(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024169443
(43)【公開日】2024-12-05
(54)【発明の名称】EL表示装置
(51)【国際特許分類】
G09F 9/30 20060101AFI20241128BHJP
H05B 33/14 20060101ALI20241128BHJP
H10K 59/121 20230101ALI20241128BHJP
H10K 59/123 20230101ALI20241128BHJP
H10K 59/35 20230101ALI20241128BHJP
H10K 59/131 20230101ALI20241128BHJP
H10K 59/80 20230101ALI20241128BHJP
H01L 29/786 20060101ALI20241128BHJP
H01L 21/8234 20060101ALI20241128BHJP
H01L 27/088 20060101ALI20241128BHJP
【FI】
G09F9/30 338
G09F9/30 365
H05B33/14 Z
H10K59/121 213
H10K59/123
H10K59/35 553
H10K59/131
H10K59/80
H01L29/78 618B
H01L29/78 612C
H01L29/78 616T
H01L29/78 618C
H01L27/06 102A
H01L27/088 A
H01L27/088 331E
【審査請求】有
【請求項の数】9
【出願形態】OL
(21)【出願番号】P 2024156676
(22)【出願日】2024-09-10
(62)【分割の表示】P 2023169577の分割
【原出願日】2012-12-17
(31)【優先権主張番号】P 2011282484
(32)【優先日】2011-12-23
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2011282487
(32)【優先日】2011-12-23
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000153878
【氏名又は名称】株式会社半導体エネルギー研究所
(72)【発明者】
【氏名】小山 潤
(57)【要約】
【課題】作製工程を削減し、低コストで生産性の良い半導体装置を提供する。消費電力が
少なく、信頼性の高い半導体装置を提供する。
【解決手段】島状半導体層を形成するためのフォトリソグラフィ工程を省略し、ゲート電
極(同一層で形成される配線等を含む)を形成する工程、ソース電極及びドレイン電極(
同一層で形成される配線等を含む)を形成する工程、コンタクトホールを形成する工程、
画素電極を形成する工程の、少なくとも4つのフォトリソグラフィ工程で半導体装置を作
製する。コンタクトホールを形成する工程において、溝部を形成することで、寄生チャネ
ルの形成を防ぐ。溝部と配線は、絶縁層を介して重畳する。
【選択図】
図1
【特許請求の範囲】
【請求項1】
第1の画素と、
前記第1の画素と同じ列に配置された第2の画素と、
前記第1の画素と同じ行に配置された第3の画素と、
列方向に延伸された第1のソース線と、
前記列方向に延伸された第2のソース線と、
前記列方向に延伸された電源線と、
行方向に延伸されたゲート線と、を有し、
前記第1のソース線、前記第2のソース線及び前記電源線は、同層に配置され、
前記電源線は、平面視において、前記第1のソース線と前記第2のソース線との間の領域を有し、
前記第1の画素は、第1のトランジスタと、第2のトランジスタと、第1のEL素子と、を有し、
前記第2の画素は、第3のトランジスタと、第4のトランジスタと、第2のEL素子と、を有し、
前記第3の画素は、第5のトランジスタと、第6のトランジスタと、第3のEL素子と、を有し、
前記第1のトランジスタのソース又はドレインの一方は、前記第1のソース線と電気的に接続され、
前記第3のトランジスタのソース又はドレインの一方は、前記第1のソース線と電気的に接続され、
前記第5のトランジスタのソース又はドレインの一方は、前記第2のソース線と電気的に接続され、
前記第1のトランジスタのゲートは、前記ゲート線と電気的に接続され、
前記第5のトランジスタのゲートは、前記ゲート線と電気的に接続され、
前記第2のトランジスタのソース又はドレインの一方は、前記電源線と電気的に接続され、
前記第4のトランジスタのソース又はドレインの一方は、前記電源線と電気的に接続され、
前記第1のトランジスタは、前記第1のソース線から前記第2のトランジスタのゲートに第1の画像信号を供給する機能を有し、
前記第2のトランジスタは、前記第2のトランジスタのゲートに供給された前記第1の画像信号に応じた電流を前記第1のEL素子に流す機能を有し、
前記第3のトランジスタは、前記第1のソース線から前記第4のトランジスタのゲートに第2の画像信号を供給する機能を有し、
前記第4のトランジスタは、前記第4のトランジスタのゲートに供給された前記第2の画像信号に応じた電流を前記第2のEL素子に流す機能を有し、
前記第5のトランジスタは、前記第2のソース線から前記第6のトランジスタのゲートに第3の画像信号を供給する機能を有し、
前記第6のトランジスタは、前記第6のトランジスタのゲートに供給された前記第3の画像信号に応じた電流を前記第3のEL素子に流す機能を有し、
前記第1のトランジスタのチャネルとして機能する領域を有する第1の半導体層は、前記第2のトランジスタのチャネルとして機能する領域と前記第3のトランジスタのチャネルとして機能する領域と前記第4のトランジスタのチャネルとして機能する領域とを有し、
前記第5のトランジスタのチャネルとして機能する領域を有する第2の半導体層は、前記第6のトランジスタのチャネルとして機能する領域を有し、
前記第1の半導体層及び前記第2の半導体層は、酸化物半導体、シリコン、ゲルマニウム、シリコンゲルマニウム、炭化シリコン又はガリウムヒ素を有し、
前記第1の半導体層は、平面視において前記電源線と前記第2のソース線との間に、端部の少なくとも一部を有し、
前記第2の半導体層は、平面視において前記電源線と前記第2のソース線との間に、端部の少なくとも一部を有し、
前記ゲート線は、平面視において前記第1のソース線と前記電源線との間に、前記第1の半導体層と重ならない第1の領域を有し、
前記第1の領域は、前記ゲート線の行方向の第1の辺の一部と、前記ゲート線の行方向の第2の辺の一部と、を含むEL表示装置。
【請求項2】
第1の画素と、
前記第1の画素と同じ列に配置された第2の画素と、
前記第1の画素と同じ行に配置された第3の画素と、
列方向に延伸された第1のソース線と、
前記列方向に延伸された第2のソース線と、
前記列方向に延伸された電源線と、
行方向に延伸されたゲート線と、を有し、
前記第1のソース線、前記第2のソース線及び前記電源線は、同層に配置され、
前記電源線は、平面視において、前記第1のソース線と前記第2のソース線との間の領域を有し、
前記第1の画素は、第1のトランジスタと、第2のトランジスタと、第1のEL素子と、を有し、
前記第2の画素は、第3のトランジスタと、第4のトランジスタと、第2のEL素子と、を有し、
前記第3の画素は、第5のトランジスタと、第6のトランジスタと、第3のEL素子と、を有し、
前記第1のトランジスタのソース又はドレインの一方は、前記第1のソース線と電気的に接続され、
前記第3のトランジスタのソース又はドレインの一方は、前記第1のソース線と電気的に接続され、
前記第5のトランジスタのソース又はドレインの一方は、前記第2のソース線と電気的に接続され、
前記第1のトランジスタのゲートは、前記ゲート線と電気的に接続され、
前記第5のトランジスタのゲートは、前記ゲート線と電気的に接続され、
前記電源線は、前記第2のトランジスタを介して、前記第1のEL素子と電気的に接続され、
前記電源線は、前記第4のトランジスタを介して、前記第2のEL素子と電気的に接続され、
前記第1のトランジスタは、前記第1のソース線から前記第2のトランジスタのゲートに第1の画像信号を供給する機能を有し、
前記第2のトランジスタは、前記第2のトランジスタのゲートに供給された前記第1の画像信号に応じた電流を前記第1のEL素子に流す機能を有し、
前記第3のトランジスタは、前記第1のソース線から前記第4のトランジスタのゲートに第2の画像信号を供給する機能を有し、
前記第4のトランジスタは、前記第4のトランジスタのゲートに供給された前記第2の画像信号に応じた電流を前記第2のEL素子に流す機能を有し、
前記第5のトランジスタは、前記第2のソース線から前記第6のトランジスタのゲートに第3の画像信号を供給する機能を有し、
前記第6のトランジスタは、前記第6のトランジスタのゲートに供給された前記第3の画像信号に応じた電流を前記第3のEL素子に流す機能を有し、
前記第1のトランジスタのチャネルとして機能する領域を有する第1の半導体層は、前記第2のトランジスタのチャネルとして機能する領域と前記第3のトランジスタのチャネルとして機能する領域と前記第4のトランジスタのチャネルとして機能する領域とを有し、
前記第5のトランジスタのチャネルとして機能する領域を有する第2の半導体層は、前記第6のトランジスタのチャネルとして機能する領域を有し、
前記第1の半導体層及び前記第2の半導体層は、酸化物半導体、シリコン、ゲルマニウム、シリコンゲルマニウム、炭化シリコン又はガリウムヒ素を有し、
前記第1の半導体層は、平面視において前記電源線と前記第2のソース線との間に、端部の少なくとも一部を有し、
前記第2の半導体層は、平面視において前記電源線と前記第2のソース線との間に、端部の少なくとも一部を有し、
前記ゲート線は、平面視において前記第1のソース線と前記電源線との間に、前記第1の半導体層と重ならない第1の領域を有し、
前記第1の領域は、前記ゲート線の行方向の第1の辺の一部と、前記ゲート線の行方向の第2の辺の一部と、を含むEL表示装置。
【請求項3】
第1の画素と、
前記第1の画素と同じ列に配置された第2の画素と、
前記第1の画素と同じ行に配置された第3の画素と、
列方向に延伸された第1のソース線と、
前記列方向に延伸された第2のソース線と、
前記列方向に延伸された電源線と、
行方向に延伸されたゲート線と、を有し、
前記第1のソース線、前記第2のソース線及び前記電源線は、同層に配置され、
前記電源線は、平面視において、前記第1のソース線と前記第2のソース線との間の領域を有し、
前記第1の画素は、第1のトランジスタと、第2のトランジスタと、第1のEL素子と、を有し、
前記第2の画素は、第3のトランジスタと、第4のトランジスタと、第2のEL素子と、を有し、
前記第3の画素は、第5のトランジスタと、第6のトランジスタと、第3のEL素子と、を有し、
前記第1のトランジスタのソース又はドレインの一方は、前記第1のソース線と電気的に接続され、
前記第3のトランジスタのソース又はドレインの一方は、前記第1のソース線と電気的に接続され、
前記第5のトランジスタのソース又はドレインの一方は、前記第2のソース線と電気的に接続され、
前記第1のトランジスタのゲートは、前記ゲート線と電気的に接続され、
前記第5のトランジスタのゲートは、前記ゲート線と電気的に接続され、
前記第2のトランジスタのソース又はドレインの一方は、前記電源線と電気的に接続され、
前記第4のトランジスタのソース又はドレインの一方は、前記電源線と電気的に接続され、
前記第1のトランジスタは、前記第1のソース線から前記第2のトランジスタのゲートに第1の画像信号を供給する機能を有し、
前記第2のトランジスタは、前記第2のトランジスタのゲートに供給された前記第1の画像信号に応じた電流を前記第1のEL素子に流す機能を有し、
前記第3のトランジスタは、前記第1のソース線から前記第4のトランジスタのゲートに第2の画像信号を供給する機能を有し、
前記第4のトランジスタは、前記第4のトランジスタのゲートに供給された前記第2の画像信号に応じた電流を前記第2のEL素子に流す機能を有し、
前記第5のトランジスタは、前記第2のソース線から前記第6のトランジスタのゲートに第3の画像信号を供給する機能を有し、
前記第6のトランジスタは、前記第6のトランジスタのゲートに供給された前記第3の画像信号に応じた電流を前記第3のEL素子に流す機能を有し、
前記第1のトランジスタのチャネルとして機能する領域を有する第1の半導体層は、前記第2のトランジスタのチャネルとして機能する領域と前記第3のトランジスタのチャネルとして機能する領域と前記第4のトランジスタのチャネルとして機能する領域とを有し、
前記第5のトランジスタのチャネルとして機能する領域を有する第2の半導体層は、前記第6のトランジスタのチャネルとして機能する領域を有し、
前記第1の半導体層及び前記第2の半導体層は、酸化物半導体、シリコン、ゲルマニウム、シリコンゲルマニウム、炭化シリコン又はガリウムヒ素を有し、
前記第1の半導体層は、平面視において前記電源線と前記第2のソース線との間に、端部の少なくとも一部を有し、
前記第2の半導体層は、平面視において前記電源線と前記第2のソース線との間に、端部の少なくとも一部を有し、
前記ゲート線は、平面視において前記第1のソース線と前記電源線との間に、前記第1の半導体層と重ならない第1の領域を有し、
前記第1の領域は、前記ゲート線の行方向の第1の辺の一部と、前記ゲート線の行方向の第2の辺の一部と、を含み、
前記第1の半導体層及び前記第2の半導体層は、酸化インジウムを有するEL表示装置。
【請求項4】
第1の画素と、
前記第1の画素と同じ列に配置された第2の画素と、
前記第1の画素と同じ行に配置された第3の画素と、
列方向に延伸された第1のソース線と、
前記列方向に延伸された第2のソース線と、
前記列方向に延伸された電源線と、
行方向に延伸されたゲート線と、を有し、
前記第1のソース線、前記第2のソース線及び前記電源線は、同層に配置され、
前記電源線は、平面視において、前記第1のソース線と前記第2のソース線との間の領域を有し、
前記第1の画素は、第1のトランジスタと、第2のトランジスタと、第1のEL素子と、を有し、
前記第2の画素は、第3のトランジスタと、第4のトランジスタと、第2のEL素子と、を有し、
前記第3の画素は、第5のトランジスタと、第6のトランジスタと、第3のEL素子と、を有し、
前記第1のトランジスタのソース又はドレインの一方は、前記第1のソース線と電気的に接続され、
前記第3のトランジスタのソース又はドレインの一方は、前記第1のソース線と電気的に接続され、
前記第5のトランジスタのソース又はドレインの一方は、前記第2のソース線と電気的に接続され、
前記第1のトランジスタのゲートは、前記ゲート線と電気的に接続され、
前記第5のトランジスタのゲートは、前記ゲート線と電気的に接続され、
前記電源線は、前記第2のトランジスタを介して、前記第1のEL素子と電気的に接続され、
前記電源線は、前記第4のトランジスタを介して、前記第2のEL素子と電気的に接続され、
前記第1のトランジスタは、前記第1のソース線から前記第2のトランジスタのゲートに第1の画像信号を供給する機能を有し、
前記第2のトランジスタは、前記第2のトランジスタのゲートに供給された前記第1の画像信号に応じた電流を前記第1のEL素子に流す機能を有し、
前記第3のトランジスタは、前記第1のソース線から前記第4のトランジスタのゲートに第2の画像信号を供給する機能を有し、
前記第4のトランジスタは、前記第4のトランジスタのゲートに供給された前記第2の画像信号に応じた電流を前記第2のEL素子に流す機能を有し、
前記第5のトランジスタは、前記第2のソース線から前記第6のトランジスタのゲートに第3の画像信号を供給する機能を有し、
前記第6のトランジスタは、前記第6のトランジスタのゲートに供給された前記第3の画像信号に応じた電流を前記第3のEL素子に流す機能を有し、
前記第1のトランジスタのチャネルとして機能する領域を有する第1の半導体層は、前記第2のトランジスタのチャネルとして機能する領域と前記第3のトランジスタのチャネルとして機能する領域と前記第4のトランジスタのチャネルとして機能する領域とを有し、
前記第5のトランジスタのチャネルとして機能する領域を有する第2の半導体層は、前記第6のトランジスタのチャネルとして機能する領域を有し、
前記第1の半導体層及び前記第2の半導体層は、酸化物半導体、シリコン、ゲルマニウム、シリコンゲルマニウム、炭化シリコン又はガリウムヒ素を有し、
前記第1の半導体層は、平面視において前記電源線と前記第2のソース線との間に、端部の少なくとも一部を有し、
前記第2の半導体層は、平面視において前記電源線と前記第2のソース線との間に、端部の少なくとも一部を有し、
前記ゲート線は、平面視において前記第1のソース線と前記電源線との間に、前記第1の半導体層と重ならない第1の領域を有し、
前記第1の領域は、前記ゲート線の行方向の第1の辺の一部と、前記ゲート線の行方向の第2の辺の一部と、を含み、
前記第1の半導体層及び前記第2の半導体層は、酸化インジウムを有するEL表示装置。
【請求項5】
請求項2又は請求項4において、
基板上に、前記第1乃至第3の画素を有し、
前記第1のEL素子からの発光及び前記第2のEL素子からの発光を、前記基板と逆の面から取り出すEL表示装置。
【請求項6】
請求項1乃至請求項5のいずれか一において、
前記ゲート線は、前記電源線、前記第1のソース線及び前記第2のソース線とは異なる層に設けられ、
前記ゲート線は、平面視において、前記電源線、前記第1のソース線及び前記第2のソース線と交差するように設けられているEL表示装置。
【請求項7】
請求項1乃至請求項6のいずれか一において、
前記ゲート線は、平面視において、列方向に突出した第2の領域を1画素あたりに1か所有するEL表示装置。
【請求項8】
請求項1乃至請求項7のいずれか一において、
前記第1の半導体層及び前記第2の半導体層の膜厚は、1nm以上100nm以下であるEL表示装置。
【請求項9】
請求項1乃至請求項8のいずれか一において、
前記第1の半導体層及び前記第2の半導体層の膜厚は、5nm以上50nm以下であるEL表示装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体装置、およびその作製方法に関する。
【0002】
なお、本明細書中において半導体装置とは、半導体特性を利用することで機能しうる装置
全般を指し、トランジスタ、半導体回路、記憶装置、撮像装置、表示装置、電気光学装置
および電子機器などは、全て半導体装置と言える。
【背景技術】
【0003】
近年、ガラス基板等の絶縁性表面を有する基板上に形成された、厚さ数nm乃至数百nm
程度の半導体薄膜により構成されるトランジスタが注目されている。トランジスタは、I
C(Integrated Circuit)および電気光学装置を始めとした電子デバ
イスに広く応用されている。トランジスタは、特にアクティブマトリクス型の液晶表示装
置やEL(Electro Luminescence)表示装置等の表示装置に代表さ
れる、画像表示装置のスイッチング素子として開発が急がれている。アクティブマトリク
ス型液晶表示装置では、選択されたスイッチング素子に接続された画素電極と、該画素電
極に対応する対向電極の間に電圧が印加されることにより、画素電極と対向電極との間に
配置された液晶層の光学変調が行われ、この光学変調が表示パターンとして観察者に認識
される。ここで、アクティブマトリクス型の表示装置とは、マトリクス状に配置された画
素電極をスイッチング素子により駆動することによって、画面上に表示パターンが形成さ
れる方式を採用した表示装置をいう。
【0004】
上記のようなアクティブマトリクス型の表示装置の用途は拡大しており、画面サイズの大
面積化、高精細化および高開口率化の要求が高まっている。また、アクティブマトリクス
型表示装置には高い信頼性が求められ、その生産方法には高い生産性および生産コストの
低減が求められる。生産性を高め、生産コストを低減する方法の一つに、工程の簡略化が
挙げられる。
【0005】
アクティブマトリクス型の表示装置では、スイッチング素子として主にトランジスタが用
いられている。トランジスタの作製において、フォトリソグラフィ工程を削減または簡略
化することは、工程全体の簡略化のために重要である。例えばフォトリソグラフィ工程に
用いるマスクが1つ増加すると、レジスト塗布、プリベーク、露光、現像、ポストベーク
等の工程と、その前後の工程において、被膜の形成およびエッチング工程、更にはレジス
ト剥離、洗浄および乾燥工程等が必要になる。そのため、作製工程におけるフォトリソグ
ラフィ工程に用いるマスクが1つ増加するだけで、工程数が大幅に増加する。そのため、
作製工程におけるフォトリソグラフィ工程を削減または簡略化するために、数多くの技術
開発がなされている。
【0006】
トランジスタは、チャネル形成領域がゲート電極より下層に設けられるトップゲート型と
、チャネル形成領域がゲート電極より上層に設けられるボトムゲート型に大別される。こ
れらのトランジスタを用いたアクティブマトリクス型の液晶表示装置では、少なくとも5
枚のフォトマスクを用いて、少なくとも5回のフォトリソグラフィ工程により作製される
ことが一般的である。
【0007】
また、アクティブマトリクス型のEL表示装置では、画素毎にEL層を分離するための隔
壁層を形成する必要があるため、さらにもう1枚フォトマスクを用いて、少なくとも合計
6回のフォトリソグラフィ工程により作製されることが一般的である。
【0008】
フォトリソグラフィ工程を簡略化させる従来の技術としては、裏面露光(例えば、特許文
献1)、レジストリフロー又はリフトオフ法といった複雑な技術を用いるものが多く、特
殊な装置を必要とするものが多い。このような複雑な技術を用いることで、これに起因す
る様々な問題が生じ、歩留まりの低下の一因となっている。また、トランジスタの電気的
特性を低下させてしまうことも多い。
【先行技術文献】
【特許文献】
【0009】
【発明の概要】
【発明が解決しようとする課題】
【0010】
しかしながら、フォトリソグラフィ工程を削減または簡略化すると、本来必要のない場所
にチャネルが形成され、意図しない部分がトランジスタとして機能してしまう場合がある
。
【0011】
例えば、画素電極と絶縁層を介して重畳する半導体層が存在すると、画素電極に供給され
る電位によっては、画素電極と重畳する半導体層にチャネルが形成されてしまう場合があ
る。なお、このように本来必要のない場所に形成されるチャネルを寄生チャネルという。
【0012】
また、例えば、第1の画素と、第1の画素に隣接する第2の画素で共通の配線A(例えば
、ゲート配線)を使用している場合に、配線Aと絶縁層を介して重畳する半導体層に寄生
チャネルが形成されると、半導体層に接して形成されている、第1の画素が有する配線B
(例えば、第1の画素が有する画像信号配線)と第2の画素が有する配線C(例えば、第
2の画素が有する画像信号配線)が、寄生チャネルにより電気的に接続されてしまう場合
がある。すなわち、配線Aがゲート電極として機能し、配線Bがソース電極またはドレイ
ン電極の一方として機能し、配線Cがソース電極またはドレイン電極の他方として機能す
るトランジスタが形成されてしまう場合がある。このように、意図せず形成されるトラン
ジスタを寄生トランジスタという。
【0013】
また、隣接する配線間の距離が短い場合は、ゲート電極として機能する層が無くても、隣
接する配線間に生じる電界により半導体層中に寄生チャネルが形成され、隣接する配線同
士が電気的に接続されてしまう場合がある。
【0014】
寄生チャネルまたは寄生トランジスタが形成されると、配線間の信号が干渉し、正確な信
号の伝達が困難となるため、表示品位の低下や、信頼性低下の一因となる。
【0015】
また、半導体装置は複雑な構造の複数の薄膜で構成されており、多種の材料、方法及び工
程で作製される。よって、用いられる作製工程によっては、得られる半導体装置の形状不
良や電気特性の低下が生じる恐れがある。
【0016】
このような問題に鑑み、信頼性の高い半導体装置を提供することを課題の一とする。
【0017】
本発明の一態様は、半導体装置の作製に用いるフォトリソグラフィ工程を従来よりも少な
くすることを課題の一とする。
【0018】
本発明の一態様は、半導体装置の作製に用いるフォトマスクの枚数を従来よりも少なくす
ることを課題の一とする。
【0019】
本発明の一態様は、生産性の良い半導体装置を提供することを課題の一とする。
【0020】
本発明の一態様は、消費電力が低減された半導体装置を提供することを課題の一とする。
【課題を解決するための手段】
【0021】
島状半導体層を形成するためのフォトリソグラフィ工程を省略し、ゲート電極(同一層で
形成される配線を含む)を形成する工程、ソース電極およびドレイン電極(同一層で形成
される配線を含む)を形成する工程、コンタクトホールおよび溝部を形成する工程、画素
電極(同一層で形成される配線等を含む)を形成する工程の4つのフォトリソグラフィ工
程で液晶表示装置に用いる半導体装置を作製する。
【0022】
また、上記方法で作製する液晶表示装置に用いる半導体装置は、寄生チャネルまたは寄生
トランジスタの生成を防ぐため、トランジスタのソース電極と電気的に接続する第2の配
線に沿って溝部を設ける。例えば、第1の溝部として、溝部をトランジスタのゲート電極
と電気的に接続する第1の配線の線幅方向の両端部を越えて、第1の配線の少なくとも一
部を横切って形成する。また、第2の溝部として、溝部を容量配線の線幅方向の両端部を
越えて、容量配線の少なくとも一部を横切って形成する。また、第3の溝部として、溝部
を第2の配線と画素電極の間に、第2の配線が延伸する方向に沿って画素電極の端部を越
えて形成する。なお、第3の溝部は、画素電極と重畳し、第2の配線が延伸する方向に沿
って画素電極の端部を越えて形成されてもよい。
【0023】
第1の溝部と、第2の溝部と、第3の溝部は、それぞれ独立して形成してもよいし、一つ
の溝部で、第1の溝部乃至第3の溝部の複数または全てを兼ねる構成としてもよい。
【0024】
また、第1の溝部は、第1の配線と重畳する領域と、重畳しない領域を有する。溝部の底
面で第1の配線が露出すると、溝部の側面に露出する半導体層と、溝部の底面に露出した
第1の配線の間に漏れ電流が生じる恐れがある。このため、溝部の底面に第1の配線が露
出しないようにし、溝部における漏れ電流の発生を防ぐ。このため、第1の配線と重畳す
