IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ヤマハ発動機株式会社の特許一覧

特開2024-16646二次外観検査装置、外観検査システムおよび二次外観検査方法
<>
  • 特開-二次外観検査装置、外観検査システムおよび二次外観検査方法 図1
  • 特開-二次外観検査装置、外観検査システムおよび二次外観検査方法 図2
  • 特開-二次外観検査装置、外観検査システムおよび二次外観検査方法 図3
  • 特開-二次外観検査装置、外観検査システムおよび二次外観検査方法 図4
  • 特開-二次外観検査装置、外観検査システムおよび二次外観検査方法 図5
  • 特開-二次外観検査装置、外観検査システムおよび二次外観検査方法 図6
  • 特開-二次外観検査装置、外観検査システムおよび二次外観検査方法 図7
  • 特開-二次外観検査装置、外観検査システムおよび二次外観検査方法 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024016646
(43)【公開日】2024-02-07
(54)【発明の名称】二次外観検査装置、外観検査システムおよび二次外観検査方法
(51)【国際特許分類】
   G01N 21/956 20060101AFI20240131BHJP
【FI】
G01N21/956 B
【審査請求】未請求
【請求項の数】8
【出願形態】OL
(21)【出願番号】P 2022118929
(22)【出願日】2022-07-26
(71)【出願人】
【識別番号】000010076
【氏名又は名称】ヤマハ発動機株式会社
(74)【代理人】
【識別番号】100105935
【弁理士】
【氏名又は名称】振角 正一
(74)【代理人】
【識別番号】100136836
【弁理士】
【氏名又は名称】大西 一正
(72)【発明者】
【氏名】松原 一樹
【テーマコード(参考)】
2G051
【Fターム(参考)】
2G051AA61
2G051AB14
2G051AC02
2G051CA04
2G051CB01
2G051EA20
2G051EA21
2G051ED04
2G051ED11
(57)【要約】
【課題】対象物に対する二次判定を機械により実行する際の過判定の発生を抑制する。
【解決手段】複数の検査領域A(N)のうち一次判定で不良と判定された不良領域Anを示す一次判定結果Rが取得される(ステップS201)。一次判定結果Rが示す不良領域Anにおける半田S(対象物)の半田画像Isに含まれる異常を示す異常度、すなわち不良領域画像Inの異常度が算出されて、当該異常度に基づき、半田Sの状態が判定される(二次判定)。
【選択図】図5
【特許請求の範囲】
【請求項1】
互いに異なる複数の検査領域のそれぞれについて当該検査領域における対象物の状態を判定する一次判定において、前記複数の検査領域のうち不良と判定された不良領域を示す不良領域情報を取得する情報取得部と、
前記不良領域情報が示す前記不良領域における前記対象物の画像に含まれる異常を示す不良領域異常データを算出する異常データ算出部と、
前記不良領域異常データに基づき、前記対象物の状態を判定する二次判定を実行する二次判定実行部と
を備えた二次外観検査装置。
【請求項2】
前記異常データ算出部は、
前記一次判定において撮像された、前記複数の検査領域を含む撮像領域における前記対象物の画像である対象物画像を取得する画像取得部と、
前記複数の検査領域に対応してそれぞれ設けられた複数の機械学習モデルと、
前記複数の機械学習モデルのうち、前記不良領域に対応する対応モデルを用いて、前記不良領域異常データを算出するデータ算出部と
を有し、
前記複数の機械学習モデルのそれぞれは、対応する前記検査領域で撮像された画像に含まれる異常を示す検査領域異常データを出力し、
前記データ算出部は、前記対象物画像のうち、前記不良領域に含まれる画像を不良領域画像として抽出して、前記対応モデルが前記不良領域画像について出力する前記検査領域異常データを前記不良領域異常データとして算出する請求項1に記載の二次外観検査装置。
【請求項3】
前記異常データ算出部は、
前記一次判定において撮像された、前記複数の検査領域を含む撮像領域における前記対象物の画像である対象物画像を取得する画像取得部と、
前記撮像領域で撮像された画像に含まれる異常を示す撮像領域異常データを出力する機械学習モデルと、
前記機械学習モデルが前記対象物画像について出力した前記撮像領域異常データから、前記不良領域に対応するデータを抽出することで、前記不良領域異常データを算出するデータ算出部と
を有する請求項1に記載の二次外観検査装置。
【請求項4】
ユーザインターフェースと、
