下であることが特に好ましい。なお、本明細書において、繊維幅が1000nm以下の繊維状セルロースを微細繊維状セルロースともいう。
【0024】
繊維状セルロースの平均繊維幅は、例えば1000nm以下である。繊維状セルロースの平均繊維幅は、例えば2nm以上1000nm以下であることが好ましく、2nm以上100nm以下であることがより好ましく、2nm以上50nm以下であることがさらに好ましく、2nm以上10nm以下であることが特に好ましい。なお、繊維状セルロースは、例えば単繊維状のセルロースである。
【0025】
繊維状セルロースの繊維幅は、例えば電子顕微鏡を用いて以下のようにして測定される。まず、濃度0.05質量%以上0.1質量%以下の繊維状セルロースの水系懸濁液を調製し、この懸濁液を親水化処理したカーボン膜被覆グリッド上にキャストしてTEM観察用試料とする。幅の広い繊維を含む場合には、ガラス上にキャストした表面のSEM像を観察してもよい。次いで、観察対象となる繊維の幅に応じて1000倍、5000倍、10000倍あるいは50000倍のいずれかの倍率で電子顕微鏡画像による観察を行う。但し、試料、観察条件や倍率は下記の条件を満たすように調整する。
【0026】
(1)観察画像内の任意箇所に一本の直線Xを引き、該直線Xに対し、20本以上の繊維が交差する。
(2)同じ画像内で該直線と垂直に交差する直線Yを引き、該直線Yに対し、20本以上の繊維が交差する。
【0027】
上記条件を満足する観察画像に対し、直線X、直線Yと交差する繊維の幅を目視で読み取る。このようにして、少なくとも互いに重なっていない表面部分の観察画像を3組以上得る。次いで、各画像に対して、直線X、直線Yと交差する繊維の幅を読み取る。これにより、少なくとも20本×2×3=120本の繊維幅を読み取る。そして、読み取った繊維幅の平均値を、繊維状セルロースの平均繊維幅とする。
【0028】
繊維状セルロースの繊維長は、特に限定されないが、例えば0.1μm以上1000μm以下であることが好ましく、0.1μm以上800μm以下であることがより好ましく、0.1μm以上600μm以下であることがさらに好ましい。繊維長を上記範囲内とすることにより、繊維状セルロースの結晶領域の破壊を抑制できる。また、繊維状セルロースのスラリー粘度を適切な範囲とすることも可能となる。なお、繊維状セルロースの繊維長は、例えばTEM、SEM、AFMによる画像解析より求めることができる。
【0029】
繊維状セルロースはI型結晶構造を有していることが好ましい。ここで、繊維状セルロースがI型結晶構造を有することは、グラファイトで単色化したCuKα(λ=1.5418Å)を用いた広角X線回折写真より得られる回折プロファイルにおいて同定できる。具体的には、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークをもつことから同定することができる。微細繊維状セルロースに占めるI型結晶構造の割合は、例えば30%以上であることが好ましく、40%以上であることがより好ましく、50%以上であることがさらに好ましい。これにより、耐熱性と低線熱膨張率発現の点でさらに優れた性能が期待できる。結晶化度については、X線回折プロファイルを測定し、そのパターンから常法により求められる(Seagalら、Textile Research Journal、29巻、786ページ、1959年)。
【0030】
繊維状セルロースの軸比(繊維長/繊維幅)は、特に限定されないが、例えば20以上10000以下であることが好ましく、50以上1000以下であることがより好ましい。軸比を上記下限値以上とすることにより、微細繊維状セルロースを含有するシートを形成しやすい。また、軸比を上記上限値以下とすることにより、たとえば繊維状セルロースを分散液として扱う際に、希釈等のハンドリングがしやすくなる点で好ましい。
【0031】
繊維状セルロースは、例えば結晶領域と非結晶領域をともに有している。結晶領域と非結晶領域をともに有し、かつ軸比が上記範囲内にある微細繊維状セルロースは、後述する微細繊維状セルロースの製造方法により実現されるものである。
【0032】
繊維状セルロースは、アニオン性基を有する。アニオン性基としては、例えばリンオキソ酸基又はリンオキソ酸基に由来する置換基(単にリンオキソ酸基ということもある)、カルボキシ基又はカルボキシ基に由来する置換基(単にカルボキシ基ということもある)、及び硫黄オキソ酸基又は硫黄オキソ酸基に由来する置換基(単に硫黄オキソ酸基ということもある)等を挙げることができる。中でも、アニオン性基は、リンオキソ酸基、リンオキソ酸基に由来する置換基、硫黄オキソ酸基及び硫黄オキソ酸基に由来する置換基からなる群から選択される少なくとも1種であることが好ましい。アニオン性基が、リンオキソ酸基、リンオキソ酸基に由来する置換基、硫黄オキソ酸基及び硫黄オキソ酸基に由来する置換基からなる群から選択される少なくとも1種である場合、より高透明であり、かつ高粘度の分散液が得られやすくなる。
【0033】
リンオキソ酸基又はリンオキソ酸基に由来する置換基は、例えば下記式(1)で表される置換基である。各繊維状セルロースには、下記式(1)で表される置換基が複数種導入されていてもよい。この場合、複数導入される下記式(1)で表される置換基はそれぞれ同一であっても異なっていてもよい。
【0034】
【化1】
【0035】
式(1)中、a、bおよびnは自然数であり、mは任意の数である(ただし、a=b×mである)。n個あるαおよびα’のうち少なくとも1つはOであり、残りはR又はORである。なお、各αおよびα’の全てがOであっても構わない。n個あるαは全て同じでも、それぞれ異なっていてもよい。βb+は有機物又は無機物からなる1価以上の陽イオンである。
【0036】
Rは、各々、水素原子、飽和-直鎖状炭化水素基、飽和-分岐鎖状炭化水素基、飽和-環状炭化水素基、不飽和-直鎖状炭化水素基、不飽和-分岐鎖状炭化水素基、不飽和-環状炭化水素基、芳香族基、またはこれらの誘導基である。また、式(1)においては、nは1であることが好ましい。
【0037】
飽和-直鎖状炭化水素基としては、メチル基、エチル基、n-プロピル基、又はn-ブチル基等が挙げられるが、特に限定されない。飽和-分岐鎖状炭化水素基としては、i-プロピル基、又はt-ブチル基等が挙げられるが、特に限定されない。飽和-環状炭化水素基としては、シクロペンチル基、又はシクロヘキシル基等が挙げられるが、特に限定されない。不飽和-直鎖状炭化水素基としては、ビニル基、又はアリル基等が挙げられるが、特に限定されない。不飽和-分岐鎖状炭化水素基としては、i-プロペニル基、又は3-ブテニル基等が挙げられるが、特に限定されない。不飽和-環状炭化水素基としては、シクロペンテニル基、シクロヘキセニル基等が挙げられるが、特に限定されない。芳香族基としては、フェニル基、又はナフチル基等が挙げられるが、特に限定されない。
【0038】
また、Rにおける誘導基としては、上記各種炭化水素基の主鎖又は側鎖に対し、カルボキシ基、カルボキシレート基(-COO)、ヒドロキシ基、アミノ基及びアンモニウム基などの官能基から選択される少なくとも1種類が付加又は置換した状態の官能基が挙げられるが、特に限定されない。また、Rの主鎖を構成する炭素原子数は特に限定されないが、20以下であることが好ましく、10以下であることがより好ましい。Rの主鎖を構成する炭素原子数を上記範囲とすることにより、リンオキソ酸基の分子量を適切な範囲とすることができ、繊維原料への浸透を容易にし、微細セルロース繊維の収率を高めることもできる。なお、式(1)中にRが複数個存在する場合や繊維状セルロースに上記式(1)で表される複数種の置換基が導入される場合には、複数存在するRはそれぞれ同一であっても異なっていてもよい。
【0039】
βb+は有機物又は無機物からなる1価以上の陽イオンである。有機物からなる1価以上の陽イオンとしては、有機オニウムイオンを挙げることができる。有機オニウムイオンとしては、例えば、有機アンモニウムイオンや有機オニウムイオンを挙げることができる。有機アンモニウムイオンとしては、例えば、脂肪族アンモニウムイオンや芳香族アンモニウムイオンを挙げることができ、有機オニウムイオンとしては、例えば、脂肪族ホスホニウムイオンや芳香族ホスホニウムイオンを挙げることができる。無機物からなる1価以上の陽イオンとしては、ナトリウム、カリウム、若しくはリチウム等のアルカリ金属のイオンや、カルシウム、若しくはマグネシウム等の2価金属のイオン、水素イオン、アンモニウムイオン等が挙げられる。なお、式(1)中にβb+が複数個存在する場合や繊維状セルロースに上記式(1)で表される複数種の置換基が導入される場合には、複数存在するβb+はそれぞれ同一であっても異なっていてもよい。有機物又は無機物からなる1価以上の陽イオンとしては、βb+を含む繊維原料を加熱した際に黄変しにくく、また工業的に利用し易いナトリウム、又はカリウムのイオンが好ましいが、特に限定されない。
【0040】
リンオキソ酸基又はリンオキソ酸基に由来する置換基としては、より具体的には、リン酸基(-PO)、リン酸基の塩、亜リン酸基(ホスホン酸基)(-PO)、亜リン酸基(ホスホン酸基)の塩が挙げられる。また、リンオキソ酸基又はリンオキソ酸基に由来する置換基は、リン酸基が縮合した基(例えば、ピロリン酸基)、ホスホン酸が縮合した基(例えば、ポリホスホン酸基)、リン酸エステル基(例えば、モノメチルリン酸基、ポリオキシエチレンアルキルリン酸基)、アルキルホスホン酸基(例えば、メチルホスホン酸基)などであってもよい。
【0041】
また、硫黄オキソ酸基(硫黄オキソ酸基又は硫黄オキソ酸基に由来する置換基)は、例えば下記式(2)で表される置換基である。各繊維状セルロースには、下記式(2)で表される置換基が複数種導入されていてもよい。この場合、複数導入される下記式(2)で表される置換基はそれぞれ同一であっても異なっていてもよい。
【0042】
【化2】
【0043】