る領域に形成する溝部は、第1の配線上に絶縁層を介して形成される。
【0025】
また、第2の溝部は、容量配線と重畳する領域と、重畳しない領域を有する。溝部の底面
で容量配線が露出すると、溝部の側面に露出する半導体層と、溝部の底面に露出した容量
配線の間に漏れ電流が生じる恐れがある。このため、溝部の底面に容量配線が露出しない
ようにし、溝部における漏れ電流の発生を防ぐ。このため、容量配線と重畳する領域に形
成する溝部は、容量配線上に絶縁層を介して形成される。
【0026】
本発明の一態様は、ゲート電極と、ソース電極と、ドレイン電極と、半導体層と、を有す
るトランジスタと、ゲート電極に電気的に接続する第1の配線と、ソース電極に電気的に
接続する第2の配線と、ドレイン電極に電気的に接続する画素電極と、容量配線と、溝部
を有し、半導体層は、第1の配線と、第2の配線と、画素電極と、容量配線と重畳し、溝
部は、第1の配線上に、第1の配線を横切って形成され、また溝部は、容量配線上に、容
量配線を横切って形成され、また溝部は、第2の配線が延伸する方向に沿って、画素電極
の端部を越えて形成され、また溝部は、底面において半導体層が除去され、第1の配線お
よび容量配線と、絶縁層を介して重畳していることを特徴とする。
【0027】
本発明の一態様は、第1のフォトリソグラフィ工程によりゲート電極を形成し、ゲート電
極上にゲート絶縁層を形成し、ゲート絶縁層上に半導体層を形成し、第2のフォトリソグ
ラフィ工程により、半導体層上にソース電極及びドレイン電極を形成し、ソース電極およ
びドレイン電極上に保護層を形成し、第3のフォトリソグラフィ工程により、ソース電極
またはドレイン電極の一方と重畳する保護層の一部を選択的に除去して行う第1のコンタ
クトホールの形成と、保護層、半導体層およびゲート絶縁層の一部を選択的に除去して行
う第2のコンタクトホールの形成と、保護層、半導体層の一部を選択的に除去して行う溝
部の形成を行い、第4のフォトリソグラフィ工程により、保護層上に画素電極を形成する
ことを特徴とする。
【0028】
第3のフォトリソグラフィ工程におけるレジストマスクの形成を、多階調マスクを用いて
行うことにより、第1のコンタクトホール、第2のコンタクトホール、および溝部の形成
を1回のフォトリソグラフィ工程で行うことができる。
【0029】
本発明の一態様は、第1の電極を形成し、第1の電極上に第1の層を形成し、第1の層上
に半導体層を形成し、半導体層上に第2の電極および第3の電極を形成し、第2の電極と
第3の電極を覆って第2の層を形成し、第2の電極または第3の電極と重なる第2の層の
一部を除去して行うコンタクトホールの形成と、第1の層の一部と、半導体層の一部と、
および第2の層の一部を除去して行うコンタクトホールの形成と、第2の層の一部と、半
導体層の一部を除去して行う溝部の形成を、同一のフォトリソグラフィ工程で行うことを
特徴とする。
【0030】
第1の層はゲート絶縁層として機能し、第2の層は保護層として機能する。また、第1の
電極はゲート電極として機能し、第2の電極はソース電極またはドレイン電極の一方とし
て機能し、第3の電極はソース電極またはドレイン電極の他方として機能する。
【0031】
島状半導体層を形成するためのフォトリソグラフィ工程を省略し、ゲート電極(同一層で
形成される配線を含む)を形成する工程、ソース電極およびドレイン電極(同一層で形成
される配線を含む)を形成する工程、コンタクトホールおよび溝部を形成する工程、画素
電極(同一層で形成される配線等を含む)を形成する工程、隔壁層を形成する工程の5つ
のフォトリソグラフィ工程でEL表示装置に用いる半導体装置を作製する。
【0032】
また、上記方法で作製するEL表示装置に用いる半導体装置は、寄生チャネルまたは寄生
トランジスタの生成を防ぐため、第1のトランジスタのソース電極と電気的に接続する第
2の配線に沿って溝部を設ける。例えば、第1の溝部として、溝部を第1のトランジスタ
のゲート電極と電気的に接続する第1の配線の線幅方向の両端部を越えて、第1の配線の
少なくとも一部を横切って形成する。また、第2の溝部として、溝部を第2の配線と画素
電極の間に、第2の配線が延伸する方向に沿って、画素電極の端部を越えて形成する。な
お、第2の溝部は、画素電極と重畳し、第2の配線が延伸する方向に沿って画素電極の端
部を越えて形成されてもよい。また、第3の溝部として、隣接する画素の間に、第2の配
線が延伸する方向に沿って溝部を形成する。
【0033】
第1の溝部と、第2の溝部と、第3の溝部は、それぞれ独立して形成してもよいし、一つ
の溝部で、第1の溝部乃至第3の溝部の複数または全てを兼ねる構成としてもよい。
【0034】
また、第1の溝部の底面において第1の配線が露出すると、溝部の側面に露出した半導体
層と、溝部の底面に露出した第1の配線の間に漏れ電流(以下、「リーク電流」ともいう
)が生じる恐れがある。このため、溝部の底面で第1の配線が露出しないようにし、溝部
におけるリーク電流の発生を防ぐ。このため、第1の溝部は第1の配線上に絶縁層を介し
て形成する。
【0035】
本発明の一態様は、第1の配線と、第2の配線と、半導体層と、画素電極と、第1の溝部
と、第2の溝部を有し、半導体層は、第1の配線と、画素電極と重畳し、第1の溝部は、
第1の配線上に、第1の配線を横切って形成され、第2の溝部は、第2の配線が延伸する
方向に沿って、第2の配線と画素電極の間に、画素電極の端部を越えて形成され、第1の
溝部および第2の溝部の底面において半導体層が除去され、第1の溝部は、第1の配線と
絶縁層を介して重畳していることを特徴とする。
【0036】
本発明の一態様は、第1の画素と、第1の画素に隣接する第2の画素を有し、第1の画素
は、第1の配線と、第2の配線と、半導体層と、画素電極と、第1の溝部と、第2の溝部
を有し、半導体層は、第1の配線と、画素電極と重畳し、第1の溝部は、第1の配線上に
、第1の配線を横切って形成され、第2の溝部は、第2の配線が延伸する方向に沿って、
第2の配線と画素電極の間に、画素電極の端部を越えて形成され、第1の溝部、および第
2の溝部の底面において半導体層が除去され、第1の溝部は、第1の配線と絶縁層を介し
て重畳し、第1の画素と第2の画素間に、底面において半導体層が除去された第3の溝部
を有し、第3の溝部は、第1の画素の端部を越えて形成されていることを特徴とする。
【0037】
本発明の一態様は、第1のトランジスタと、第2のトランジスタと、第1の配線と、第2
の配線と、第3の配線と、画素電極と、第1の溝部と、第2の溝部を有し、第1のトラン
ジスタと第2のトランジスタは、ゲート電極と、ソース電極と、ドレイン電極と、半導体
層を有し、第1のトランジスタのゲート電極は、第1の配線に電気的に接続され、第1の
トランジスタのソース電極またはドレイン電極の一方は、第2の配線に電気的に接続され
、第1のトランジスタのソース電極またはドレイン電極の他方は、第2のトランジスタの
ゲート電極に電気的に接続され、第2のトランジスタのソース電極またはドレイン電極の
一方は、第3の配線に電気的に接続され、第2のトランジスタのソース電極またはドレイ
ン電極の他方は、画素電極に電気的に接続され、半導体層は、第1の配線と、第2の配線
と、第3の配線と、画素電極に重畳し、第1の溝部は、第2の配線と第3の配線の間にお
いて、第1の配線上に第1の配線を横切って形成され、第2の溝部は、第2の配線が延伸
する方向に沿って、第2の配線と第3の配線の間に、画素電極の端部を越えて形成され、
第1の溝部および第2の溝部の底面において半導体層が除去され、第1の溝部は、第1の
配線と絶縁層を介して重畳していることを特徴とする。
【0038】
本発明の一態様は、第1のフォトリソグラフィ工程によりゲート電極を形成し、ゲート電
極上にゲート絶縁層を形成し、ゲート絶縁層上に半導体層を形成し、第2のフォトリソグ
ラフィ工程により、半導体層上にソース電極及びドレイン電極を形成し、ソース電極及び
ドレイン電極上に絶縁層を形成し、第3のフォトリソグラフィ工程により、ソース電極ま
たはドレイン電極の一方と重畳する絶縁層の一部を選択的に除去して行う第1のコンタク
トホールの形成と、絶縁層、半導体層およびゲート絶縁層の一部を選択的に除去して行う
第2のコンタクトホールの形成と、絶縁層、半導体層の一部を選択的に除去して行う溝部
の形成を行い、第4のフォトリソグラフィ工程により、絶縁層上に画素電極を形成し、第
5のフォトリソグラフィ工程により、隔壁層を形成することを特徴とする。
【0039】
第3のフォトリソグラフィ工程におけるレジストマスクの形成を、多階調マスクを用いて
行うことにより、第1のコンタクトホール、第2のコンタクトホール、および溝部の形成
を1回のフォトリソグラフィ工程で行うことができる。
【0040】
本発明の一態様は、第1の電極を形成し、第1の電極上に第1の層を形成し、第1の層上
に半導体層を形成し、半導体層上に第2の電極および第3の電極を形成し、第2の電極と
第3の電極を覆う第2の層を形成し、第2の電極または第3の電極と重なる第2の層の一
部を除去して行うコンタクトホールの形成と、第2の層の一部と、半導体層の一部と、第
1の層の一部を除去して行うコンタクトホールの形成と、第2の層の一部と、半導体層の
一部を除去して行う溝部の形成を、同一のフォトリソグラフィ工程で行い、第2の層上に
第3の層を形成することを特徴とする。
【0041】
第1の層はゲート絶縁層として機能し、第2の層は保護層として機能し、第3の層は隔壁
層として機能する。また、第1の電極はゲート電極として機能し、第2の電極はソース電
極またはドレイン電極の一方として機能し、第3の電極はソース電極またはドレイン電極
の他方として機能する。
【0042】
第1の層、半導体層、および第2の層の一部の除去は、ドライエッチング法またはウェッ
トエッチング法、もしくはドライエッチング法とウェットエッチング法を組み合わせて行
うことができる。
【0043】
ゲート電極、ソース電極、ドレイン電極、もしくはこれらの電極に接続する配線を、銅ま
たはアルミニウムを含む材料で形成することにより、配線抵抗を低減し、信号の遅延を防
ぐことができる。
【0044】
また、ソース電極およびドレイン電極の形成後に、露出した半導体層の表面や側面に付着
した不純物を除去するための洗浄処理を行うことが好ましい。
【0045】
半導体層には、単結晶半導体、多結晶半導体、微結晶半導体、非晶質半導体等を用いるこ
とができる。半導体材料としては、例えば、シリコン、ゲルマニウム、シリコンゲルマニ
ウム、炭化シリコン、またはガリウムヒ素等を挙げることができる。
【0046】
また、半導体層に酸化物半導体を用いることで、消費電力が少なく、信頼性の高いEL表
示装置を実現できる。
【発明の効果】
【0047】
本発明の一態様によれば、トランジスタの作製に用いるフォトリソグラフィ工程を従来よ
りも少なくすることができる。よって、トランジスタを有する表示装置の作製に用いるフ
ォトマスクの枚数を従来よりも少なくすることができ、低コストで生産性の良い半導体装
置を提供することができる。
【0048】
本発明の一態様によれば、チャネルが形成される半導体層に酸化物半導体を用いることで
、消費電力が少なく、信頼性の高い半導体装置を提供することができる。
【図面の簡単な説明】
【0049】
【発明を実施するための形態】
【0050】
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定さ
れず、本発明の趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変
更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形
態の記載内容に限定して解釈されるものではない。なお、以下に説明する発明の構成にお
いて、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用
い、その繰り返しの説明は省略する。
【0051】
また、本明細書等における「第1」、「第2」、「第3」などの序数は、構成要素の混同
を避けるために付すものであり、数的に限定するものではない。
【0052】
また、図面等において示す各構成の、位置、大きさ、範囲などは、理解の簡単のため、実
際の位置、大きさ、範囲などを表していない場合がある。このため、開示する発明は、必
ずしも、図面等に開示された位置、大きさ、範囲などに限定されない。
【0053】
トランジスタは半導体素子の一種であり、電流や電圧の増幅や、導通または非導通を制御
するスイッチング動作などを実現することができる。本明細書におけるトランジスタは、
IGFET(Insulated Gate Field Effect Transi
stor)や薄膜トランジスタ(TFT:Thin Film Transistor)
を含む。
【0054】
また、トランジスタの「ソース」や「ドレイン」の機能は、異なる極性のトランジスタを
採用する場合や、回路動作において電流の方向が変化する場合などには入れ替わることが
ある。このため、本明細書においては、「ソース」や「ドレイン」の用語は、入れ替えて
用いることができるものとする。
【0055】
また、本明細書等において「電極」や「配線」の用語は、これらの構成要素を機能的に限
定するものではない。例えば、「電極」は「配線」の一部として用いられることがあり、
その逆もまた同様である。さらに、「電極」や「配線」の用語は、複数の「電極」や「配
線」が一体となって形成されている場合なども含む。
【0056】
(実施の形態1)
本実施の形態では、フォトマスク数およびフォトリソグラフィ工程数を削減した半導体装
置の一例として、アクティブマトリクス型の液晶表示装置に用いることが可能な半導体装
置およびその作製方法の一例について、
図1乃至
図13を用いて説明する。
【0057】
図6(A)を用いて、液晶表示装置に用いることが可能な半導体装置100の構成例を説
明する。半導体装置100は、基板101上に画素領域102と、m個(mは1以上の整
数)の端子105_1~105_mおよび端子107を有する端子部103と、n個(n
は1以上の整数)の端子106_1~106_nを有する端子部104を有している。ま
た、半導体装置100は、端子部103に電気的に接続するm本の配線212_1~21
2_mおよび配線203、端子部104に電気的に接続するn本の配線216_1~21
6_nを有している。また、画素領域102は、縦m個(行)×横n個(列)のマトリク
ス状に配置された複数の画素110を有している。i行j列の画素110(i、j)(i
は1以上m以下の整数、jは1以上n以下の整数)は、配線212_i、配線216_j
にそれぞれ電気的に接続されている。また、各画素は、容量電極または容量配線として機
能する配線203と接続され、配線203は端子107と対向電極接続部225に電気的
に接続されている。また、配線212_iは端子105_iと電気的に接続され、配線2
16_jは端子106_jと電気的に接続されている。
【0058】
半導体装置100を用いて形成する液晶表示装置を、液晶層を基板101の表面と垂直な
方向の電界で動作させる液晶表示装置として用いる場合、基板101と向かい合わせて設
ける基板(以下、「対向基板」ともいう。)に、電極(以下、「対向電極」ともいう。)
を設ける必要がある。また、対向電極は、基板101上に形成された対向電極接続部22
5を介して配線203と接続し、配線203と同じ電位が供給される。対向電極と対向電
極接続部225は、導電性ペーストや導電性粒子を介して接続することができる。
【0059】
なお、半導体装置100を用いて形成する液晶表示装置を、液晶層を基板101の表面と
平行な方向の電界で動作させる液晶表示装置として用いる場合は、対向基板に対向電極が
形成されないため、対向電極接続部225の形成を省略することもできる。
【0060】
端子部103および端子部104は外部入力端子であり、外部に設けられた制御回路とF
PC(Flexible Printed Circuit)等を用いて接続される。外
部に設けられた制御回路から供給される信号は、端子部103および端子部104を介し
て半導体装置100に入力される。
図6(A)では、端子部103を画素領域102の左
右外側に形成し、2カ所から信号を入力する構成を示している。また、端子部104を画
素領域102の上下外側に形成し、2カ所から信号を入力する構成を示している。2カ所
から信号を入力することにより、信号の供給能力が高まるため、半導体装置100の高速
動作が容易となる。また、半導体装置100の大型化や高精細化に伴う配線抵抗の増大に
よる信号遅延の影響を軽減することができる。また、半導体装置100に冗長性を持たせ
ることが可能となるため、半導体装置100の信頼性を向上させることができる。なお、
図6(A)では端子部103および端子部104をそれぞれ2カ所設ける構成としている
が、それぞれ1カ所設ける構成としても構わない。
【0061】
図6(B)は、画素110の回路構成を示している。画素110は、トランジスタ111
と、液晶素子112と、容量素子113を有している。トランジスタ111のゲート電極
は配線212_iに電気的に接続され、トランジスタ111のソース電極またはドレイン
電極の一方は配線216_jに電気的に接続されている。また、トランジスタ111のソ
ース電極またはドレイン電極の他方は、液晶素子112の一方の電極と、容量素子113
の一方の電極に電気的に接続されている。液晶素子112の他方の電極は、電極114に
電気的に接続されている。電極114の電位は、GND、共通電位、または任意の固定電
位とすることが好ましい。ただし、必要に応じて電極114の電位を変化させることも可
能である。容量素子113の他方の電極は、配線203に電気的に接続されている。また
、配線203の電位と電極114の電位は、同じ電位とすることが好ましい。
【0062】
トランジスタ111は、液晶素子112に配線216_jから供給される画像信号を入力
させるか否かを選択する機能を有する。配線212_iにトランジスタ111をオン状態
とする信号が供給されると、トランジスタ111を介して配線216_jの画像信号が液
晶素子112に供給される。液晶素子112によって、供給される画像信号(電位)に応
じて、光の透過率が制御される。容量素子113は、液晶素子112に供給された電位を
保持するための保持容量(Cs容量ともいう)としての機能を有する。容量素子113は
、必ずしも設ける必要はないが、容量素子113を設けることにより、トランジスタ11
1がオフ状態の時にソース電極とドレイン電極間に流れる電流(オフ電流)に起因する、
液晶素子112に与えられた電位の変動を抑制することができる。
【0063】
トランジスタ111のチャネルが形成される半導体層には、単結晶半導体、多結晶半導体
、微結晶半導体、非晶質半導体等を用いることができる。半導体材料としては、例えば、
シリコン、ゲルマニウム、シリコンゲルマニウム、炭化シリコン、またはガリウムヒ素等
を挙げることができる。なお、本実施の形態で説明する表示装置は、画素領域内に半導体
層が残る構成であるため、上記半導体を用いた表示装置を透過型の表示装置として用いる
場合は、半導体層を極力薄くするなどして、可視光の透過率を高めることが好ましい。
【0064】
また、トランジスタ111のチャネルが形成される半導体層に、酸化物半導体を用いるこ
とが好ましい。酸化物半導体は、エネルギーギャップが3.0eV以上と大きく、可視光
に対する透過率が大きい。また、酸化物半導体を適切な条件で加工して得られたトランジ
スタにおいては、オフ電流を使用時の温度条件下(例えば、25℃)において、100z
A(1×10-19A)以下、もしくは10zA(1×10-20A)以下、さらには1
zA(1×10-21A)以下とすることができる。このため、消費電力の少ない半導体
装置を提供することができる。また、容量素子113を設けなくても液晶素子112に印
加された電位の保持が可能となるため、画素の開口率を高めることができ、表示品位が良
い液晶表示装置を提供することができる。また、画素の開口率を高めることで、バックラ
イトなどの光源の光を効率よく利用することができ、液晶表示装置の消費電力を低減する
ことができる。
【0065】
半導体層に用いる酸化物半導体は、水分または水素などの不純物が低減され、酸化物半導
体内の酸素欠損を低減することによりi型(真性)または実質的にi型化した酸化物半導
体を用いることが好ましい。
【0066】
電子供与体(ドナー)となる水分または水素などの不純物が低減されて高純度化された酸
化物半導体(purified OS)は、その後、酸化物半導体に酸素を供給して、酸
化物半導体内の酸素欠損を低減することによりi型(真性)の酸化物半導体又はi型に限
りなく近い(実質的にi型化した)酸化物半導体とすることができる。チャネルが形成さ
れる半導体層にi型または実質的にi型化された酸化物半導体を用いたトランジスタは、
オフ電流が著しく低いという特性を有する。具体的に、高純度化された酸化物半導体とは
、二次イオン質量分析法(SIMS:Secondary Ion Mass Spec
trometry)による水素濃度の測定値が、5×1019/cm3以下、好ましくは
5×1018/cm3以下、より好ましくは5×1017/cm3以下とする。
【0067】
また、ホール効果測定により測定できるi型または実質的にi型化された酸化物半導体の
キャリア密度は、1×1014/cm3未満、好ましくは1×1012/cm3未満、さ
らに好ましくは1×1011/cm3未満である。また、酸化物半導体のバンドギャップ
は、2eV以上、好ましくは2.5eV以上、より好ましくは3eV以上である。チャネ
ルが形成される半導体層にi型または実質的にi型化された酸化物半導体を用いることに
より、トランジスタのオフ電流を下げることができる。
【0068】
ここで、酸化物半導体中の、水素濃度のSIMS分析について触れておく。SIMS分析
は、その原理上、試料表面近傍や、材質が異なる膜との積層界面近傍のデータを正確に得
ることが困難であることが知られている。そこで、膜中における水素濃度の厚さ方向の分
布をSIMSで分析する場合、対象となる膜が存在する範囲において、値に極端な変動が
無く、ほぼ一定の値が得られる領域における平均値を、水素濃度として採用する。また、
測定の対象となる膜の厚さが小さい場合、隣接する膜内の水素濃度の影響を受けて、ほぼ
一定の値が得られる領域を見いだせない場合がある。この場合、当該膜が存在する領域に
おける、水素濃度の最大値または最小値を、当該膜中の水素濃度として採用する。さらに
、当該膜が存在する領域において、最大値を有する山型のピーク、最小値を有する谷型の
ピークが存在しない場合、変曲点の値を水素濃度として採用する。
【0069】
また、本実施の形態ではトランジスタ111を、nチャネル型のトランジスタとして説明
を行うが、pチャネル型のトランジスタであってもよい。
【0070】
次に、
図6で示した画素110の構成例について、
図1および
図2を用いて説明する。図
1は、画素110の平面構成を示す上面図であり、
図2は、画素110の積層構成を示す
断面図である。
図1におけるA1-A2、B1-B2、C1-C2、D1-D2の鎖線は
、
図2(A)乃至
図2(D)における断面A1-A2、断面B1-B2、断面C1-C2
、断面D1-D2に相当する。なお、図面を見やすくするため、
図1では、幾つかの構成
要素の記載を省略している。
【0071】
本実施の形態に示すトランジスタ111は、ドレイン電極206bを、U字型(C字型、
コの字型、または馬蹄型)のソース電極206aで囲む形状としている。このような形状
とすることで、トランジスタの面積が小さくても、十分なチャネル幅を確保することが可
能となり、トランジスタの導通時に流れる電流(オン電流ともいう)の量を増やすことが
可能となる。トランジスタ111のオン電流が増えると、信号の入力をより迅速に行うこ
とが可能となる。
【0072】
また、画素電極210と電気的に接続するドレイン電極206bと、ゲート電極202の
間に生じる寄生容量が大きいと、フィードスルーの影響を受けやすくなるため、液晶素子
112に供給された電位が正確に保持できず、表示品位が低下する要因となる。本実施の
形態に示すように、ソース電極206aをU字型としてドレイン電極206bを囲む形状
とすることで、十分なチャネル幅を確保しつつ、ドレイン電極206bとゲート電極20
2間に生じる寄生容量を小さくすることができるため、液晶表示装置の表示品位を向上さ
せることができる。
【0073】
配線203は、容量電極または容量配線として機能する。本実施の形態では、配線203
とドレイン電極206bを重畳させて容量素子113を形成している。
【0074】
また、本実施の形態で説明する半導体装置は、工程簡略化のため島状半導体層を形成する
ためのフォトリソグラフィ工程を行わないため、画素領域の全てに半導体層205が残る
構成となる。その結果、配線212_iがゲート電極として機能し、配線216_jがソ
ース電極またはドレイン電極の一方として機能し、隣接する画素が有する配線216_j
+1がソース電極またはドレイン電極の他方として機能する第1の寄生トランジスタが生
じる恐れがある。
【0075】
また、配線203がゲート電極として機能し、配線216_jがソース電極またはドレイ
ン電極の一方として機能し、隣接する画素が有する配線216_j+1がソース電極また
はドレイン電極の他方として機能する第2の寄生トランジスタが生じる恐れがある。
【0076】
また、画素電極210がゲート電極として機能し、絶縁層207がゲート絶縁層として機
能し、配線216_jがソース電極またはドレイン電極の一方として機能し、隣接する画
素が有する配線216_j+1がソース電極またはドレイン電極の他方として機能する第
3の寄生トランジスタが生じる恐れがある。
【0077】
配線212_iにトランジスタ111をオン状態とする電位が供給されると、第1の寄生
トランジスタもオン状態となり、配線216_jと隣接する画素が有する配線216_j
+1が電気的に接続されることとなる。第1の寄生トランジスタにより配線216_jと
配線216_j+1が電気的に接続されると、双方の画像信号が干渉し、正確な画像信号
を液晶素子112に供給することが困難となる。
【0078】