前記不良領域異常データを少なくとも含む、可視化された異常データを前記ユーザインターフェースに表示させる表示制御部と
をさらに備えた請求項1に記載の二次外観検査装置。
【請求項5】
前記二次判定実行部による前記二次判定によって前記対象物の良否を判定する自動判定モードと、前記ユーザインターフェースに前記異常データを表示しつつユーザが前記ユーザインターフェースに行った操作に基づき前記対象物の良否を判定するマニュアル判定モードとを選択的に実行するモード選択部をさらに備えた請求項4に記載の二次外観検査装置。
【請求項6】
前記モード選択部は、前記自動判定モードおよび前記マニュアル判定モードのうち、前記ユーザインターフェースに対するユーザの操作によって選択された一のモードを実行する請求項5に記載の二次外観検査装置。
【請求項7】
互いに異なる複数の検査領域のそれぞれについて当該検査領域における対象物の状態を判定する一次判定を実行して、当該一次判定において前記複数の検査領域のうち不良と判定された不良領域を示す不良領域情報を出力する一次外観検査装置と、
請求項1ないし6のいずれか一項に記載の二次外観検査装置と
を備え、
前記情報取得部は、前記一次外観検査装置から出力された前記不良領域情報を取得する外観検査システム。
【請求項8】
互いに異なる複数の検査領域のそれぞれについて当該検査領域における対象物の状態を判定する一次判定において、前記複数の検査領域のうち不良と判定された不良領域を示す不良領域情報を取得する工程と、
前記不良領域情報が示す前記不良領域における前記対象物の画像に含まれる異常を示す不良領域異常データを算出する工程と、
前記不良領域異常データに基づき、前記対象物の状態を判定する二次判定を実行する工程と
を備えた二次外観検査方法。
【発明の詳細な説明】
【技術分野】
【0001】
この発明は、複数の検査領域のそれぞれにおいて対象物の状態を判定する一次判定によって不良と判定された対象物に対して、さらに当該対象物の状態を判定する二次判定を実行することで、対象物の状態を的確に判定する技術に関する。
【背景技術】
【0002】
部品を基板に接合する半田を撮像した画像に基づき、当該半田の状態を判定する外観検査装置が知られている。かかる外観検査装置では、半田の状態を詳細に判定するために、互いに異なる複数の検査領域のそれぞれについて判定が実行される場合がある。例えば、部品の電極からの距離が異なる3つの検査領域が設定される。電極に1番目に近い検査領域では、半田が部品の電極の手前で凹む半田形状不良(未半田)の有無が判定される。電極に2番目に近い検査領域では、半田の量が不足する半田不足不良(半田小)の有無が判定される。また、電極に3番目に近い検査領域では、半田によって覆われるべき金属箔(銅箔)が露出する金属箔露出不良(赤目)の有無が判定される。
【0003】
ただし、このような外観検査装置では、実際には良好であるにもかかわらず、不良と誤判定されてしまう場合がある。そこで、外観検査装置での判定(一次判定)を補完する二次判定がユーザによって適宜実行される。つまり、外観検査装置の一次判定において、複数の検査領域のいずれかの検査領域について不良と判定された場合には、一次判定の対象となった半田を撮像した画像等がディスプレイに表示される。これによって、ユーザは、ディスプレイによる目視に基づき、最終的な判定を実行できる(二次判定)。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2010-8159号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、ユーザによって実行されていた二次判定を、機械によって実行することで、省人化を図ることが考えられる。例えば特許文献1には、対象物の画像に含まれる画素の異常に基づき対象物の状態を判定するニューラルネットワークが提案されている。しかしながら、外観検査装置による一次判定を補完する二次判定を機械により実行するにあたっては、次のような問題があった。
【0006】
つまり、ユーザによる上記の二次判定は、複数の検査領域のうち一次判定で不良と判定された検査領域の状態確認を目的とするものである。これに対して、対象物の画像が複数の検査領域を含むと、当該画像に含まれる異常を機械によって算出した結果、一次判定で不良と判定されなかった検査領域について不良と判定してしまう過判定が発生しうる。
【0007】
この発明は上記課題に鑑みなされたものであり、複数の検査領域のそれぞれにおいて対象物の状態を判定する一次判定によって不良と判定された対象物に対して、さらに当該対象物の状態を判定する二次判定を機械により実行するにあたり、過判定の発生を抑制可能とすることを目的とする。
【課題を解決するための手段】
【0008】