上記構造式中、bおよびnは自然数であり、pは0または1であり、mは任意の数である(ただし、1=b×mである)。なお、nが2以上である場合、複数あるpは同一の数であってもよく、異なる数であってもよい。上記構造式中、βb+は有機物または無機物からなる1価以上の陽イオンである。有機物からなる1価以上の陽イオンとしては、有機オニウムイオンを挙げることができる。有機オニウムイオンとしては、例えば、有機アンモニウムイオンや有機オニウムイオンを挙げることができる。有機アンモニウムイオンとしては、例えば、脂肪族アンモニウムイオンや芳香族アンモニウムイオンを挙げることができ、有機オニウムイオンとしては、例えば、脂肪族ホスホニウムイオンや芳香族ホスホニウムイオンを挙げることができる。無機物からなる1価以上の陽イオンとしては、ナトリウム、カリウム、若しくはリチウム等のアルカリ金属のイオンや、カルシウム、若しくはマグネシウム等の2価金属のイオン、水素イオン、アンモニウムイオン等が挙げられる。なお、繊維状セルロースに上記式(2)で表される複数種の置換基が導入される場合には、複数存在するβb+はそれぞれ同一であっても異なっていてもよい。有機物又は無機物からなる1価以上の陽イオンとしては、βb+を含む繊維原料を加熱した際に黄変しにくく、また工業的に利用し易いナトリウム、又はカリウムのイオンが好ましいが、特に限定されない。
【0044】
アニオン性基の含有量(導入量)は、例えば繊維状セルロース1g(質量)あたり0.50mmol/g以上であればよく、0.60mmol/g以上であることがより好ましく、0.80mmol/g以上であることがさらに好ましく、1.00mmol/g以上であることが特に好ましい。また、アニオン性基の含有量(導入量)は、例えば繊維状セルロース1g(質量)あたり5.20mmol/g以下であることが好ましく、3.65mmol/g以下であることがより好ましく、3.00mmol/g以下であることがさらに好ましく、2.50mmol/g以下であることが一層好ましく、2.00mmol/g以下であることが特に好ましい。ここで、単位mmol/gにおける分母は、アニオン性基の対イオンが水素イオン(H)であるときの繊維状セルロースの質量を示す。アニオン性基の導入量を上記範囲内とすることにより、繊維状セルロースが含み得る有機オニウムイオンの含有量を適切な範囲とすることができ、これにより、繊維状セルロースの有機溶媒に対する分散性をより効果的に高めることができる。
【0045】
繊維状セルロースに対するアニオン性基の導入量は、例えば中和滴定法により測定することができる。中和滴定法による測定では、得られた繊維状セルロースを含有するスラリーに、水酸化ナトリウム水溶液などのアルカリを加えながらpHの変化を求めることにより、導入量を測定する。
【0046】
図1は、リンオキソ酸基を有する繊維状セルロース含有スラリーに対するNaOH滴下量とpHの関係を示すグラフである。繊維状セルロースに対するリンオキソ酸基の導入量は、例えば次のように測定される。
まず、繊維状セルロースを含有するスラリーを強酸性イオン交換樹脂で処理する。なお、必要に応じて、強酸性イオン交換樹脂による処理の前に、後述の解繊処理工程と同様の解繊処理を測定対象に対して実施してもよい。
次いで、水酸化ナトリウム水溶液を加えながらpHの変化を観察し、図1の上側部に示すような滴定曲線を得る。図1の上側部に示した滴定曲線では、アルカリを加えた量に対して測定したpHをプロットしており、図1の下側部に示した滴定曲線では、アルカリを加えた量に対するpHの増分(微分値)(1/mmol)をプロットしている。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が二つ確認される。これらのうち、アルカリを加えはじめて先に得られる増分の極大点を第1終点と呼び、次に得られる増分の極大点を第2終点と呼ぶ。滴定開始から第1終点までに必要としたアルカリ量が、滴定に使用したスラリー中に含まれる繊維状セルロースの第1解離酸量と等しくなり、第1終点から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中に含まれる繊維状セルロースの第2解離酸量と等しくなり、滴定開始から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中に含まれる繊維状セルロースの総解離酸量と等しくなる。そして、滴定開始から第1終点までに必要としたアルカリ量を滴定対象スラリー中の固形分(g)で除して得られる値が、リンオキソ酸基導入量(mmol/g)となる。なお、単にリンオキソ酸基導入量(又はリンオキソ酸基量)と言った場合は、第1解離酸量のことを表す。
なお、図1において、滴定開始から第1終点までの領域を第1領域と呼び、第1終点から第2終点までの領域を第2領域と呼ぶ。例えば、リンオキソ酸基がリン酸基の場合であって、このリン酸基が縮合を起こす場合、見かけ上、リンオキソ酸基における弱酸性基量(本明細書では第2解離酸量ともいう)が低下し、第1領域に必要としたアルカリ量と比較して第2領域に必要としたアルカリ量が少なくなる。一方、リンオキソ酸基における強酸性基量(本明細書では第1解離酸量ともいう)は、縮合の有無に関わらずリン原子の量と一致する。また、リンオキソ酸基が亜リン酸基の場合は、リンオキソ酸基に弱酸性基が存在しなくなるため、第2領域に必要としたアルカリ量が少なくなるか、第2領域に必要としたアルカリ量はゼロとなる場合もある。この場合、滴定曲線において、pHの増分が極大となる点は一つとなる。
【0047】
なお、上述のリンオキソ酸基導入量(mmol/g)は、分母が酸型の繊維状セルロースの質量を示すことから、酸型の繊維状セルロースが有するリンオキソ酸基量(以降、リンオキソ酸基量(酸型)と呼ぶ)を示している。一方で、リンオキソ酸基の対イオンが電荷当量となるように任意の陽イオンCに置換されている場合は、分母を当該陽イオンCが対イオンであるときの繊維状セルロースの質量に変換することで、陽イオンCが対イオンである繊維状セルロースが有するリンオキソ酸基量(以降、リンオキソ酸基量(C型))を求めることができる。
すなわち、下記計算式によって算出する。
リンオキソ酸基量(C型)=リンオキソ酸基量(酸型)/{1+(W-1)×A/1000}
A[mmol/g]:繊維状セルロースが有するリンオキソ酸基由来の総アニオン量(リンオキソ酸基の総解離酸量)
W:陽イオンCの1価あたりの式量(例えば、Naは23、Alは9)
【0048】
図2は、アニオン性基としてカルボキシ基を有する繊維状セルロースを含有する分散液に対するNaOH滴下量とpHの関係を示すグラフである。繊維状セルロースに対するカルボキシ基の導入量は、例えば次のように測定される。
まず、繊維状セルロースを含有する分散液を強酸性イオン交換樹脂で処理する。なお、必要に応じて、強酸性イオン交換樹脂による処理の前に、後述の解繊処理工程と同様の解繊処理を測定対象に対して実施してもよい。
次いで、水酸化ナトリウム水溶液を加えながらpHの変化を観察し、図2の上側部に示すような滴定曲線を得る。図2の上側部に示した滴定曲線では、アルカリを加えた量に対して測定したpHをプロットしており、図2の下側部に示した滴定曲線では、アルカリを加えた量に対するpHの増分(微分値)(1/mmol)をプロットしている。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が一つ確認され、この極大点を第1終点と呼ぶ。ここで、図2における滴定開始から第1終点までの領域を第1領域と呼ぶ。第1領域で必要としたアルカリ量が、滴定に使用した分散液中のカルボキシ基量と等しくなる。そして、滴定曲線の第1領域で必要としたアルカリ量(mmol)を、滴定対象の繊維状セルロースを含有する分散液中の固形分(g)で除すことで、カルボキシ基の導入量(mmol/g)を算出する。
【0049】
なお、上述のカルボキシ基導入量(mmol/g)は、分母が酸型の繊維状セルロースの質量であることから、酸型の繊維状セルロースが有するカルボキシ基量(以降、カルボキシ基量(酸型)と呼ぶ)を示している。一方で、カルボキシ基の対イオンが電荷当量となるように任意の陽イオンCに置換されている場合は、分母を当該陽イオンCが対イオンであるときの繊維状セルロースの質量に変換することで、陽イオンCが対イオンである繊維状セルロースが有するカルボキシ基量(以降、カルボキシ基量(C型))を求めることができる。すなわち、下記計算式によって算出する。
カルボキシ基量(C型)=カルボキシ基量(酸型)/{1+(W-1)×(カルボキシ基量(酸型))/1000}
W:陽イオンCの1価あたりの式量(例えば、Naは23、Alは9)
【0050】
滴定法によるアニオン性基量の測定においては、水酸化ナトリウム水溶液1滴の滴下量が多すぎる場合や、滴定間隔が短すぎる場合、本来より低いアニオン性基量となるなど正確な値が得られないことがある。適切な滴下量、滴定間隔としては、例えば、0.1N水酸化ナトリウム水溶液を5~30秒に10~50μLずつ滴定するなどが望ましい。また、繊維状セルロース含有スラリーに溶解した二酸化炭素の影響を排除するため、例えば、滴定開始の15分前から滴定終了まで、窒素ガスなどの不活性ガスをスラリーに吹き込みながら測定するなどが望ましい。
【0051】
また、繊維状セルロースに対する硫黄オキソ酸基の導入量は、繊維状セルロースを含むスラリーを凍結乾燥し、さらに粉砕した試料の硫黄量を測定することで算出することができる。具体的には、繊維状セルロースを含むスラリーを凍結乾燥し、さらに粉砕した試料を、密閉容器中で硝酸を用いて加圧加熱分解した後、適宜希釈してICP-OESで硫黄量を測定する。供試した繊維状セルロースの絶乾質量で割り返して算出した値を微細繊維状セルロースの硫黄オキソ酸基量(単位:mmol/g)とする。
【0052】
(微細繊維状セルロースの製造方法)
<繊維原料>