また、第2の寄生トランジスタがn型のトランジスタとして機能する場合、配線203に
供給された電位よりも配線216_jまたは隣接する画素が有する配線216_j+1の
電位が低くなり、その電位差の絶対値が第2の寄生トランジスタのしきい値よりも大きく
なると、配線203と重畳する半導体層205に寄生チャネルが形成され、第2の寄生ト
ランジスタがオン状態となる。
【0079】
第2の寄生トランジスタがオン状態となると、配線216_jと隣接する画素が有する配
線216_j+1が電気的に接続されることとなる。第2の寄生トランジスタにより配線
216_jと配線216_j+1が電気的に接続されると、双方の画像信号が干渉し、正
確な画像信号を液晶素子112に供給することが困難となる。
【0080】
また、第3の寄生トランジスタがn型のトランジスタとして機能する場合、画素電極21
0に供給された、または保持された電位よりも配線216_jまたは隣接する画素が有す
る配線216_j+1の電位が低くなり、その電位差の絶対値が第3の寄生トランジスタ
のしきい値よりも大きくなると、画素電極210と重畳する半導体層205に寄生チャネ
ルが形成され、第3の寄生トランジスタがオン状態となる。
【0081】
第3の寄生トランジスタがオン状態となると、配線216_jと隣接する画素が有する配
線216_j+1が電気的に接続されることとなる。第3の寄生トランジスタにより配線
216_jと配線216_j+1が電気的に接続されると、双方の画像信号が干渉し、正
確な画像信号を液晶素子112に供給することが困難となる。また、画素の開口率を大き
くするなどの理由により、画素電極210を配線216_jや配線216_j+1に近づ
けると、第3の寄生トランジスタの影響がより強くなる。
【0082】
そこで、本実施の形態では、画素110に半導体層205が除去された溝部230を設け
、上述の寄生トランジスタが生じない構成とする。溝部230を、配線212_iの線幅
方向の両端部を越えて横切る様に設けることで、第1の寄生トランジスタの生成を防ぐこ
とができる。また、溝部230を、配線203の線幅方向の両端部を越えて横切る様に設
けることで、第2の寄生トランジスタの生成を防ぐことができる。なお、配線212_i
上の溝部230もしくは、配線203上の溝部230は複数設けてもよい。
【0083】
また、溝部230を画素電極210と配線216_jとの間、または画素電極210と隣
接する画素が有する配線216_j+1との間の少なくともどちらか一方に、配線216
_jまたは配線216_j+1が延伸する方向に沿って、画素電極210の端部231お
よび端部232を越えて形成する。これにより、第3の寄生トランジスタの生成を防ぐこ
とができる。なお、配線216_jまたは配線216_j+1が延伸する方向に沿って設
けられる溝部230は、配線216_jまたは配線216_j+1が延伸する方向と平行
に設けられている必要はなく、屈曲部または湾曲部を有していてもよい。
【0084】
なお、
図1では、配線212_iと配線203に挟まれた領域で溝部230が途切れてい
るが、配線212_iの線幅方向の端部を越えて設けられた溝部230を延伸し、配線2
03の線幅方向の端部を越えて設けられた溝部230と接続した構成としてもよい。
【0085】
また、配線203上に溝部230を設けずに、配線203の電位を、配線216_jまた
は配線216_j+1に供給される電位よりも低い電位としておくことで、第2の寄生ト
ランジスタの生成を防ぐこともできる。ただし、この場合は、上記電位を配線203に供
給するための電源を別途設ける必要がある。
【0086】
また、半導体層205が除去された溝部230の大きさに特に制限はないが、寄生トラン
ジスタの生成を確実に防ぐため、配線216_jまたは配線216_j+1が延伸する方
向と直交する方向における、溝部230内の半導体層が除去された部分の幅は1μm以上
とすることが好ましく、2μm以上とするとさらに好ましい。
【0087】
断面A1-A2は、トランジスタ111および容量素子113の積層構造を示している。
トランジスタ111は、チャネルエッチング型と呼ばれるボトムゲート構造のトランジス
タである。断面B1-B2は、画素電極210および溝部230を含む、配線216_j
から配線216_j+1までの積層構造を示している。また、断面C1-C2は、配線2
16_jと、配線212_iの交差部における積層構造を示している。また、断面D1-
D2は、配線216_j+1と、配線212_iの交差部と、溝部230の積層構造を示
している。
【0088】
図2(A)に示す断面A1-A2において、基板200上に下地層201が形成され、下
地層201上にゲート電極202および配線203が形成されている。また、ゲート電極
202および配線203上に、ゲート絶縁層204と半導体層205が形成されている。
また、半導体層205上にソース電極206aおよびドレイン電極206bが形成されて
いる。また、半導体層205の一部に接し、ソース電極206aおよびドレイン電極20
6b上に絶縁層207が形成されている。絶縁層207上には画素電極210が形成され
、絶縁層207に形成されたコンタクトホール208を介してドレイン電極206bに電
気的に接続されている。
【0089】
配線203とドレイン電極206bが、ゲート絶縁層204と半導体層205を間に挟ん
で重なっている部分が容量素子113として機能する。ゲート絶縁層204と半導体層2
05は誘電体層として機能する。配線203とドレイン電極206bの間に形成される誘
電体層を多層構造とすることで、一つの誘電体層にピンホールが生じても、ピンホールは
他の誘電体層で被覆されるため、容量素子113を正常に機能させることができる。また
、酸化物半導体の比誘電率は14乃至16と大きいため、半導体層205に酸化物半導体
を用いると、容量素子113の容量値を大きくすることが可能となる。
【0090】
図2(B)に示す断面B1-B2において、基板200上に下地層201が形成され、下
地層201上にゲート絶縁層204が形成され、ゲート絶縁層204上に半導体層205
が形成されている。半導体層205上に配線216_jおよび配線216_j+1が形成
され、半導体層205と、配線216_jおよび配線216_j+1上に絶縁層207が
形成されている。また、絶縁層207上に画素電極210が形成されている。
【0091】
配線216_j+1と画素電極210の間に、半導体層205の一部、および絶縁層20
7の一部が除去された溝部230が形成されている。溝部230は、少なくともその底面
において半導体層を有していない構成となっている。
【0092】
図2(C)に示す断面C1-C2において、基板200上に下地層201が形成され、下
地層201上に配線212_iが形成されている。また、配線212_i上に、ゲート絶
縁層204と半導体層205が形成されている。また、半導体層205上に配線216_
jが形成され、配線216_j上に絶縁層207が形成されている。
【0093】
図2(D)に示す断面D1-D2において、基板200上に下地層201が形成され、下
地層201上に配線212_iが形成されている。また、配線212_i上に、ゲート絶
縁層204と半導体層205が形成されている。また、半導体層205上に配線216_
j+1が形成され、配線216_j+1上に絶縁層207が形成されている。また、半導
体層205の一部、および絶縁層207の一部が除去された溝部230が形成されている
。また、溝部230の底面ではゲート絶縁層204が露出し、それより下層にある配線2
12_iは露出していない。
【0094】
次に、
図1で示した構成とは異なる画素構成例について、
図3および
図4を用いて説明す
る。
図3は、画素120の平面構成を示す上面図である。
図4(A)乃至
図4(C)に示
す断面A1-A2、断面E1-E2、断面F1-F2は、
図3におけるA1-A2、E1
-E2、F1-F2の鎖線で示す部位の断面に相当する。なお、図面を見やすくするため
、
図3では、幾つかの構成要素の記載を省略している。
【0095】
図3に示す画素120は、
図1に示した画素110と、溝部230の平面形状が異なる。
また、
図3におけるA1-A2の鎖線で示す部位の構成は、
図2(A)で説明した断面A
1-A2と同じ構成を有している。また、断面E1-E2の構成は、断面B1-B2の画
素電極210と配線216_jの間に、溝部230を設けた構成と同じである。また、断
面F1-F2の構成は、断面D1-D2の左右を入れ替えた構成と同じである。
【0096】
画素120は、溝部230を画素電極210と配線216_jとの間、および画素電極2
10と隣接する画素が有する配線216_j+1との間に設けた構成としている。また、
溝部230を、配線212_iおよび配線203の幅方向の端部を越えて横切るように設
けるだけでなく、配線212_iと配線203の間の領域にも設ける構成としている。こ
のように、溝部230を広く配置することで、寄生チャネルや寄生トランジスタの生成を
より確実に防ぐことができる。
【0097】
次に、
図1乃至
図4で示した構成とは異なる画素構成例について、
図5を用いて説明する
。
図5(A)は、画素130の平面構成を示す上面図である。
図5(B)に示す断面G1
-G2は、
図5(A)におけるG1-G2の鎖線で示す部位の断面に相当する。
図5に示
す画素130は、画素電極211に光反射率の高い導電層を用いることで、反射型の液晶
表示装置に適用できる画素構成の一例を示している。
【0098】
画素130は、半導体層205が除去された溝部251および溝部252が、配線212
_iの線幅方向の両端部を越えて横切る様に設けられている。配線212_iの線幅方向
の両端部を越えて横切る溝部を複数設けることで、配線212_iと重畳して形成される
寄生チャネルの影響を、より確実に抑えることができる。
【0099】
また、画素130は、半導体層205が除去された溝部253および溝部254が、配線
203の線幅方向の両端部を越えて横切る様に設けられている。配線203の線幅方向の
両端部を越えて横切る溝部を複数設けることで、配線203と重畳して形成される寄生チ
ャネルの影響を、より確実に抑えることができる。
【0100】
また、画素130は、半導体層205が除去された溝部255および溝部256が、配線
216_jまたは隣接する画素が有する配線216_j+1が延伸する方向に沿って、画
素電極211の端部233および端部234を越えて設けられている。配線216_jま
たは配線216_j+1が延伸する方向に沿って、画素電極211の端部233および端
部234を越えて溝部を複数設けることで、画素電極211と重畳して形成される寄生チ
ャネルの影響を、より確実に抑えることができる。配線216_jまたは配線216_j
+1が延伸する方向に沿って設けられる溝部255および溝部256は、配線216_j
または配線216_j+1が延伸する方向と平行に設けられている必要はなく、屈曲部ま
たは湾曲部を有していてもよい。
【0101】
画素130が有する溝部255および溝部256は、湾曲部を有し、一部が画素電極21
1と重畳して形成されている。また、画素130は、画素電極211と重畳して形成され
る溝部257および溝部258を有している。このように、画素電極211に重畳して溝
部255乃至溝部258を設けることにより、画素電極211表面に凹凸を設けることが
できる。画素電極211表面に凹凸を設けると、入射した外光を乱反射させ、より良好な
表示を行うことができる。よって、表示における視認性が向上する。
【0102】
また、画素電極211と重畳して形成される溝部255乃至溝部258は、溝部の側面が
テーパー形状であると、画素電極211の被覆性が向上するため好ましい。
【0103】
次に、端子105_1~105_mおよび端子106_1~106_nの構成例について
、
図7を用いて説明する。
図7(A1)、
図7(A2)は、端子105_1~105_m
の上面図および断面図をそれぞれ図示している。
図7(A1)におけるJ1-J2の一点
鎖線は、
図7(A2)における断面J1-J2に相当する。また、
図7(B1)、
図7(
B2)は、端子106_1~106_nの上面図および断面図をそれぞれ図示している。
図7(B1)におけるK1-K2の一点鎖線は、
図7(B2)における断面K1-K2に
相当する。断面J1-J2および断面K1-K2において、J2およびK2は、基板端部
に相当する。なお、図面を見やすくするため、
図7では、幾つかの構成要素の記載を省略
している。
【0104】
断面J1-J2において、基板200上に下地層201が形成され、下地層201上に配
線212_iが形成されている。また、配線212_i上に、ゲート絶縁層204、半導
体層205、および絶縁層207が形成されている。絶縁層207上に電極221が形成
され、電極221は、ゲート絶縁層204、半導体層205、および絶縁層207に形成
されたコンタクトホール219を介して配線212_iに電気的に接続されている。
【0105】
断面K1-K2において、基板200上に、下地層201、ゲート絶縁層204、および
半導体層205が形成されている。半導体層205上に配線216_jが形成され、配線
216_j上に絶縁層207が形成されている。絶縁層207上に電極222が形成され
、電極222は、絶縁層207に形成されたコンタクトホール220を介して配線216
_jに電気的に接続されている。
【0106】
なお、端子107の構成も、端子105_1~105_mまたは端子106_1~106
_nと同様の構成とすることができる。
【0107】
また、画素領域102と端子部104はn本の配線216_1~216_nで接続されて
いるが、画素領域102から端子部104が有する端子106_1~106_nに至るま
での配線216_1~216_nの引き回しにおいて、隣接する配線216_1~216
_n同士が近い場合は、隣接する配線216_1~216_nの電位差によって、隣接す
る配線216_1~216_n間に存在する半導体層205中に寄生チャネルが形成され
、隣接する配線216_1~216_n同士が意図せず電気的に接続されてしまう恐れが
ある。
【0108】
このような現象は、画素領域102から端子部104までの領域全体、もしくは、隣接す
る配線216_1~216_nの間に絶縁層を介して半導体層205上に導電層を設け、
該導電層の電位を半導体層205中に寄生チャネルが形成されない電位としておくことで
防ぐことができる。
【0109】
例えば、半導体層205に酸化物半導体を用いる場合、多くの酸化物半導体はn型の半導
体となりやすいため、導電層の電位を配線216_1~216_nに供給される電位より
も低い電位としておけばよい。
【0110】
また、後述するコンタクトホール形成工程において、隣接する配線216_1~216_
n間の半導体層205を除去することでも、隣接する配線216_1~216_n同士の
意図しない電気的な接続を防ぐことができる。
【0111】
図8に、隣接する配線216_j、216_j+1、216_j+2の間に、溝部240
を形成し、半導体層205を除去する構成を示す。
図8(A)は、端子106_j、10
6_j+1、106_j+2に接続する配線216_j、216_j+1、216_j+
2の平面構成を示す上面図である。
図8(B)に示す断面L1-L2は、
図8(A)にお
けるL1-L2の一点鎖線で示す部位の断面に相当する。
図8(A)において、配線21
6_jは端子106_jに接続され、配線216_j+1は端子106_j+1に接続さ
れ、配線216_j+2は端子106_j+2に接続されている。なお、図面を見やすく
するため、
図8(A)では、基板200、下地層201、ゲート絶縁層204、および絶
縁層207の記載を省略している。
【0112】
図8(B)に示す断面L1-L2において、基板200上に、下地層201、ゲート絶縁
層204、および半導体層205が形成されている。また、半導体層205上に配線21
6_j、配線216_j+1、および配線216_j+2が形成されている。また、配線
216_j、配線216_j+1、および配線216_j+2上に絶縁層207が形成さ
れている。
【0113】
また、隣接する配線216_jと配線216_j+1の間に、半導体層205が除去され
た溝部240が形成されている。また、隣接する配線216_j+1と配線216_j+
2の間に、半導体層205が除去された溝部240が形成されている(
図8(A)、
図8
(B)参照)。このように、隣接する配線216_1~216_n間に半導体層205が
除去された溝部240を設けることで、隣接する配線216_1~216_n同士の意図
しない電気的な接続を防ぐことができる。溝部240は、溝部230と同一工程で形成す
ることができる。
【0114】
また、半導体層205が除去された溝部240の大きさに特に制限はないが、寄生チャネ
ルの生成を確実に防ぐため、配線216_jまたは配線216_j+1が延伸する方向と
直交する方向における、溝部240内の半導体層が除去された部分の幅は1μm以上とす
ることが好ましく、2μm以上とするとさらに好ましい。
【0115】
続いて、
図1および
図2を用いて説明した液晶表示装置の画素部と、
図7を用いて説明し
た端子105および端子106の作製方法について、
図9乃至
図12を用いて説明する。
なお、
図9および
図10における断面A1-A2は、
図1におけるA1-A2の一点鎖線
で示した部位の断面図である。また、
図11および
図12における断面D1-D2、断面
J1-J2、および断面K1-K2は、
図1および
図7におけるD1-D2、J1-J2
、およびK1-K2の一点鎖線で示した部位の断面図である。
【0116】
まず、基板200上に下地層201となる絶縁層を50nm以上300nm以下、好まし
くは100nm以上200nm以下の厚さで形成する(
図9(A)、
図11(A)参照)
。基板200は、ガラス基板、セラミック基板の他、本作製工程の処理温度に耐えうる程
度の耐熱性を有するプラスチック基板等を用いることができる。また、基板に透光性を要
しない場合には、ステンレス合金等の金属の基板の表面に絶縁層を設けたものを用いても
よい。ガラス基板としては、例えば、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガ
ラス若しくはアルミノケイ酸ガラス等の無アルカリガラス基板を用いるとよい。他に、石
英基板、サファイア基板などを用いることができる。また、基板200として、第3世代
(550mm×650mm)、第3.5世代(600mm×720mm、または620m
m×750mm)、第4世代(680mm×880mm、または730mm×920mm
)、第5世代(1100mm×1300mm)、第6世代(1500mm×1850mm
)、第7世代(1870mm×2200mm)、第8世代(2200mm×2400mm
)、第9世代(2400mm×2800mm、2450mm×3050mm)、第10世
代(2950mm×3400mm)等のガラス基板を用いることができる。本実施の形態
では、基板200にアルミノホウケイ酸ガラスを用いる。
【0117】
下地層201は、窒化アルミニウム、酸化アルミニウム、酸化窒化アルミニウム、窒化シ
リコン、酸化シリコン、窒化酸化シリコン、または酸化窒化シリコンから選ばれた一又は
複数の絶縁層による積層構造により形成することができ、基板200からの不純物元素の
拡散を防止する機能がある。なお、本明細書中において、窒化酸化シリコンとは、その組
成として、酸素よりも窒素の含有量が多いものであって、好ましくは、ラザフォード後方
散乱分析法(RBS:Rutherford Backscattering Spec
trometry)および水素前方散乱分析法(HFS:Hydrogen Forwa
rdscattering Spectrometry)を用いて測定した場合に、組成
範囲として酸素が5原子%以上30原子%以下、窒素が20原子%以上55原子%以下、
珪素が25原子%以上35原子%以下、水素が10原子%以上30原子%以下の範囲で含
まれるものをいう。下地層201は、スパッタリング法、CVD法、塗布法、印刷法等を
適宜用いることができる。
【0118】
また、下地層201に、塩素、フッ素などのハロゲン元素を含ませることで、基板200
からの不純物元素の拡散を防止または低減する機能をさらに高めることができる。下地層
201に含ませるハロゲン元素の濃度は、SIMSを用いた分析により得られる濃度ピー
クにおいて、1×1015/cm3以上1×1020/cm3以下とすればよい。
【0119】
本実施の形態では、基板200上に下地層201として、プラズマCVD法を用いて膜厚
200nmの酸化窒化シリコンを形成する。また、下地層201形成時の温度は、基板2
00が耐えうる温度以下で、より高いほうが好ましい。例えば、基板200を350℃以
上450℃以下の温度に加熱しながら下地層201を形成する。なお、下地層201形成
時の温度は一定であることが好ましい。例えば、下地層201の形成を、基板を350℃
に加熱して行う。
【0120】
また、下地層201の形成後、減圧下、窒素雰囲気下、希ガス雰囲気下、または超乾燥エ
ア雰囲気下において、加熱処理を行ってもよい。加熱処理により下地層201に含まれる
水素、水分、水素化物、または水酸化物などの濃度を低減することができる。加熱処理の
温度は、基板200が耐えうる温度以下で、より高い温度で行うことが好ましい。具体的
には、下地層201の成膜温度以上、基板200の歪点以下で行うことが好ましい。
【0121】
なお、下地層201中の水素濃度は、5×1018atoms/cm3未満、好ましくは
1×1018atoms/cm3以下、より好ましくは5×1017atoms/cm3
以下、更に好ましくは1×1016atoms/cm3以下とすることが望ましい。
【0122】
また、下地層201の形成後、下地層201に酸素(少なくとも、酸素ラジカル、酸素原
子、酸素イオン、のいずれかを含む)を導入して、下地層201を化学量論的組成より酸
素が多い領域を有する(酸素過剰領域を有する)状態としてもよい。酸素の導入は、イオ
ン注入法、イオンドーピング法、プラズマイマージョンイオンインプランテーション法な
どを用いて行うことができる。また、酸素雰囲気下による熱処理や、酸素雰囲気下で行う
プラズマ処理などにより行うこともできる。
【0123】
また、酸素の導入により、下地層201を構成する元素と水素の間の結合、或いは該元素
と水酸基の間の結合を切断するとともに、これらの水素または水酸基が酸素と反応するこ
とで水を生成するため、酸素の導入後に加熱処理を行うと、不純物である水素または水酸
基が、水として脱離しやすくなる。このため、下地層201へ酸素を導入した後に加熱処
理を行ってもよい。その後、さらに下地層201に酸素を導入し、下地層201を酸素過
剰な状態としてもよい。また、下地層201への酸素の導入と加熱処理は、それぞれを交
互に複数回繰り返し行ってもよい。また、酸素の導入と加熱処理を同時に行ってもよい。
【0124】
次に、下地層201上にスパッタリング法、真空蒸着法、またはメッキ法を用いて100
nm以上500nm以下、好ましくは200nm以上300nm以下の厚さで導電層を形
成し、第1のフォトリソグラフィ工程により、レジストマスクを形成し、導電層の一部を
選択的にエッチング除去し、ゲート電極202、配線203、配線212_iを形成する
(
図9(A)、
図11(A)参照)。
【0125】
ゲート電極202、配線203、配線212_iを形成するための導電層は、モリブデン
(Mo)、チタン(Ti)、タングステン(W)、タンタル(Ta)、アルミニウム(A
l)、銅(Cu)、クロム(Cr)、ネオジム(Nd)、スカンジウム(Sc)等の金属
材料又はこれらを主成分とする合金材料を用いて、単層又は積層して形成することができ
る。
【0126】
例えば、シリコンを含むアルミニウムを用いた単層構造、アルミニウム上にチタンを積層
する二層構造、窒化チタン上にチタンを積層する二層構造、窒化チタン上にタングステン
を積層する二層構造、窒化タンタル上にタングステンを積層する二層構造、Cu-Mg-
Al合金上にCuを積層する二層構造、窒化チタン上に銅を積層し、さらにその上にタン
グステンを積層する三層構造などがある。
【0127】
また、上記導電層は、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、
酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸
化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化ケイ素を添加したイン
ジウム錫酸化物などの透光性を有する導電性材料を適用することもできる。また、上記透
光性を有する導電性材料と、上記金属元素を含む材料の積層構造とすることもできる。
【0128】
また、上記導電層として、窒素を含む金属酸化物、具体的には、窒素を含むIn-Ga-
Zn系酸化物や、窒素を含むIn-Sn系酸化物や、窒素を含むIn-Ga系酸化物や、
窒素を含むIn-Zn系酸化物や、窒素を含むSn系酸化物や、窒素を含むIn系酸化物
や、金属窒化物(InN、SnNなど)を用いることができる。
【0129】
これらの材料は5eV(電子ボルト)以上の仕事関数を有し、ゲート電極として用いた場
合、トランジスタの電気特性のしきい値電圧をプラスにすることができ、所謂ノーマリー
オフのn型トランジスタを実現できる。
【0130】
導電層は配線となるため、低抵抗材料であるAlやCuを用いるのが好ましい。AlやC
uを用いることで、信号遅延を低減し、高画質化を実現することができる。なお、Alは
耐熱性が低く、ヒロック、ウィスカー、あるいはマイグレーションによる不良が発生しや
すい。Alのマイグレーションを防ぐため、Alに、Mo、Ti、Wなどの、Alよりも
融点の高い金属材料を積層することが好ましい。
【0131】
導電層のエッチングはドライエッチング法またはウェットエッチング法で行うことができ
る。また、導電層のエッチングを、ドライエッチング法とウェットエッチング法の両方を
組み合わせて行ってもよい。導電層上に形成するレジストマスクはフォトリソグラフィ法
、印刷法、インクジェット法等を適宜用いることができる。レジストマスクをインクジェ