本発明に係る二次外観検査装置は、互いに異なる複数の検査領域のそれぞれについて当該検査領域における対象物の状態を判定する一次判定において、複数の検査領域のうち不良と判定された不良領域を示す不良領域情報を取得する情報取得部と、不良領域情報が示す不良領域における対象物の画像に含まれる異常を示す不良領域異常データを算出する異常データ算出部と、不良領域異常データに基づき、対象物の状態を判定する二次判定を実行する二次判定実行部とを備える。
【0009】
本発明に係る外観検査システムは、互いに異なる複数の検査領域のそれぞれについて当該検査領域における対象物の状態を判定する一次判定を実行して、当該一次判定において複数の検査領域のうち不良と判定された不良領域を示す不良領域情報を出力する一次外観検査装置と、上記の二次外観検査装置とを備え、情報取得部は、一次外観検査装置から出力された不良領域情報を取得する。
【0010】
本発明に係る二次外観検査方法は、互いに異なる複数の検査領域のそれぞれについて当該検査領域における対象物の状態を判定する一次判定において、複数の検査領域のうち不良と判定された不良領域を示す不良領域情報を取得する工程と、不良領域情報が示す不良領域における対象物の画像に含まれる異常を示す不良領域異常データを算出する工程と、不良領域異常データに基づき、対象物の状態を判定する二次判定を実行する工程とを備える。
【0011】
このように構成された本発明(二次外観検査装置、外観検査システムおよび二次外観検査方法)では、複数の検査領域のうち一次判定で不良と判定された不良領域を示す不良領域情報が取得される。そして、不良領域情報が示す不良領域における対象物の画像に含まれる異常を示す不良領域異常データが算出されて、当該不良領域異常データに基づき、対象物の状態が判定される(二次判定)。つまり、二次判定で対象物の状態を判定する基準から、一次判定で不良と判定されなかった検査領域が外される。その結果、一次判定で不良と判定されなかった検査領域について不良と判定してしまう過判定の発生を抑制することが可能となっている。
【0012】
また、異常データ算出部は、一次判定において撮像された、複数の検査領域を含む撮像領域における対象物の画像である対象物画像を取得する画像取得部と、複数の検査領域に対応してそれぞれ設けられた複数の機械学習モデルと、複数の機械学習モデルのうち、不良領域に対応する対応モデルを用いて、不良領域異常データを算出するデータ算出部とを有し、複数の機械学習モデルのそれぞれは、対応する検査領域で撮像された画像に含まれる異常を示す検査領域異常データを出力し、データ算出部は、対象物画像のうち、不良領域に含まれる画像を不良領域画像として抽出して、対応モデルが不良領域画像について出力する検査領域異常データを不良領域異常データとして算出するように、二次外観検査装置を構成してもよい。かかる構成では、二次判定で対象物の状態を判定する基準から、一次判定で不良と判定されなかった検査領域が外される。その結果、一次判定で不良と判定されなかった検査領域について不良と判定してしまう過判定の発生を抑制することが可能となっている。
【0013】
また、異常データ算出部は、一次判定において撮像された、複数の検査領域を含む撮像領域における対象物の画像である対象物画像を取得する画像取得部と、撮像領域で撮像された画像に含まれる異常を示す撮像領域異常データを出力する機械学習モデルと、機械学習モデルが対象物画像について出力した撮像領域異常データから、不良領域に対応するデータを抽出することで、不良領域異常データを算出するデータ算出部とを有するように、二次外観検査装置を構成してもよい。かかる構成では、二次判定で対象物の状態を判定する基準から、一次判定で不良と判定されなかった検査領域が外される。その結果、一次判定で不良と判定されなかった検査領域について不良と判定してしまう過判定の発生を抑制することが可能となっている。しかも、複数の検査領域に対応して複数の機械学習モデルを設けるのではなく、複数の検査領域を含む撮像領域に対して一の機械学習モデルを設ければ足りる。したがって、ユーザにおいては複数の機械学習モデルを管理する必要がなく、ユーザの管理負担を軽減することが可能となっている。
【0014】
また、ユーザインターフェースと、不良領域異常データを少なくとも含む、可視化された異常データをユーザインターフェースに表示させる表示制御部とをさらに備えるように、二次外観検査装置を構成してもよい。かかる構成では、ユーザは、可視化された異常データに含まれる不良領域異常データを目視で確認することができる。
【0015】