微細繊維状セルロースは、セルロースを含む繊維原料から製造される。セルロースを含む繊維原料としては、特に限定されないが、入手しやすく安価である点からパルプを用いることが好ましい。パルプとしては、例えば木材パルプ、非木材パルプ、及び脱墨パルプが挙げられる。木材パルプとしては、特に限定されないが、例えば広葉樹クラフトパルプ(LBKP)、針葉樹クラフトパルプ(NBKP)、サルファイトパルプ(SP)、溶解パルプ(DP)、ソーダパルプ(AP)、未晒しクラフトパルプ(UKP)及び酸素漂白クラフトパルプ(OKP)等の化学パルプ、セミケミカルパルプ(SCP)及びケミグラウンドウッドパルプ(CGP)等の半化学パルプ、砕木パルプ(GP)及びサーモメカニカルパルプ(TMP、BCTMP)等の機械パルプ等が挙げられる。非木材パルプとしては、特に限定されないが、例えばコットンリンター及びコットンリント等の綿系パルプ、麻、麦わら及びバガス等の非木材系パルプが挙げられる。脱墨パルプとしては、特に限定されないが、例えば古紙を原料とする脱墨パルプが挙げられる。本実施態様のパルプは上記の1種を単独で用いてもよいし、2種以上混合して用いてもよい。上記パルプの中でも、入手のしやすさという観点からは、例えば木材パルプ及び脱墨パルプが好ましい。また、木材パルプの中でも、セルロース比率が大きく解繊処理時の微細繊維状セルロースの収率が高い観点や、パルプ中のセルロースの分解が小さく軸比の大きい長繊維の微細繊維状セルロースが得られる観点から、例えば化学パルプがより好ましく、クラフトパルプ、サルファイトパルプがさらに好ましい。なお、軸比の大きい長繊維の微細繊維状セルロースを用いると粘度が高くなる傾向がある。
【0053】
セルロースを含む繊維原料としては、例えばホヤ類に含まれるセルロースや、酢酸菌が生成するバクテリアセルロースを利用することもできる。また、セルロースを含む繊維原料に代えて、キチン、キトサンなどの直鎖型の含窒素多糖高分子が形成する繊維を用いることもできる。
【0054】
<リンオキソ酸基導入工程>
微細繊維状セルロースの製造工程は、アニオン性基導入工程を含む。アニオン性基導入工程としては、例えば、リンオキソ酸基導入工程が挙げられる。リンオキソ酸基導入工程は、セルロースを含む繊維原料が有する水酸基と反応することで、リンオキソ酸基を導入できる化合物から選択される少なくとも1種の化合物(以下、「化合物A」ともいう)を、セルロースを含む繊維原料に作用させる工程である。この工程により、リンオキソ酸基導入繊維が得られることとなる。
【0055】
本実施形態に係るリンオキソ酸基導入工程では、セルロースを含む繊維原料と化合物Aの反応を、尿素及びその誘導体から選択される少なくとも1種(以下、「化合物B」ともいう)の存在下で行ってもよい。一方で、化合物Bが存在しない状態において、セルロースを含む繊維原料と化合物Aの反応を行ってもよい。
【0056】
化合物Aを化合物Bとの共存下で繊維原料に作用させる方法の一例としては、乾燥状態、湿潤状態又はスラリー状の繊維原料に対して、化合物Aと化合物Bを混合する方法が挙げられる。これらのうち、反応の均一性が高いことから、乾燥状態又は湿潤状態の繊維原料を用いることが好ましく、特に乾燥状態の繊維原料を用いることが好ましい。繊維原料の形態は、特に限定されないが、例えば綿状や薄いシート状であることが好ましい。化合物A及び化合物Bは、それぞれ粉末状又は溶媒に溶解させた溶液状又は融点以上まで加熱して溶融させた状態で繊維原料に添加する方法が挙げられる。これらのうち、反応の均一性が高いことから、溶媒に溶解させた溶液状、特に水溶液の状態で添加することが好ましい。また、化合物Aと化合物Bは繊維原料に対して同時に添加してもよく、別々に添加してもよく、混合物として添加してもよい。化合物Aと化合物Bの添加方法としては、特に限定されないが、化合物Aと化合物Bが溶液状の場合は、繊維原料を溶液内に浸漬し吸液させたのちに取り出してもよいし、繊維原料に溶液を滴下してもよい。また、必要量の化合物Aと化合物Bを繊維原料に添加してもよいし、過剰量の化合物Aと化合物Bをそれぞれ繊維原料に添加した後に、圧搾や濾過によって余剰の化合物Aと化合物Bを除去してもよい。
【0057】
本実施態様で使用する化合物Aとしては、リン原子を有し、セルロースとエステル結合を形成可能な化合物であればよく、リン酸もしくはその塩、亜リン酸もしくはその塩、脱水縮合リン酸もしくはその塩、無水リン酸(五酸化二リン)などが挙げられるが特に限定されない。リン酸としては、種々の純度のものを使用することができ、例えば100%リン酸(正リン酸)や85%リン酸を使用することができる。亜リン酸としては、99%亜リン酸(ホスホン酸)が挙げられる。脱水縮合リン酸は、リン酸が脱水反応により2分子以上縮合したものであり、例えばピロリン酸、ポリリン酸等を挙げることができる。リン酸塩、亜リン酸塩、脱水縮合リン酸塩としては、リン酸、亜リン酸又は脱水縮合リン酸のリチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩などが挙げられ、これらは種々の中和度とすることができる。これらのうち、リンオキソ酸基の導入効率が高く、後述する解繊工程で解繊効率がより向上しやすく、低コストであり、かつ工業的に適用しやすい観点から、リン酸、リン酸のナトリウム塩、リン酸のカリウム塩、リン酸のアンモニウム塩又は亜リン酸、亜リン酸のナトリウム塩、亜リン酸のカリウム塩、亜リン酸のアンモニウム塩が好ましく、リン酸、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸二水素アンモニウム、又は亜リン酸、亜リン酸ナトリウムがより好ましい。
【0058】
繊維原料に対する化合物Aの添加量は、特に限定されないが、例えば化合物Aの添加量をリン原子量に換算した場合において、繊維原料(絶乾質量)に対するリン原子の添加量が0.5質量%以上100質量%以下となることが好ましく、1質量%以上50質量%以下となることがより好ましく、2質量%以上30質量%以下となることがさらに好ましい。繊維原料に対するリン原子の添加量を上記範囲内とすることにより、微細繊維状セルロースの収率をより向上させることができる。一方で、繊維原料に対するリン原子の添加量を上記上限値以下とすることにより、収率向上の効果とコストのバランスをとることができる。
【0059】
本実施態様で使用する化合物Bは、上述のとおり尿素及びその誘導体から選択される少なくとも1種である。化合物Bとしては、例えば尿素、ビウレット、1-フェニル尿素、1-ベンジル尿素、1-メチル尿素、及び1-エチル尿素などが挙げられる。
反応の均一性を向上させる観点から、化合物Bは水溶液として用いることが好ましい。また、反応の均一性をさらに向上させる観点からは、化合物Aと化合物Bの両方が溶解した水溶液を用いることが好ましい。
【0060】
繊維原料(絶乾質量)に対する化合物Bの添加量は、特に限定されないが、例えば1質量%以上500質量%以下であることが好ましく、10質量%以上400質量%以下であることがより好ましく、100質量%以上350質量%以下であることがさらに好ましい。
【0061】
セルロースを含む繊維原料と化合物Aの反応においては、化合物Bの他に、例えばアミド類又はアミン類を反応系に含んでもよい。アミド類としては、例えばホルムアミド、ジメチルホルムアミド、アセトアミド、ジメチルアセトアミドなどが挙げられる。アミン類としては、例えばメチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピリジン、エチレンジアミン、ヘキサメチレンジアミンなどが挙げられる。これらの中でも、特にトリエチルアミンは良好な反応触媒として働くことが知られている。
【0062】
リンオキソ酸基導入工程においては、繊維原料に化合物A等を添加又は混合した後、当該繊維原料に対して加熱処理を施すことが好ましい。加熱処理温度としては、繊維の熱分解や加水分解反応を抑えながら、リンオキソ酸基を効率的に導入できる温度を選択することが好ましい。加熱処理温度は、例えば50℃以上300℃以下であることが好ましく、100℃以上250℃以下であることがより好ましく、130℃以上200℃以下であることがさらに好ましい。また、加熱処理には、種々の熱媒体を有する機器を利用することができ、例えば熱風乾燥装置、撹拌乾燥装置、回転乾燥装置、円盤乾燥装置、ロール型加熱装置、プレート型加熱装置、流動層乾燥装置、バンド型乾燥装置、ろ過乾燥装置、振動流動乾燥装置、気流乾燥装置、減圧乾燥装置、赤外線加熱装置、遠赤外線加熱装置、マイクロ波加熱装置、高周波乾燥装置を用いることができる。
【0063】
本実施形態に係る加熱処理においては、例えば薄いシート状の繊維原料に化合物Aを含浸等の方法により添加した後、加熱する方法や、ニーダー等で繊維原料と化合物Aを混練又は撹拌しながら加熱する方法を採用することができる。これにより、繊維原料における化合物Aの濃度ムラを抑制して、繊維原料に含まれるセルロース繊維表面へより均一にリンオキソ酸基を導入することが可能となる。これは、乾燥に伴い水分子が繊維原料表面に移動する際、溶存する化合物Aが表面張力によって水分子に引き付けられ、同様に繊維原料表面に移動してしまう(すなわち、化合物Aの濃度ムラを生じてしまう)ことを抑制できることに起因するものと考えられる。
【0064】
また、加熱処理に用いる加熱装置は、例えばスラリーが保持する水分、及び化合物Aと繊維原料中のセルロース等が含む水酸基等との脱水縮合(リン酸エステル化)反応に伴って生じる水分、を常に装置系外に排出できる装置であることが好ましい。このような加熱装置としては、例えば送風方式のオーブン等が挙げられる。装置系内の水分を常に排出することにより、リン酸エステル化の逆反応であるリン酸エステル結合の加水分解反応を抑制できることに加えて、繊維中の糖鎖の酸加水分解を抑制することもできる。このため、軸比の高い微細繊維状セルロースを得ることが可能となる。
【0065】
加熱処理の時間は、例えば繊維原料から実質的に水分が除かれてから1秒以上300分以下であることが好ましく、1秒以上1000秒以下であることがより好ましく、10秒以上800秒以下であることがさらに好ましい。本実施形態では、加熱温度と加熱時間を適切な範囲とすることにより、リンオキソ酸基の導入量を好ましい範囲内とすることができる。
【0066】