ット法で形成するとフォトマスクを使用しないため、製造コストを低減できる。
【0132】
導電層のエッチングをドライエッチング法で行う場合は、エッチングガスとしてハロゲン
元素を含むガスを用いることができる。ハロゲン元素を含むガスの一例としては、塩素(
Cl2)、三塩化硼素(BCl3)、四塩化珪素(SiCl4)もしくは四塩化炭素(C
Cl4)などを代表とする塩素系ガス、四フッ化炭素(CF4)、六フッ化硫黄(SF6
)、三フッ化窒素(NF3)もしくはトリフルオロメタン(CHF3)などを代表とする
フッ素系ガス、臭化水素(HBr)または酸素を適宜用いることができる。また用いるエ
ッチング用ガスに不活性気体を添加してもよい。また、ドライエッチング法としては、平
行平板型RIE(Reactive Ion Etching)法や、ICP(Indu
ctively Coupled Plasma:誘導結合型プラズマ)エッチング法を
用いることができる。所望の加工形状にエッチングできるように、エッチング条件(コイ
ル型の電極に印加される電力量、基板側の電極に印加される電力量、基板側の電極温度等
)を適宜調節する。
【0133】
本実施の形態では、導電層として下地層201上にスパッタリング法により厚さ100n
mのタングステンを形成する。その後、第1のフォトリソグラフィ工程により導電層を選
択的に除去し、ゲート電極202、配線203、配線212_iを形成する(
図9(A)
参照)。また、形成されたゲート電極202、配線203、配線212_iの端部がテー
パー形状であると、後に積層する絶縁層や導電層の被覆性が向上するため好ましい。
【0134】
具体的には、ゲート電極202、配線203、配線212_iの断面形状が台形または三
角形状となるように、ゲート電極202、配線203、配線212_iの端部をテーパー
形状とする。ここで、ゲート電極202、配線203、配線212_i端部のテーパー角
θを、60°以下、好ましくは45°以下、さらに好ましくは30°以下とする。なお、
テーパー角θとは、テーパー形状を有する層を、その断面(基板の表面と直交する面)に
垂直な方向から観察した際に、当該層の側面と底面がなす傾斜角を示す。また、テーパー
角が90°未満である場合を順テーパーといい、テーパー角が90°以上である場合を逆
テーパーという。各層の端部を順テーパー形状とすることで、その上に形成する層が途切
れてしまう現象(段切れ)を防ぎ、被覆性を向上させることができる。
【0135】
また、ゲート電極202、配線203、配線212_iを複数層からなる積層構造とする
ことで、ゲート電極202、配線203、配線212_iの端部を階段形状とすることが
でき、その上に形成する層の段切れを防ぎ、被覆性を向上させることができる。
【0136】
なお、特段の説明が無い限り、本明細書で言うフォトリソグラフィ工程には、レジストマ
スクの形成工程と、導電層または絶縁層のエッチング工程と、レジストマスクの剥離工程
が含まれているものとする。
【0137】
次いで、ゲート電極202、配線203、配線212_i上にゲート絶縁層204を形成
する(
図9(B)、
図11(B)参照)。ゲート絶縁層204には、酸化シリコン、窒化
シリコン、酸化窒化シリコン、窒化酸化シリコン、酸化アルミニウム、窒化アルミニウム
、酸化窒化アルミニウム、窒化酸化アルミニウム、酸化タンタル、酸化ガリウム、酸化イ
ットリウム、酸化ランタン、酸化ハフニウム、ハフニウムシリケート、窒素が導入された
ハフニウムシリケート、窒素が導入されたハフニウムアルミネート等を用いることができ
、プラズマCVD法やスパッタリング法等で形成することができる。また、ゲート絶縁層
204は単層に限らず異なる層の積層でも良い。例えば、ゲート絶縁層Aとしてプラズマ
CVD法により窒化シリコンを形成し、ゲート絶縁層Aの上にゲート絶縁層Bとして酸化
シリコンを形成して、ゲート絶縁層204としても良い。
【0138】
一般に、容量素子は対向する二つの電極の間に誘電体を挟む構成を有し、誘電体の厚さが
薄いほど(対向する二つの電極間距離が短いほど)、また、誘電体の誘電率が大きいほど
容量値が大きくなる。ただし、容量素子の容量値を増やすために誘電体を薄くすると、二
つの電極間に流れるリーク電流が増加しやすくなり、また、容量素子の絶縁耐圧が低下し
やすくなる。
【0139】
トランジスタのゲート電極、ゲート絶縁層、半導体層が重畳する部分は、前述した容量素
子として機能する(以下、「ゲート容量」ともいう)。なお、半導体層の、ゲート絶縁層
を介してゲート電極と重畳する領域にチャネルが形成される。すなわち、ゲート電極と、
チャネル形成領域が容量素子の二つの電極として機能し、ゲート絶縁層が容量素子の誘電
体として機能する。ゲート容量の容量値は大きいほうが好ましいが、容量値を増やすため
にゲート絶縁層を薄くすると、前述のリーク電流の増加や、絶縁耐圧の低下といった問題
が生じやすい。
【0140】
一方で、ゲート絶縁層204として、ハフニウムシリケート(HfSixOy(x>0、
y>0))、窒素が添加されたハフニウムシリケート(HfSixOyNz(x>0、y
>0、z>0))、窒素が添加されたハフニウムアルミネート(HfAlxOyNz(x
>0、y>0、z>0))、酸化ハフニウム、酸化イットリウムなどのhigh-k材料
を用いると、ゲート絶縁層204を厚くしても、ゲート電極202と半導体層205間の
容量値を十分確保することが可能となる。
【0141】
例えば、ゲート絶縁層204として誘電率が大きいhigh-k材料を用いると、ゲート
絶縁層204を厚くしても、ゲート絶縁層204に酸化シリコンを用いた場合と同等の容
量値を実現できるため、ゲート電極202と半導体層205間に生じるリーク電流を低減
できる。また、ゲート電極202と同じ層を用いて形成された配線と、該配線と重畳する
他の配線との間に生じるリーク電流を低減できる。なお、high-k材料と、酸化シリ
コン、酸化窒化シリコン、窒化シリコン、窒化酸化シリコン、酸化アルミニウム、酸化窒
化アルミニウム、および酸化ガリウムのいずれか一以上との積層構造としてもよい。ゲー
ト絶縁層204の厚さは、10nm以上300nm以下、より好ましくは50nm以上2
00nm以下とするとよい。例えば、ゲート絶縁層204を、厚さ10nm以上50nm
以下の窒化シリコンと、厚さ100nm以上300nm以下の酸化窒化シリコンの積層構
造としてもよい。
【0142】
また、ゲート絶縁層204形成時の温度は、基板200およびゲート電極202(同一層
で形成される配線を含む)が耐えうる温度以下で、より高いほうが好ましい。例えば、ゲ
ート絶縁層204として基板200を350℃以上450℃以下に加熱しながら、高密度
プラズマCVD法により厚さ100nmの酸化窒化シリコンを形成する。なお、ゲート絶
縁層204形成時の温度は一定であることが好ましい。例えば、ゲート絶縁層204の形
成を、基板200を350℃に加熱して行う。
【0143】
また、ゲート絶縁層204の形成後、減圧下、窒素雰囲気下、希ガス雰囲気下、または超
乾燥エア雰囲気下において、加熱処理を行ってもよい。加熱処理によりゲート絶縁層20
4に含まれる水素、水分、水素化物、または水酸化物などの濃度を低減することができる
。加熱処理の温度は、基板200が耐えうる温度以下で、より高い温度で行うことが好ま
しい。具体的には、ゲート絶縁層204の成膜温度以上、基板200の歪点以下で行うこ
とが好ましい。
【0144】
なお、ゲート絶縁層204中の水素濃度は、5×1018atoms/cm3未満、好ま
しくは1×1018atoms/cm3以下、より好ましくは5×1017atoms/
cm3以下、更に好ましくは1×1016atoms/cm3以下とすることが望ましい
。
【0145】
また、半導体層205に酸化物半導体を用いる場合、ゲート絶縁層204は、半導体層2
05と接する部分において酸素を含むことが好ましい。特に、ゲート絶縁層204は、層
中(バルク中)に少なくとも化学量論比を超える量の酸素が存在することが好ましく、例
えば、ゲート絶縁層204として、酸化シリコンを用いる場合には、SiO2+α(ただ
し、α>0)とする。
【0146】
ゲート絶縁層204は、スパッタリング法、MBE法、CVD法、パルスレーザ堆積法、
ALD法等を適宜用いて形成することができる。また、μ波(例えば周波数2.45GH
z)を用いた高密度プラズマCVD法などを適用することができる。また、ゲート絶縁層
204は、スパッタリングターゲット表面に対し、概略垂直に複数の基板表面がセットさ
れた状態で成膜を行うスパッタ装置を用いて成膜してもよい。
【0147】
また、ゲート絶縁層204の形成後、ゲート絶縁層204に酸素(少なくとも、酸素ラジ
カル、酸素原子、酸素イオン、のいずれかを含む)を導入してゲート絶縁層204を化学
量論的組成より酸素が多い領域を有する(酸素過剰領域を有する)状態としてもよい。酸
素の導入は、イオン注入法、イオンドーピング法、プラズマイマージョンイオンインプラ
ンテーション法などを用いて行うことができる。また、酸素雰囲気下による熱処理や、酸
素雰囲気下で行うプラズマ処理などにより行うこともできる。
【0148】
また、酸素の導入により、ゲート絶縁層204を構成する元素と水素の間の結合、或いは
該元素と水酸基の間の結合を切断するとともに、これらの水素または水酸基が酸素と反応
することで水を生成するため、酸素の導入後に加熱処理を行うと、不純物である水素また
は水酸基が、水として脱離しやすくなる。このため、ゲート絶縁層204へ酸素を導入し
た後に加熱処理を行ってもよい。その後、さらにゲート絶縁層204に酸素を導入し、ゲ
ート絶縁層204を酸素過剰な状態としてもよい。また、ゲート絶縁層204への酸素の
導入と加熱処理は、それぞれを交互に複数回繰り返し行ってもよい。また、酸素の導入と
加熱処理を同時に行ってもよい。
【0149】
半導体層205に酸化物半導体を用いる場合、酸素の供給源となる酸素を多く(過剰に)
含むゲート絶縁層204を半導体層205と接して設けることによって、ゲート絶縁層2
04から半導体層205へ酸素を供給することができる。半導体層205およびゲート絶
縁層204を少なくとも一部が接した状態で加熱処理を行うことによって半導体層205
への酸素の供給を行ってもよい。半導体層205へ酸素を供給することにより、半導体層
205中の酸素欠損を補填することができる。
【0150】
本実施の形態では、ゲート絶縁層204として、酸化窒化シリコンを用いる。具体的には
、ゲート電極202上に酸化窒化シリコンを100nmの厚さで形成する。
【0151】
次に、ゲート絶縁層204上に、半導体層205となる半導体を形成する(
図9(B)、
図11(B)参照)。本実施の形態では、半導体層205として酸化物半導体を用いる。
また、酸化物半導体の形成に先立ち、ゲート絶縁層204の半導体層205が接して形成
される領域に、平坦化処理を行ってもよい。平坦化処理としては、特に限定されないが、
研磨処理(例えば、化学的機械研磨法(Chemical Mechanical Po
lishing:CMP))、ドライエッチング処理、プラズマ処理を用いることができ
る。
【0152】
プラズマ処理としては、例えば、アルゴンガスを導入してプラズマを発生させる逆スパッ
タリングを行うことができる。逆スパッタリングとは、アルゴン雰囲気下で基板側にRF
電源を用いて電圧を印加して基板近傍にプラズマを形成して表面を改質する方法である。
なお、アルゴン雰囲気に代えて窒素、ヘリウム、酸素などを用いてもよい。逆スパッタリ
ングを行うと、ゲート絶縁層204の表面に付着している粉状物質(パーティクル、ごみ
ともいう)を除去することができる。
【0153】
また、平坦化処理としての、研磨処理、ドライエッチング処理、プラズマ処理は複数回行
ってもよく、それらを組み合わせて行ってもよい。また、組み合わせて行う場合、工程順
も特に限定されず、ゲート絶縁層204表面の凹凸状態に合わせて適宜設定すればよい。
【0154】
酸化物半導体は、スパッタリング法、蒸着法、PCVD法、PLD法、ALD法またはM
BE法などを用いて形成することができる。なお、酸化物半導体は、成膜時に酸素が多く
含まれるような条件(例えば、酸素100%の雰囲気下でスパッタリング法により成膜を
行うなど)で成膜して、酸素を多く含む(好ましくは酸化物半導体が結晶状態における化
学量論的組成に対し、酸素の含有量が過剰な領域が含まれている)膜とすることが好まし
い。
【0155】
酸化物半導体をスパッタリング法で作製するためのターゲットは、例えば、In、Ga、
およびZnを含む金属酸化物を、In2O3:Ga2O3:ZnO=1:1:1[mol
数比]の組成で有するターゲットを用いることができる。また、In2O3:Ga2O3
:ZnO=1:1:2[mol数比]の組成を有するターゲット、In2O3:Ga2O
3:ZnO=1:1:4[mol数比]の組成を有するターゲット、またはIn2O3:
Ga2O3:ZnO=2:1:8[mol数比]の組成を有するターゲットを用いること
もできる。
【0156】
また、金属酸化物ターゲットの相対密度は90%以上100%以下、好ましくは95%以
上99.9%以下である。相対密度の高い金属酸化物ターゲットを用いることにより、成
膜した酸化物半導体を緻密な膜とすることができる。
【0157】
酸化物半導体の成膜は、減圧状態に保持された処理室内に基板を保持し、基板温度を10
0℃以上600℃以下好ましくは300℃以上500℃以下として行う。
【0158】
基板を加熱しながら成膜することにより、成膜した酸化物半導体に含まれる水素、水分、
水素化物、または水酸化物などの不純物濃度を低減することができる。また、スパッタリ
ングによる損傷が軽減される。そして、処理室内の残留水分を除去しつつ水素および水分
が除去されたスパッタガスを導入し、上記ターゲットを用いて酸化物半導体を形成する。
【0159】
成膜条件の一例としては、基板とターゲットの間との距離を100mm、圧力0.6Pa
、直流(DC)電源電力0.5kW、酸素(酸素流量比率100%)雰囲気下の条件が適
用される。なお、パルス直流電源を用いると、成膜時に発生する粉状物質(パーティクル
、ごみともいう)が軽減でき、膜厚分布も均一となるために好ましい。
【0160】
なお、上記スパッタリング装置を用いても、酸化物半導体は少なからず窒素を含んで形成
される場合がある。例えば、酸化物半導体中に窒素が、5×1018atoms/cm3
未満の濃度で含まれる場合がある。
【0161】
ここで、酸化物半導体を形成するスパッタリング装置について、以下に詳細を説明する。
【0162】
酸化物半導体を形成する処理室は、リークレートを1×10-10Pa・m3/秒以下と
することが好ましく、それによりスパッタリング法により成膜する際、膜中への不純物の
混入を低減することができる。
【0163】
リークレートを低くするには、外部リークのみならず内部リークを低減する必要がある。
外部リークとは、微小な穴やシール不良などによって真空系の外から気体が流入すること
である。内部リークとは、真空系内のバルブなどの仕切りからの漏れや内部の部材からの
放出ガスに起因する。リークレートを1×10-10Pa・m3/秒以下とするためには
、外部リークおよび内部リークの両面から対策をとる必要がある。
【0164】
外部リークを減らすには、処理室の開閉部分はメタルガスケットでシールするとよい。メ
タルガスケットは、フッ化鉄、酸化アルミニウム、または酸化クロムによって被覆された
金属材料を用いると好ましい。メタルガスケットはOリングと比べ密着性が高く、外部リ
ークを低減できる。また、フッ化鉄、酸化アルミニウム、酸化クロムなどの不動態によっ
て被覆された金属材料を用いることで、メタルガスケットから生じる水素を含む放出ガス
が抑制され、内部リークも低減することができる。
【0165】
処理室の内壁を構成する部材として、水素を含む放出ガスの少ないアルミニウム、クロム
、チタン、ジルコニウム、ニッケルまたはバナジウムを用いる。また、前述の材料を鉄、
クロムおよびニッケルなどを含む合金材料に被覆して用いてもよい。鉄、クロムおよびニ
ッケルなどを含む合金材料は、剛性があり、熱に強く、また加工に適している。ここで、
表面積を小さくするために部材の表面凹凸を研磨などによって低減しておくと、放出ガス
を低減できる。あるいは、前述の成膜装置の部材をフッ化鉄、酸化アルミニウム、酸化ク
ロムなどの不動態で被覆してもよい。
【0166】
さらに、スパッタガスを処理室に導入する直前に、スパッタガスの精製機を設けることが
好ましい。このとき、精製機から処理室までの配管の長さを5m以下、好ましくは1m以
下とする。配管の長さを5m以下または1m以下とすることで、配管からの放出ガスの影
響を長さに応じて低減できる。
【0167】
処理室の排気は、ドライポンプなどの粗引きポンプと、スパッタイオンポンプ、ターボ分
子ポンプおよびクライオポンプなどの高真空ポンプとを適宜組み合わせて行うとよい。ま
た、処理室内の残留水分を除去するためには、吸着型の真空ポンプ、例えば、クライオポ
ンプ、イオンポンプ、チタンサブリメーションポンプを用いることが好ましい。ターボ分
子ポンプは大きいサイズの分子の排気が優れる一方、水素や水の排気能力が低い。さらに
、水の排気能力の高いクライオポンプまたは水素の排気能力の高いスパッタイオンポンプ
を組み合わせることが有効となる。また、ターボ分子ポンプにコールドトラップを加えた
ものであってもよい。クライオポンプ等の吸着型の真空ポンプを用いて排気した処理室は
、例えば、水素原子、水(H2O)など水素原子を含む化合物(より好ましくは炭素原子
を含む化合物も)等が排気されるため、当該処理室で成膜した酸化物半導体に含まれる不
純物の濃度を低減できる。
【0168】
処理室の内側に存在する吸着物は、内壁に吸着しているために処理室の圧力に影響しない
が、処理室を排気した際のガス放出の原因となる。そのため、リークレートと排気速度に
相関はないが、排気能力の高いポンプを用いて、処理室に存在する吸着物をできる限り脱
離し、予め排気しておくことが重要である。なお、吸着物の脱離を促すために、処理室を
ベーキングしてもよい。ベーキングすることで吸着物の脱離速度を10倍程度大きくする
ことができる。ベーキングは100℃以上450℃以下で行えばよい。このとき、不活性
ガスを添加しながら吸着物の除去を行うと、排気するだけでは脱離しにくい水などの脱離
速度をさらに大きくすることができる。
【0169】
スパッタリング法において、プラズマを発生させるための電源装置は、RF電源装置、A
C電源装置、DC電源装置等を適宜用いることができる。なお、パルスDC電源を用いる
と、成膜時に発生する粉状物質(パーティクル、ごみともいう)が軽減でき、膜厚分布も
均一となるために好ましい。
【0170】
半導体層205の厚さは、1nm以上100nm以下、好ましくは5nm以上50nm以
下とする。本実施の形態では、半導体層205として、AC電源装置を有するスパッタリ
ング装置を用いたスパッタリング法により、膜厚35nmのIn-Ga-Zn系酸化物(
IGZO)を形成する(
図9(B)参照)。また、ターゲットとして、In:Ga:Zn
=1:1:1(=1/3:1/3:1/3)の原子数比のIn-Ga-Zn系酸化物ター
ゲットを用いる。なお、成膜条件は、酸素およびアルゴン雰囲気下(酸素流量比率50%
)、圧力0.6Pa、電源電力5kW、基板温度170℃とする。この成膜条件での成膜
速度は、16nm/minである。
【0171】
また、酸化物半導体中のナトリウム(Na)、リチウム(Li)、カリウム(K)などの
アルカリ金属の濃度は、Naは5×1016cm-3以下、好ましくは1×1016cm
-3以下、さらに好ましくは1×1015cm-3以下、Liは5×1015cm-3以
下、好ましくは1×1015cm-3以下、Kは5×1015cm-3以下、好ましくは
1×1015cm-3以下とすることが好ましい。
【0172】
酸化物半導体は不純物に対して鈍感であり、酸化物半導体中にはかなりの金属不純物が含
まれていても問題がなく、ナトリウムのようなアルカリ金属が多量に含まれる廉価なソー
ダ石灰ガラスも使えると指摘されている(神谷、野村、細野、「アモルファス酸化物半導
体の物性とデバイス開発の現状」、固体物理、2009年9月号、Vol.44、p.6
21-633)しかし、このような指摘は適切でない。アルカリ金属は酸化物半導体を構
成する元素ではないため、不純物である。アルカリ土類金属も、酸化物半導体を構成する
元素ではない場合において、不純物となる。特に、アルカリ金属のうちNaは、酸化物半
導体層に接する絶縁層が酸化物である場合、当該絶縁層中に拡散してNa+となる。また
、Naは、酸化物半導体層内において、酸化物半導体を構成する金属と酸素の結合を分断
する、或いは、その結合中に割り込む。その結果、例えば、閾値電圧がマイナス方向にシ
フトすることによるノーマリオン化、移動度の低下等の、トランジスタの特性の劣化が起
こり、加えて、特性のばらつきも生じる。この不純物によりもたらされるトランジスタの
特性の劣化と、特性のばらつきは、酸化物半導体層中の水素の濃度が十分に低い場合にお
いて顕著に現れる。したがって、酸化物半導体中の水素の濃度が5×1019cm-3以
下、特に5×1018cm-3以下である場合には、酸化物半導体中のアルカリ金属の濃
度を上記の値にすることが強く求められる。
【0173】
半導体層205に用いる酸化物半導体としては、少なくともインジウム(In)あるいは
亜鉛(Zn)を含むことが好ましい。特にInとZnを両方含むことが好ましい。また、
該酸化物半導体を用いたトランジスタの電気特性のばらつきを減らすためのスタビライザ
ーとして、それらに加えてガリウム(Ga)を有することが好ましい。また、スタビライ
ザーとして錫(Sn)を有することが好ましい。また、スタビライザーとしてハフニウム
(Hf)を有することが好ましい。また、スタビライザーとしてアルミニウム(Al)を
有することが好ましい。また、スタビライザーとしてジルコニウム(Zr)を有すること
が好ましい。
【0174】
また、他のスタビライザーとして、ランタノイドである、ランタン(La)、セリウム(
Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム
(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホル
ミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ル
テチウム(Lu)のいずれか一種あるいは複数種を有してもよい。
【0175】
例えば、酸化物半導体として、酸化インジウム、酸化錫、酸化亜鉛、In-Zn系酸化物
、In-Mg系酸化物、In-Ga系酸化物、In-Ga-Zn系酸化物(IGZOとも
表記する)、In-Al-Zn系酸化物、In-Sn-Zn系酸化物、In-Hf-Zn
系酸化物、In-La-Zn系酸化物、In-Ce-Zn系酸化物、In-Pr-Zn系
酸化物、In-Nd-Zn系酸化物、In-Sm-Zn系酸化物、In-Eu-Zn系酸
化物、In-Gd-Zn系酸化物、In-Tb-Zn系酸化物、In-Dy-Zn系酸化
物、In-Ho-Zn系酸化物、In-Er-Zn系酸化物、In-Tm-Zn系酸化物
、In-Yb-Zn系酸化物、In-Lu-Zn系酸化物、In-Sn-Ga-Zn系酸
化物、In-Hf-Ga-Zn系酸化物、In-Al-Ga-Zn系酸化物、In-Sn
-Al-Zn系酸化物、In-Sn-Hf-Zn系酸化物、In-Hf-Al-Zn系酸
化物を用いることができる。
【0176】
また、酸化物半導体として、元素Mを含む化学式InMO3(ZnO)m(m>0)で表
記される材料を用いてもよい。なお、元素Mは、Zn、Ga、Al、Fe、MnおよびC
oから選ばれた一の金属元素または複数の金属元素を示す。また、酸化物半導体として、
In2SnO5(ZnO)n(n>0)で表記される材料を用いてもよい。
【0177】
例えば、In:Ga:Zn=1:1:1(=1/3:1/3:1/3)、In:Ga:Z
n=2:2:1(=2/5:2/5:1/5)、あるいはIn:Ga:Zn=3:1:2
(=1/2:1/6:1/3)の原子数比のIn-Ga-Zn系酸化物やその組成の近傍
の酸化物を用いることができる。あるいは、In:Sn:Zn=1:1:1(=1/3:
1/3:1/3)、In:Sn:Zn=2:1:3(=1/3:1/6:1/2)あるい
はIn:Sn:Zn=2:1:5(=1/4:1/8:5/8)の原子数比のIn-Sn
-Zn系酸化物やその組成の近傍の酸化物を用いるとよい。
【0178】
しかし、インジウムを含む酸化物半導体は、これらに限られず、必要とする半導体特性(
移動度、しきい値、ばらつき等)に応じて適切な組成のものを用いればよい。また、必要
とする半導体特性を得るために、キャリア密度や不純物濃度、欠陥密度、金属元素と酸素
の原子数比、原子間距離、密度等を適切なものとすることが好ましい。
【0179】
例えば、In-Sn-Zn系酸化物では比較的容易に高い移動度が得られる。しかしなが
ら、In-Ga-Zn系酸化物でも、バルク内欠陥密度を低くすることにより移動度を上
げることができる。
【0180】
なお、例えば、In、Ga、Znの原子数比がIn:Ga:Zn=a:b:c(a+b+
c=1)である酸化物の組成が、原子数比がIn:Ga:Zn=A:B:C(A+B+C
=1)の酸化物の組成の近傍であるとは、a、b、cが、(a-A)2+(b-B)2+
(c-C)2≦r2を満たすことを言い、rは、例えば、0.05とすればよい。他の酸
化物でも同様である。
【0181】
半導体層205に用いる酸化物半導体は、単結晶、多結晶(ポリクリスタルともいう。)
または非晶質などの状態をとる。
【0182】
半導体層205に用いる酸化物半導体は、好ましくは、CAAC-OS(C Axis
Aligned Crystalline Oxide Semiconductor)
とする。
【0183】
CAAC-OSは、完全な単結晶ではなく、完全な非晶質でもない。CAAC-OSは、
非晶質相に結晶部を有する結晶-非晶質混相構造の酸化物半導体である。なお、当該結晶
部は、一辺が100nm未満の立方体内に収まる大きさであることが多い。また、透過型
電子顕微鏡(TEM:Transmission Electron Microsco
pe)による観察像では、CAAC-OSに含まれる非晶質部と結晶部との境界は明確で