また、二次判定実行部による二次判定によって対象物の良否を判定する自動判定モードと、ユーザインターフェースに異常データを表示しつつユーザがユーザインターフェースに行った操作に基づき対象物の良否を判定するマニュアル判定モードとを選択的に実行するモード選択部をさらに備えるように、二次外観検査装置を構成してもよい。かかる構成では、自動判定モードを選択することで二次判定におけるユーザの負担を軽減できるとともに、マニュアル判定モードを選択することでユーザの目視による二次判定を実行できる。
【0016】
また、モード選択部は、自動判定モードおよびマニュアル判定モードのうち、ユーザインターフェースに対するユーザの操作によって選択された一のモードを実行するように、二次外観検査装置を構成してもよい。かかる構成では、自動判定モードおよびマニュアル判定モードのうち、ユーザの要求に応じたモードを実行することができる。
【発明の効果】
【0017】
以上のように、本発明によれば、複数の検査領域のそれぞれにおいて対象物の状態を判定する一次判定によって不良と判定された対象物に対して、さらに当該対象物の状態を判定する二次判定を機械により実行するにあたり、過判定の発生を抑制することが可能となる。
【図面の簡単な説明】
【0018】
図1】本発明に係る外観検査システムの一例を示すブロック図。
図2図1の一次外観検査装置で実行される一次判定の一例を示すフローチャート。
図3図2の一次判定で実行される動作を模式的に示す図。
図4】本発明に係る二次外観検査装置の第1例を示すブロック図。
図5図4の二次外観検査装置の第1例によって実行される二次判定を示すフローチャート。
図6図5の二次判定で実行される動作を模式的に示す図。
図7】本発明に係る二次外観検査装置の第2例を示すブロック図。
図8図7の二次外観検査装置の第2例によって実行される二次判定を示すフローチャート。
【発明を実施するための形態】
【0019】
図1は本発明に係る外観検査システムの一例を示すブロック図である。図1の外観検査システム1は、一次外観検査装置2および二次外観検査装置4を備え、コンデンサ、抵抗あるいは集積回路等の部品Eを基板Bに接合する半田Sの状態を検査する。一次外観検査装置2は、光照射部21および撮像カメラ22を有し、検査の対象物である半田Sを含む所定の撮像領域Acに光照射部21から光を照射しつつ、当該撮像領域Acを撮像カメラ22により撮像することで、半田Sを示す半田画像Isを撮像する。さらに、一次外観検査装置2は、二次外観検査装置4との通信を行う通信部28と、光照射部21、撮像カメラ22および通信部28を制御するコントローラ29とを有する。コントローラ29は、半田画像Isに基づき半田Sの良否を判定した結果である一次判定結果Rを取得する。また、通信部28は、半田画像Isや一次判定結果Rを二次外観検査装置4に送信する。
【0020】
一次外観検査装置2の具体的な構成としては、例えば特開2010-071844号公報に開示された装置構成を採用できる。同公報の装置では、それぞれ波長が異なる光(赤外、赤、緑および青)が互いに異なる角度で半田に照射され、基板に対向するカメラが半田で反射された光を撮像することで、画像が取得される。そして、この画像に基づき半田の良否が判定される。なお、一次外観検査装置2の具体的な構成は、この例に限られず、例えばWO2018/163278に記載の装置構成を採用することもできる。
【0021】
図2図1の一次外観検査装置で実行される一次判定の一例を示すフローチャートであり、図3図2の一次判定で実行される動作を模式的に示す図である。図3では、部品Eのみが示され、半田Sは示されていない。
【0022】
図2の一次判定では、図3に示す互いに異なる複数の検査領域A(N)(N=1、2、3)が設定される。検査領域A(1)は、半田Sが部品Eの電極の手前で凹む半田形状不良(未半田)の有無を判定するために設定され、検査領域A(2)は、半田Sの量が不足する半田不足不良(半田小)の有無を判定するために設定され、検査領域A(3)は、半田Sによって覆われるべき金属箔(銅箔)が露出する金属箔露出不良(赤目)の有無を判定するために設定される。
【0023】
図2に示すように、ステップS101では、コントローラ29は、半田Sを含む所定の撮像領域Acに光照射部21から光を照射しつつ、当該撮像領域Acを撮像カメラ22により撮像することで、半田画像Isを撮像する。この半田画像Isは、撮像領域Acに含まれる複数の画素のそれぞれについて輝度を示す画像データである。ステップS102では、コントローラ29は、検査領域A(N)を識別するカウント値Nをゼロにリセットし、ステップS103では、コントローラ29は、カウント値Nを1だけインクリメントする。
【0024】