リンオキソ酸基導入工程は、少なくとも1回行えば良いが、2回以上繰り返して行うこともできる。2回以上のリンオキソ酸基導入工程を行うことにより、繊維原料に対して多くのリンオキソ酸基を導入することができる。
【0067】
繊維原料に対するリンオキソ酸基の導入量は、例えば繊維原料1g(質量)あたり0.50mmol/g以上であればよく、0.60mmol/g以上であることがより好ましく、0.80mmol/g以上であることがさらに好ましく、1.00mmol/g以上であることが特に好ましい。また、リンオキソ酸基の含有量(導入量)は、例えば繊維状セルロース1g(質量)あたり5.20mmol/g以下であることが好ましく、3.65mmol/g以下であることがより好ましく、3.00mmol/g以下であることがさらに好ましく、2.50mmol/g以下であることが一層好ましく、2.00mmol/g以下であることが特に好ましい。リンオキソ酸基の導入量を上記範囲内とすることにより、繊維状セルロースが含み得る有機オニウムイオンの含有量を適切な範囲とすることができ、これにより、繊維状セルロースの有機溶媒に対する分散性をより効果的に高めることができる。
【0068】
<カルボキシ基導入工程>
微細繊維状セルロースの製造工程は、アニオン性基導入工程として、例えば、カルボキシ基導入工程を含んでもよい。カルボキシ基導入工程は、セルロースを含む繊維原料に対し、オゾン酸化やフェントン法による酸化、TEMPO酸化処理などの酸化処理やカルボン酸由来の基を有する化合物もしくはその誘導体、又はカルボン酸由来の基を有する化合物の酸無水物もしくはその誘導体によって処理することにより行われる。
【0069】
カルボン酸由来の基を有する化合物としては、特に限定されないが、例えばマレイン酸、コハク酸、フタル酸、フマル酸、グルタル酸、アジピン酸、イタコン酸等のジカルボン酸化合物やクエン酸、アコニット酸等のトリカルボン酸化合物が挙げられる。また、カルボン酸由来の基を有する化合物の誘導体としては、特に限定されないが、例えばカルボキシ基を有する化合物の酸無水物のイミド化物、カルボキシ基を有する化合物の酸無水物の誘導体が挙げられる。カルボキシ基を有する化合物の酸無水物のイミド化物としては、特に限定されないが、例えばマレイミド、コハク酸イミド、フタル酸イミド等のジカルボン酸化合物のイミド化物が挙げられる。
【0070】
カルボン酸由来の基を有する化合物の酸無水物としては、特に限定されないが、例えば無水マレイン酸、無水コハク酸、無水フタル酸、無水グルタル酸、無水アジピン酸、無水イタコン酸等のジカルボン酸化合物の酸無水物が挙げられる。また、カルボン酸由来の基を有する化合物の酸無水物の誘導体としては、特に限定されないが、例えばジメチルマレイン酸無水物、ジエチルマレイン酸無水物、ジフェニルマレイン酸無水物等のカルボキシ基を有する化合物の酸無水物の少なくとも一部の水素原子が、アルキル基、フェニル基等の置換基により置換されたものが挙げられる。
【0071】
カルボキシ基導入工程において、TEMPO酸化処理を行う場合には、例えばその処理をpHが6以上8以下の条件で行うことが好ましい。このような処理は、中性TEMPO酸化処理ともいう。中性TEMPO酸化処理は、例えばリン酸ナトリウム緩衝液(pH=6.8)に、繊維原料としてパルプと、触媒としてTEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシル)等のニトロキシラジカル、犠牲試薬として次亜塩素酸ナトリウムを添加することで行うことができる。さらに亜塩素酸ナトリウムを共存させることによって、酸化の過程で発生するアルデヒドを、効率的にカルボキシ基まで酸化することができる。また、TEMPO酸化処理は、その処理をpHが10以上11以下の条件で行ってもよい。このような処理は、アルカリTEMPO酸化処理ともいう。アルカリTEMPO酸化処理は、例えば繊維原料としてのパルプに対し、触媒としてTEMPO等のニトロキシラジカルと、共触媒として臭化ナトリウムと、酸化剤として次亜塩素酸ナトリウムを添加することにより行うことができる。
【0072】
繊維原料に対するカルボキシ基の導入量は、置換基の種類によっても変わるが、例えばTEMPO酸化によりカルボキシ基を導入する場合、繊維原料1g(質量)あたり0.50mmol/g以上であればよく、0.60mmol/g以上であることがより好ましく、0.80mmol/g以上であることがさらに好ましく、1.00mmol/g以上であることが特に好ましい。また、繊維状セルロースに対するカルボキシ基の導入量は、3.65mmol/g以下であることが好ましく、3.00mmol/g以下であることがより好ましく、2.50mmol/g以下であることがさらに好ましく、2.00mmol/g以下であることが一層より好ましい。その他、置換基がカルボキシメチル基である場合、カルボキシ基の導入量は、微細繊維状セルロース1g(質量)あたり5.8mmol/g以下であってもよい。カルボキシ基の導入量を上記範囲内とすることにより、微細繊維状セルロースが含み得る有機オニウムイオンの含有量を適切な範囲とすることができ、これにより、繊維状セルロースの有機溶媒に対する分散性をより効果的に高めることができる。
【0073】
<硫黄オキソ酸基導入工程>
微細繊維状セルロースの製造工程は、アニオン性基導入工程として、例えば、硫黄オキソ酸基導入工程を含んでもよい。硫黄オキソ酸基導入工程は、セルロースを含む繊維原料が有する水酸基と硫黄オキソ酸が反応することで、硫黄オキソ酸基を有するセルロース繊維(硫黄オキソ酸基導入繊維)を得ることができる。
【0074】
硫黄オキソ酸基導入工程では、上述した<リンオキソ酸基導入工程>における化合物Aに代えて、セルロースを含む繊維原料が有する水酸基と反応することで、硫黄オキソ酸基を導入できる化合物から選択される少なくとも1種の化合物(以下、「化合物C」ともいう)を用いる。化合物Cとしては、硫黄原子を有し、セルロースとエステル結合を形成可能な化合物であればよく、硫酸もしくはその塩、亜硫酸もしくはその塩、硫酸アミドなどが挙げられるが特に限定されない。硫酸としては、種々の純度のものを使用することができ、例えば96%硫酸(濃硫酸)を使用することができる。亜硫酸としては、5%亜硫酸水が挙げられる。硫酸塩又は亜硫酸塩としては、硫酸塩又は亜硫酸塩のリチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩などが挙げられ、これらは種々の中和度とすることができる。硫酸アミドとしては、スルファミン酸などを使用することができる。硫黄オキソ酸基導入工程では、上述した<リンオキソ酸基導入工程>における化合物Bを同様に用いることが好ましい。
【0075】
硫黄オキソ酸基導入工程においては、セルロース原料に硫黄オキソ酸、並びに、尿素及び/又は尿素誘導体を含む水溶液を混合した後、当該セルロース原料に対して加熱処理を施すことが好ましい。加熱処理温度としては、繊維の熱分解や加水分解反応を抑えながら、硫黄オキソ酸基を効率的に導入できる温度を選択することが好ましい。加熱処理温度は、100℃以上であることが好ましく、120℃以上であることがより好ましく、150℃以上であることがさらに好ましい。また、加熱処理温度は、300℃以下であることが好ましく、250℃以下であることがより好ましく、200℃以下であることがさらに好ましい。
【0076】
加熱処理工程では、実質的に水分がなくなるまで加熱をすることが好ましい。このため、加熱処理時間は、セルロース原料に含まれる水分量や、硫黄オキソ酸、並びに、尿素及び/又は尿素誘導体を含む水溶液の添加量によって、変動するが、例えば、10秒以上10000秒以下とすることが好ましい。加熱処理には、種々の熱媒体を有する機器を利用することができ、例えば熱風乾燥装置、撹拌乾燥装置、回転乾燥装置、円盤乾燥装置、ロール型加熱装置、プレート型加熱装置、流動層乾燥装置、バンド型乾燥装置、ろ過乾燥装置、振動流動乾燥装置、気流乾燥装置、減圧乾燥装置、赤外線加熱装置、遠赤外線加熱装置、マイクロ波加熱装置、高周波乾燥装置を用いることができる。
【0077】
セルロース原料に対する硫黄オキソ酸基の導入量は、繊維状セルロース1g(質量)あたり0.50mmol/g以上であればよく、0.60mmol/g以上であることがより好ましく、0.80mmol/g以上であることがさらに好ましく、1.00mmol/g以上であることが特に好ましい。また、硫黄オキソ酸基の導入量は、繊維状セルロース1g(質量)あたり5.00mmol/g以下であることが好ましく、3.00mmol/g以下であることがより好ましい。硫黄オキソ酸基の導入量を上記範囲内とすることにより、微細繊維状セルロースが含み得る有機オニウムイオンの含有量を適切な範囲とすることができ、これにより、繊維状セルロースの有機溶媒に対する分散性をより効果的に高めることができる。
【0078】
<洗浄工程>
本実施形態における微細繊維状セルロースの製造方法においては、必要に応じてアニオン性基導入繊維に対して洗浄工程を行うことができる。洗浄工程は、例えば水や有機溶媒によりアニオン性基導入繊維を洗浄することにより行われる。また、洗浄工程は後述する各工程の後に行われてもよく、各洗浄工程において実施される洗浄回数は、特に限定されない。
【0079】
<アルカリ処理工程>
微細繊維状セルロースを製造する場合、アニオン性基導入工程と、後述する解繊処理工程との間に、繊維原料に対してアルカリ処理を行ってもよい。アルカリ処理の方法としては、特に限定されないが、例えばアルカリ溶液中に、アニオン性基導入繊維を浸漬する方法が挙げられる。
【0080】
アルカリ溶液に含まれるアルカリ化合物は、特に限定されず、無機アルカリ化合物であってもよいし、有機アルカリ化合物であってもよい。本実施形態においては、汎用性が高いことから、例えば水酸化ナトリウム又は水酸化カリウムをアルカリ化合物として用いることが好ましい。また、アルカリ溶液に含まれる溶媒は、水又は有機溶媒のいずれであってもよい。中でも、アルカリ溶液に含まれる溶媒は、水、又はアルコールに例示される極性有機溶媒などを含む極性溶媒であることが好ましく、少なくとも水を含む水系溶媒であることがより好ましい。アルカリ溶液としては、汎用性が高いことから、例えば水酸化ナトリウム水溶液、又は水酸化カリウム水溶液が好ましい。