はない。また、TEMによってCAAC-OSには粒界(グレインバウンダリーともいう
。)は確認できない。そのため、CAAC-OSは、粒界に起因する電子移動度の低下が
抑制される。
【0184】
CAAC-OSに含まれる結晶部は、c軸がCAAC-OSの被形成面または表面に垂直
な方向に揃い、かつab面に垂直な方向から見て三角形状または六角形状の原子配列を有
し、c軸に垂直な方向から見て金属原子が層状または金属原子と酸素原子とが層状に配列
している。なお、異なる結晶部間で、それぞれa軸およびb軸の向きが異なっていてもよ
い。本明細書において、単に垂直と記載する場合、85°以上95°以下の範囲も含まれ
ることとする。
【0185】
なお、CAAC-OSにおいて、結晶部の分布が一様でなくてもよい。例えば、CAAC
-OSの形成過程において、酸化物半導体膜の表面側から結晶成長させる場合、被形成面
の近傍に対し表面の近傍では結晶部の占める割合が高くなることがある。また、CAAC
-OSへ不純物を添加することにより、当該不純物添加領域において結晶部が非晶質化す
ることもある。
【0186】
CAAC-OSに含まれる結晶部のc軸は、CAAC-OSの被形成面または表面に垂直
な方向に揃うため、CAAC-OSの形状(被形成面の断面形状または表面の断面形状)
によっては互いに異なる方向を向くことがある。なお、結晶部のc軸の方向は、CAAC
-OSが形成されたときの被形成面または表面に垂直な方向となる。結晶部は、成膜する
ことにより、または成膜後に加熱処理などの結晶化処理を行うことにより形成される。
【0187】
CAAC-OSを用いたトランジスタは、可視光や紫外光の照射による電気特性の変動が
小さい。よって、当該トランジスタは、信頼性が高い。
【0188】
なお、酸化物半導体膜を構成する酸素の一部は窒素で置換されてもよい。
【0189】
また、CAAC-OSのように結晶部を有する酸化物半導体では、よりバルク内欠陥を低
減することができ、表面の平坦性を高めればアモルファス状態の酸化物半導体以上の移動
度を得ることができる。表面の平坦性を高めるためには、平坦な表面上に酸化物半導体を
形成することが好ましく、具体的には、平均面粗さ(Ra)が1nm以下、好ましくは0
.3nm以下、より好ましくは0.1nm以下の表面上に形成するとよい。Raは原子間
力顕微鏡(AFM:Atomic Force Microscope)にて評価可能で
ある。
【0190】
ただし、本実施の形態で説明するトランジスタ111は、ボトムゲート型であるため、ゲ
ート絶縁層204の下方には、ゲート電極202が存在する。従って、上記平坦な表面を
得るためにゲート電極202上にゲート絶縁層204を形成した後、少なくともゲート電
極202と重畳するゲート絶縁層204の表面に対してCMP処理などの平坦化処理を行
ってもよい。
【0191】
また、半導体層205としてIn-Ga-Zn系酸化物材料をスパッタリング法で成膜す
る場合、好ましくは、原子数比がIn:Ga:Zn=1:1:1、4:2:3、3:1:
2、1:1:2、2:1:3、または3:1:4で示されるIn-Ga-Zn系酸化物タ
ーゲットを用いることができる。前述の原子数比を有するIn-Ga-Zn系酸化物ター
ゲットを用いて半導体層205を成膜することで、多結晶酸化物半導体またはCAAC-
OSが形成されやすくなる。
【0192】
また、半導体層205となる酸化物半導体の形成前に、減圧下、窒素雰囲気下、希ガス雰
囲気下、または超乾燥エア雰囲気下において、加熱処理を行ってもよい。例えば、窒素雰
囲気下で350℃以上450℃以下の温度で加熱処理を行ってもよい。例えば、350℃
で、1時間の加熱処理を行う。該加熱処理により、ゲート絶縁層204表面に付着した水
素、水分、ハイドロカーボンなどの不純物を軽減することができる。なお、該加熱処理後
に基板101を大気に曝すことなく、連続して酸化物半導体層を形成することが好ましい
。
【0193】
また、ゲート絶縁層204の形成から半導体層205の形成までの工程は、途中で大気に
曝すことなく連続して行うことが好ましい。ゲート絶縁層204と酸化物半導体層を途中
で大気に曝すことなく連続して形成すると、ゲート絶縁層204表面に水素、水分、ハイ
ドロカーボンなどの不純物が吸着することを防ぐことができる。すなわち、ゲート絶縁層
204と酸化物半導体層の界面を清浄な状態とすることができるため、半導体装置の信頼
性を向上することが可能となる。
【0194】
また、半導体層205に、過剰な水素(水や水酸基を含む)を除去(脱水化または脱水素
化)するための加熱処理を行ってもよい。加熱処理の温度は、300℃以上700℃以下
、または基板の歪点未満とする。加熱処理は減圧下又は窒素雰囲気下、希ガス雰囲気下な
どで行うことができる。
【0195】
本実施の形態では、加熱処理装置の一つである電気炉に基板を導入し、半導体層205に
対して窒素雰囲気下において350℃以上450℃以下の温度で1時間の加熱処理を行い
、さらに窒素および酸素雰囲気下において350℃以上450℃以下の温度で1時間の加
熱処理を行う。例えば、350℃で、1時間の加熱処理を行う。
【0196】
なお、加熱処理装置は電気炉に限られず、抵抗発熱体などの発熱体からの熱伝導または熱
輻射によって、被処理物を加熱する装置を用いてもよい。例えば、GRTA(Gas R
apid Thermal Anneal)装置、LRTA(Lamp Rapid T
hermal Anneal)装置等のRTA(Rapid Thermal Anne
al)装置を用いることができる。LRTA装置は、ハロゲンランプ、メタルハライドラ
ンプ、キセノンアークランプ、カーボンアークランプ、高圧ナトリウムランプ、高圧水銀
ランプなどのランプから発する光(電磁波)の輻射により、被処理物を加熱する装置であ
る。GRTA装置は、高温のガスを用いて加熱処理を行う装置である。高温のガスには、
アルゴンなどの希ガス、または窒素のような、加熱処理によって被処理物と反応しない不
活性気体が用いられる。
【0197】
例えば、加熱処理として、650℃~700℃の高温に加熱した不活性ガス中に基板を入
れ、数分間加熱した後、基板を不活性ガス中から出すGRTAを行ってもよい。
【0198】
なお、加熱処理においては、窒素、またはヘリウム、ネオン、アルゴン等の希ガスに、水
、水素などが含まれないことが好ましい。または、加熱処理装置に導入する窒素、または
ヘリウム、ネオン、アルゴン等の希ガスの純度を、6N(99.9999%)以上好まし
くは7N(99.99999%)以上(即ち不純物濃度を1ppm以下、好ましくは0.
1ppm以下)とすることが好ましい。
【0199】
また、脱水化又は脱水素化のための加熱処理によって、酸化物半導体を構成する主成分材
料である酸素が同時に脱離して減少してしまうおそれがある。酸化物半導体において、酸
素が脱離した箇所では酸素欠損が存在し、該酸素欠損に起因してトランジスタの電気的特
性変動を招くドナー準位が生じてしまう。
【0200】
そこで、加熱処理で半導体層205を加熱した後、同じ炉に高純度の酸素ガス、高純度の
一酸化二窒素ガス、又は超乾燥エア(CRDS(キャビティリングダウンレーザー分光法
)方式の露点計を用いて測定した場合の水分量が20ppm(露点換算で-55℃)以下
、好ましくは1ppm以下、より好ましくは10ppb以下の空気)を導入してもよい。
酸素ガスまたは一酸化二窒素ガスに、水、水素などが含まれないことが好ましい。または
、加熱処理装置に導入する酸素ガスまたは一酸化二窒素ガスの純度を、6N以上好ましく
は7N以上(即ち、酸素ガスまたは一酸化二窒素ガス中の不純物濃度を1ppm以下、好
ましくは0.1ppm以下)とすることが好ましい。酸素ガス又は一酸化二窒素ガスの作
用により、脱水化または脱水素化処理による不純物の排除工程によって同時に減少してし
まった酸化物半導体を構成する主成分材料である酸素を供給することによって、半導体層
205を高純度化およびi型(真性)化することができる。
【0201】
また、脱水化又は脱水素化処理を行った半導体層205に、酸素(少なくとも、酸素ラジ
カル、酸素原子、酸素イオン、のいずれかを含む)を導入して膜中に酸素を供給してもよ
い。
【0202】
酸素の導入は、イオン注入法、イオンドーピング法、プラズマイマージョンイオンインプ
ランテーション法、酸素雰囲気下で行うプラズマ処理などを用いることができる。
【0203】
また、酸素の導入により、酸化物半導体を構成している元素と水素の間の結合、或いは該
元素と水酸基の間の結合を切断するとともに、これら水素、または水酸基が、酸素と反応
することで水を生成するため、後に行われる加熱処理により、不純物である水素、または
水酸基を、水として、脱離させやすくすることができる。このため、半導体層205へ酸
素を導入した後に加熱処理を行い、その後、半導体層205へ酸素を導入し、半導体層2
05を酸素過剰な状態としてもよい。また、半導体層205への酸素の導入と加熱処理は
、それぞれを交互に複数回行ってもよい。また、加熱処理と酸素の導入を同時に行っても
よい。
【0204】
脱水化又は脱水素化処理(加熱処理)を行った半導体層205に、酸素を導入して層中に
酸素を供給することによって、半導体層205をi型(真性)化することができる。i型
(真性)化した半導体層205を有するトランジスタは、電気特性変動が抑制されており
、電気的に安定である。
【0205】
このように、半導体層205に用いる酸化物半導体は、水素などの不純物が十分に除去さ
れることにより高純度化され、また、十分な酸素が供給されて酸素が過飽和の状態とされ
ることにより、i型(真性)または実質的にi型(真性)化されたものであることが好ま
しい。具体的には、酸化物半導体中の水素濃度は5×1019atoms/cm3以下、
好ましくは5×1018atoms/cm3以下、より好ましくは5×1017atom
s/cm3以下とする。また、十分な酸素が供給されて酸素が過飽和の状態とするため、
酸化物半導体を包みこむように過剰酸素を含む絶縁層を接して設ける。
【0206】
また、過剰酸素を含む絶縁層の水素濃度もトランジスタの特性に影響を与えるため重要で
ある。過剰酸素を含む絶縁層の水素濃度が、7.2×1020atoms/cm3以上で
ある場合には、トランジスタの初期特性のバラツキの増大、L長依存性の増大、さらにB
Tストレス試験において大きく劣化するため、過剰酸素を含む絶縁層の水素濃度は、7.
2×1020atoms/cm3未満とする。即ち、酸化物半導体層の水素濃度は5×1
019atoms/cm3以下、且つ、過剰酸素を含む絶縁層の水素濃度は、7.2×1
020atoms/cm3未満とすることが好ましい。
【0207】
水素濃度が十分に低減されて高純度化され、十分な酸素の供給により酸素欠乏に起因する
エネルギーギャップ中の欠陥準位が低減された酸化物半導体では、キャリア密度が1×1
012/cm3未満、望ましくは、1×1011/cm3未満、より望ましくは1.45
×1010/cm3未満となる。例えば、室温(25℃)でのオフ電流(ここでは、単位
チャネル幅(1μm)あたりの値)は、100zA(1zA(ゼプトアンペア)は1×1
0-21A)以下、望ましくは、10zA以下となる。また、85℃では、100zA(
1×10-19A)以下、望ましくは10zA(1×10-20A)以下となる。このよ
うに、i型化(真性化)または実質的にi型化された酸化物半導体を用いることで、極め
て優れたオフ電流特性のトランジスタを得ることができる。
【0208】
また、i型化(真性化)または実質的にi型化された酸化物半導体を有するトランジスタ
は、しきい値電圧やオン電流などの電気的特性に温度依存性がほとんど見られない。また
、光劣化によるトランジスタ特性の変動も少ない。
【0209】
このように、高純度化し、また、酸素欠損を低減することによりi型(真性)化した酸化
物半導体を有するトランジスタは、電気的特性変動が抑制されており、電気的に安定であ
る。よって安定した電気的特性を有する信頼性の高い液晶表示装置を提供することができ
る。
【0210】
次いで、半導体層205上に、ソース電極206a、ドレイン電極206b、および配線
216(
図9乃至
図12では、配線216_jおよび配線216_j+1として表記して
いる)となる導電層を形成する(
図9(C)、
図11(C)参照)。ソース電極206a
、ドレイン電極206b、および配線216に用いる導電層は、ゲート電極202と同様
の材料および方法で形成することができる。また、ソース電極206a、ドレイン電極2
06b、および配線216に用いる導電層として、導電性の金属酸化物で形成しても良い
。導電性の金属酸化物としては酸化インジウム、酸化錫、酸化亜鉛、インジウム錫酸化物
(ITOと略記する)、インジウム亜鉛酸化物またはこれらの金属酸化物材料に酸化シリ
コンを含ませたものを用いることができる。
【0211】
本実施の形態では、導電層としてスパッタリング法により膜厚100nmのチタン、膜厚
400nmのアルミニウム、膜厚100nmのチタンの積層を形成する。その後、第2の
フォトリソグラフィ工程により、ソース電極206a、ドレイン電極206b、および配
線216を形成する。
【0212】
なお、導電層のエッチングは、ゲート電極202の形成と同様の方法で行うことができる
。本実施の形態では、第1のエッチング条件でチタンとアルミニウムの2層をエッチング
した後、第2のエッチング条件で残りのチタン膜単層を除去する。なお、第1のエッチン
グ条件は、エッチングガス(BCl3:Cl2=750sccm:150sccm)を用
い、バイアス電力を1500Wとし、ICP電源電力を0Wとし、圧力を2.0Paとす
る。第2のエッチング条件は、エッチングガス(BCl3:Cl2=700sccm:1
00sccm)を用い、バイアス電力を750Wとし、ICP電源電力を0Wとし、圧力
を2.0Paとする。
【0213】
この時、ソース電極206a、ドレイン電極206b、および配線216の形成により露
出した半導体層205の表面には、導電層を構成する元素や、処理室内に存在する元素、
エッチングに用いたエッチングガスまたはエッチング液を構成する元素が不純物として付
着する場合がある。
【0214】
不純物が付着すると、トランジスタのオフ電流の増加、或いはトランジスタの電気的特性
の劣化がもたらされやすい。また、半導体層205に寄生チャネルが生じやすくなり、電
気的に分離されるべき電極や配線が半導体層205を介して電気的に接続されやすくなる
。
【0215】
また、不純物によっては、半導体層205内(バルク内)の表面近傍に混入し、半導体層
205中の酸素を引き抜いてしまい、半導体層205の表面および表面近傍に酸素欠損が
形成されることがある。例えば、上述したエッチングガスに含まれる塩素やボロンや、エ
ッチング室の構成材料であるアルミニウムは、半導体層205が低抵抗化(n型化)する
要因の一つとなりうる。
【0216】
そこで、本発明の一態様では、ソース電極206a、ドレイン電極206b、および配線
216を形成するためのエッチングが終了した後、半導体層205の表面に付着した不純
物を除去するための洗浄処理(不純物除去処理)を行う。
【0217】
不純物除去処理は、プラズマ処理、または溶液による処理によって行うことができる。プ
ラズマ処理としては、酸素プラズマ処理または一酸化二窒素プラズマ処理などを用いるこ
とができる。また、プラズマ処理として希ガス(代表的にはアルゴン)を用いてもよい。
【0218】
また、溶液による洗浄処理としては、TMAH溶液などのアルカリ性の溶液、希フッ酸な
どの酸性の溶液、水などを用いて行うことができる。例えば、希フッ酸を用いる場合、5
0重量%フッ酸を、水で1/102乃至1/105程度、好ましくは1/103乃至1/
105程度に希釈した希フッ酸を使用する。すなわち、濃度が0.5重量%乃至5×10
-4重量%の希フッ酸、好ましくは5×10-2重量%乃至5×10-4重量%の希フッ
酸を洗浄処理に用いることが望ましい。洗浄処理により、半導体層205の表面に付着し
た上記不純物を除去することができる。
【0219】
また、希フッ酸溶液を用いて不純物除去処理を行うと、半導体層205の表面をエッチン
グすることができる。すなわち、半導体層205の表面に付着した不純物や、半導体層2
05内の表面近傍に混入した不純物を、半導体層205の一部とともに除去することがで
きる。これにより、半導体層205の、ソース電極206a、ドレイン電極206bおよ
び配線216_jと重畳する領域の膜厚が、重畳しない領域の膜厚より大きくなる場合が
ある。例えば、1/103希釈フッ酸(0.05重量%フッ酸)で、IGZO膜を処理す
ると、1秒あたり1~3nm膜厚が減少し、2/105希釈フッ酸(0.0025重量%
フッ酸)で、IGZO膜を処理すると、1秒あたり0.1nm程度膜厚が減少する。
【0220】
不純物除去処理を行うことで、SIMSを用いた分析により得られる濃度のピーク値にお
いて、半導体層表面における塩素濃度を1×1019/cm3以下(好ましくは5×10
18/cm3以下、さらに好ましくは1×1018/cm3以下)とすることができる。
また、半導体層表面におけるボロン濃度を1×1019/cm3以下(好ましくは5×1
018/cm3以下、さらに好ましくは1×1018/cm3以下)とすることができる
。また、半導体層表面におけるアルミニウム濃度を1×1019/cm3以下(好ましく
は5×1018/cm3以下、さらに好ましくは1×1018/cm3以下)とすること
ができる。
【0221】
不純物除去処理を行うことで、安定した電気特性を有する信頼性の高いトランジスタを実
現することができる。
【0222】
次いで、ソース電極206a、ドレイン電極206b、および配線216_j上に絶縁層
207を形成する(
図9(D)、
図11(D)参照)。絶縁層207は、保護層として機
能し、ゲート絶縁層204または下地層201と同様の材料および方法で形成することが
できる。また、半導体層205に酸化物半導体を用いる場合、絶縁層207は、層中(バ
ルク中)に化学量論的組成より酸素が多い領域を有する(酸素過剰領域を有する)状態と
することが好ましい。
【0223】
絶縁層207形成後に、酸素(少なくとも、酸素ラジカル、酸素原子、酸素イオン、のい
ずれかを含む)を導入して膜中に酸素を供給し、絶縁層207を酸素過剰な状態としても
よい。酸素の導入は、絶縁層207に直接導入してもよいし、他の層を介して導入しても
よい。酸素を他の層を通過して導入する場合は、イオン注入法、イオンドーピング法、プ
ラズマイマージョンイオンインプランテーション法などを用いてもよい。また、絶縁層2
07へ直接酸素を導入する場合は、上記の方法に加えて酸素雰囲気下で行うプラズマ処理
なども用いることができる。
【0224】
酸素の導入により、絶縁層207を構成している元素と水素の間の結合、或いは該元素と
水酸基の間の結合を切断するとともに、これら水素、または水酸基が、酸素と反応するこ
とで水を生成するため、酸素の導入後に加熱処理を行うことで、不純物である水素、また
は水酸基を、水として、脱離させやすくすることができる。すなわち、絶縁層207中の
不純物濃度をさらに低減することができる。このため、絶縁層207へ酸素を導入した後
に加熱処理を行ってもよい。その後、さらに絶縁層207に酸素を導入し、絶縁層207
を酸素過剰な状態としてもよい。また、絶縁層207への酸素の導入と加熱処理は、それ
ぞれを交互に複数回行ってもよい。また、酸素の導入と加熱処理を同時に行ってもよい。
【0225】
なお、絶縁層207形成前に、酸素プラズマ処理または一酸化二窒素プラズマ処理などを
行い、表面に付着した水分や有機物を除去することが好ましい。絶縁層207は、酸素プ
ラズマ処理または一酸化二窒素プラズマ処理などを行った後、大気に曝すことなく連続し
て形成することが好ましい。
【0226】
本実施の形態では、絶縁層207として膜厚200nmの酸化シリコンを、スパッタリン
グ法を用いて成膜する。成膜時の基板温度は、室温以上300℃以下とすればよく、本実
施の形態では100℃とする。酸化シリコン層のスパッタリング法による成膜は、希ガス
(代表的にはアルゴン)雰囲気下、酸素雰囲気下、または希ガスと酸素の混合雰囲気下に
おいて行うことができる。また、ターゲットには、酸化シリコンまたはシリコンを用いる
ことができる。例えば、シリコンをターゲットに用いて、酸素を含む雰囲気下でスパッタ
を行うと酸化シリコンを形成することができる。
【0227】
絶縁層207の形成後、窒素雰囲気下、希ガス雰囲気下、酸素雰囲気下、窒素と酸素、ま
たは希ガスと酸素の混合ガス雰囲気下で加熱処理を行ってもよい。本実施の形態では、窒
素と酸素の混合ガス雰囲気下300℃で1時間の加熱処理を行う。
【0228】
次いで、第3のフォトリソグラフィ工程により、レジストマスクを形成し、ドレイン電極
206b上の絶縁層207の一部を選択的に除去し、コンタクトホール208を形成する
。また、断面D1-D2において、絶縁層207、および半導体層205の一部を選択的
に除去し、溝部230を形成する。また、断面J1-J2において、配線212_i上の
絶縁層207、半導体層205、およびゲート絶縁層204の一部を選択的に除去し、コ
ンタクトホール219を形成する。また、断面K1-K2において、配線216_j上の
絶縁層207の一部を選択的に除去し、コンタクトホール220を形成する。なお、図示
していないが、溝部240も、溝部230と同様に形成する。
【0229】
第3のフォトリソグラフィ工程では、まず、絶縁層207上に多階調マスクを用いてレジ
ストマスク261を形成する(
図9(E)、
図11(E)参照)。
【0230】
ここで、
図13を用いて、多階調マスクについて説明しておく。多階調マスクとは、露光
部分、中間露光部分、及び未露光部分に3つの露光レベルを行うことが可能なマスクであ
り、透過した光が複数の強度となる露光マスクである。一度の露光及び現像工程により、
複数(代表的には二種類)の厚さの領域を有するレジストマスクを形成することが可能で
ある。このため、多階調マスクを用いることで、露光マスク(フォトマスク)の枚数を削
減することが可能である。
【0231】
多階調マスクの代表例としては、
図13(A1)に示すようなグレートーンマスク304
、
図13(B1)に示すようなハーフトーンマスク314がある。
【0232】
図13(A1)に示すように、グレートーンマスク304は、透光性基板301及びその
上に形成される遮光部302並びに回折格子303で構成される。遮光部302において
は、光の透過率が0%である。一方、回折格子303はスリット、ドット、メッシュ等の
光透過部の間隔を、露光に用いる光の解像度限界以下の間隔とすることにより、光の透過
率を制御することができる。なお、回折格子303は、周期的なスリット、ドット、メッ
シュ、または非周期的なスリット、ドット、メッシュどちらも用いることができる。
【0233】
透光性基板301としては、石英等の透光性基板を用いることができる。遮光部302及
び回折格子303は、クロムや酸化クロム等の光を吸収する遮光材料を用いて形成するこ
とができる。
【0234】
グレートーンマスク304に露光光を照射した場合、
図13(A2)に示すように、遮光
部302においては、光透過率は0%であり、遮光部302も回折格子303も設けられ
ていない領域では光透過率は100%である。また、回折格子303により、光透過率を
10~70%の範囲で調整することができる。回折格子303における光透過率の調整は
、回折格子のスリット、ドット、またはメッシュの間隔及びピッチの調整により可能であ
る。
【0235】
図13(B1)に示すように、ハーフトーンマスク314は、透光性基板311及びその
上に形成される半透過部312並びに遮光部313で構成される。半透過部312は、M
oSiN、MoSi、MoSiO、MoSiON、CrSiなどを用いることができる。
遮光部313は、クロムや酸化クロム等の光を吸収する遮光材料を用いて形成することが
できる。
【0236】
ハーフトーンマスク314に露光光を照射した場合、
図13(B2)に示すように、遮光
部313においては、光透過率は0%であり、遮光部313も半透過部312も設けられ
ていない領域では光透過率は100%である。また、半透過部312により、光透過率を
10~70%の範囲で調整可能である。半透過部312に於ける光透過率は、半透過部3
12に用いる材料により調整可能である。
【0237】
多階調マスクを用いて形成されたレジストマスク261は、厚さの異なる複数の領域から
なるレジストマスクであり、ここでは2つの領域(厚い領域と、薄い領域)を有する。レ
ジストマスク261において、厚い領域をレジストマスク261の凸部と呼び、薄い領域
をレジストマスク261の凹部と呼ぶ場合がある。
【0238】
レジストマスク261は、コンタクトホール208、コンタクトホール220、および溝
部230を形成する領域と重畳する位置に凹部を有する。また、コンタクトホール219
を形成する領域上にはレジストマスク261を設けない。
【0239】
次に、第1のエッチング処理を行う。第1のエッチング処理により、レジストマスク26
1をマスクとして、断面J1-J2における配線212_i上の、絶縁層207の一部、
半導体層205の一部、およびゲート絶縁層204の一部をエッチングし、コンタクトホ
ール219を形成する。コンタクトホール219の側面では、絶縁層207、半導体層2
05、およびゲート絶縁層204の側面が露出し、底面では配線212_iが露出する(
図12(A)参照)。
【0240】
絶縁層207、半導体層205、およびゲート絶縁層204のエッチングは、ドライエッ
チングでもウェットエッチングでもよく、両方を用いてもよい。ドライエッチングに用い
るエッチングガスとしては、塩素を含むガス(塩素系ガス、例えば塩素(Cl2)、三塩
化硼素(BCl3)、四塩化珪素(SiCl4)、四塩化炭素(CCl4)など)を用い
ることができる。
【0241】
ドライエッチングとしては、平行平板型RIE(Reactive Ion Etchi
ng)法や、ICP(Inductively Coupled Plasma:誘導結
合型プラズマ)エッチング法を用いることができる。なお、断面A1-A2、断面D1-
D2、断面K1-K2はレジストマスク261に覆われているため、エッチングされない
(
図10(A)、
図12(A)参照)。
