(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024170403
(43)【公開日】2024-12-10
(54)【発明の名称】資産特性を分類するためのプラットフォーム、システム、ならびに方法および航空画像解析による資産特徴保守管理
(51)【国際特許分類】
G06V 10/80 20220101AFI20241203BHJP
G06T 7/00 20170101ALI20241203BHJP
G06V 20/17 20220101ALI20241203BHJP
G06V 10/764 20220101ALI20241203BHJP
【FI】
G06V10/80
G06T7/00 640
G06V20/17
G06V10/764
【審査請求】有
【請求項の数】1
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2024128758
(22)【出願日】2024-08-05
(62)【分割の表示】P 2022201000の分割
【原出願日】2017-09-25
(31)【優先権主張番号】62/398,665
(32)【優先日】2016-09-23
(33)【優先権主張国・地域又は機関】US
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.UNIX
2.SOLARIS
3.Linux
4.BLUETOOTH
(71)【出願人】
【識別番号】508278527
【氏名又は名称】エーオン リー,インコーポレイテッド
(74)【代理人】
【識別番号】100079108
【弁理士】
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100109346
【弁理士】
【氏名又は名称】大貫 敏史
(74)【代理人】
【識別番号】100117189
【弁理士】
【氏名又は名称】江口 昭彦
(74)【代理人】
【識別番号】100134120
【弁理士】
【氏名又は名称】内藤 和彦
(72)【発明者】
【氏名】岡崎 豪
(57)【要約】 (修正有)
【課題】資産特性の補修状態を自動的に分類するための方法及びシステムを提供する。
【解決手段】資産特性の補修状態を自動的に分類するシステム動作フロー100は、資産を含む地理的領域の航空画像を取得するステップと、資産特性に対応する航空画像の特徴を識別するステップと、資産特性分類を決定するために特徴を解析するステップと、状態分類を決定するために資産特性を含む航空画像の領域を解析するステップと、資産特性分類および状態分類を使用して、1つまたは複数の災害による資産の損傷のリスク推定値および/または資産特性の補修または建て替えのためのコスト推定値を決定するステップと、を含む。
【選択図】
図1
【特許請求の範囲】
【請求項1】
資産特性の補修状態を自動的に分類する方法であって、
リモート・コンピューティング・デバイスのユーザから、資産状態分類の要求を受信するステップであって、前記資産分類要求は、資産および少なくとも1つの資産特性の識別を含む、受信ステップと、
前記要求の受信に応答して、コンピューティングシステムの処理回路によって、前記資産を含む地理的領域の航空画像を取得するステップと、
前記処理回路によって、前記資産特性に対応する前記航空画像の複数の特徴を識別するステップと、
前記処理回路によって、資産特性分類を決定するために前記複数の特徴を解析するステップと、
前記処理回路によって、状態分類を決定するために前記資産特性を含む前記航空画像の領域を解析するステップと、
前記処理回路によって、前記資産特性分類および前記状態分類を使用して1つまたは複数の災害による前記資産への損傷のリスク推定値を決定するステップと、
前記要求の受信に応答して、グラフィカル・ユーザインターフェースを介して、前記リモート・コンピューティング・デバイスの前記ユーザに対して、前記状態分類および前記1つまたは複数の災害による前記資産の損傷の前記リスク推定値を含む前記資産特性の状態査定を返すステップと
を含む、方法。
【請求項2】
前記資産特性分類は屋根上面の形状である、請求項1に記載の方法。
【請求項3】
前記資産特性を決定するために前記複数の特徴を解析するステップは、前記複数の特徴に深層学習解析モデルを適用するステップを含む、請求項1に記載の方法。
【請求項4】
前記深層学習解析モデルはNINである、請求項1に記載の方法。
【請求項5】
前記状態分類を決定するために前記資産特性を含む前記航空画像の前記領域を解析するステップは、機械学習解析モデルを前記領域内の複数の画像画素に適用するステップを含む、請求項1に記載の方法。
【請求項6】
前記機械学習解析モデルは、色ヒストグラム解析モデルを含む、請求項5に記載の方法。
【請求項7】
前記リスク推定値を決定するステップは、(a)前記少なくとも1つの災害の第1の災害、および(b)前記資産特性、に対応する災害リスクプロファイルを適用するステップを含む、請求項1に記載の方法。
【請求項8】
資産特性の補修状態を自動的に分類するためのシステムであり、
処理回路と、
命令が記憶される非一時的なコンピュータ可読媒体と
を備えるシステムであって、
前記命令は、前記処理回路によって実行されたときに、前記処理回路に、
リモート・コンピューティング・デバイスのユーザから、資産状態分類要求を受信させ、前記資産分類要求は、資産および少なくとも1つの資産特性の識別を含み、
前記資産分類要求の受信に応答して、リモートデータソースから、前記資産を含む地理的領域の航空画像を取得させ、
前記資産特性に対応する前記航空画像の複数の特徴を識別させ、