そして、コントローラ29は、検査領域A(N)における状態の良否を、半田画像Isのうち、当該検査領域A(N)に含まれる画像に基づき判定する(ステップS104)。また、コントローラ29は、当該検査領域A(N)に対する判定結果(良好/不良)を保存する(ステップS105)。ステップS106では、カウント値Nが最大カウント値Nx(=3)に到達したかが確認される。最大カウント値Nxは、検査領域A(N)の個数(=3)に相当する。そして、カウント値Nが最大カウント値Nxに到達するまで、カウント値Nをインクリメントしつつ、ステップS104、S105が繰り返される。その結果、複数の検査領域A(N)(N=1、2、3)のそれぞれについて判定結果が取得される。
【0025】
ステップS107では、コントローラ29は、複数の検査領域A(N)それぞれに対する判定結果のうち、不良判定があるか否かを確認する。不良判定がある場合(ステップS107で「YES」の場合)には、コントローラ29は、複数の検査領域A(N)のうち、不良判定が示された不良領域Anを示す一次判定結果Rと、ステップS101で撮像した半田画像Isとを、通信部28によって二次外観検査装置4に出力する。
【0026】
図4は本発明に係る二次外観検査装置の第1例を示すブロック図である。二次外観検査装置4は、演算部41、記憶部42、通信部43およびUI(User Interface)44を備えたコンピュータである。演算部41は、CPU(Central Processing Unit)等のプロセッサであり、記憶部42は、SSD(Solid State Drive)あるいはHDD(Hard Disk Drive)等の記憶装置である。通信部43は一次外観検査装置2の通信部28との通信を実行し、例えば通信部28から出力された一次判定結果Rや半田画像Isを受信して、記憶部42に保存する。UI44は、マウスやキーボード等の入力機器と、ディスプレイ等の出力機器とを有する。なお、UI44の入力機器と出力機器とを別体で構成する必要は無く、タッチパネルディスプレイによってこれらを一体的に構成してもよい。
【0027】
演算部41は、所定の二次判定プログラムを実行することで、情報取得部411、画像取得部412、データ算出部413、自動判定実行部414、マニュアル判定制御部415およびモード選択部416を構成する。また、記憶部42は、複数の検査領域A(N)にそれぞれ対応して設けられた複数の機外学習モデルM(N)を保存する(N=1、2、3)。機外学習モデルM(N)は、半田画像Isのうち、当該機外学習モデルM(N)に対応する検査領域A(N)内の画像である検査領域画像Ia(N)(図3)と、当該検査領域画像Ia(N)の異常度との関係を学習済みであり、検査領域画像Ia(N)が入力されると当該検査領域画像Ia(N)の異常度を出力する。つまり、機外学習モデルM(1)は、検査領域A(1)の異常度を出力し、半田形状不良(未半田)の有無の判定に使用できる。機外学習モデルM(2)は、検査領域A(2)の異常度を出力し、半田不足不良(小半田)の有無の判定に使用できる。また、機外学習モデルM(3)は、検査領域A(3)の異常度を出力し、金属箔露出不良(赤目)の有無の判定に使用できる。
【0028】
なお、画像の異常度を出力する機械学習モデルの学習方法は、周知の技術を採用できる。例えば、既存の機械学習モデルに良品画像を入力した際に得られる当該機械学習モデルの中間層の特徴ベクトルを基準として保存しておく。そして、一次外観検査装置2で撮像された画像をこの機械学習モデルに入力した際に得られる特徴ベクトルと、基準となる特徴ベクトルとの距離とを異常度として算出できる。この異常度は、画像を構成する複数の画素のそれぞれについて算出できる。
【0029】
図5図4の二次外観検査装置の第1例によって実行される二次判定を示すフローチャートであり、図6図5の二次判定で実行される動作を模式的に示す図である。なお、図6では、部品Eのみが示され、半田Sは示されていない。
【0030】
図5に示すように、情報取得部411は、通信部43が一次外観検査装置2から受信した一次判定結果Rを取得し(ステップS201)、画像取得部412は、通信部43が一次外観検査装置2から受信した半田画像Isを取得する(ステップS202)。図6のステップS202の欄に例示するように、この半田画像Isは、一次判定で設定される複数の検査領域A(N)を含む撮像領域Acにおいて撮像された半田Sを示す。なお、ステップS201、S202の実行順序はここの例に限られない。
【0031】
ステップS203では、データ算出部413は、半田画像Isのうちから、一次判定結果Rが示す不良領域Anにおける画像である不良領域画像Inを抽出する。図6のステップS203の欄に示す例では、複数の検査領域A(1)、A(2)、A(3)のうち、検査領域A(2)が不良領域Anに相当し、当該不良領域Anの不良領域画像Inが半田画像Isから抽出される。さらに、データ算出部413は、複数の検査領域A(1)、A(2)、A(3)にそれぞれ対応する機外学習モデルM(1)、M(2)、M(3)のうち、不良領域An(すなわち、検査領域A(2))に対応する機外学習モデルM(2)を選択する(ステップS204)。そして、データ算出部413は、ステップS204で選択された機外学習モデルM(2)に不良領域画像Inを入力することで、不良領域画像Inの異常度を算出する。