【0242】
次いで、酸素プラズマによるアッシング等によりレジストマスク261を縮小させて、レ
ジストマスク262を形成する。この時、レジストマスク261の厚さの薄い領域(凹部
)のレジストが除去され、絶縁層207が露出する(
図10(B)、
図12(B)参照)
。
【0243】
次に、第2のエッチング処理を行う。第2のエッチング処理により、レジストマスク26
2をマスクとして、断面A1-A2においてドレイン電極206bと重畳する絶縁層20
7の一部をエッチングし、コンタクトホール208を形成する。また、断面D1-D2に
おいて絶縁層207の一部、および半導体層205の一部をエッチングし、溝部230を
形成する。また、断面K1-K2において配線216_jと重畳する絶縁層207の一部
をエッチングし、コンタクトホール220を形成する。この時、断面J1-J2において
も、レジストマスク262に覆われていない絶縁層207の一部、および半導体層205
の一部がエッチングされる(
図12(C)参照)。
【0244】
コンタクトホール208の側面では、絶縁層207の側面が露出し、底面ではドレイン電
極206bが露出する。溝部230の側面では、絶縁層207、および半導体層205の
側面が露出し、底面にゲート絶縁層204が露出する。コンタクトホール220の側面で
は、絶縁層207の側面が露出し、底面では配線216_jが露出する。
【0245】
第2のエッチング処理は、ドライエッチングでもウェットエッチングでもよく、両方を用
いてもよい。この時、溝部230の底面において、配線212_iが露出しないようにす
ることが肝要である。溝部230の底面に配線212_iが露出すると、溝部230の側
面に露出した半導体層205と配線212_iの間にリーク電流が生じやすく、表示品位
の低下や、信頼性低下の一因となる。特に表示領域内の溝部230では、リーク電流によ
る表示品位の低下が顕著となる。溝部230と配線212_iを、ゲート絶縁層204を
介して重畳させることで、寄生チャネルの発生を防ぐともに、半導体層205と配線21
2_i間のリーク電流の発生を防ぎ、表示装置の表示品位を良好なものとすることができ
る。
【0246】
一般に、例えばコンタクトホール219と溝部230のように、同一の積層構造を有する
部位に異なる深さの開口部を形成する場合、開口部の形成は複数のフォトリソグラフィ工
程に分けて実施される。しかしながら、本実施の形態に示す作製工程によれば、同一の積
層構造を有する部位に異なる深さの開口部を、一回のフォトリソグラフィ工程により形成
することが可能となる。すなわち、少ないフォトリソグラフィ工程により、低コストで、
生産性よく表示装置を作製することができる。
【0247】
また、本実施の形態に示す作製工程によれば、半導体層205のチャネル形成領域にフォ
トレジストが直接形成されることがない。特に、半導体層205として酸化物半導体を用
いる場合、半導体層205のチャネル形成領域が絶縁層207で保護されるため、その後
のフォトレジストの剥離洗浄工程においても、半導体層205のチャネル形成領域に水分
が付着することがないため、トランジスタ111の特性バラツキが低減され、信頼性が向
上する。
【0248】
次いで、絶縁層207上に、スパッタリング法、真空蒸着法などを用いて、画素電極21
0、電極221、および電極222となる透光性を有する導電層(透明導電層ともいう)
を30nm以上200nm以下、好ましくは50nm以上100nm以下の厚さで形成す
る。
【0249】
透光性を有する導電層としては、酸化タングステンを含むインジウム酸化物、酸化タング
ステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを
含むインジウム錫酸化物、インジウム錫酸化物(以下、ITOと示す)、インジウム亜鉛
酸化物、酸化ケイ素を添加したインジウム錫酸化物などの透光性を有する導電性材料を用
いることができる。また、1枚乃至10枚のグラフェンシートよりなる材料を用いてもよ
い。
【0250】
また、本実施の形態では透過型の液晶表示装置の画素部の作製方法について例示したが、
透過型に限らず、反射型や半透過型の液晶表示装置の画素部にも適用することができる。
反射型の液晶表示装置の画素部を得る場合は、画素電極として光反射率の高い導電層(反
射導電層ともいう)、例えば、アルミニウム、チタン、銀、ロジウム、ニッケルなどの可
視光の反射率が高い金属、或いは、これら金属の少なくとも1つを含む合金、またはそれ
らの積層を用いればよい。半透過型の液晶表示装置の画素部を得る場合は、一つの画素電
極を、透明導電層と反射導電層とで形成し、透過部分と反射部分とを設ける。
【0251】
本実施の形態では、透光性を有する導電層として厚さ80nmのITO層を形成し、第4
のフォトリソグラフィ工程により、レジストマスクを形成し、透光性を有する導電層を選
択的にエッチングして、画素電極210、電極221、および電極222を形成する(図
10(D)、
図12(D)参照)。
【0252】
画素電極210は、コンタクトホール208を介してドレイン電極206bに電気的に接
続される。また、電極221はコンタクトホール219を介して配線212_iに電気的
に接続される。また、電極222はコンタクトホール220を介して配線216_jに電
気的に接続される。
【0253】
また、端子部103および端子部104に形成されるコンタクトホール219およびコン
タクトホール220において、配線212_iおよび配線216_jを露出した状態のま
まとせず、ITOなどの酸化物導電性材料で覆うことは重要である。配線212_iおよ
び配線216_jは金属層であるため、配線212_iおよび配線216_jを露出した
状態のままとすると、露出表面が酸化され、FPC等との接触抵抗が増大する。接触抵抗
の増大は、外部から入力される信号の遅延や波形のなまりを生じ、外部からの信号が正確
に伝達されず、半導体装置の信頼性が低下してしまう。配線212_iおよび配線216
_jの露出表面を、ITOなどの導電性酸化物材料で覆うことにより、接触抵抗の増大を
防ぎ、半導体装置の信頼性を向上させることができる。
【0254】
本実施の形態によれば、従来よりも少ないフォトリソグラフィ工程により半導体装置を作
製することが可能となる。よって、低コストで、生産性の良い液晶表示装置を作製するこ
とができる。
【0255】
本実施の形態では、ボトムゲート構造のトランジスタを例として説明したが、トップゲー
ト構造のトランジスタに適用することも可能である。
【0256】
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能
である。
【0257】
(実施の形態2)
上記実施の形態1で例示した半導体装置を用いた液晶表示装置の一形態を
図14に示す。
【0258】
図14(A)は、トランジスタ4010、および液晶素子4013を、第1の基板400
1と第2の基板4006との間にシール材4005によって封止したパネルの平面図であ
り、
図14(B)は、
図14(A)のM1-M2における断面図に相当する。また、第1
の基板4001上に、溝部4040が設けられている。
【0259】
第1の基板4001上に設けられた画素部4002を囲むようにして、シール材4005
が設けられ、画素部4002上に第2の基板4006が設けられている。よって画素部4
002は、第1の基板4001とシール材4005と第2の基板4006とによって、液
晶層4008と共に封止されている。
【0260】
また、第1の基板4001上のシール材4005によって囲まれている領域より外側の領
域に、入力端子4020を有し、FPC(Flexible printed circ
uit)4018a、FPC4018bが接続されている。FPC4018aは、別途異
なる基板に作製された信号線駆動回路4003と電気的に接続され、FPC4018bは
、別途異なる基板に作製された走査線駆動回路4004と電気的に接続されている。画素
部4002に与えられる各種信号および電位は、FPC4018aおよびFPC4018
bを介して、信号線駆動回路4003および走査線駆動回路4004から供給される。
【0261】
なお、別途異なる基板に作製された駆動回路の接続方法は、特に限定されるものではなく
、COG(Chip On Glass)、ワイヤボンディング、TCP(Tape C
arrier Package)などの方法を用いることができる。
【0262】
また、図示していないが、信号線駆動回路4003または走査線駆動回路4004は、本
明細書で開示するトランジスタを用いて、第1の基板4001上に形成してもよい。
【0263】
表示装置に設けられる表示素子としては液晶素子(液晶表示素子ともいう)を用いること
ができる。また、電子インクなど、電気的作用によりコントラストが変化する表示媒体も
適用することができる。
【0264】
図14に示す表示装置は、電極4016および配線4015を有しており、電極4016
および配線4015はFPC4018aが有する端子と異方性導電層4019を介して、
電気的に接続されている。
【0265】
電極4016は、第1の電極4030と同じ導電層から形成され、配線4015は、トラ
ンジスタ4010のソース電極およびドレイン電極と同じ導電層で形成されている。
【0266】
本実施の形態では、トランジスタ4010として、実施の形態1で示したトランジスタを
適用することができる。画素部4002に設けられたトランジスタ4010は表示素子と
電気的に接続し、表示パネルを構成する。表示素子は表示を行うことがでれば特に限定さ
れず、様々な表示素子を用いることができる。
【0267】
図14は、表示素子として液晶素子を用いた表示装置の例を示している。
図14において
、表示素子である液晶素子4013は、第1の電極4030、第2の電極4031、およ
び液晶層4008を含む。なお、液晶層4008を挟持するように配向膜として機能する
絶縁層4032、絶縁層4033が設けられている。なお、配向膜として機能する絶縁層
4032は、溝部4040上にも設けられている。第2の電極4031は第2の基板40
06側に設けられ、第1の電極4030と第2の電極4031とは液晶層4008を介し
て積層する構成となっている。
【0268】
また、スペーサー4035は、第2の基板4006上に絶縁層で形成された柱状のスペー
サーであり、液晶層4008の膜厚(セルギャップ)を制御するために設けられている。
なお球状のスペーサーを用いても良い。
【0269】
表示素子として、液晶素子を用いる場合、サーモトロピック液晶、低分子液晶、高分子液
晶、高分子分散型液晶、強誘電性液晶、反強誘電性液晶等を用いることができる。これら
の液晶材料は、条件により、コレステリック相、スメクチック相、キュービック相、カイ
ラルネマチック相、等方相等を示す。
【0270】
また、配向膜が不要であるブルー相を示す液晶を用いてもよい。ブルー相は液晶相の一つ
であり、コレステリック液晶を昇温していくと、コレステリック相から等方相へ転移する
直前に発現する相である。ブルー相は狭い温度範囲でしか発現しないため、温度範囲を改
善するために5重量%以上のカイラル剤を混合させた液晶組成物を用いて液晶層に用いる
。ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、応答速度が1msec以下と
短く、光学的等方性であるため配向処理が不要であり、視野角依存性が小さい。また配向
膜を設けなくてもよいのでラビング処理も不要となるため、ラビング処理によって引き起
こされる静電破壊を防止することができ、作製工程中の液晶表示装置の不良や破損を軽減
することができる。よって液晶表示装置の生産性を向上させることが可能となる。
【0271】
また、液晶材料の固有抵抗率は、1×109Ω・cm以上であり、好ましくは1×101
1Ω・cm以上であり、さらに好ましくは1×1012Ω・cm以上である。なお、本明
細書における固有抵抗率の値は、20℃で測定した値とする。
【0272】
液晶表示装置に設けられる保持容量の大きさは、画素部に配置されるトランジスタのリー
ク電流等を考慮して、所定の期間の間電荷を保持できるように設定される。上記実施の形
態で開示した、チャネルが形成される半導体層に、i型化(真性化)または実質的にi型
化された酸化物半導体を用いたトランジスタを用いると、保持容量の大きさ(容量値)を
、各画素における液晶容量の1/3以下、好ましくは1/5以下とすることができる。
【0273】
上記実施の形態で開示した酸化物半導体をチャネルが形成される半導体層に用いたトラン
ジスタは、オフ状態における電流値(オフ電流値)を低くすることができる。よって、画
像信号等の電気信号の保持時間を長くすることができ、電源オン状態では入力間隔も長く
設定できる。よって、リフレッシュ動作の頻度を少なくすることができるため、消費電力
を抑制する効果を奏する。また、チャネルが形成される半導体層にi型化(真性化)また
は実質的にi型化された酸化物半導体を用いたトランジスタは、保持容量を設けなくても
、液晶素子に印加された電位の保持が可能とする。
【0274】
また、チャネルが形成される半導体層に酸化物半導体を用いたトランジスタは、比較的高
い電界効果移動度が得られるため、液晶表示装置の高速駆動が可能である。よって、液晶
表示装置の画素部に上記トランジスタを用いることで、垂直同期周波数を通常の1.5倍
好ましくは2倍以上にすることで動画表示時に問題となる残像現象や動画のぼけなどを軽
減する、所謂、倍速駆動と呼ばれる駆動技術の適用が容易となる。よって、表示品位のよ
い液晶表示装置を提供することができる。
【0275】
また、上記トランジスタは、同一基板上に駆動回路部または画素部に作り分けて作製する
こともできるため、液晶表示装置の部品点数を削減することができる。よって、液晶表示
装置の生産性を向上させることができる。
【0276】
液晶表示装置には、TN(Twisted Nematic)モード、IPS(In-P
lane-Switching)モード、FFS(Fringe Field Swit
ching)モード、ASM(Axially Symmetric aligned
Micro-cell)モード、OCB(Optical Compensated B
irefringence)モード、FLC(Ferroelectric Liqui
d Crystal)モード、AFLC(AntiFerroelectric Liq
uid Crystal)モードなどを用いることができる。
【0277】
また、ノーマリーブラック型の液晶表示装置、例えば垂直配向(VA:Vertical
Alignment)モードを採用した透過型の液晶表示装置としてもよい。ここで、
垂直配向モードとは、液晶表示パネルの液晶分子の配列を制御する方式の一種であり、電
圧が印加されていないときにパネル面に対して液晶分子が垂直方向を向く方式である。垂
直配向モードとしては、いくつか挙げられるが、例えば、MVA(Multi-Doma
in Vertical Alignment)モード、PVA(Patterned
Vertical Alignment)モード、ASV(Advanced Supe
r-View)モードなどを用いることができる。また、画素(ピクセル)をいくつかの
領域(サブピクセル)に分け、それぞれ別の方向に分子を倒すよう工夫されているマルチ
ドメイン化あるいはマルチドメイン設計といわれる方法を用いることができる。
【0278】
また、液晶表示装置において、ブラックマトリクス(遮光層)、偏光部材、位相差部材、
反射防止部材などの光学部材(光学基板)などは適宜設ける。例えば、偏光基板および位
相差基板による円偏光を用いてもよい。また、光源としてバックライト、サイドライトな
どを用いてもよい。
【0279】
また、バックライトとして複数の発光ダイオード(LED)を用いて、時間分割表示方式
(フィールドシーケンシャル駆動方式)を行うことも可能である。フィールドシーケンシ
ャル駆動方式を適用することで、カラーフィルタを用いることなく、カラー表示を行うこ
とができる。
【0280】
また、画素部における表示方式は、プログレッシブ方式やインターレース方式等を用いる
ことができる。また、カラー表示する際に画素で制御する色要素としては、RGB(Rは
赤、Gは緑、Bは青を表す)の三色に限定されない。例えば、RGBW(Wは白を表す)
、又はRGBに、イエロー、シアン、マゼンタ等を一色以上追加したものがある。なお、
色要素のドット毎にその表示領域の大きさが異なっていてもよい。ただし、本発明はカラ
ー表示の液晶表示装置に限定されるものではなく、モノクロ表示の液晶表示装置に適用す
ることもできる。
【0281】
なお、
図14において、第1の基板4001、第2の基板4006としては、ガラス基板
の他、可撓性を有する基板も用いることができ、例えば透光性を有するプラスチック基板
などを用いることができる。プラスチックとしては、FRP(Fiberglass-R
einforced Plastics)板、PVF(ポリビニルフルオライド)フィル
ム、ポリエステルフィルムまたはアクリル樹脂フィルムを用いることができる。また、ア
ルミニウムホイルをPVFフィルムやポリエステルフィルムで挟んだ構造のシートを用い
ることもできる。
【0282】
透過型の液晶表示装置は、光源又は表示素子からの光を透過させて表示を行う。よって光
が透過する画素部に設けられる基板、絶縁層、導電層などの薄膜はすべて可視光の波長領
域の光に対して透光性とすることが好ましい。
【0283】
表示素子に電圧を印加する第1の電極および第2の電極(画素電極、共通電極、対向電極
などともいう)においては、取り出す光の方向、電極が設けられる場所、および電極のパ
ターン構造によって透光性、反射性を選択すればよい。
【0284】
第1の電極4030、第2の電極4031は、酸化タングステンを含むインジウム酸化物
、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、
酸化チタンを含むインジウム錫酸化物、ITO、インジウム亜鉛酸化物、酸化ケイ素を添
加したインジウム錫酸化物などの透光性を有する導電性材料を用いることができる。また
、1枚乃至10枚のグラフェンシートよりなる材料を用いてもよい。
【0285】
また、第1の電極4030、第2の電極4031のいずれか一方はタングステン(W)、
モリブデン(Mo)、ジルコニウム(Zr)、ハフニウム(Hf)、バナジウム(V)、
ニオブ(Nb)、タンタル(Ta)、クロム(Cr)、コバルト(Co)、ニッケル(N
i)、チタン(Ti)、白金(Pt)、アルミニウム(Al)、銅(Cu)、銀(Ag)
等の金属、又はその合金、若しくはその窒化物から一つ、又は複数種を用いて形成するこ
とができる。
【0286】
また、第1の電極4030、第2の電極4031として、導電性高分子(導電性ポリマー
ともいう)を含む導電性組成物を用いて形成することができる。導電性高分子としては、
いわゆるπ電子共役系導電性高分子を用いることができる。例えば、ポリアニリンまたは
その誘導体、ポリピロールまたはその誘導体、ポリチオフェンまたはその誘導体、若しく
はアニリン、ピロールおよびチオフェンの2種以上からなる共重合体またはその誘導体な
どがあげられる。
【0287】
また、トランジスタは静電気などにより破壊されやすいため、保護回路を設けることが好
ましい。保護回路は、非線形素子を用いて構成することが好ましい。
【0288】
以上のように上記実施の形態で例示したトランジスタを適用することで、信頼性の高い液
晶表示装置を提供することができる。なお、上記実施の形態で例示したトランジスタは表
示機能を有する半導体装置のみでなく、電源回路に搭載されるパワーデバイス、LSI等
の半導体集積回路、対象物の情報を読み取るイメージセンサ機能を有する半導体装置など
様々な機能を有する半導体装置に適用することが可能である。
【0289】
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能
である。
【0290】
(実施の形態3)
本実施の形態では、フォトマスク数およびフォトリソグラフィ工程数を削減した半導体装
置の一例として、アクティブマトリクス型のEL表示装置に用いることが可能な半導体装
置およびその作製方法の一例について、
図15乃至
図23を用いて説明する。
【0291】
まず、
図20(A)を用いて、EL表示装置に用いることが可能な半導体装置150の構
成例を説明する。半導体装置150は、基板101上に画素領域102と、m個(mは1
以上の整数)の端子105_1~105_mおよび端子107を有する端子部103と、
n個(nは1以上の整数)の端子106_1~106_nおよび端子108を有する端子
部104を有している。また、半導体装置150は、端子部103に電気的に接続するm
本の配線212_1~212_mと、配線224、端子部104に電気的に接続するn本
の配線216_1~216_nと、配線217を有している。また、画素領域102は、
縦m個(行)×横n個(列)のマトリクス状に配置された複数の画素160を有している
。i行j列の画素160(i、j)(iは1以上m以下の整数、jは1以上n以下の整数
)は、配線212_i(i番目の配線212)、配線216_j(j番目の配線216)
にそれぞれ電気的に接続されている。また、各画素は、陽極または陰極の一方の電位が供
給される配線として機能する配線224と、陽極または陰極の他方の電位が供給される配
線として機能する配線217に電気的に接続され、配線224は端子107と電気的に接
続され、配線217は端子108と電気的に接続されている。また、配線212_iは端
子105_iと電気的に接続され、配線216_jは端子106_jと電気的に接続され
ている。
【0292】
端子部103および端子部104は外部入力端子であり、外部に設けられた制御回路とF
PC等を用いて接続される。外部に設けられた制御回路から供給される信号は、端子部1
03および端子部104を介して半導体装置150に入力される。
図20(A)では、端
子部103を画素領域102の左右外側に形成し、2カ所から信号を入力する構成を示し
ている。また、端子部104を画素領域102の上下外側に形成し、2カ所から信号を入
力する構成を示している。2カ所から信号を入力することにより、信号の供給能力が高ま
るため、半導体装置150の高速動作が容易となる。また、半導体装置150の大型化や
高精細化に伴う配線抵抗の増大による信号遅延の影響を軽減することができる。また、半
導体装置150に冗長性を持たせることが可能となるため、半導体装置150の信頼性を
向上させることができる。なお、
図20(A)では端子部103および端子部104をそ
れぞれ2カ所設ける構成としているが、それぞれ1カ所設ける構成としても構わない。
【0293】
図20(B)は、画素160の回路構成を示している。画素160は、トランジスタ11
1と、トランジスタ121と、EL素子116と、容量素子113を有している。トラン
ジスタ111のゲート電極は配線212_iに電気的に接続され、トランジスタ111の
ソース電極またはドレイン電極の一方は配線216_jに電気的に接続されている。また
、トランジスタ111のソース電極またはドレイン電極の他方は、トランジスタ121の
ゲート電極と容量素子113の一方の電極が電気的に接続されたノード115に電気的に
接続されている。また、トランジスタ121のソース電極またはドレイン電極の一方はE
L素子116の一方の電極と電気的に接続され、ソース電極またはドレイン電極の他方は
容量素子113の他方の電極と配線217に電気的に接続されている。また、EL素子1
16の他方の電極は、配線224に電気的に接続されている。配線217と配線224の
電位差は、トランジスタ121のしきい値電圧と、EL素子116のしきい値電圧の合計
電圧よりも大きくなるように設定する。
【0294】
トランジスタ111は、トランジスタ121のゲート電極に、配線216_jから供給さ
れる画像信号を入力させるか否かを選択する機能を有する。配線212_iにトランジス
タ111をオン状態とする信号が供給されると、トランジスタ111を介して配線216
_jの画像信号がノード115に供給される。
【0295】
トランジスタ121は、ノード115に供給された電位(画像信号)に応じた電流を、E
L素子116に流す機能を有する。容量素子113は、ノード115と配線217の電位
差を一定に保つ機能を有する。トランジスタ121は、画像信号に応じた電流をEL素子
116に流すための電流源として機能する。
【0296】
トランジスタ111およびトランジスタ121のチャネルが形成される半導体層には、単
結晶半導体、多結晶半導体、微結晶半導体、非晶質半導体等を用いることができる。半導
体材料としては、例えば、シリコン、ゲルマニウム、シリコンゲルマニウム、炭化シリコ
ン、またはガリウムヒ素等を挙げることができる。なお、本実施の形態で説明する表示装
置は、画素領域内に半導体層が残る構成であるため、上記半導体を用いた表示装置をボト
ムエミッション型の表示装置に用いる場合は、半導体層を極力薄くするなどして、可視光
の透過率を高めることが好ましい。
【0297】
また、トランジスタ111及びトランジスタ121のチャネルが形成される半導体層に、
上記実施の形態で説明した酸化物半導体を用いることが好ましい。酸化物半導体は、エネ
ルギーギャップが3.0eV以上と大きく、可視光に対する透過率が大きい。また、酸化
物半導体を適切な条件で加工して得られたトランジスタにおいては、オフ電流を使用時の
温度条件下(例えば、25℃)において、100zA(1×10-19A)以下、もしく
は10zA(1×10-20A)以下、さらには1zA(1×10-21A)以下とする
ことができる。このため、容量素子113を設けなくてもトランジスタ121のゲート電
極に印加された電位の保持が可能となる。また、半導体装置の消費電力を低減することが
できる。
【0298】
また、本実施の形態ではトランジスタ111およびトランジスタ121を、共にnチャネ
ル型のトランジスタとして説明を行うが、どちらか一方または両方がpチャネル型のトラ
ンジスタであってもよい。
【0299】
容量素子113は、トランジスタ121のゲート電極に供給された画像信号を保持するた
めの機能を有する。容量素子113は、必ずしも設ける必要はないが、トランジスタ11