資産特性分類を決定するために、前記複数の特徴を解析させ、
状態分類を決定するために、前記資産特性を含む前記航空画像の領域を解析させ、
前記資産分類要求の受信に応答してリアルタイムで、前記資産特性分類および前記状態分類を使用して、前記資産特性を建て替えるための建て替えコストを決定させる、
システム。
【請求項9】
前記命令は、前記処理回路によって実行されたときに、前記複数の特徴を識別する前に、前記処理回路に、
前記資産を含む形状マップ画像を取得させ、
前記航空画像を前記形状マップと重ね合わせさせ、
前記形状マップによって識別された前記資産の境界が前記航空画像内に示されている前記資産の境界と一致するかどうかを決定させる、請求項8に記載のシステム。
【請求項10】
前記命令は、前記処理回路によって実行されたときに、前記処理回路に、前記形状マップが前記対応する資産の境界と一致しないと決定したときに、前記資産の代替の航空画像を取得させる、請求項9に記載のシステム。
【請求項11】
前記命令は、前記処理回路によって実行されたときに、前記処理回路に、前記資産特性の現在の状態分類を記憶されている前記資産特性の過去の状態分類と比較させる、請求項8に記載のシステム。
【請求項12】
前記命令は、前記処理回路によって実行されたときに、前記処理回路に、前記資産状態分類要求の受信に応答してリアルタイムで、前記資産特性の前記現在の状態分類と前記過去の状態分類との前記比較に基づいて、前記資産に対して補修が行われたかどうかを決定させる、請求項11に記載のシステム。
【請求項13】
前記命令は、前記処理回路によって実行されたときに、前記処理回路に、前記複数の特徴を識別する前に、前記航空画像の直交性を査定させる、請求項8に記載のシステム。
【請求項14】
前記命令は、前記処理回路によって実行されたときに、前記処理回路に、前記航空画像の直交性が真のオルソフォト形態に対応していないとの査定に応答して、前記航空画像を前記真のオルソフォト形態へと補正させる、請求項13に記載のシステム。
【請求項15】
命令が記憶される非一時的なコンピュータ可読媒体であって、
前記命令は、前記処理回路によって実行されたときに、前記処理回路に、
リモート・コンピューティング・デバイスのユーザから、資産状態分類要求を受信させ、前記資産分類要求は、資産および少なくとも1つの資産特性の識別を含み、
前記資産分類要求の受信に応答して、リモートデータソースから、前記資産を含む地理的領域の航空画像を取得させ、
前記少なくとも1つの資産特性の各々の資産特性に対応する前記航空画像の個々の複数の特徴を識別させ、
前記少なくとも1つの資産特性の各々に対して、
個々の資産特性分類を決定するために、前記対応する複数の特徴を解析させ、
個々の状態分類を決定するために、前記個々の資産特性を含む前記航空画像の領域を解析させ、
前記資産分類要求の受信に応答してリアルタイムで、各々の資産特性の前記資産特性分類および各々の資産特性の前記状態分類を使用して、災害による損害のリスクを示す少なくとも1つのリスク推定値を決定させる、非一時的なコンピュータ可読媒体。
【請求項16】
前記命令は、前記処理回路によって実行されたときに、前記処理回路に、前記地理的領域の前記航空画像を取得する前に、前記少なくとも1つの資産特性に基づいて、前記少なくとも1つの資産特性の各々の資産特性に対応する好適な画像タイプを決定させる、請求項15に記載の非一時的なコンピュータ可読媒体。
【請求項17】
前記少なくとも1つの資産特性は、2つ以上の資産特性を含み、
前記命令は、前記処理回路によって実行されたときに、前記処理回路に、前記少なくとも1つの資産特性の第1の資産特性に対応する前記好適な画像タイプが地上画像であるとの決定に応答して、前記資産を含む前記地理的領域の地上画像を取得させる、請求項16に記載の非一時的なコンピュータ可読媒体。
【請求項18】
前記命令は、前記処理回路によって実行されたときに、前記処理回路に、1つまたは複数の既知の資産特性にアクセスさせ、前記少なくとも1つのリスク推定値の決定は、さらに前記1つまたは複数の既知の資産特性に基づく前記少なくとも1つのリスク推定値の決定を含む、請求項15に記載の非一時的なコンピュータ可読媒体。
【請求項19】
前記1つまたは複数の既知の資産特性は、資産年齢、資産標高、資産傾斜、建築年、改築年、および建物の高さのうちの少なくとも1つを含む、請求項18に記載の非一時的なコンピュータ可読媒体。
【請求項20】
前記資産および前記少なくとも1つの資産特性の識別の受信は、ネットワークを介する、リモート・コンピューティング・デバイスからの前記資産の識別の受信を含み、
前記命令は、前記処理回路によって実行されたときに、前記処理回路に、前記少なくとも1つの資産特性の受信に応答してリアルタイムで、前記リモート・コンピューティング・デバイスのグラフィカル・ユーザインターフェースに、前記ネットワークを介して、前記少なくとも1つのリスク推定値を提供させる、請求項15に記載の非一時的なコンピュータ可読媒体。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
[0001] 本願は、「Platform,Systems,and Methods for Identifying Property Characteristics and Property Feature Maintenance Through
Aerial Imagery Analysis」と題され、2016年9月23日に出願された米国仮特許出願第62/398,665号の優先権を主張するものであり、その全体が参照によって本願明細書に組み込まれる。
【背景技術】