【0032】
ステップS206では、モード選択部416は、自動判定実行部414により二次判定を自動で行う自動判定モードを実行するか、ユーザのUI44への入力操作をマニュアル判定制御部415によって判定した結果に基づき二次判定を行うマニュアル判定モードを実行するかを確認する。具体的には、ユーザは、自動判定モードおよびマニュアル判定モードのうちのいずれのモードを実行するかを、UI44に対する操作によってモード選択部416に設定できる。
【0033】
自動判定モードが設定されている場合(ステップS206で「YES」の場合)には、自動判定実行部414は、ステップS205で算出された不良領域画像Inの異常度に基づき、半田Sの良否を判定する(ステップS207)。具体的には、不良領域画像Inを構成する各画素の異常度が閾値以下である場合(ステップS207で「YES」)の場合には、半田画像Isに示される半田Sの状態が良好であることを示す良品判定が二次判定の結果として自動判定実行部414によって得られる(ステップS208)。一方、不良領域画像Inを構成する各画素のうちに異常度が閾値より大きい画素がある場合(ステップS207で「NO」)の場合には、半田画像Isに示される半田Sの状態が不良であることを示す不良判定が二次判定の結果として自動判定実行部414によって得られる(ステップS209)。ステップS208、S209で得られた二次判定の結果は、例えばUI44のディスプレイに表示される。
【0034】
マニュアル判定モードが設定されている場合(ステップS206で「NO」の場合)には、マニュアル判定制御部415は、不良領域画像Inの異常度を可視化した異常度マップ(ヒートマップ)をUI44のディスプレイに表示する(ステップS210)。そして、マニュアル判定制御部415は、UI44に入力されるユーザの判断が、良好であるか否かを判定する(ステップS211)。UI44に入力されるユーザの判断が良好である場合(ステップS211で「YES」の場合)には、半田画像Isに示される半田Sの状態が良好であることを示す良品判定が二次判定の結果としてマニュアル判定制御部415によって得られる(ステップS208)。一方、UI44に入力されるユーザの判断が不良である場合(ステップS211で「NO」の場合)には、半田画像Isに示される半田Sの状態が不良であることを示す不良判定が二次判定の結果としてマニュアル判定制御部415によって得られる(ステップS209)。ステップS208、S209で得られた二次判定の結果は、例えばUI44のディスプレイに表示される。
【0035】
以上に説明する実施形態では、複数の検査領域A(N)のうち一次判定で不良と判定された不良領域An(検査領域A(2))を示す一次判定結果R(不良領域情報)が取得される(ステップS201)。そして、一次判定結果Rが示す不良領域Anにおける半田S(対象物)の半田画像Isに含まれる異常を示す異常度(不良領域異常データ)、すなわち不良領域画像Inの異常度が算出されて(ステップS205)、ステップS206~S209では、当該異常度に基づき、半田Sの状態が判定される(二次判定)。つまり、二次判定で半田Sの状態を判定する基準から、一次判定で不良と判定されなかった検査領域A(1)、A(3)が外される。その結果、一次判定で不良と判定されなかった検査領域A(1)、A(3)について不良と判定してしまう過判定の発生を抑制することが可能となっている。
【0036】
特に、一次判定において撮像された、複数の検査領域A(N)を含む撮像領域Acにおける半田Sの画像である半田画像Is(対象物画像)が情報取得部411によって取得される(ステップS202)。これに対して、複数の検査領域A(ん)に対応してそれぞれ設けられた複数の機外学習モデルM(N)が記憶部42に保存されている。そして、複数の機外学習モデルM(N)のうち、不良領域画像In(検査領域A(2))に対応する機外学習モデルM(2)(対応モデル)を用いて、不良領域画像Inの異常度(不良領域異常データ)がデータ算出部413によって算出される(ステップS203~S205)。つまり、複数の機外学習モデルM(N)のそれぞれは、対応する検査領域A(N)で撮像された検査領域画像Ia(N)に含まれる異常度(検査領域異常データ)を出力するように構成されている。そこで、データ算出部413は、半田画像Isのうち、不良領域An(検査領域A(2))に含まれる画像を不良領域画像Inとして抽出して(ステップS203)、不良領域Anに対応する機外学習モデルM(2)(対応モデル)が不良領域画像Inについて出力する異常度(検査領域異常データ)を、不良領域画像Inの異常度(不良領域異常データ)として算出する(ステップS204、S205)。かかる構成では、二次判定で半田Sの状態を判定する基準から、一次判定で不良と判定されなかった検査領域A(1)、A(3)が外される。その結果、一次判定で不良と判定されなかった検査領域A(1)、A(3)について不良と判定してしまう過判定の発生を抑制することが可能となっている。