1がオフ状態の時にソースとドレインの間に流れる電流(オフ電流)に起因する、トラン
ジスタ121のゲート電極に与えられた電位の変動を抑制することができる。
【0300】
EL素子116は、陽極となる一方の電極と陰極となる他方の電極との間にEL層を挟持
した構造を有し、EL層に流れる電流量に応じて輝度が制御される。すなわち、EL素子
116の輝度は、トランジスタ121のソースとドレインの間に流れる電流量に応じて制
御される。
【0301】
次に、
図20で示した画素160の構成例について、
図15乃至
図18を用いて説明する
。
図15および
図16は、画素160の平面構成を示す上面図である。
図15は、最上層
に画素電極210が形成された状態の上面図であり、
図16は、さらに隔壁層218、E
L層271が形成された状態の上面図である。図面を見やすくするため、
図15および図
16では、幾つかの構成要素の記載を省略している。例えば、
図16ではEL層271上
に形成される対向電極226の記載を省略している。
【0302】
図17および
図18は、画素160の積層構成を示す断面図である。
図17(A)は、図
15および
図16におけるP1-P2の一点鎖線における断面に相当し、
図17(B)は
、
図15および
図16におけるQ1-Q2の一点鎖線における断面に相当し、
図18は、
図15および
図16におけるR1-R2の一点鎖線における断面に相当する。
【0303】
また、ノード115(
図20(B)参照)と電気的に接続するドレイン電極206bと、
ゲート電極202の間に生じる寄生容量が大きいと、ノード115が配線212_iの電
位変動の影響を受けやすくなるため、トランジスタ111がオン状態からオフ状態に変化
する時にノード115に供給された電位が正確に保持できず、表示品位が低下する要因と
なる。上記実施の形態で説明したように、ソース電極206aをU字型としてドレイン電
極206bを囲む形状とすることで、十分なチャネル幅を確保しつつ、ドレイン電極20
6bとゲート電極202間に生じる寄生容量を小さくすることができるため、EL表示装
置の表示品位を向上させることができる。
【0304】
また、本実施の形態で説明する半導体装置においても、工程簡略化のため島状半導体層を
形成するためのフォトリソグラフィ工程を行わないため、画素領域の全てに半導体層20
5が残る構成となる。その結果、上記実施の形態と同様に、本実施の形態で説明する半導
体装置においても、寄生トランジスタが生じる恐れがある。
【0305】
本実施の形態で説明する半導体装置では、配線212_iがゲート電極として機能し、配
線216_jがソース電極またはドレイン電極の一方として機能し、配線217がソース
電極またはドレイン電極の他方として機能する第1の寄生トランジスタが生じる恐れがあ
る。
【0306】
なお、本実施の形態で説明する半導体装置には配線203が無いため、上記実施の形態で
説明した第2の寄生トランジスタは生じないが、画素電極210がゲート電極として機能
し、絶縁層207がゲート絶縁層として機能し、配線216_jがソース電極またはドレ
イン電極の一方として機能し、配線217がソース電極またはドレイン電極の他方として
機能する第3の寄生トランジスタが生じる恐れがある。特に、画素の開口率を大きくする
などの理由により、画素電極210を配線216_jや配線217に近づけると、第3の
寄生トランジスタの影響がより強くなる。
【0307】
また、配線217と、隣接する画素が有する配線216_j+1の電位差が大きくなると
、両配線間に生じる電界により、両配線間の半導体層205に寄生チャネルが生じる恐れ
がある。
【0308】
配線212_iにトランジスタ111をオン状態とする電位が供給されると、第1の寄生
トランジスタもオン状態となり、配線216_jと配線217が電気的に接続される。第
1の寄生トランジスタにより配線216_jと配線217が電気的に接続されると、正確
な画像信号をノード115に供給することが困難となる。
【0309】
また、第3の寄生トランジスタがn型のトランジスタとして機能する場合、画素電極21
0に供給された、または保持された電位よりも、配線216_jの電位が低くなり、その
電位差の絶対値が第3の寄生トランジスタのしきい値よりも大きくなると、画素電極21
0の下に位置する半導体層205にチャネルが形成され、第3の寄生トランジスタがオン
状態となる。
【0310】
第3の寄生トランジスタがオン状態となると、配線216_jと配線217が電気的に接
続される。第3の寄生トランジスタにより配線216_jと配線217が電気的に接続さ
れると、正確な画像信号をノード115に供給することが困難となる。また、画素の開口
率を大きくするなどの理由により、画素電極210を配線216_jや配線217に近づ
けると、第3の寄生トランジスタの影響がより強くなる。
【0311】
また、配線217と、隣接する画素が有する配線216_j+1の間に寄生チャネルが生
じると、配線217と配線216_j+1が電気的に接続され、正確な画像信号をそれぞ
れの画素が有するノード115に供給することが困難となる。
【0312】
そこで、画素160に半導体層205が除去された溝部230を設け、上述の寄生トラン
ジスタが生じない構成とする。溝部230を、配線216_jと配線217の間に位置す
る配線212_iの線幅方向の両端部を越えて横切る様に設けることで、第1の寄生トラ
ンジスタおよび寄生チャネルの生成を防ぐことができる。なお、溝部230は配線212
_i上に複数設けてもよい。
【0313】
また、溝部230を配線216_jと画素電極210との間、または配線217と画素電
極210との間の少なくともどちらか一方に、配線216_jまたは配線217が延伸す
る方向に沿って、画素電極210の端部231および端部232を越えて形成する。これ
により、第3の寄生トランジスタの生成を防ぐことができる。なお、配線216_jまた
は配線217が延伸する方向に沿って設けられる溝部230は、配線216_jまたは配
線217と厳密に平行に設けられている必要はなく、また、屈曲部または湾曲部を有して
いてもよい。
【0314】
また、配線217と、隣接する画素が有する配線216_j+1の間に、画素の端部を越
えて溝部230を設けることで、配線217と配線216_j+1の間に寄生チャネルが
生成されることを防ぐことができる。
【0315】
また、半導体層205が除去された溝部230の大きさに特に制限はないが、寄生トラン
ジスタおよび寄生チャネルの生成を確実に防ぐため、配線216_jまたは配線217が
延伸する方向と直交する方向における、溝部230内の半導体層が除去された部分の幅は
1μm以上とすることが好ましく、2μm以上とするとさらに好ましい。
【0316】
図17(A)に示す断面P1-P2は、トランジスタ111、トランジスタ121、およ
び容量素子113の積層構造を示している。トランジスタ111およびトランジスタ12
1は、チャネルエッチング型と呼ばれるボトムゲート構造のトランジスタである。
図17
(B)に示す断面Q1-Q2は、画素電極210および溝部230を含む、配線216_
jから配線216_j+1までの積層構造を示している。また、
図18に示す断面R1-
R2は、配線212_iと、配線217および配線216_j+1、の交差部における積
層構造を示している。
【0317】
図17(A)に示す断面P1-P2において、基板200上に下地層201が形成され、
下地層201上にゲート電極202、ゲート電極243、容量電極215が形成されてい
る。また、ゲート電極202上に、ゲート絶縁層204と半導体層205が形成されてい
る。また、半導体層205上にソース電極206aおよびドレイン電極206bが形成さ
れている。また、半導体層205に接し、ソース電極206a、ドレイン電極206b、
ソース電極236a、ドレイン電極236b上に絶縁層207が形成されている。絶縁層
207上には画素電極210が形成され、絶縁層207に形成されたコンタクトホール2
08を介してトランジスタ121のソース電極236aと電気的に接続されている。
【0318】
また、絶縁層207、半導体層205、ゲート絶縁層204の一部が除去されたコンタク
トホール209が形成され、コンタクトホール209と重畳して配線213が形成されて
いる。配線213により、トランジスタ111のドレイン電極206bと、トランジスタ
121のゲート電極243が電気的に接続される。なお、
図17(A)では図示していな
いが、絶縁層207、半導体層205、ゲート絶縁層204の他の一部が除去されたコン
タクトホール214が形成され、コンタクトホール214と重畳して形成される配線22
3により容量電極215と配線217が電気的に接続されている。配線213および配線
223は、画素電極210と同一の層により形成される。なお、コンタクトホール208
、コンタクトホール209、コンタクトホール214、および溝部230は、同一工程で
形成される。
【0319】
また、
図17(A)では図示していないが、トランジスタ121のドレイン電極236b
は、配線217と電気的に接続している。なお、本実施の形態では、配線217の一部を
ドレイン電極236bとして機能させる例を示している(
図15参照)。
【0320】
また、絶縁層207上に、画素毎にEL層271を分離するための隔壁層218が形成さ
れている。また、画素電極210、および隔壁層218上にEL層271が形成され、隔
壁層218およびEL層271上に対向電極226が形成されている。画素電極210、
EL層271、および対向電極226が重畳している部位がEL素子116として機能す
る。
【0321】
容量電極215とドレイン電極206bが、ゲート絶縁層204および半導体層205を
間に挟んで重なっている部分が容量素子113として機能する。ゲート絶縁層204と半
導体層205は誘電体層として機能する。容量電極215とドレイン電極206bの間に
形成される誘電体層を多層構造とすることで、一つの誘電体層にピンホールが生じても、
ピンホールは他の誘電体層で被覆されるため、容量素子113を正常に機能させることが
できる。また、酸化物半導体の比誘電率は14乃至16と大きいため、半導体層205に
酸化物半導体を用いると、容量素子113の容量値を大きくすることが可能となる。
【0322】
図17(B)に示す断面Q1-Q2において、基板200上に下地層201が形成され、
下地層201上にゲート絶縁層204が形成され、ゲート絶縁層204上に半導体層20
5が形成されている。半導体層205上に配線216_j、配線216_j+1、および
配線217が形成され、半導体層205、配線216_j、配線216_j+1、および
配線217上に絶縁層207が形成されている。また、絶縁層207上に画素電極210
が形成されている。
【0323】
配線216_jと画素電極210の間に、半導体層205、および絶縁層207の一部が
除去された溝部230が形成されている。また、配線217と、配線216_j+1の間
に、半導体層205、および絶縁層207の一部が除去された溝部230が形成されてい
る。溝部230は、少なくともその底面において半導体層を有していない構成となってい
る。
【0324】
図18に示す断面R1-R2において、基板200上に下地層201が形成され、下地層
201上に配線212_iが形成されている。また、配線212_i上に、ゲート絶縁層
204と半導体層205が形成されている。また、半導体層205上に配線217および
隣接する画素が有する配線216_j+1が形成され、半導体層205、配線217、お
よび配線216_j+1上に絶縁層207が形成されている。また、絶縁層207上に隔
壁層218が形成され、隔壁層218上に対向電極226が形成されている。また、半導
体層205、および絶縁層207の一部が除去された溝部230が形成されている。溝部
230は、少なくともその底面において半導体層を有していない構成となっている。また
、溝部230の底面において配線212_iが露出しない構成となっている。
【0325】
次に、
図15と異なる平面構成を有する画素の一例について、
図19を用いて説明する。
図19は、画素120の平面構成を示す上面図である。なお、図面を見やすくするため、
図19では、下地層201、ゲート絶縁層204、半導体層205、絶縁層207、隔壁
層218、EL層271、および対向電極226の記載を省略している。
図19に示す画
素120は、
図15および
図16に示した画素160と、溝部230の平面構成が異なる
。なお、
図19におけるP1-P2の一点鎖線で示す部位の積層構成は、
図17(A)で
説明した構成と同じである。
【0326】
画素120は、溝部230を配線217と画素電極210との間、および配線216_j
と画素電極210との間に設けた構成としている。また、溝部230を単に配線212_
iの幅方向の端部を越えて横切るように設けるだけでなく、画素160よりも広く形成し
ている。また、コンタクトホール209およびコンタクトホール214を、溝部230と
一体で形成し、容量電極215やゲート電極243の周囲にも可能な限り溝部230を形
成する構成としている。このように、溝部230を広範囲に配置することで、寄生トラン
ジスタの生成をより確実に防ぐことができる。
【0327】
続いて、
図15乃至
図18を用いて説明したEL表示装置に用いることが可能な半導体装
置の作製方法について、
図21乃至
図23を用いて説明する。なお、
図21乃至
図23に
おける断面P1-P2は、
図15および
図16におけるP1-P2の一点鎖線で示した部
位の断面図である。なお、本実施の形態で説明する半導体装置は、画素電極210の形成
工程までは、実施の形態1に示した半導体装置と同様の工程により形成することが可能で
ある。また、少なくとも上記実施の形態で用いた符号と同一の符号で示す部分は、実施の
形態1に示した内容と同様の材料および方法を用いて形成することが可能である。よって
、本実施の形態における詳細な説明は省略する。
【0328】
まず、基板200上に下地層201となる絶縁層を形成し、下地層201上に導電層を形
成する(
図21(A)参照)。続いて、第1のフォトリソグラフィ工程により、導電層上
にレジストマスクを形成し、導電層の一部を選択的に除去し、ゲート電極202、ゲート
電極243、容量電極215、配線212_i(
図21に図示せず)を形成する(
図21
(A)参照)。本実施の形態では、基板200にアルミノホウケイ酸ガラスを用い、下地
層201に酸化窒化シリコンを用い、導電層としてタングステンを用いる。
【0329】
次いで、ゲート電極202、ゲート電極243、容量電極215、配線212_i上にゲ
ート絶縁層204を形成し、ゲート絶縁層204上に半導体層205を形成する(
図21
(B)参照)。本実施の形態では、ゲート絶縁層204として、酸化窒化シリコンを用い
、半導体層205として酸化物半導体を用いる。
【0330】
次いで、半導体層205上に、ソース電極206a、ドレイン電極206b、ソース電極
236a、ドレイン電極236b、および配線216_j(
図21に図示せず。)となる
導電層を形成する。本実施の形態では、導電層としてチタン、アルミニウム、チタンの積
層を形成する。その後、第2のフォトリソグラフィ工程により、導電層の一部を選択的に
除去し、ソース電極206a、ドレイン電極206b、ソース電極236a、ドレイン電
極236b、および配線216_jを形成する(
図21(C)参照。)。
【0331】
次いで、ソース電極206a、ドレイン電極206b、ソース電極236a、ドレイン電
極236b、および配線216_j上に絶縁層207を形成する(
図21(D)参照。)
。本実施の形態では、絶縁層207として酸化シリコンを形成する。
【0332】
次いで、第3のフォトリソグラフィ工程により、レジストマスクを形成し、ソース電極2
36a上の絶縁層207の一部を選択的に除去し、コンタクトホール208を形成する。
【0333】
第3のフォトリソグラフィ工程では、まず、絶縁層207上に多階調マスクを用いてレジ
ストマスク261を形成する(
図22(A)、
図13(A)参照)。
【0334】
レジストマスク261は、コンタクトホール208、および溝部230(
図22に図示せ
ず)を形成する領域と重畳する位置に凹部を有する。また、コンタクトホール209を形
成する領域上にはレジストマスク261を設けない。
【0335】
次に、第1のエッチング処理を行う。レジストマスク261をマスクとして、第1のエッ
チング処理を行うことにより、絶縁層207の一部、半導体層205の一部、およびゲー
ト絶縁層204の一部をエッチングし、コンタクトホール209を形成する(
図22(B
)参照)。コンタクトホール209の側面では、絶縁層207、半導体層205、および
ゲート絶縁層204の側面が露出する。また、コンタクトホール209の底面ではドレイ
ン電極206bの一部とゲート電極243の一部が露出する。
【0336】
次いで、酸素プラズマによるアッシング等によりレジストマスク261を縮小させて、レ
ジストマスク262を形成する。この時、レジストマスク261の厚さの薄い領域(凹部
)のレジストが除去され、絶縁層207が露出する(
図22(C)参照)。
【0337】
次に、第2のエッチング処理を行う。第2のエッチング処理により、レジストマスク26
2をマスクとして、断面P1-P2におけるソース電極236aと重畳する絶縁層207
の一部をエッチングし、コンタクトホール208を形成する。この時、コンタクトホール
209においても、レジストマスク262に覆われていない絶縁層207の一部、および
半導体層205の一部がエッチングされる(
図23(A)参照)。なお、
図23(A)で
は図示していないが、第2のエッチング処理により溝部230もコンタクトホール208
と同様に形成される。
【0338】
コンタクトホール208の側面では、絶縁層207の側面が露出し、底面ではソース電極
236aが露出する。溝部230の側面では、絶縁層207、および半導体層205の側
面が露出し、底面にゲート絶縁層204が露出する。
【0339】
次いで、絶縁層207上に、スパッタリング法、真空蒸着法などを用いて、画素電極21
0となる透明導電層を形成する。本実施の形態では、透明導電層としてITOを形成する
。
【0340】
続いて、第4のフォトリソグラフィ工程により、レジストマスクを形成し、導電層を選択
的にエッチングして、画素電極210、配線213、および配線223(
図23に図示せ
ず。)を形成する(
図23(B)参照)。
【0341】
画素電極210は、コンタクトホール208においてトランジスタ121のソース電極2
36aと電気的に接続される。また、コンタクトホール209において、配線213を介
してドレイン電極206bとゲート電極243が電気的に接続される。また、コンタクト
ホール214において、配線223を介して容量電極215と配線217が電気的に接続
される。なお、端子部103および端子部104も上記実施の形態と同様に形成すること
ができる。
【0342】
次に、画素領域102上に隔壁層218を設ける(
図23(C)参照)。隔壁層218を
形成するための材料としては、有機絶縁材料、無機絶縁材料を用いることができる。隔壁
層218には、第5のフォトリソグラフィ工程により画素電極210と重畳する開口部2
72が形成される(
図16、
図17(B)参照)。なお、隔壁層218の側壁形状は、テ
ーパー形状もしくは曲率を有する形状とすることが好ましい。なお、隔壁層218の形成
に感光性の材料を用いると、フォトレジストを用いずに隔壁層218を形成することがで
き、また、隔壁層218の側壁形状を、曲率を有する形状とすることができる。隔壁層2
18を形成するための材料としては、アクリル樹脂、フェノール樹脂、ポリスチレン、ポ
リイミドなどを適用することができる。本実施の形態では、隔壁層218として感光性の
ポリイミドを用いる。
【0343】
また、隔壁層218は、コンタクトホール208、コンタクトホール209、コンタクト
ホール214、および溝部230上にも形成される。隔壁層218でコンタクトホール2
08、コンタクトホール209、コンタクトホール214、および溝部230を埋めるこ
とで、コンタクトホールおよび溝部を形成した際に露出した半導体層及び絶縁層の端部を
覆うことができる。当該構成とすることにより、前述の露出した部分を保護することがで
きるため、半導体装置の信頼性を向上させることができる。なお、隔壁層218は、端子
部103および端子部104上には形成しない。
【0344】
次いで開口部272の画素電極210と接する領域にEL層271を形成する。次いで、
EL層271および隔壁層218上に、対向電極226を形成する(
図23(C)参照)
。
【0345】
画素電極210はEL素子116の一方の電極として機能する。また、対向電極226は
EL素子116の他方の電極として機能する。なお、EL層271は、正孔注入層、正孔
輸送層、発光層、電子輸送層、電子注入層等を積層して用いればよい。また、画素電極2
10を陽極として用いる場合は、画素電極210に正孔注入層よりも仕事関数が大きい材
料を用いる。また、画素電極210を複数層の積層構造とする場合は、少なくとも正孔注
入層と接する画素電極210の構成層に仕事関数の大きい材料を用いる。また、対向電極
226を陰極として用いる場合は、対向電極226に電子注入層よりも仕事関数の小さい
金属材料を用いればよい。具体的に対向電極226としては、アルミニウムとリチウムと
の合金を用いることができる。
【0346】
なお、本実施の形態では、本発明の一態様を、EL素子116の発光をEL素子116の
基板200側の面から取り出す下面射出(ボトムエミッション)構造へ適用する例を示し
ているが、本発明の一態様は、EL素子116の基板200と逆の面から取り出す上面射
出(トップエミッション)構造の表示装置や、上記の両面から発光を取り出す両面射出(
デュアルエミッション)構造の表示装置にも適用することができる。EL素子116を上
面射出構造とする場合は、画素電極210を陰極とし、対向電極226を陽極として用い
て、EL層271を構成する注入層、輸送層、発光層などを、下面射出構造と逆の順番で
積層すればよい。
【0347】
本実施の形態によれば、従来よりも少ないフォトリソグラフィ工程により半導体装置を作
製することができる。よって、低コストで、生産性の良いEL表示装置を作製することが
できる。また、本実施の形態によれば、電気的特性の劣化が少なく信頼性に優れた半導体
装置を作製することが可能となる。よって、信頼性に優れたEL表示装置を作製すること
ができる。
【0348】
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能
である。
【0349】
(実施の形態4)
実施の形態1で例示したトランジスタを用いたEL表示装置の一形態を
図24に示す。
【0350】
図24(A)は、トランジスタ4010、及びEL素子4113を、第1の基板4001
と第2の基板4006との間に封止材4105によって封止したパネルの平面図であり、
図24(B)は、
図24(A)のN1-N2における断面図に相当する。また、第1の基
板4001上に、溝部4040が設けられている。
【0351】
第1の基板4001上に設けられた画素部4002を囲むようにして、封止材4105が
設けられ、画素部4002上に第2の基板4006が設けられている。よって画素部40
02は、第1の基板4001と封止材4105と第2の基板4006とによって封止され
ている。封止材4105は、公知のシール材やガラスフリット等を用いて形成できる。具
体的には、熱硬化樹脂、又は光硬化樹脂などの有機樹脂や、低融点ガラスなどの材料を用
いることができる。また、シール材に乾燥剤が含まれていても良い。
【0352】
第1の基板4001、第2の基板4006、および封止材4105で囲まれた空間400
7は、気体で充填されている。特に、EL素子4113に対して不活性である気体で充填
されていることが好ましい。例えば、該気体としては、希ガスや窒素を用いることが好ま
しい。
【0353】
また、第1の基板4001上の封止材4105によって囲まれている領域より外側の領域
に、入力端子4020を有し、FPC4018a(Flexible printed
circuit)、FPC4018bが接続されている。FPC4018aは、別途異な
る基板に作製された信号線駆動回路4003と電気的に接続され、FPC4018bは、
別途異なる基板に作製された走査線駆動回路4004と電気的に接続されている。画素部
4002に与えられる各種信号及び電位は、FPC4018a及びFPC4018bを介
して、信号線駆動回路4003及び走査線駆動回路4004から供給される。
【0354】
なお、別途異なる基板に作製された駆動回路の接続方法は、特に限定されるものではなく
、COG、ワイヤボンディング、TCPなどを用いることができる。
【0355】
また、図示していないが、信号線駆動回路4003または走査線駆動回路4004は、本
明細書で開示するトランジスタを用いて、第1の基板4001上に形成してもよい。
【0356】
図24(B)に示す表示装置は、配線4015及び電極4016を有しており、配線40
15及び電極4016はFPC4018aが有する端子と異方性導電層4019を介して
、電気的に接続されている。
【0357】
配線4015は、トランジスタ4010のソース電極及びドレイン電極と同じ導電層から
形成され、電極4016は、EL素子4113の一方の電極となる第1の電極4130と
同じ導電層で形成されている。
【0358】
本実施の形態では、トランジスタ4010として、上記実施の形態で示したトランジスタ
を適用することができる。画素部4002に設けられたトランジスタ4010はEL素子
と電気的に接続し、表示パネルを構成する。
【0359】
また
図24(B)に示す表示装置は、表示素子としてEL素子を用いた例を示している。
図24(B)において、EL素子4113は、第1の電極4130、第2の電極4131
、及びEL層4108を有する。当該EL素子4113と、他のEL素子4113を電気
的に分離するために設けられる隔壁層4009は、溝部4040上にも設けられている。
【0360】
溝部4040を隔壁層4009で埋めることで、溝部4040を形成した際露出した半導