【0002】
[0002] リスク曝露データベースは、保険に関するできる限り多くの建物資産または特性の編集物を含む。これらの資産は、位置座標、住所、傾斜、標高のような特性を含み得る。他の特性は、建物構造タイプ、占有タイプ、建築年および/または改築年、建物の高さ、ソフトストーリー、階数、および床面積を含む。さらなる特性は、屋根の状態、屋根の形状、屋根葺、屋根のアンカー、屋根の設備、クラッディング、およびパウンディング(隣接建物との距離)を含み得る。これらの特性のいくつかは、立ち入り検査または公文書によってのみ評価され得るが、他の特性は、視覚画像を使用して測定され得る。
【0003】
[0003] 本開示において取り上げる特性は、屋根の形状および屋根の状態を含む。一実施例では、屋根の形状は、入母屋屋根、切妻屋根、寄棟屋根、方形屋根、および平屋根の5つのカテゴリに分けられる。各々の屋根の形状は、地震または風のような様々な危険な自然現象に対して固有の反応および損傷の脆弱性を有する。
【0004】
[0004] 深層学習は、複数の抽出化レベルを有するデータの表現を学習するための複数の処理層から成る計算モデルを含む。これらのモデルは、予測分析を自動化する1つの方法であると考えられ得る。表現学習は、マシンに生データを供給して、検出または分類に必要な表現を自動的に見つけることができるようにするメソッドセットである。深層学習を使用するケースは、音声認識、動き検出、変換、および医療診断を含む。深層学習アルゴリズムおよびサンプルデータデットを使用することにより、コンピュータは、高レベルの精度で広範囲の特性を区別して分類することができ、人間の認識レベルを上回ることも多い。
【0005】
[0005] 深層学習に使用される1つのモデルは、M.Linらによる論文「Network In Network」に記載されており、2014年にInternational Conference on Learning Representations(arXiv:1409.1556)に掲載されている「Network In Network」モデルであり、この内容はその全体が参照によって本願明細書に組み込まれる。Network In Networkモデルを使用すれば、複雑な構造を有するマイクロ・ニューラル・ネットワークを使用して人工知覚結果の多数の層が生成される。人工知覚結果は、その後、積層され、平均化されて、分類のための単一全体平均プーリング層を生成する。
【0006】
[0006] 深層学習アルゴリズムは、視覚認識に適用される場合、観察結果の特徴を特性化するために観察結果(例えば、画像)を多数の異なる方法で分類することができる。いくつかの実施例では、深層学習アルゴリズムは、1画素あたりの強度値のセットとして、より抽象的な方法では、特定の形状のエッジ、領域のセットとして、画像を精査するのに
適用され得る。いくつかの表現は、特定の学習タスクに基づいて他の表現よりも優れた性能を示し得る。深層学習の可能性の1つは、教師なしまたは半教師あり特徴学習および階層的特徴抽出のために、特徴の人間識別を効率的なアルゴリズムと置換することである。
【0007】
[0007] 本発明者らは、航空画像を解析して、個々の資産の特性を自動的に抽出するために、深層学習方法をリスク曝露データベースの母集団に適用することにより、建物の種類および補修状態の迅速で効率的な自動分類を行うことが可能であることに気付いた。位置に基づく脆弱性を、一部は1つまたは複数の資産特徴の補修状態の分類によって識別された個々の資産の脆弱性と組み合わせると、災害による損傷のリスクは、より正確に推定され得る。
【発明の概要】
【0008】
[0008] 例示的な実施態様の上記の概要および以下のその詳細な説明は、本開示の教示の態様の例に過ぎず、限定的なものではない。
【0009】
[0009] 本明細書に記載されているシステム、方法、およびコンピューティング・システム・プラットフォームは、機械学習解析によって1つまたは複数の資産の航空画像特徴を対応する資産状態(例えば、資産特徴の保守管理レベル)と照合するのを支援する。好適な用途では、資産状態解析は、暴風雨のような1つまたは複数の災害状況を考慮して損傷のリスクを推定するのに使用され得る。解析はさらに、一実施例では、災害が推定された損傷を引き起こした場合に、各々の資産の補修または建て替えのコストを推定するのを支援し得る。別の実施例では、解析は、資産が補修されたことを確認するのに使用され得る。
【0010】
[0010] 一態様では、本開示は、資産特性の補修状態を自動的に分類する方法であって、資産を含む地理的領域の航空画像を取得するステップ、資産特性に対応する航空画像の特徴を識別するステップ、資産特性分類を決定するために特徴を解析するステップ、状態分類を決定するために資産特性を含む航空画像の領域を解析するステップ、および資産特性分類および状態分類を使用して、1つまたは複数の災害による資産への損傷のリスク推定値を決定するステップを含む方法に関する。資産特性分類は、屋根上面の形状であり得る。資産特性を決定するために特徴を解析するステップは、その特徴に深層学習解析モデルを適用するステップを含み得る。深層学習解析モデルは、NINであり得る。
【0011】
[0011] いくつかの実施形態では、状態分類を決定するために資産特性を含む航空画像の領域を解析するステップは、機械学習解析モデルを領域内の画像画素に適用するステップを含む。機械学習解析モデルは、色ヒストグラム解析モデルを含み得る。状態分類は、良および不良の分類を包含し得る。リスク推定値を決定するステップは、少なくとも1つの災害の第1の災害および資産特性に対応する災害リスクプロファイルを適用するステップを含む。