【0037】
また、UI44と、不良領域画像Inにおける異常度(不良領域異常データ)を少なくとも含む異常度マップ(可視化された異常データ)をUI44に表示させるマニュアル判定制御部415(表示制御部)とが具備されている。かかる構成では、ユーザは、異常度マップに含まれる不良領域画像Inにおける異常度を目視で確認することができる。
【0038】
また、自動判定実行部414(二次判定実行部)による二次判定によって半田Sの良否を判定する自動判定モード(ステップS207、S208、S209)と、UI44に異常度マップを表示しつつユーザがUI44に行った操作に基づき半田Sの良否を判定するマニュアル判定モード(ステップSS210、S211、S208、S209)とを選択的に実行するモード選択部416が具備されている。かかる構成では、自動判定モードを選択することで二次判定におけるユーザの負担を軽減できるとともに、マニュアル判定モードを選択することでユーザの目視による二次判定を実行できる。
【0039】
また、モード選択部416は、自動判定モードおよびマニュアル判定モードのうち、UI44に対するユーザの操作によって選択された一のモードを実行する(ステップS206)。かかる構成では、自動判定モードおよびマニュアル判定モードのうち、ユーザの要求に応じたモードを実行することができる。
【0040】
図7は本発明に係る二次外観検査装置の第2例を示すブロック図であり、図8図7の二次外観検査装置の第2例によって実行される二次判定を示すフローチャートである。以下では、第1例との差異点を中心に説明を行うこととし、第1例との共通点については相当符号を付して適宜説明を省略する。ただし、第1例と共通する構成を具備することで、第1例と同様の効果を奏することは言うまでもない。
【0041】
図7に示す一次外観検査装置2の記憶部42では、機外学習モデルMcが保存されている。この機外学習モデルMcは、複数の検査領域A(N)を含む撮像領域Acに対応して設けられている。つまり、機外学習モデルMcは、撮像領域Acで撮像された半田画像Isと、当該半田画像Isの異常度との関係を学習済みであり、半田画像Isが入力されると当該半田画像Isの異常度を出力する。
【0042】
図8に示すように、情報取得部411は、通信部43が一次外観検査装置2から受信した一次判定結果Rを取得し(ステップS301)、画像取得部412は、通信部43が一次外観検査装置2から受信した半田画像Isを取得する(ステップS302)なお、ステップS301、S302の実行順序はここの例に限られない。
【0043】
ステップS303では、データ算出部413は、機外学習モデルMcに半田画像Isを入力することで半田画像Isの異常度を算出する。さらに、データ算出部413は、ステップS303で算出された異常度のうちから、一次判定結果Rが示す不良領域Anにおける異常度を抽出する(ステップS304)。
【0044】
ステップS306では、モード選択部416は、自動判定モードおよびマニュアル判定モードのいずれが設定されているかを確認する。自動判定モードが設定されている場合(ステップS306で「YES」の場合)には、自動判定実行部414は、ステップS304で抽出された不良領域Anにおける異常度に基づき、半田Sの良否を判定する(ステップS307)。つまり、不良領域Anに含まれる各画素の異常度が閾値以下である場合(ステップS307で「YES」)の場合には、半田画像Isに示される半田Sの状態が良好であることを示す良品判定が二次判定の結果として自動判定実行部414によって得られる(ステップS308)。一方、不良領域Anに含まれる各画素のうちに異常度が閾値より大きい画素がある場合(ステップS307で「NO」)の場合には、半田画像Isに示される半田Sの状態が不良であることを示す不良判定が二次判定の結果として自動判定実行部414によって得られる(ステップS309)。ステップS308、S309で得られた二次判定の結果は、例えばUI44のディスプレイに表示される。
【0045】