【0081】
アルカリ処理工程におけるアルカリ溶液の温度は、特に限定されないが、例えば5℃以上80℃以下であることが好ましく、10℃以上60℃以下であることがより好ましい。アルカリ処理工程におけるアニオン性基導入繊維のアルカリ溶液への浸漬時間は、特に限定されないが、例えば5分以上30分以下であることが好ましく、10分以上20分以下であることがより好ましい。アルカリ処理におけるアルカリ溶液の使用量は、特に限定されないが、例えばアニオン性基導入繊維の絶対乾燥質量に対して100質量%以上100000質量%以下であることが好ましく、1000質量%以上10000質量%以下であることがより好ましい。
【0082】
アルカリ処理工程におけるアルカリ溶液の使用量を減らすために、アニオン性基導入工程の後であってアルカリ処理工程の前に、アニオン性基導入繊維を水や有機溶媒により洗浄してもよい。アルカリ処理工程の後であって解繊処理工程の前には、取り扱い性を向上させる観点から、アルカリ処理を行ったアニオン性基導入繊維を水や有機溶媒により洗浄することが好ましい。
【0083】
<酸処理工程>
微細繊維状セルロースを製造する場合、アニオン性基を導入する工程と、後述する解繊処理工程の間に、繊維原料に対して酸処理を行ってもよい。例えば、アニオン性基導入工程、酸処理、アルカリ処理及び解繊処理をこの順で行ってもよい。
【0084】
酸処理の方法としては、特に限定されないが、例えば酸を含有する酸性液中に繊維原料を浸漬する方法が挙げられる。使用する酸性液の濃度は、特に限定されないが、例えば10質量%以下であることが好ましく、5質量%以下であることがより好ましい。また、使用する酸性液のpHは、特に限定されないが、例えば0以上4以下であることが好ましく、1以上3以下であることがより好ましい。酸性液に含まれる酸としては、例えば無機酸、スルホン酸、カルボン酸等を用いることができる。無機酸としては、例えば硫酸、硝酸、塩酸、臭化水素酸、ヨウ化水素酸、次亜塩素酸、亜塩素酸、塩素酸、過塩素酸、リン酸、ホウ酸等が挙げられる。スルホン酸としては、例えばメタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸等が挙げられる。カルボン酸としては、例えばギ酸、酢酸、クエン酸、グルコン酸、乳酸、シュウ酸、酒石酸等が挙げられる。これらの中でも、塩酸又は硫酸を用いることが特に好ましい。
【0085】
酸処理における酸溶液の温度は、特に限定されないが、例えば5℃以上100℃以下が好ましく、20℃以上90℃以下がより好ましい。酸処理における酸溶液への浸漬時間は、特に限定されないが、例えば5分以上120分以下が好ましく、10分以上60分以下がより好ましい。酸処理における酸溶液の使用量は、特に限定されないが、例えば繊維原料の絶対乾燥質量に対して100質量%以上100000質量%以下であることが好ましく、1000質量%以上10000質量%以下であることがより好ましい。
【0086】
<解繊処理工程>
アニオン性基導入繊維を解繊処理工程で解繊処理することにより、微細繊維状セルロースが得られる。解繊処理工程においては、例えば解繊処理装置を用いることができる。解繊処理装置は、特に限定されないが、例えば高速解繊機、グラインダー(石臼型粉砕機)、高圧ホモジナイザーや超高圧ホモジナイザー、高圧衝突型粉砕機、ボールミル、ビーズミル、ディスク型リファイナー、コニカルリファイナー、二軸混練機、振動ミル、高速回転下でのホモミキサー、超音波分散機、又はビーターなどを使用することができる。上記解繊処理装置の中でも、粉砕メディアの影響が少なく、コンタミネーションのおそれが少ない高速解繊機、高圧ホモジナイザー、超高圧ホモジナイザーを用いるのがより好ましい。
【0087】
解繊処理工程においては、例えばアニオン性基導入繊維を、分散媒により希釈してスラリー状にすることが好ましい。分散媒としては、水、及び極性有機溶媒などの有機溶媒から選択される1種又は2種以上を使用することができる。極性有機溶媒としては、特に限定されないが、例えばアルコール類、多価アルコール類、ケトン類、エーテル類、エステル類、非プロトン性極性溶媒等が好ましい。アルコール類としては、例えばメタノール、エタノール、イソプロパノール、n-ブタノール、イソブチルアルコール等が挙げられる。多価アルコール類としては、例えばエチレングリコール、プロピレングリコール、グリセリンなどが挙げられる。ケトン類としては、アセトン、メチルエチルケトン(MEK)等が挙げられる。エーテル類としては、例えばジエチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノn-ブチルエーテル、プロピレングリコールモノメチルエーテル等が挙げられる。エステル類としては、例えば酢酸エチル、酢酸ブチル等が挙げられる。非プロトン性極性溶媒としてはジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリジノン(NMP)等が挙げられる。
【0088】
解繊処理時の微細繊維状セルロースの固形分濃度は適宜設定できる。また、アニオン性基導入繊維を分散媒に分散させて得たスラリー中には、例えば水素結合性のある尿素などのアニオン性基導入繊維以外の固形分が含まれていてもよい。
【0089】
(有機オニウムイオン)
微細繊維状セルロースはアニオン性基の対イオンとして、有機オニウムイオンを含む。本実施形態においては、少なくとも一部の有機オニウムイオンは、繊維状セルロースの対イオンとして存在しているが、分散液中には、遊離した有機オニウムイオンが存在していてもよい。なお、有機オニウムイオンは、繊維状セルロースと共有結合を形成するものではない。
【0090】
有機オニウムイオンは、下記(a)及び(b)から選択される少なくとも一方の条件を満たすものであることが好ましい。
(a)炭素数が5以上の炭化水素基を含む。
(b)総炭素数が17以上である。
すなわち、繊維状セルロースは、炭素数が5以上の炭化水素基を含む有機オニウムイオン、及び総炭素数が17以上の有機オニウムイオンから選択される少なくとも一方を、アニオン性基の対イオンとして含むことが好ましい。有機オニウムイオンを、上記(a)及び(b)から選択される少なくとも一方の条件を満たすものとすることにより、有機溶媒に対する微細繊維状セルロースの分散性をより効果的に高めることができる。
【0091】
炭素数が5以上の炭化水素基は、炭素数が5以上のアルキル基又は炭素数が5以上のアルキレン基であることが好ましく、炭素数が6以上のアルキル基又は炭素数が6以上のアルキレン基であることがより好ましく、炭素数が7以上のアルキル基又は炭素数が7以上のアルキレン基であることがさらに好ましく、炭素数が10以上のアルキル基又は炭素数が10以上のアルキレン基であることが特に好ましい。中でも、有機オニウムイオンは炭素数が5以上のアルキル基を有するものであることが好ましく、炭素数が5以上のアルキル基を含み、かつ総炭素数が17以上の有機オニウムイオンであることがより好ましい。
【0092】
有機オニウムイオンは、下記一般式(A)で表される有機オニウムイオンであることが好ましい。
【0093】
【化1】
【0094】
上記一般式(A)中、Mを有機オニウムイオンの中心元素と呼称する。Mは窒素原子又はリン原子であることが好ましい。また、R~Rは、それぞれ独立に水素原子又は有機基を表す。但し、R~Rの少なくとも1つは、炭素数が5以上の有機基であるか、R~Rの炭素数の合計が17以上であることが好ましい。
中でも、Mは、窒素原子であることが好ましい。すなわち、有機オニウムイオンは有機アンモニウムイオンであることが好ましい。また、R~Rの少なくとも1つは、炭素数が5以上のアルキル基であり、かつR~Rの炭素数の合計が17以上であることが好ましい。
【0095】
有機オニウムイオンとしては、例えば、ラウリルトリメチルアンモニウム、セチルトリメチルアンモニウム、ステアリルトリメチルアンモニウム、オクチルジメチルエチルアンモニウム、ラウリルジメチルエチルアンモニウム、ジデシルジメチルアンモニウム、ラウリルジメチルベンジルアンモニウム、トリブチルベンジルアンモニウム、メチルトリ-n-オクチルアンモニウム、ヘキシルアンモニウム、n-オクチルアンモニウム、ドデシルアンモニウム、テトラデシルアンモニウム、ヘキサデシルアンモニウム、ステアリルアンモニウム、N,N-ジメチルドデシルアンモニウム、N,N-ジメチルテトラデシルアンモニウム、N,N-ジメチルヘキサデシルアンモニウム、N,N-ジメチル-n-オクタデシルアンモニウム、ジヘキシルアンモニウム、ジ(2-エチルヘキシル)アンモニウム、ジーn-オクチルアンモニウム、ジデシルアンモニウム、ジドデシルアンモニウム、ジデシルメチルアンモニウム、N,N-ジドデシルメチルアンモニウム、ポリオキシエチレンドデシルアンモニウム、アルキルジメチルベンジルアンモニウム、ジ-n-アルキルジメチルアンモニウム、ベヘニルトリメチルアンモニウム、テトラフェニルホスホニウム、テトラオクチルホスホニウム、アセトニルトリフェニルホスホニウム、アリルトリフェニルホスホニウム、アミルトリフェニルホスホニウム、ベンジルトリフェニルホスホニウム、エチルトリフェニルホスホニウム、ジフェニルプロピルホスホニウム、トリフェニルホスホニウム、トリシクロヘキシルホスホニウム、トリ-n-オクチルホスホニウム等を挙げることができる。なお、アルキルジメチルベンジルアンモニウム、ジ-n-アルキルジメチルアンモニウムにおけるアルキル基として、炭素数が8以上18以下の直鎖アルキル基が挙げられる。
【0096】
なお、一般式(A)に示した通り、有機オニウムイオンの中心元素は合計4つの基または水素と結合している。上述した有機オニウムイオンの名称で、結合している基が4つ未満である場合、残りは水素原子が結合して有機オニウムイオンを形成している。例えば、N,N-ジドデシルメチルアンモニウムであれば、名称からドデシル基が2つ、メチル基が1つ結合していると判断できる。この場合、残りの1つには水素が結合し、有機オニウムイオンを形成している。