【0012】
[0012] 一態様では、本開示は、資産特性の補修状態を自動的に分類するためのシステムであって、処理回路と、命令が記憶される非一時的なコンピュータ可読媒体とを含むシステムに関する。いくつかの実施形態では、命令は、処理回路によって実行されたときに、処理回路に、資産を含む地理的領域の航空画像を取得させ、資産特性に対応する航空画像の特徴を識別させ、資産特性分類を決定するために特徴を解析させ、状態分類を決定するために資産特性を含む航空画像の領域を解析させ、および資産特性分類および状態分類を使用して、資産特性の建て替えのための建て替えコストを決定させる。航空画像は、2次元航空画像であり得る。
【0013】
[0013] いくつかの実施形態では、命令は、処理回路によって実行されたときに、処理回路に、特徴を識別する前に、資産を含む形状マップ画像を取得させ、航空画像を形状マップ画像と重ね合わせさせ、形状マップによって識別された資産の境界が航空画像内に示されている資産の境界と一致するかどうかを決定させる。命令は、処理回路によって実行されたときに、処理回路に、形状マップが対応する資産の境界と一致しないと決定したときに、資産の代替の航空画像を取得させ得る。命令は、処理回路によって実行されたときに、処理回路に、特徴を識別する前に、航空画像の直交性を査定させ得る。資産は、一戸建て住宅であり得る。
【0014】
[0014] 一態様では、本開示は、命令が記憶される非一時的なコンピュータ可読媒体に関し、命令は、処理回路によって実行されたときに、処理回路に、資産および少なくとも1つの資産特性の識別を受信させ、資産を含む地理的領域の航空画像を取得させ、少なくとも1つの資産特性の各々の資産特性に対応する航空画像の個々の特徴を識別させる。いくつかの実施形態では、命令は、処理回路によって実行されたときに、処理回路に、各々の資産特性に対して、個々の資産特性分類を決定するために対応する特徴を解析させ、個々の状態分類を決定するために個々の資産特性を含む航空画像の領域を解析させる。命令は、処理回路によって実行されたときに、処理回路に、各々の資産特性の資産特性分類および各々の資産特性の状態分類を使用して、災害による損害のリスクを示す少なくとも1つのリスク推定値を決定させ得る。
【0015】
[0015] いくつかの実施形態では、命令は、処理回路によって実行されたときに、処理回路に、地理的領域の航空画像を取得する前に、少なくとも1つの資産特性に基づいて、少なくとも1つの資産特性の各々の資産特性に対応する好適な画像タイプを決定させる。少なくとも1つの資産特性は、2つ以上の資産特性を含み得る。命令は、処理回路によって実行されたときに、処理回路に、少なくとも1つの資産特性の第1の資産特性に対応する好適な画像タイプが地上画像であるとの決定に応答して、資産を含む地理的領域の地上画像を取得させ得る。
【0016】
[0016] いくつかの実施形態では、命令は、処理回路によって実行されたときに、処理回路に、1つまたは複数の既知の資産特性にアクセスさせる。少なくとも1つのリスク推定値を決定するステップは、さらに1つまたは複数の既知の資産特性に基づいて少なくとも1つのリスク推定値を決定するステップを含み得る。1つまたは複数の既知の資産特性は、資産年齢、資産標高、資産傾斜、建築年、改築年、および建物の高さのうちの少なくとも1つを含み得る。
【0017】
[0017] いくつかの実施形態では、資産および少なくとも1つの資産特性に識別を受信するステップは、リモート・コンピューティング・デバイスからネットワークを介して資産の識別を受信するステップを含む。命令は、処理回路によって実行されたときに、処理回路に、少なくとも1つの資産特性の受信に応答してリアルタイムで、リモート・コンピューティング・デバイスにネットワークを介して少なくとも1つのリスク推定値を提供させ得る。
【0018】
[0018] 本明細書に組み込まれ、本明細書の一部を成す添付図面は、1つまたは複数の実施形態を示しており、その説明と合わせて、これらの実施形態を解説するものである。添付図面は、必ずしも正確な比率で描かれているとは限らない。添付のグラフおよび図に示されている任意の値および寸法は、単に例示目的で示されており、実際のまたは好適な値または寸法を表している場合もあれば、そうでない場合もある。必要に応じて、いくつかまたは全ての特徴は、基本的特徴の説明を助けるために示されていない場合がある。
【図面の簡単な説明】
【0019】
【
図1】[0019]航空画像特徴を対応する資産保守管理レベルと照合するためのシステム動作フローの一例のフロー図である。
【
図2A】[0020]特性分類および対応するリスク・プロファイル・データの例を示す図である。
【
図2B】[0021]状態特性の例および対応するヒストグラムの例を示す図である。
【
図2C】[0022]資産特性タイプの一例に対応する状態プロファイルの一例を示す図である。
【
図2D】[0023]航空画像特徴を対応する屋根上面の形状と照合するときに、トレーニングデータを試験データと比較したときのエラー率のグラフの一例である。
【
図3】[0024]航空画像の地形学的特徴を対応する資産保守管理レベルと照合するための環境の一例のブロック図である。
【
図4】[0025]航空画像解析に基づいて資産の状態特性を分類する方法の一例を示すフローチャートである。
【
図5A】[0026]地理的地域の構造物形状マップの一例を示す図である。
【
図5B】[0027]
図5Aの地理的地域の2次元航空画像の一例を示す図である。
【
図5C】[0028]
図5Aの構造物形状マップのセクションが