体層及び絶縁層の側面を覆うことができる。当該構成とすることにより、前述の露出した
部分を保護することができるため、半導体装置の信頼性を向上させることができる。
【0361】
また、本実施の形態に示すトランジスタの半導体層に酸化物半導体を用いることで、アモ
ルファスシリコンを用いたトランジスタと比較して、高い電界効果移動度が得られるため
、高速駆動が可能である。よって、EL表示装置の画素部に上記トランジスタを用いるこ
とで、高画質な画像を提供することができる。また、上記トランジスタは、同一基板上に
駆動回路部または画素部に作り分けて作製することもできるため、EL表示装置の部品点
数を削減することができる。
【0362】
以上のように上記実施の形態で例示したトランジスタを適用することで、トランジスタを
有する表示装置の作製工程に用いるフォトマスクの枚数を増やさず、トランジスタの信頼
性を向上させたEL表示装置を作製することができる。よって、低コストで、生産性が高
く、信頼性に優れたEL表示装置を提供することができる。
【0363】
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能
である。
【0364】
(実施の形態5)
本実施の形態では、トランジスタの構成例について説明する。なお、上記実施の形態と同
一部分又は同様な機能を有する部分、及び工程は、上記実施の形態と同様に行うことがで
き、本実施の形態での繰り返しの説明は省略する。なお、同じ箇所の詳細な説明も省略す
る。
【0365】
図25(A)に示すトランジスタ2450は、基板2400上にゲート電極2401が形
成され、ゲート電極2401上にゲート絶縁層2402が形成され、ゲート絶縁層240
2上に酸化物半導体層2403が形成され、酸化物半導体層2403上に、ソース電極2
405a、及びドレイン電極2405bが形成されている。また、酸化物半導体層240
3、ソース電極2405a、及びドレイン電極2405b上に絶縁層2407が形成され
ている。また、絶縁層2407上に保護絶縁層2409を形成してもよい。また、基板2
400とゲート電極2401の間に下地層を形成してもよい。トランジスタ2450は、
ボトムゲート構造のトランジスタの一つであり、逆スタガ型トランジスタの一つでもある
。
【0366】
図25(B)に示すトランジスタ2460は、基板2400上にゲート電極2401が形
成され、ゲート電極2401上にゲート絶縁層2402が形成され、ゲート絶縁層240
2上に酸化物半導体層2403が形成され、酸化物半導体層2403上にチャネル保護層
2406が形成され、チャネル保護層2406及び酸化物半導体層2403上に、ソース
電極2405a、及びドレイン電極2405bが形成されている。また、ソース電極24
05a、及びドレイン電極2405b上に保護絶縁層2409を形成してもよい。また、
基板2400とゲート電極2401の間に下地層を形成してもよい。トランジスタ246
0は、チャネル保護型(チャネルストップ型ともいう)と呼ばれるボトムゲート構造のト
ランジスタの一つであり、逆スタガ型トランジスタの一つでもある。チャネル保護層24
06は、他の絶縁層と同様の材料及び方法を用いて形成することができる。チャネル保護
層2406の端部の断面形状をテーパーまたは階段状とすることで、ソース電極2405
a、またはドレイン電極2405bと重畳するチャネル保護層2406の端部近傍に生じ
る恐れのある電界集中を緩和し、トランジスタ2460の電気特性の劣化を抑えることが
できる。
【0367】
図25(C)に示すトランジスタ2470は、基板2400上に下地層2436が形成さ
れ、下地層2436上に酸化物半導体層2403が形成され、酸化物半導体層2403、
及び下地層2436上に、ソース電極2405a、及びドレイン電極2405bが形成さ
れ、酸化物半導体層2403、ソース電極2405a、及びドレイン電極2405b上に
ゲート絶縁層2402が形成され、ゲート絶縁層2402上にゲート電極2401が形成
されている。また、ゲート電極2401上に保護絶縁層2409を形成してもよい。トラ
ンジスタ2470は、トップゲート構造のトランジスタの一つである。
【0368】
図25(D)に示すトランジスタ2480は、基板2400上に、第1のゲート電極24
11が形成され、第1のゲート電極2411上に第1のゲート絶縁層2413が形成され
、第1のゲート絶縁層2413上に酸化物半導体層2403が形成され、酸化物半導体層
2403、及び第1のゲート絶縁層2413上に、ソース電極2405a、及びドレイン
電極2405bが形成されている。また、酸化物半導体層2403、ソース電極2405
a、及びドレイン電極2405b上に第2のゲート絶縁層2414が形成され、第2のゲ
ート絶縁層2414上に第2のゲート電極2412が形成されている。第2のゲート電極
2412は、上記実施の形態で示した画素電極と同じ層を用いて形成してもよい。また、
第2のゲート電極2412上に保護絶縁層を形成してもよい。また、基板2400と第1
のゲート電極2411の間に下地層を形成してもよい。
【0369】
トランジスタ2480は、トランジスタ2450とトランジスタ2470を併せた構造を
有している。第1のゲート電極2411と第2のゲート電極2412を電気的に接続して
一つのゲート電極として機能させることができる。また、第1のゲート電極2411と第
2のゲート電極2412に、それぞれ異なる電位を供給してもよい。
【0370】
第1のゲート電極2411と第2のゲート電極2412のうち、どちらか一方を単にゲー
ト電極と呼び、他方をバックゲート電極と呼ぶことがある。バックゲート電極には、ゲー
ト電極と同じ電位が与えられていても良いし、グラウンド電位や共通電位などの固定電位
が与えられていても良い。また、バックゲート電極に与える電位を制御することで、トラ
ンジスタ2480及びトランジスタ2570の閾値電圧を制御することができる。
【0371】
また、バックゲート電極を、遮光性を有する導電性材料により形成し、バックゲート電極
で酸化物半導体層2403のチャネル形成領域を覆うことで、バックゲート電極側から酸
化物半導体層2403に光が入射するのを防ぐことができる。よって、酸化物半導体層2
403の光劣化を防ぎ、トランジスタの閾値電圧がシフトするなどの特性の劣化が引き起
こされるのを防ぐことができる。
【0372】
図26(A)に示すトランジスタ2550は、基板2400上にゲート電極2401が形
成され、ゲート電極2401上にゲート絶縁層2402が形成され、ゲート絶縁層240
2上にソース電極2405a、及びドレイン電極2405bが形成され、ゲート絶縁層2
402、ソース電極2405a、及びドレイン電極2405b上に酸化物半導体層240
3が形成されている。また、酸化物半導体層2403、ソース電極2405a、及びドレ
イン電極2405b上に絶縁層2407が形成されている。また、絶縁層2407上に保
護絶縁層2409を形成してもよい。また、基板2400とゲート電極2401の間に下
地層を形成してもよい。トランジスタ2550は、ボトムゲート構造のトランジスタの一
つであり、逆スタガ型トランジスタの一つでもある。
【0373】
図26(B)に示すトランジスタ2560は、基板2400上に下地層2436が形成さ
れ、下地層2436上にソース電極2405a、及びドレイン電極2405bが形成され
、下地層2436、ソース電極2405a、及びドレイン電極2405b上に酸化物半導
体層2403が形成され、酸化物半導体層2403、ソース電極2405a、及びドレイ
ン電極2405b上にゲート絶縁層2402が形成され、ゲート絶縁層2402上にゲー
ト電極2401が形成されている。また、ゲート電極2401上に保護絶縁層2409を
形成してもよい。トランジスタ2560は、トップゲート構造のトランジスタの一つであ
る。
【0374】
図26(C)に示すトランジスタ2570は、基板2400上に、第1のゲート電極24
11が形成され、第1のゲート電極2411上に第1のゲート絶縁層2413が形成され
、第1のゲート絶縁層2413上にソース電極2405a、及びドレイン電極2405b
が形成され、第1のゲート絶縁層2413、ソース電極2405a、及びドレイン電極2
405b上に酸化物半導体層2403が形成され、酸化物半導体層2403、ソース電極
2405a、及びドレイン電極2405b上に第2のゲート絶縁層2414が形成され、
第2のゲート絶縁層2414上に第2のゲート電極2412が形成されている。第2のゲ
ート電極2412は、上記実施の形態で示した画素電極と同じ層を用いて形成してもよい
。また、第2のゲート電極2412上に保護絶縁層を形成してもよい。また、基板240
0と第1のゲート電極2411の間に下地層を形成してもよい。
【0375】
トランジスタ2570は、トランジスタ2550とトランジスタ2560を併せた構造を
有している。第1のゲート電極2411と第2のゲート電極2412を電気的に接続して
一つのゲート電極として機能させることができる。また、第1のゲート電極2411と第
2のゲート電極2412のうち、どちらか一方を単にゲート電極と呼び、他方をバックゲ
ート電極と呼ぶことがある。
【0376】
前述したように、バックゲート電極の電位を変化させることで、トランジスタのしきい値
電圧を変化させることができる。また、遮光性を有する導電性材料で形成したバックゲー
ト電極により酸化物半導体層2403のチャネル形成領域を覆うことで、バックゲート電
極側から酸化物半導体層2403に光が入射するのを防ぐことができる。よって、酸化物
半導体層2403の光劣化を防ぎ、トランジスタの閾値電圧がシフトするなどの特性の劣
化が引き起こされるのを防ぐことができる。
【0377】
酸化物半導体層2403に接する絶縁層(本実施の形態においては、ゲート絶縁層240
2、絶縁層2407、チャネル保護層2406、下地層2436、第1のゲート絶縁層2
413、第2のゲート絶縁層2414が相当する。)は、第13族元素および酸素を含む
絶縁材料を用いることが好ましい。酸化物半導体材料には第13族元素を含むものが多く
、第13族元素を含む絶縁材料は酸化物半導体との相性が良く、これを酸化物半導体に接
する絶縁層に用いることで、酸化物半導体との界面の状態を良好に保つことができる。
【0378】
第13族元素を含む絶縁材料とは、絶縁材料に一または複数の第13族元素を含むことを
意味する。第13族元素を含む絶縁材料としては、例えば、酸化ガリウム、酸化アルミニ
ウム、酸化アルミニウムガリウム、酸化ガリウムアルミニウムなどがある。ここで、酸化
アルミニウムガリウムとは、ガリウムの含有量(原子%)よりアルミニウムの含有量(原
子%)が多いものを示し、酸化ガリウムアルミニウムとは、ガリウムの含有量(原子%)
がアルミニウムの含有量(原子%)以上のものを示す。
【0379】
例えば、ガリウムを含有する酸化物半導体層に接して絶縁層を形成する場合に、絶縁層に
酸化ガリウムを含む材料を用いることで酸化物半導体層と絶縁層の界面特性を良好に保つ
ことができる。例えば、酸化物半導体層と酸化ガリウムを含む絶縁層とを接して設けるこ
とにより、酸化物半導体層と絶縁層の界面における水素のパイルアップを低減することが
できる。なお、絶縁層に酸化物半導体層の成分元素と同じ族の元素を用いる場合には、同
様の効果を得ることが可能である。例えば、酸化アルミニウムを含む材料を用いて絶縁層
を形成することも有効である。なお、酸化アルミニウムは、水を透過させにくいという特
性を有しているため、当該材料を用いることは、酸化物半導体層への水の侵入防止という
点においても好ましい。
【0380】
また、酸化物半導体層2403に接する絶縁層は、バルク中に酸素を導入して、絶縁材料
を化学量論的組成より酸素が多い領域を有する(酸素過剰領域を有する)状態とすること
が好ましい。なお、当該バルクの用語は、酸素を層表面のみでなく層内部に添加すること
を明確にする趣旨で用いている。酸素の導入は、イオン注入法、イオンドーピング法、プ
ラズマイマージョンイオンインプランテーション法などを用いて行うことができる。また
、酸素雰囲気下による熱処理や、酸素雰囲気下で行うプラズマ処理などにより行うことも
できる。
【0381】
酸素過剰領域を有する絶縁層と酸化物半導体層が接することにより、絶縁層中の過剰な酸
素が酸化物半導体層に供給され、酸化物半導体層中、または酸化物半導体層と絶縁層の界
面における酸素欠損を低減し、酸化物半導体層をi型化または実質的にi型化することが
できる。
【0382】
i型化または実質的にi型化した酸化物半導体を有するトランジスタは、電気的特性変動
が抑制されており、電気的に安定である。よって安定した電気的特性を有する信頼性の高
い半導体装置を提供することができる。
【0383】
なお、酸素過剰領域を有する絶縁層は、酸化物半導体層2403に接する絶縁層のうち、
上層に位置する絶縁層または下層に位置する絶縁層のどちらか一方のみに用いても良いが
、両方の絶縁層に用いる方が好ましい。化学量論的組成より酸素が多い領域を有する絶縁
層を、酸化物半導体層2403に接する絶縁層の、上層及び下層に位置する絶縁層に用い
、酸化物半導体層2403を挟む構成とすることで、上記効果をより高めることができる
。
【0384】
また、酸化物半導体層2403の上層または下層に用いる絶縁層は、上層と下層で同じ構
成元素を有する絶縁層としても良いし、異なる構成元素を有する絶縁層としても良い。
【0385】
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能
である。
【0386】
(実施の形態6)
上記実施の形態で説明した表示装置は、3D映像を表示する半導体装置に適用することが
可能である。本実施の形態では、左目用の映像と右目用の映像を高速で切り換える表示装
置を用いて、表示装置の映像と同期する専用の眼鏡を用いて動画または静止画である3D
映像を視認する例を、
図27を用いて示す。
【0387】
図27(A)は表示装置2711と、専用の眼鏡本体2701がケーブル2703で接続
されている外観図を示す。表示装置2711には、本明細書で開示する表示装置を用いる
ことができる。専用の眼鏡本体2701は、左目用パネル2702aと右目用パネル27
02bに設けられているシャッターが交互に開閉することによって使用者が表示装置27
11の画像を3Dとして認識することができる。
【0388】
また、表示装置2711と専用の眼鏡本体2701の主要な構成についてのブロック図を
図27(B)に示す。
【0389】
図27(B)に示す表示装置2711は、表示制御回路2716、表示部2717、タイ
ミング発生器2713、ソース線側駆動回路2718、外部操作手段2722及びゲート
線側駆動回路2719を有する。なお、キーボード等の外部操作手段2722による操作
に応じて、出力する信号を可変する。
【0390】
タイミング発生器2713では、スタートパルス信号などを形成するとともに、左目用映
像と左目用パネル2702aのシャッターとを同期させるための信号、右目用映像と右目
用パネル2702bのシャッターとを同期させるための信号などを形成する。
【0391】
左目用映像の同期信号2731aを表示制御回路2716に入力して表示部2717に表
示すると同時に、左目用パネル2702aのシャッターを開ける同期信号2730aを左
目用パネル2702aに入力する。また、右目用映像の同期信号2731bを表示制御回
路2716に入力して表示部2717に表示すると同時に、右目用パネル2702bのシ
ャッターを開ける同期信号2730bを右目用パネル2702bに入力する。
【0392】
また、左目用の映像と右目の映像を高速で切り換えるため、表示装置2711は、発光ダ
イオード(LED)を用いて、時分割によりカラー表示する継時加法混色法(フィールド
シーケンシャル法)とすることが好ましい。
【0393】
また、フィールドシーケンシャル法を用いるため、タイミング発生器2713は、発光ダ
イオードのバックライト部にも同期信号2730a、2730bと同期する信号を入力す
ることが好ましい。なお、バックライト部はR、G、及びBのLEDを有するものとする
。
【0394】
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる
。
【0395】
(実施の形態7)
本実施の形態では、上記実施の形態で説明した表示装置を具備する電子機器の例について
説明する。
【0396】
図28(A)は、ノート型のパーソナルコンピュータであり、本体3001、筐体300
2、表示部3003、キーボード3004などによって構成されている。上記実施の形態
で示した表示装置を適用することにより、信頼性の高いノート型のパーソナルコンピュー
タとすることができる。
【0397】
図28(B)は、携帯情報端末(PDA)であり、本体3021には表示部3023と、
外部インターフェイス3025と、操作ボタン3024等が設けられている。また操作用
の付属品としてスタイラス3022がある。上記実施の形態で示した表示装置を適用する
ことにより、信頼性の高い携帯情報端末(PDA)とすることができる。
【0398】
図28(C)は、電子書籍の一例を示している。例えば、電子書籍は、筐体2706およ
び筐体2704の2つの筐体で構成されている。筐体2706および筐体2704は、軸
部2712により一体とされており、該軸部2712を軸として開閉動作を行うことがで
きる。このような構成により、紙の書籍のような動作を行うことが可能となる。
【0399】
筐体2706には表示部2705が組み込まれ、筐体2704には表示部2707が組み
込まれている。表示部2705および表示部2707は、続き画像を表示する構成として
もよいし、異なる画像を表示する構成としてもよい。異なる画像を表示する構成とするこ
とで、例えば右側の表示部(
図28(C)では表示部2705)に文章を表示し、左側の
表示部(
図28(C)では表示部2707)に画像を表示することができる。上記実施の
形態で示した表示装置を適用することにより、信頼性の高い電子書籍とすることができる
。
【0400】
また、
図28(C)では、筐体2706に操作部などを備えた例を示している。例えば、
筐体2706において、電源端子2721、操作キー2723、スピーカー2725など
を備えている。操作キー2723により、頁を送ることができる。なお、筐体の表示部と
同一面にキーボードやポインティングデバイスなどを備える構成としてもよい。また、筐
体の裏面や側面に、外部接続用端子(イヤホン端子、USB端子など)、記録媒体挿入部
などを備える構成としてもよい。さらに、電子書籍は、電子辞書としての機能を持たせた
構成としてもよい。
【0401】
また、電子書籍は、無線で情報を送受信できる構成としてもよい。無線により、電子書籍
サーバから、所望の書籍データなどを購入し、ダウンロードする構成とすることも可能で
ある。
【0402】
図28(D)は、携帯電話であり、筐体2800及び筐体2801の二つの筐体で構成さ
れている。筐体2801には、表示パネル2802、スピーカー2803、マイクロフォ
ン2804、ポインティングデバイス2806、カメラ用レンズ2807、外部接続端子
2808などを備えている。また、筐体2800には、携帯型情報端末の充電を行う太陽
電池セル2810、外部メモリスロット2811などを備えている。また、アンテナは筐
体2801内部に内蔵されている。
【0403】
また、表示パネル2802はタッチパネルを備えており、
図28(D)には映像表示され
ている複数の操作キー2805を点線で示している。なお、太陽電池セル2810で出力
される電圧を各回路に必要な電圧に昇圧するための昇圧回路も実装している。
【0404】
表示パネル2802は、使用形態に応じて表示の方向が適宜変化する。また、表示パネル
2802と同一面上にカメラ用レンズ2807を備えているため、テレビ電話が可能であ
る。スピーカー2803及びマイクロフォン2804は音声通話に限らず、テレビ電話、
録音、再生などが可能である。さらに、筐体2800と筐体2801は、スライドし、図
28(D)のように展開している状態から重なり合った状態とすることができ、携帯に適
した小型化が可能である。
【0405】
外部接続端子2808はACアダプタ及びUSBケーブルなどの各種ケーブルと接続可能
であり、充電及びパーソナルコンピュータなどとのデータ通信が可能である。また、外部
メモリスロット2811に記録媒体を挿入し、より大量のデータ保存及び移動に対応でき
る。
【0406】
また、上記機能に加えて、赤外線通信機能、テレビ受信機能などを備えたものであっても
よい。上記実施の形態で示した表示装置を適用することにより、信頼性の高い携帯電話と
することができる。
【0407】
図28(E)は、デジタルビデオカメラであり、本体3051、表示部(A)3057、
接眼部3053、操作スイッチ3054、表示部(B)3055、バッテリー3056な
どによって構成されている。上記実施の形態で示した表示装置を適用することにより、信
頼性の高いデジタルビデオカメラとすることができる。
【0408】
図28(F)は、テレビジョン装置の一例を示している。テレビジョン装置は、筐体96
01に表示部9603が組み込まれている。表示部9603により、映像を表示すること
が可能である。また、ここでは、スタンド9605により筐体9601を支持した構成を
示している。上記実施の形態で示した表示装置を適用することにより、信頼性の高いテレ
ビジョン装置とすることができる。
【0409】
テレビジョン装置の操作は、筐体9601が備える操作スイッチや、別体のリモコン操作
機により行うことができる。また、リモコン操作機に、当該リモコン操作機から出力する
情報を表示する表示部を設ける構成としてもよい。
【0410】
なお、テレビジョン装置は、受信機やモデムなどを備えた構成とする。受信機により一般
のテレビ放送の受信を行うことができ、さらにモデムを介して有線または無線による通信
ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者
と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
【0411】
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能
である。
【符号の説明】
【0412】
100 半導体装置
101 基板
102 画素領域
103 端子部
104 端子部
105 端子
106 端子
107 端子
108 端子
110 画素
111 トランジスタ
112 液晶素子
113 容量素子
114 電極
115 ノード
116 EL素子
120 画素
121 トランジスタ
130 画素
150 半導体装置
160 画素
200 基板
201 下地層
202 ゲート電極
203 配線
204 ゲート絶縁層
205 半導体層
207 絶縁層
208 コンタクトホール
209 コンタクトホール
210 画素電極
211 画素電極
212 配線
213 配線
214 コンタクトホール
215 容量電極
216 配線
217 配線
218 隔壁層
219 コンタクトホール
220 コンタクトホール
221 電極
222 電極
223 配線
224 配線
225 対向電極接続部
226 対向電極
230 溝部
231 端部
232 端部
233 端部
234 端部
240 溝部
243 ゲート電極
251 溝部
252 溝部
253 溝部
254 溝部
255 溝部
256 溝部
257 溝部
258 溝部
261 レジストマスク
262 レジストマスク
271 EL層
272 開口部
301 透光性基板
302 遮光部
303 回折格子
304 グレートーンマスク
311 透光性基板
312 半透過部
313 遮光部
314 ハーフトーンマスク
2400 基板
2401 ゲート電極
2402 ゲート絶縁層
2403 酸化物半導体層
2406 チャネル保護層
2407 絶縁層
2409 保護絶縁層
2411 ゲート電極
2412 ゲート電極
2413 ゲート絶縁層
2414 ゲート絶縁層
2436 下地層
2450 トランジスタ
2460 トランジスタ
2470 トランジスタ
2480 トランジスタ
2550 トランジスタ
2560 トランジスタ
2570 トランジスタ
2701 眼鏡本体
2703 ケーブル
2704 筐体
2705 表示部
2706 筐体
2707 表示部
2711 表示装置
2712 軸部
2713 タイミング発生器
2716 表示制御回路
2717 表示部
2718 ソース線側駆動回路
2719 ゲート線側駆動回路
2721 電源端子
2722 外部操作手段
2723 操作キー
2725 スピーカー
2800 筐体
2801 筐体
2802 表示パネル
2803 スピーカー
2804 マイクロフォン
2805 操作キー
2806 ポインティングデバイス
2807 カメラ用レンズ
2808 外部接続端子
2810 太陽電池セル
2811 外部メモリスロット
3001 本体
3002 筐体
3003 表示部
3004 キーボード
3021 本体
3022 スタイラス
3023 表示部
3024 操作ボタン
3025 外部インターフェイス
3051 本体
3053 接眼部
3054 操作スイッチ
3056 バッテリー
4001 基板
4002 画素部
4003 信号線駆動回路
4004 走査線駆動回路
4005 シール材
4006 基板
4007 空間
4008 液晶層
4009 隔壁層
4010 トランジスタ
4013 液晶素子
4015 配線
4016 電極
4019 異方性導電層
4020 入力端子
4030 電極
4031 電極
4032 絶縁層
4033 絶縁層
4035 スペーサー
4040 溝部
4105 封止材
4108 EL層
4113 EL素子
4130 電極
4131 電極
9601 筐体
9603 表示部
9605 スタンド
105_i 端子
106_j 端子
206a ソース電極
206b ドレイン電極
212_i 配線
216_j 配線
236a ソース電極
236b ドレイン電極
2405a ソース電極
2405b ドレイン電極
2702a 左目用パネル
2702b 右目用パネル
2730a 同期信号
2730b 同期信号
2731a 同期信号
2731b 同期信号
4018a FPC
4018b FPC