マニュアル判定モードが設定されている場合(ステップS306で「NO」の場合)には、第1例のステップS210、S211、S208、S209と同様にして、ステップS310、S311、S308、S309が実行される。
【0046】
以上に説明する実施形態では、複数の検査領域A(N)のうち一次判定で不良と判定された不良領域An(検査領域A(2))を示す一次判定結果R(不良領域情報)が取得される(ステップS301)。そして、半田画像Isのうち、一次判定結果Rが示す不良領域Anにおける画像の異常度(不良領域異常データ)が算出される(ステップS303、S304)。そして、ステップS307~S309では、不良領域Anにおける画像の異常度(不良領域異常データ)に基づき、半田Sの状態が判定される(二次判定)。つまり、二次判定で半田Sの状態を判定する基準から、一次判定で不良と判定されなかった検査領域A(1)、S(3)が外される。その結果、一次判定で不良と判定されなかった検査領域A(1)、S(3)について不良と判定してしまう過判定の発生を抑制することが可能となっている。
【0047】
特に、画像取得部412は、一次判定において撮像された、複数の検査領域A(N)を含む撮像領域Acにおける半田Sの画像である半田画像Is(対象物画像)を取得する。これに対して、撮像領域Acで撮像された画像の異常度(撮像領域異常データ)を出力する機外学習モデルMcが記憶部42に保存されている。そして、データ算出部413は、機外学習モデルMcが半田画像Isについて出力した異常度(撮像領域異常データ)から、不良領域Anに対応する異常度(データ)を抽出することで、不良領域Anにおける異常度(不良領域異常データ)を算出する(ステップS303、S304)。かかる構成では、二次判定で半田Sの状態を判定する基準から、一次判定で不良と判定されなかった検査領域A(1)、A(3)が外される。その結果、一次判定で不良と判定されなかった検査領域A(1)、A(3)について不良と判定してしまう過判定の発生を抑制することが可能となっている。しかも、複数の検査領域A(1)、A(2)、A(3)に対応して複数の機外学習モデルM(1)、M(2)、M(3)を設けるのではなく、複数の検査領域A(1)、A(2)、A(3)を含む撮像領域Acに対して一の機外学習モデルMcを設ければ足りる。したがって、ユーザにおいては複数の機械学習モデルM(1)、M(2)、M(3)を管理する必要がなく、ユーザの管理負担を軽減することが可能となっている。
【0048】
以上に説明したように本実施形態では、外観検査システム1が本発明の「外観検査システム」の一例に相当し、一次外観検査装置2が本発明の「一次外観検査装置」の一例に相当し、二次外観検査装置4が本発明の「二次外観検査装置」の一例に相当し、情報取得部411が本発明の「情報取得部」の一例に相当し、画像取得部412、機外学習モデルM(N)、Mcおよびデータ算出部413が協働して本発明の「異常データ算出部」として機能し、自動判定実行部414が本発明の「二次判定実行部」の一例に相当し、検査領域A(N)が本発明の「検査領域」の一例に相当し、不良領域Anが本発明の「不良領域」の一例に相当し、半田画像Isの不良領域Anにおける異常度が本発明の「不良領域異常データ」の一例に相当し、一次判定結果Rが本発明の「不良領域情報」の一例に相当し、 半田Sが本発明の「対象物」の一例に相当する。
【0049】
なお、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したものに対して種々の変更を加えることが可能である。例えば、一次判定における複数の検査領域A(N)の具体的な設定態様は上記の例に限られない。したがって、検査領域A(1)、A(2)、A(3)のうち、2個の検査領域A(N)を設定してもよいし、検査領域A(1)、A(2)、A(3)とは異なる検査領域を設定してもよい。
【0050】
また、一次判定および二次判定の対象は、上記の半田Sに限られない。
【0051】
また、一次外観検査装置2と二次外観検査装置4とを別体で構成する必要は必ずしもなく、これらを一体的に構成してもよい。
【0052】
また、上記のマニュアル判定モードは必須ではなく、二次判定においてマニュアル判定モードを設けなくてもよい。
【符号の説明】
【0053】
1…外観検査システム
2…一次外観検査装置
4…二次外観検査装置
411…情報取得部
412…画像取得部(異常データ算出部)
413…データ算出部(異常データ算出部)
414…自動判定実行部(二次判定実行部)
A(N)…検査領域
An…不良領域
Is…半田画像
M(N)…機外学習モデル(異常データ算出部)
Mc…機外学習モデル(異常データ算出部)
R…一次判定結果(不良領域情報)
S…半田(対象物)
図1
図2
図3
図4
図5
図6
図7
図8