図5Bの航空画像の対応セクションに重なった重ね合わせマップ画像の一例を示す図である。
【
図6】[0029]コンピューティングシステムの一例のブロック図である。
【
図7】[0030]クラウドコンピューティング環境を含む分散コンピューティング環境の一例のブロック図である。
【
図8A】[0031]資産特性および保守管理レベル情報を精査するためのユーザインターフェースのスクリーンショットの一連の例を示す図である。
【
図8B】[0031]資産特性および保守管理レベル情報を精査するためのユーザインターフェースのスクリーンショットの一連の例を示す図である。
【
図8C】[0031]資産特性および保守管理レベル情報を精査するためのユーザインターフェースのスクリーンショットの一連の例を示す図である。
【発明を実施するための形態】
【0020】
[0032] 添付図面に関する以下の説明は、開示される主題の様々な例示的な実施形態を説明することを意図したものである。特定の特徴および機能は、各々の例示的な実施形態に関連して説明されているが、開示されている実施形態がそれらの特定の特徴および機能の各々がなくても実施され得ることは当業者には明らかであろう。
【0021】
[0033] 本明細書全体を通して、「1つの実施形態」または「一実施形態」という表現は、1つの実施形態に関連して示されている特定の特徴、構造、または特性が開示される主題の少なくとも1つの実施形態に含まれるという意味である。したがって、本明細書全体を通して、様々な場所で使用されている「1つの実施形態では」または「一実施形態では」という表現は、必ずしも全てが同一の実施形態を指すとは限らない。さらに、特定の特徴、構造、または特性は、1つまたは複数の実施形態において、任意の適切な方法で組み合わせられ得る。さらに、開示されている主題の実施形態はその修正形態および変形形態を網羅するものとする。
【0022】
[0034] 本明細書で使用されるとき、文脈が明確に他の意味を示していない限り、単数形(「a」、「an」、「the」)は、複数の指示対象を含むことに留意しなければならない。すなわち、特に明記しない限り、本明細書で使用されるとき、単数形(「a」、「an」、「the」など)の語は「1つまたは複数」の意味を有する。さらに、本明細書内で使用され得る「左」、「右」、「上」、「下」、「前」、「後」、「横」、「高さ」、「長さ」、「幅」、「上方」、「下方」、「内部」、「外部」、「内側」、「外側」などのような用語は、単に基準点を示すものであり、必ずしも本開示の実施形態を任意の特定の向きまたは構成に限定するものでないことを理解されたい。また、「第1の」、「第2の」、「第3の」などのような用語は、本明細書に開示されている多数の部分、コンポーネント、ステップ、動作、機能、および/または規準点のうちの1つを単に識別するものであり、同様に、必ずしも本開示の実施形態を任意の特定の構成または向きに限定するものではない。
【0023】
[0035] さらに、用語「およそ」、「約」、「近似の」、「わずかな差」および同様の用語は、一般に、特定の実施形態における20%、10%または好ましくは5%の差の範囲内の特定値を含む範囲、およびその間の任意の値を指す。
【0024】
[0036] 一実施形態に関連して記載されている機能の全ては、明確に示されている場合を除き、または特徴または機能が追加の実施形態と互換性がない場合を除き、以下で説明する追加の実施形態にも適用可能であるものとする。例えば、所与の特徴または機能が一実施形態に関連して明確に示されているが、代替の実施形態に関連して明確に述べられていない場合、本発明者らは、その特徴または機能は、代替の実施形態と互換性がない場合を除き、代替の実施形態に関連して展開され、利用され、または実装され得ることを意図していることを理解すべきである。
【0025】
[0037]
図1を参照すると、航空画像特徴を対応する資産保守管理レベルと照合するためのシステム動作フロー100の一例が資産所在地102bの画像を取得する(104)フロー図が示されている。いくつかの実施態様では、システムによる動作フロー100の少なくとも一部の開始は、ネットワークを介してシステムに接続されているコンピューティングデバイス上のダッシュボード・インターフェース・スクリーンにおいて保険業者または不動産投資ブローカーのようなユーザによって提出された資産分類要求によってトリガされ得る。例えば、
図8Aに示されているように、マップ・ビュー・ユーザインターフェース800内の特定の資産、または、代替として、資産の近隣が選択され得る。動作フロー100は、航空画像102cに基づいて各々の資産所在地102bにおける各々の資産の特徴の状態を解析するのに使用され得る。いくつかの実施態様では、動作フロー100は、例えば、航空画像内で検出された各々の資産特性の補修または建て替えのコストを推定するのを支援し得る。別の実施例では、動作フロー100は、資産所在地102bが補修されたことを確認するのに使用され得る。
【0026】
[0038] 資産所在地102bは、いくつかの実施例では、特定の保険業者の保険対象である資産の所在地、竜巻、ハリケーン、地震、高潮、または噴火のような災害によって最近影響を受けた資産の所在地、投資ポートフォリオ対象の資産の所在地、または投資ポートフォリオへの追加を検討されている資産の所在地を表し得る。資産所在地102bは、いくつかの実施例では、街路アドレス、全地球測位システムの座標、または他の地理的座標によって識別され得る。
【0027】