【0097】
有機オニウムがO原子を含む場合、O原子に対するC原子の質量比率(C/O比)は大きいほど好ましく、例えば、C/O>5であることが好ましい。C/O比を5よりも大きくすることにより、微細繊維状セルロース含有スラリーに、有機オニウムイオンまたは、中和により有機オニウムイオンを形成する化合物を添加した際に、繊維状セルロース濃縮物が得られやすくなる。
【0098】
有機オニウムイオンの分子量は、2000以下であることが好ましく、1800以下であることがより好ましい。有機オニウムイオンの分子量を上記範囲内とすることにより、繊維状セルロースのハンドリング性を高めることができる。また、有機オニウムイオンの分子量を上記範囲内とすることにより、分散液中における繊維状セルロースの含有率の低下を抑制できる。
【0099】
有機オニウムイオンの含有量は、微細繊維状セルロース中に含まれるアニオン性基量に対して、0.5倍モル量から2倍モル量であることが好ましいが、特に限定されない。有機オニウムイオンの含有量は、有機オニウムイオンに典型的に含まれる原子を追跡することで測定することが出来る。具体的には、有機オニウムイオンがアンモニウムイオンの場合は窒素原子を、有機オニウムイオンがホスホニウムイオンの場合はリン原子の量を測定する。なお、微細繊維状セルロースが有機オニウムイオン以外に、窒素原子やリン原子を含む場合は、有機オニウムイオンのみを抽出する方法、例えば、酸による抽出操作などを行ってから、目的の原子の量を測定すれば良い。
【0100】
有機オニウムイオンは、疎水性を発揮するイオンであることが好ましい。すなわち、本実施形態における微細繊維状セルロースは、有機オニウムイオンを有することにより疎水性を発揮する。その結果、有機溶媒への分散性が高まり、所望の粘度や光線透過率を発揮する分散液が得られる。そして、このような分散液は、高いチキソトロピー性を発揮することができる。
【0101】
(任意成分)
本実施形態の分散液は、上述した微細繊維状セルロースと有機溶媒からなる分散液であってもよいが、上述した微細繊維状セルロースと有機溶媒に加えて、任意成分を含有していてもよい。任意成分としては、例えば、樹脂を挙げることができる。樹脂の種類は特に限定されるものではないが、例えば、熱可塑性樹脂や熱硬化性樹脂を挙げることができる。
【0102】
樹脂としては、アクリル系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、シリコーン系樹脂、フッ素系樹脂、塩素系樹脂、エポキシ系樹脂、メラミン系樹脂、フェノール系樹脂、ポリウレタン系樹脂、ジアリルフタレート系樹脂、アルコール系樹脂、セルロース誘導体、これらの樹脂の前駆体を挙げることができる。なお、セルロース誘導体としては、たとえば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシエチルセルロースなどを挙げることができる。
【0103】
分散液は、樹脂として、樹脂の前駆体を含んでいてもよい。樹脂の前駆体の種類は特に限定されるものではないが、たとえば、熱可塑性樹脂や熱硬化性樹脂の前駆体を挙げることができる。熱可塑性樹脂の前駆体とは、熱可塑性樹脂を製造するために使用されるモノマーや分子量が比較的低いオリゴマーを意味する。また、熱硬化性樹脂の前駆体とは、光、熱、硬化剤の作用によって重合反応または架橋反応を起こして熱硬化性樹脂を形成しうるモノマーや分子量が比較的低いオリゴマーを意味する。
【0104】
分散液は、樹脂として、上述した樹脂種とは別にさらに水溶性高分子を含んでいてもよい。水溶性高分子としては、たとえば、合成水溶性高分子(例えば、カルボキシビニルポリマー、ポリビニルアルコール、メタクリル酸アルキル・アクリル酸コポリマー、ポリビニルピロリドン、ポリアクリル酸ナトリウム、ポリエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、イソプレングリコール、ヘキシレングリコール、1,3-ブチレングリコール、ポリアクリルアミドなど)、増粘多糖類(例えば、キサンタンガム、グアーガム、タマリンドガム、カラギーナン、ローカストビーンガム、クインスシード、アルギン酸、プルラン、カラギーナン、ペクチンなど)、カチオン化デンプン、生デンプン、酸化デンプン、エーテル化デンプン、エステル化デンプン、アミロース等のデンプン類、グリセリン、ジグリセリン、ポリグリセリン等のグリセリン類等、ヒアルロン酸、ヒアルロン酸の金属塩等を挙げることができる。
【0105】
また、任意成分としては、界面活性剤、有機イオン、カップリング剤、無機層状化合物、無機化合物、レベリング剤、防腐剤、消泡剤、有機系粒子、潤滑剤、帯電防止剤、紫外線防御剤、染料、顔料、安定剤、磁性粉、配向促進剤、可塑剤、分散剤、架橋剤等を挙げることができる。
【0106】
(分散液の製造方法)
分散液の製造方法は、上述した解繊工程を経て得られる微細繊維状セルロース含有スラリーに、有機オニウムイオンまたは、中和により有機オニウムイオンを形成する化合物を添加して、繊維状セルロース凝集物(濃縮物)を得る工程と、繊維状セルロース凝集物(濃縮物)を有機溶媒に分散させる工程と、を含む。
【0107】
繊維状セルロース凝集物(濃縮物)を得る工程では、上述した解繊処理工程で得られた微細繊維状セルロース含有スラリーに、上述したような有機オニウムイオンまたは、中和により有機オニウムイオンを形成する化合物を添加する。この際、有機オニウムイオンは、有機オニウムイオンを含有した溶液として添加することが好ましく、有機オニウムイオンを含有した水溶液として添加することがより好ましい。
【0108】
有機オニウムイオンを含有した水溶液は、通常、有機オニウムイオンと、対イオン(アニオン)を含んでいる。有機オニウムイオンの水溶液を調製する際、有機オニウムイオンと、対応する対イオンが既に塩を形成している場合は、そのまま水に溶解させればよい。有機オニウムイオンの水溶液を調製する際、有機オニウムイオンと、対応する対イオンが既に塩を形成している場合は、水又は熱水に溶解することが好ましい。
【0109】
また、有機オニウムイオンは、例えば、ドデシルアミンなどのように、酸によって中和されて始めて生成する場合もある。この場合、有機オニウムイオンは、中和により有機オニウムイオンを形成する化合物と酸との反応により得られる。この場合、中和に使用する酸としては、塩酸、硫酸、硝酸等の無機酸や乳酸、酢酸、ギ酸、シュウ酸等の有機酸が挙げられる。凝集工程では、中和により有機オニウムイオンを形成する化合物を繊維状セルロース含有スラリーに直接加え、繊維状セルロースが含むアニオン性基を対イオンとして、有機オニウムイオン化させても良い。
【0110】
有機オニウムイオンの添加量は、繊維状セルロースの全質量に対し、2質量%以上であることが好ましく、10質量%以上であることがより好ましく、50質量%以上であることがさらに好ましく、100質量%以上であることが特に好ましい。なお、有機オニウムイオンの添加量は、繊維状セルロースの全質量に対し、1000質量%以下であることが好ましい。
また、添加する有機オニウムイオンのモル数は、繊維状セルロースが含む無機オキソ酸基の量(モル数)に価数を乗じた値の0.2倍以上であることが好ましく、0.5倍以上であることがより好ましく、1.0倍以上であることがさらに好ましい。なお、添加する有機オニウムイオンのモル数は、繊維状セルロースが含む無機オキソ酸基の量(モル数)に価数を乗じた値の10倍以下であることが好ましい。
【0111】
有機オニウムイオンを添加し、撹拌を行うと、繊維状セルロース含有スラリー中に凝集物が生じる。この凝集物は、対イオンとして有機オニウムイオンを有する繊維状セルロースが凝集したものである。本明細書においては、このような凝集物を繊維状セルロース濃縮物ともいう。凝集物が生じた繊維状セルロース含有スラリーを減圧濾過することで、繊維状セルロース凝集物(濃縮物)を回収することができる。
【0112】
得られた繊維状セルロース凝集物は、イオン交換水で洗浄されてもよい。繊維状セルロース凝集物をイオン交換水で繰り返し洗うことで、繊維状セルロース凝集物に含まれる余剰な有機オニウムイオン等を除去することができる。
【0113】
得られた繊維状セルロース凝集物の固形分濃度は、5質量%以上であることが好ましく、15質量%以上であることがより好ましく、25質量%以上であることがさらに好ましい。なお、繊維状セルロース凝集物の固形分濃度は、100質量%であってもよい。
【0114】
繊維状セルロース凝集物の水分含有量は、繊維状セルロース凝集物の全質量に対して、0質量%であってもよく、0.5質量%以上であってもよく、1質量%以上であってもよく、3質量%以上であってもよく、5質量%以上であってもよい。また、繊維状セルロース凝集物の水分含有量は、繊維状セルロース凝集物の全質量に対して、20質量%以下であることが好ましく、15質量%以下であることがより好ましい。なお、繊維状セルロース凝集物中の水分含有量は、繊維状セルロース凝集物を水分計(エー・アンド・デイ社製、MS-70)に200mg載せ、140℃で加熱することで測定することができる。測定された水分量から繊維状セルロース凝集物中の水分含有量を算出することができる。
【0115】
繊維状セルロース凝集物は、さらに乾燥工程、エージング工程、スプレードライ工程、造粒工程、シート化工程、加熱工程、湿潤工程、粉砕工程、噴霧工程、浸漬工程、濾過工程、凍結工程、昇華工程、搾水工程、加圧脱水工程、遠心脱水工程、表面処理工程等を経たものであってもよい。中でも、繊維状セルロース凝集物は、乾燥工程を経たものであることが好ましく、これにより水分含有量が低い、繊維状セルロース凝集物が得られる。
【0116】
繊維状セルロース凝集物(濃縮物)を有機溶媒に分散させる工程では、上述した繊維状セルロース凝集物(濃縮物)を得る工程で得られた繊維状セルロース凝集物(濃縮物)を、有機溶媒に分散させる。なお、このような分散工程は、繊維状セルロース凝集物(濃縮物)を再度溶媒に分散させる工程であるため、再分散工程とも呼ばれる。