[0039] いくつかの実施態様では、動作フロー100は、各々の資産所在地102bの画像を取得する(104)。画像は、システムによって記憶される、または遠隔のネットワーク化された場所からシステムによってアクセスされる航空画像102cを含み得る。航空画像102cは、例えば、資産所在地102bの少なくとも1つを含む地理的位置の3次元もしくは2次元画像を含み得る。一実施例では、システムは、街路アドレスまたは地理的座標に基づいて、少なくとも1つの資産所在地102bの画像を含む最新の航空画像102cを取得するためにリモートデータベースに問い合わせを行うことができる。リモートデータベースは、いくつかの実施例では、Google社(マウンテンビュー、カリフォルニア州)のGoogle(登録商標)Earth画像またはNTT空間情報株式会社(日本)のような民間企業のデータベースを含み得る。他の実施例では、リモートデータベースは、日本の国土地理院(GSI)、米国地質調査所、またはドイツ連邦地図測地庁のような公的機関の1つまたは複数のデータベースを含み得る。航空画像は、いくつかの実施形態では、オープンソース地理空間財団(OSGeo)によるQGISのような
オープンソース地理情報システム(GIS)を使用して、1つまたは複数の遠隔のネットワーク位置から収集され得る。資産所在地102bの画像のフォーマットは、いくつかの実施形態では、航空画像102cに利用可能な様々なソースによって受け取られるフォーマットに依存する。複数の資産所在地102bの航空画像510の一例は、
図5Bに示
されている。
【0028】
[0040] いくつかの実施形態では、システムは、所与の資産所在地102bの少なくとも2枚の航空画像を取得するために複数の遠隔のデータベースシステムに問い合わせを行うように構成され得る。様々なデータベースで利用可能な航空画像は、例えば、解像度およびキャプチャの最新性の点で異なり得る。特定の資産の2枚以上の画像を収集することで、例えば、システムは、各々の画像を解析して状態解析に使用するための最高品質の画像を決定することができる。状態解析は、いくつかの実施例では、明瞭さ、完全性、および最新性のような複数の要素の均衡を含み得る。
【0029】
[0041] さらに、いくつかの実施形態では、システムは、2次元航空画像および3次元航空画像の両方を取得するために複数の遠隔のデータベースシステムに問い合わせを行うように構成され得る。航空画像が2次元フォーマットでキャプチャされたか、それとも3次元フォーマットでキャプチャされたかに基づいて、異なる資産特性が判別され得る。2次元航空画像は、いくつかの実施例では、資産の位置座標、街路名、占有タイプ、床面積、天窓の有無、煙突の有無、屋根の状態、屋根の形状、屋根葺、屋根のアンカー、屋根の設備、および/またはパウンディングを決定するのに使用され得る。3次元航空画像は、2次元航空画像と比較すると、位置座標、街路名、建物構造タイプ、占有タイプ、建築年、建物の高さ、ソフトストーリー、階数、屋根の状態、屋根の形状、屋根葺、屋根のアンカー、屋根の設備、クラッディングおよびパウンディングを決定するのに使用され得る。いくつかの実施形態では、2次元画像または3次元画像のいずれかを使用して識別可能な特性の重複が存在する場合、個々の特性の識別の信頼度を増すために、両方の画像の機械学習解析が組み合わされ得る。
【0030】
[0042] いくつかの実施態様では、システムは、資産所在地102bの各々の形状マップ画像102aを取得する(104)。形状マップ画像102aは、例えば、都市計画および都市開発に使用される都市計画図のような市町村内の存在する資産のブロック形状レイアウトを含む。形状マップ画像102aは、別の実施例では、コンピュータベースのナビゲーションシステムのユーザに情報を提供する際に使用されるブロック形状レイアウトマップを含み得る。形状マップ画像102aは、一実施例では、日本の国土地理院または日本の株式会社ゼンリンから取得され得る。都市計画
図500の一例は、
図5Aに示されている(日本の国土地理院から取得された画像、デジタルマップ2500(Spatial Data Framework))。
【0031】
[0043] 形状マップ画像102aは、いくつかの実施形態では、特定の資産の位置を確認するのに使用される。地理的地域の形状マップ画像102aは、例えば、資産を画像と照合するために対応する航空画像102cと重ね合わされ得る。
図5Aの都市計画図画像500を
図5Bの航空画像510と重ね合わさせた画像520の一例は、
図5Cに示されている。いくつかの実施形態では、形状マップ画像102aは、航空画像102cと形状または位置が一致しない場合がある。
図5Cに図示されているように、例えば、所在地522の(太線で示された)形状マップ輪郭は、長方形でない場合があるが、輪郭の下の屋根上面の形状は長方形である場合がある。いくつかの実施形態では、複数の航空画像102cを解析して最高品質の画像を決定するステップは、対応する形状マップ画像102aと実質的に合致する1つまたは複数の航空画像102cを識別するステップを含み得る。航空画像102cと形状マップ画像102aとの重ね合わせは、さらに、特定の資産所在地102bに解析の焦点を合わせるために航空画像102cをトリミングするのを支援するのに使用され得る。例えば、
図5Cを参照すると、資産所在地524は、対応する都市計画図画像と実質的に合致しており、全体輪郭は、資産所在地524のトリミングを支援するのに使用され得る。いくつかの実施例では、資産の形状全体を変更し得る資産増築のように資産524に対して行われた改築を説明するために、資産所在地524が重ね合わせられた画像520内の資産と所定の許容誤差の範囲で合致する場合に、資産所在地524は重ね合わされた画像520内で識別され得る。
【0032】
[0044]
図1に戻ると、いくつかの実施形態では、形状マップ画像102aは、対応する2次元航空画像102cのアライメント誤差または不一致を補正する、または補償するために使用され得る。例えば、標準のオルソフォトアングルを示す航空画像は、都市計画図のブロックにそのまま基づいていない場合がある。都市計画図のブロックを目安として使用することで、例えば、航空画像は、真のオルソフォトバージョンの航空画像を取得するために幾何学的に補正され得る。
【0033】
[0045]
図1に図示されているように、いくつかの実施態様では、システムは、資産特性を分類するために各々の航空画像102cの特徴を識別する(106)。解析のために機械学習を使用することで、例えば、システムは、特定の資産所在地102bの航空画像の特徴を抽出することができる。角度、輪郭、実質的に均質な領域などのような抽出された特徴のグループ化は、屋根上面、スイミングプール、煙突、および天窓のような資産特徴を識別するのに使用され得る。資産特徴(例えば、屋根上面)として識別可能な画像関連特徴を抽出すると、抽出された特徴は、その特徴の1つまたは複数の資産特性(例えば、屋根上面のタイプ)を決定するために解析され得る。一実施例では、スイミングプールは、プールの資産特徴(例えば、実質的に均質な青い領域の境界となる特定のサイズまたはそれより大きい輪郭の様々な形状)として識別され、その後、特定の形状(例えば、長方形、円形、またはインゲンマメ形状など)、タイプ(例えば、地上または地下)、および/またはサイズ(例えば、概算面積)として特性化され得る。機械学習解析で使用される機械学習分類子は、いくつかの実施形態では、特定の資産所在地102bの航空画像102cを前処理するために、また資産特徴を資産特性110として分類するために畳み込みニューラルネットワーク(CNN)を含む。CNN技術を使用することで、例えば、オブジェクトまたはオブジェクトの特徴を視覚的に精査して識別する生物学的プロセスは、多層人工知覚が前処理を最小化するフィードフォワード人工ニューラルネットワークによって模倣される。CNNは、確立された一般的な機械学習方法である。CNN処理モデルの一例は、Alexnetである。(雑誌「Advances in neural information processing systems.(2012年)」、Krizhevksyらによる「ImageNet Classification with Deep Convolutional Neural Networks」を参照。この内容全体は、参照により本願明細書に組み込まれる。)他の実施形態では、機械学習分類子は、複雑な構造を有するマイクロ・ニューラル・ネットワークを使用して人工知覚結果の多数の層が生成されるNetwork In Network(NIN)を含み得る。人工知覚結果は、その後、積層され、平均化されて、分類のための単一全体平均プーリング層を生成する。NINは、従来のCNN処理よりも優れた性能結果を示している。さらに、NIN処理は、CNN処理よりもストレージ集約度が低い。
【0034】
[0046] いくつかの実施態様では、資産特徴を分類するのに資産特性プロファイル108が使用される。資産特性プロファイル108は、例えば、既知の資産特性の航空画像(いくつかの実施形態では、地上画像102d)を使用して機械学習アルゴリズムをトレーニングすることによって開発され得る。各々の資産特徴は、例えば、複数の分類に分けられ得る。地上画像の分類を伴う実施例では、クラッディングは、石、れんが、スタッコ、屋根板、垂直板、水平板、または金属を含み得る。機械学習アルゴリズムは、例えば、入母屋屋根上面を含む新しい航空画像102cと入母屋屋根上面の特性プロファイル108
との一致に対して信頼度の割合を生成し得る。
【0035】
[0047]
図2Aを参照すると、図示されている実施例では、特定の資産所在地102bの屋根の形状202を分類するのに、航空画像204の抽出された角度特徴および輪郭特徴が使用され得る。第1の実施例では、切妻屋根202bは、対応する航空画像204bに示されているように、略長方形輪郭における中央山部を含む。入母屋屋根202aは、航空画像204aに図示されているように、切妻屋根202bのこれらの特徴を含むが、入母屋屋根はさらに、中央の切妻形状部を取り囲む「スカート状」領域を含む。「スカート状」領域は、一部は、切妻形状部の四隅から延びるコーナーエッジに基づいて識別され得る。寄棟屋根202cは、航空画像204cに示されているように、中央山部と、中央山部の両端から延びる2つの対向する三角形端部とを含む。中央山部は、2つの台形部分の上端を形成する。それに対して、方形屋根202dは、中央山部を有さない。代わりに、航空画像204dに図示されているように、方形屋根は、中央の点で交わる4つの三角形部分を含む。最後に、平屋根202eは、航空画像204eに示されているように、長方形の輪郭の実質的に平坦な表面で表される。
【0036】
[0048]
図2Dを参照すると、エラー率グラフ240の一例は、航空画像の屋根上面特性を対応する屋根上面タイプ(例えば、形状)と照合した際に、トレーニングデータ242を照合試験データ244の精度と比較したものである。試験は、いろいろな色の入母屋屋根、切妻屋根、寄棟屋根、方形屋根、および平屋根の形状を含む2次元航空画像内の屋根上面の形状を分類するために、NIN深層学習アルゴリズムを使用して行われた。さらに試験は、異なる画像サイズおよびミニバッチサイズを対象とした。特に、画像は、式
【数1】