【0117】
繊維状セルロース凝集物(濃縮物)を有機溶媒に分散させる際に用いる分散装置としては、たとえば上記解繊処理において記載した解繊処理装置と同様のものを使用することができる。中でも、繊維状セルロース凝集物(濃縮物)を有機溶媒に分散させる際には、高圧ホモジナイザーや超高圧ホモジナイザーを用いて分散させることが好ましい。再分散工程で高圧ホモジナイザーを用いることにより、繊維状セルロース凝集物(濃縮物)の再分散性が高まり、高粘度であり、かつ高透明の分散液が得られやすくなる。
【0118】
また、再分散工程において、もしくは再分散工程の前には、繊維状セルロース凝集物(濃縮物)を有機溶媒に分散させてなる懸濁液を加温する工程を設けることが好ましい。すなわち、分散液の製造方法は、微細繊維状セルロース含有スラリーに、有機オニウムイオンまたは、中和により有機オニウムイオンを形成する化合物を添加して、繊維状セルロース凝集物(濃縮物)を得る工程と、繊維状セルロース凝集物(濃縮物)を有機溶媒に懸濁して懸濁液を得る工程と、懸濁液を加温して高圧ホモジナイザーもしくは超高圧ホモジナイザーで処理することで分散液を得る工程と、を含むことが好ましい。この場合、懸濁液は40℃以上に加温されることが好ましい。なお、加温する工程においては、懸濁液の温度は100℃以下とすることが好ましい。従来、再分散工程においては、繊維状セルロース凝集物(濃縮物)の熱変性等を抑制することを目的として、冷却することが通常行われていた。しかしながら、本実施形態においては、敢えて再分散工程において、もしくは再分散工程の前に加温工程を設けることとした。そして、このような加温工程を設けることにより、より高粘度であり、かつ高透明の分散液を得ることに成功した。
【0119】
再分散工程において、もしくは再分散工程の前に懸濁液を加温する場合、分散装置通過後の液温を40℃以上とすることが好ましい。なお、分散装置として高圧ホモジナイザーや超高圧ホモジナイザーを用いる場合には、粉砕機構部通過後の液温を40℃以上とすることが好ましい。分散装置通過後の液温を40℃以上とするためには、例えば、分散装置通過時の圧力を上げること、粉砕処理部内部流路の内径を小さくすること、ポンプ速度を上げること、ポンプ通過前および/またはポンプ通過後および/または粉砕処理部を加温すること、供試する懸濁液を事前に加温すること等が挙げられる。
【0120】
本明細書において、供試する懸濁液を事前に加温する工程のことを、事前加温工程と呼ぶこともある。事前加温工程においては、懸濁液の液温が40℃以上100℃以下となるように加温することが好ましい。本実施形態においては、このような事前加温工程を設けることが好ましく、高圧ホモジナイザー処理前の懸濁液をあらかじめ加温して40℃以上とすることにより、微細繊維状セルロースの有機溶媒に対する分散性がさらに向上し、より高粘度であり、かつ高透明の分散液が得られやすくなる。
【0121】
分散液の製造工程では、得られた分散液にさらに任意成分を分散させる工程を含んでいてもよい。この際用いられる任意成分としては、上述した任意成分を挙げることができる。
【0122】
(用途)
本発明の分散液は、増粘剤として各種用途に用いられてもよい。例えば、本発明の分散液は、食品、化粧品、セメント、塗料(自動車、船舶、航空機等の乗り物塗装用、建材用、日用品用など)、インク、医薬品、包装材料、コーティング材料、などへの添加物として用いることができる。また、本発明の分散液は、樹脂系材料に添加したりすることで、日用品への応用も可能である。中でも、本発明の分散液は、塗料用に用いられることが好ましい。
【0123】
また、本発明の分散液は成形体形成用として好ましく用いられる。成形体としての形状は特に限定されるものではなく、例えば、シート状、粒状、糸状の成形体とすることができる。中でも、本発明の分散液は、シート状の成形体の用途に好ましく用いられる。例えば、本発明の分散液を製膜し、各種フィルムとして使用することができる。
【0124】
分散液を基材上に塗工することで得られる成形体は、補強材、内装材、外装材、包装用資材、電子材料、光学材料、音響材料、プロセス材料、輸送機器の部材、電子機器の部材、電気化学素子の部材等の用途にも適している。
【実施例0125】
以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
【0126】
<製造例A>
原料パルプとして、王子製紙製の針葉樹クラフトパルプ(固形分93質量%、坪量208g/mシート状、離解してJIS P 8121に準じて測定されるカナダ標準濾水度(CSF)が700ml)を使用した。この原料パルプに対してリンオキソ酸化処理を次のようにして行った。まず、上記原料パルプ100質量部(絶乾質量)に、リン酸二水素アンモニウムと尿素の混合水溶液を添加して、リン酸二水素アンモニウム45質量部、尿素120質量部、水150質量部となるように調整し、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥機で200秒加熱し、パルプ中のセルロースにリン酸基を導入し、リン酸化パルプを得た。
【0127】
次いで、得られたリン酸化パルプに対して洗浄処理を行った。洗浄処理は、リン酸化パルプ100g(絶乾質量)に対して10Lのイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。
【0128】
次いで、洗浄後のリン酸化パルプに対して中和処理を次のようにして行った。まず、洗浄後のリン酸化パルプを10Lのイオン交換水で希釈した後、撹拌しながら1Nの水酸化ナトリウム水溶液を少しずつ添加することにより、pHが12以上13以下のリン酸化パルプスラリーを得た。次いで、当該リン酸化パルプスラリーを脱水して、中和処理が施されたリン酸化パルプを得た。次いで、中和処理後のリン酸化パルプに対して、上記洗浄処理を行った。
【0129】
これにより得られたリン酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1230cm-1付近にリン酸基のP=Oに基づく吸収が観察され、パルプにリン酸基が付加されていることが確認された。また、得られたリン酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
【0130】
得られたリン酸化パルプにイオン交換水を添加し、固形分濃度(繊維状セルロース濃度)が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(スギノマシン社製、スターバースト)で200MPaの圧力にて6回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液Aを得た。
【0131】
X線回折により、この微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。また、微細繊維状セルロースの繊維幅を、透過型電子顕微鏡を用いて測定したところ、2~5nmであった。また、AFMによる画像解析から、微細繊維状セルロースを100本抽出しアスペクト比の数平均値を算出したところ、アスペクト比の数平均値は300であった。なお、後述するリンオキソ酸基量の測定方法で測定されるリン酸基量(第1解離酸量)は、1.45mmol/gだった。なお、総解離酸量は、2.45mol/gであった。
【0132】
<製造例B>
リン酸二水素アンモニウムの代わりに亜リン酸(ホスホン酸)33質量部を用いて、パルプ中のセルロースに亜リン酸基を導入した以外は、製造例Aと同様に操作を行い、亜リン酸化パルプを得た。
【0133】
得られた亜リン酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1210cm-1付近に亜リン酸基の互変異性体であるホスホン酸基のP=Oに基づく吸収が観察され、パルプに亜リン酸基(ホスホン酸基)が付加されていることが確認された。また、得られた亜リン酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
【0134】
得られた亜リン酸化パルプを製造例Aと同様に、湿式微粒化装置で処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液Bを得た。
【0135】
X線回折により、この微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。また、微細繊維状セルロースの繊維幅を、透過型電子顕微鏡を用いて測定したところ、3~5nmであった。また、AFMによる画像解析から、微細繊維状セルロースを100本抽出しアスペクト比の数平均値を算出したところ、アスペクト比の数平均値は280であった。なお、後述するリンオキソ酸基量の測定方法で測定される亜リン酸基量(第1解離酸量)は1.51mmol/gだった。なお、総解離酸量は、1.54mmol/gであった。
【0136】
<製造例C>
リン酸二水素アンモニウムの代わりにアミド硫酸38質量部を用いた以外は、製造例Aと同様に操作を行い、硫酸化パルプを得た。
【0137】
これにより得られた硫酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1220-1260cm-1付近に硫酸基(スルホン酸基)に基づく吸収が観察され、パルプに硫酸基(スルホン酸基)が付加されていることが確認された。また、得られた硫酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
【0138】
得られた硫酸化パルプにイオン交換水を添加後、撹拌し、固形分濃度(繊維状セルロース濃度)が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(スギノマシン社製、スターバースト)で200MPaの圧力にて6回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液Cを得た。また、AFMによる画像解析から、微細繊維状セルロースを100本抽出しアスペクト比の数平均値を算出したところ、アスペクト比の数平均値は280であった。なお、後述する硫黄オキソ酸基量の測定方法で測定される硫酸基(スルホン酸基)量は1.30mmol/gだった。
【0139】
<製造例D>
原料パルプとして、王子製紙製の針葉樹クラフトパルプ(未乾燥)を使用した。この原料パルプに対してアルカリTEMPO酸化処理を次のようにして行った。まず、乾燥質量100質量部相当の上記原料パルプと、TEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシル)1.6質量部と、臭化ナトリウム10質量部を、水10000質量部に分散させた。次いで、13質量%の次亜塩素酸ナトリウム水溶液を、1.0gのパルプに対して10mmolになるように加えて反応を開始した。反応中は0.5Mの水酸化ナトリウム水溶液を滴下してpHを10以上10.5以下に保ち、pHに変化が見られなくなった時点で反応終了と見なした。
【0140】
次いで、得られたTEMPO酸化パルプに対して洗浄処理を行った。洗浄処理は、TEMPO酸化後のパルプスラリーを脱水し、脱水シートを得た後、5000質量部のイオン交換水を注ぎ、撹拌して均一に分散させた後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。
【0141】
また、得られたTEMPO酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
【0142】
得られたTEMPO酸化パルプにイオン交換水を添加し、固形分濃度(繊維状セルロース濃度)が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(スギノマシン社製、スターバースト)で200MPaの圧力にて6回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液Dを得た。
【0143】
X線回折により、この微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。また、微細繊維状セルロースの繊維幅を、透過型電子顕微鏡を用いて測定したところ、2~5nmであった。また、AFMによる画像解析から、微細繊維状セルロースを100本抽出しアスペクト比の数平均値を算出したところ、アスペクト比の数平均値は250であった。なお、後述するカルボキシ基量の測定方法で測定されるカルボキシ基量は、1.80mmol/gだった。
【0144】
〔リンオキソ酸基量の測定〕
微細繊維状セルロースのリンオキソ酸基量(リン酸基量もしくは亜リン酸基量)の測定においては、まず、対象となる微細繊維状セルロースにイオン交換水を添加し、固形分濃度が0.2質量%のスラリーを調製した。得られた微細繊維状セルロース分散液に対し、イオン交換樹脂による処理を行った後、アルカリを用いた滴定を行うことにより測定した。
イオン交換樹脂による処理は、上記微細繊維状セルロース分散液に体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ株式会社、コンディショング済)を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーを分離することにより行った。
また、アルカリを用いた滴定は、イオン交換樹脂による処理後の微細繊維状セルロース分散液に、0.1Nの水酸化ナトリウム水溶液を、5秒に10μLずつ加えながら、スラリーが示すpHの値の変化を計測することにより行った。なお、滴定開始の15分前から窒素ガスをスラリーに吹き込みながら滴定を行った。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が二つ観測される。これらのうち、アルカリを加えはじめて先に得られる増分の極大点を第1終点と呼び、次に得られる増分の極大点を第2終点と呼ぶ(図1)。滴定開始から第1終点までに必要としたアルカリ量が、滴定に使用したスラリー中の第1解離酸量と等しくなる。また、滴定開始から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中の総解離酸量と等しくなる。なお、滴定開始から第1終点までに必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除した値をリンオキソ酸基量(mmol/g)とした。
【0145】
〔カルボキシ基量の測定〕
微細繊維状セルロースのカルボキシ基量の測定においては、まず、対象となる微細繊維状セルロースにイオン交換水を添加し、固形分濃度が0.2質量%のスラリーを調製した。得られた微細繊維状セルロース分散液に対し、イオン交換樹脂による処理を行った後、アルカリを用いた滴定を行うことにより測定した。
イオン交換樹脂による処理は、上記微細繊維状セルロース分散液に体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ株式会社、コンディショング済)を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーを分離することにより行った。
また、アルカリを用いた滴定は、イオン交換樹脂による処理後の微細繊維状セルロース分散液に、0.1Nの水酸化ナトリウム水溶液を30秒に1回、50μLずつ加えながら、分散液が示すpHの値の変化を計測することにより行った。カルボキシ基量(mmol/g)は、計測結果のうち図2に示す第1領域に相当する領域において必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除して算出した。
【0146】
〔硫黄オキソ酸基量の測定〕
微細繊維状セルロースの硫黄オキソ酸基量は、次のように測定した。製造例Cで得られた微細繊維状セルロースを冷凍庫で凍結させた後、凍結乾燥機(ラブコンコ社製FreeZone)で3日間乾燥させた。得られた凍結乾燥物をハンドミキサー(大阪ケミカル製、ラボミルサーPLUS)を用い、回転数20,000rpmで60秒、粉砕処理を行って粉末状にした。
凍結乾燥及び粉砕処理後の試料を密閉容器中で硝酸を用いて加圧加熱分解した。その後、適宜希釈してICP-OESで硫黄量を測定した。供試した微細繊維状セルロースの絶乾質量で割り返して算出した値を微細繊維状セルロースの硫黄オキソ酸基量(単位:mmol/g)とした。
【0147】
<実施例1>
3.86質量%のジ-n-ステアリルジメチルアンモニウムクロリド(以下、DSDMAとも表記する。)水溶液100gを、微細繊維状セルロース分散液A100gに添加して5分間撹拌したところ、微細繊維状セルロース分散液中に凝集物が生じた。凝集物が生じた微細繊維状セルロース分散液を減圧濾過することにより、微細繊維状セルロース凝集物を得た。得られた微細繊維状セルロース凝集物をイオン交換水で繰り返し洗うことで、微細繊維状セルロース凝集物に含まれる余剰なジ-n-ステアリルジメチルアンモニウムクロリド及び溶出したイオンを除去し、微細繊維状セルロース濃縮物を得た。得られた微細繊維状セルロース濃縮物を風乾し、固形分濃度が90質量%の微細繊維状セルロース濃縮物Aを得た。
【0148】
微細繊維状セルロース濃縮物Aに、固形分濃度(繊維状セルロース濃度)が3質量%となるようトルエンを添加し懸濁液とした。さらにこの懸濁液を湯浴により事前加温し、懸濁液の温度を40℃とした。40℃に事前加温した懸濁液を、高圧ホモジナイザー(Beryu-Mini、株式会社美粒製)で、100MPaの圧力にて5回処理した。またこの際、粉砕処理部通過後の液温を測定した。こうして微細繊維状セルロース濃縮物Aのトルエン分散液を得た。
【0149】
上記で得られたトルエン分散液を23℃で、24時間静置した後、B型粘度計(BLOOKFIELD社製、アナログ粘度計T-LVT)を用いて粘度を測定した。測定条件は、23℃の条件とし、0.6rpm又は60rpmで3分間回転させた際の粘度を測定した。また、チキソトロピック性の指標であるTI値を、下記式に従って算出した。
TI値=(0.6rpmにおける粘度の値/60rpmにおける粘度の値)
【0150】
上記で得られたトルエン分散液を光路長10mmの液体用石英ガラスセルに封入し、紫外・可視分光分析装置(日本分光株式会社製、V-770)を用いて波長660nmにおける光線透過率を測定した。なお、ゼロ点測定は、同ガラスセルに入れたイオン交換水で行った。また、光線透過率の測定は、各実施例及び比較例において有機溶媒に再分散させた後、直ちに行った。
【0151】
<実施例2>
微細繊維状セルロース分散液Bを用いた以外は、実施例1と同様の方法で有機溶媒分散液を得た。
【0152】
<実施例3>
微細繊維状セルロース分散液Cを用いた以外は、実施例1と同様の方法で有機溶媒分散液を得た。
【0153】
<実施例4>
高圧ホモジナイザーによる処理の前に事前加温を行わなかったこと以外は、実施例1と同様の方法で有機溶媒分散液を得た。
【0154】
<実施例5>
微細繊維状セルロース分散液Dを用いた以外は、実施例1と同様の方法で有機溶媒分散液を得た。
【0155】
<実施例6>
トルエンの代わりにキシレンを用いた以外は、実施例1と同様の方法で有機溶媒分散液を得た。
【0156】
<実施例7>
ジ-n-ステアリルジメチルアンモニウムクロリドの代わりにジデシルジメチルアンモニウムクロリド(以下、DDDMAとも表記する。)を用いた以外は、実施例1と同様の方法で有機溶媒分散液を得た。
【0157】
<比較例1>
事前加温を行わず、高圧ホモジナイザーの代わりに超音波ホモジナイザー(hielscher製、UP400S)を用いてトルエン懸濁液を10分間処理したこと以外は、実施例1と同様の方法で有機溶媒分散液を得た。
【0158】
【表1】

【0159】
実施例で得られた分散液は高粘度かつ高透明であり、チキソトロピック性が向上していた。また、実施例1~3、5及び6においては、高圧ホモジナイザー粉砕処理直後の液温を40℃以上とすることで、粘度と透明性がさらに向上していた。
図1
図2