を使用してスケーリングされた。ここで、xは資産サイズ(例えば、屋根上面の領域を取り囲む小さい境界を有する建物)を表し、yは画素サイズを表し、wは0.33~0.40であり、zは90~110である。エラー率は、5個~20個のミニバッチを含む初期試験のケースの場合、約4.3%~約10%であった。エラー率グラフ240で示されているように、トレーニングデータセット内の2250枚のサンプル画像および試験データセット内の250枚の試験画像を含む試験状況では、屋根上面の状態を決定する際の最小エラー率は、正解率94%に対して6%であった。
【0037】
[0049] いくつかの実施形態では、正解率を向上させるために、画像は、解析の前にトリミングおよび/またはサイズ変更され得る。例えば、画像は、対象の資産、または対象の資産とその周囲の一部(例えば、資産および/または資産が存在する場所に近接する近隣の一部を含む区画)を含むようにトリミングされ得る。別の実施例では、標準的な画像サイズへのサイズ変更は、精度を向上させるのに寄与し得る。
【0038】
[0050] いくつかの実施形態では、屋根の形状に加えて、いくつかの実施例では、屋根葺、屋根のアンカー、屋根の設備、天窓、見晴台、タレット、塔、屋根窓、および/または煙突のような追加の屋根の特徴を判別するために、特徴解析が使用され得る。さらに、屋根の輪郭を識別するときに、航空画像102cの縮尺比に基づいて、資産所在地102bの占有面積(例えば、屋根のサイズ)が計算され得る。
【0039】
[0051]
図1に戻ると、いくつかの実施態様では、特定の資産所在地102bのみを個々に解析するのではなく、特定の資産所在地102bは、一部は隣接構造物に基づいて、それぞれ分類される。例えば、区画寸法を含み得る資産所在地102bの寸法に基づいて、機械学習を使用して、例えば、いくつかの実施例では、デッキ、スイミングプール、物置、見晴らし小屋、独立ガレージ、テニスコート、フェンス、擁壁、ドック、遊具、または温室のような資産所在地102bにある追加の構造物を識別することができる。さらに、特定の資産所在地102bは、一部は隣接構造物からの距離(パウンディング)に基づいて、分類され得る。
【0040】
[0052] いくつかの実施態様では、地上画像102dは、航空画像102cを使用して認識するのが難しい特徴を分類するのに使用され得る。地上画像102dは、いくつかの実施例では、ストリートビュー・サービスまたは不動産リストから取得されたストリートビュー画像を含み得る。いくつかの実施例では、資産所在地102bの街路に向かって見たビューを含むストリートビュー画像は、Google社のGoogle(登録商標)Street View、Microsoft社(レドモンド、ワシントン州)のBing(登録商標)Maps Streetside、またはMapillary AB(スウェーデン)のMapillaryから取得され得る。例えば、地上画像を使用することで、システムは、建物構造タイプ、クラッディング、建物の高さ、ソフトストーリーの数、階数、位置座標、街路名、傾斜、標高、建築年、および/または占有タイプのような特徴を識別することができる。地上画像102dを使用して識別可能な特性が2次元または3次元航空画像102cを使用して識別可能な特性と重複する場合、いくつかの実施形態では、特定の特性(単数または複数)の識別の信頼度を高めるために、地上画像102dの解析が航空画像の解析と組み合わされ得る。例えば、住宅のサイディングの特徴は、2次元航空画像102cよりも地上画像102dおよび/または3次元航空画像120c内で、より容易に検出され得る。
【0041】
[0053] いくつかの実施態様では、各々の資産特徴の状態は、対応する状態特性116として分類され得る(112)。新しい資産は良好な状態であるが、資産特徴状態は、資産の通常の摩耗により経時的に劣化し得る。また、資産特徴は、暴風雨および自然災害のような外部の力により損傷を受ける可能性がある。結局は、住宅の特徴の状態は、補修および/または建て替えが必要になり得るほど劣化し得る。ブロック106で上述した資産特性のように、個々の検出された資産特徴の現在の状態を分類するために、機械学習アルゴリズムが使用され得る。解析ために機械学習を使用することで、例えば、システムは、特定の資産所在地102bの航空画像の以前に識別された資産特徴の画素強度分布を抽出することができる。いくつかの実施例では、新しく建築された資産の特徴は、一般に、機械学習画像解析において、際立ったコントラストのはっきりした特徴を有する。一方、風雨にさらされた、または損傷した資産の特徴は、滑らかなエッジ、不鮮明なコントラスト、および所々の非対称の摩耗を有し得る。機械学習状態解析で使用される機械学習分類子は、いくつかの実施形態では、特定の資産所在地102bの航空画像102cを処理するために、また以前に識別された資産特性110の状態を状態特性116として分類するために機械学習解析を含む。機械学習解析は、いくつかの実施例では、2次元色ヒストグラム解析または3次元色ヒストグラム解析を含み得る。他の実施形態では、機械学習解析は、パターン認識アルゴリズム(例えば、欠落しているフェンス支柱または欠落している/ずれた屋根上面の屋根板の決定)を使用して実行され得る。他の実施形態では、機械学習分類子は、CNNまたはNINのような深層学習解析を含む。
【0042】
[0054] 図示されている実施例では、
図2Bを参照すると、寄棟屋根の屋根上面の航空画像の状態特性および画素強度の機械学習解析によって作成された対応するヒストグラム例が示されている。例えば、良好な状態の航空画像210a~214aのセットは、対応する良好な状態のヒストグラム210b~214bと共に示されている。図示されている実施形態では、良好な状態のヒストグラム210b~214bは、グレースケール色分布の確率の指標を示しており、個々の最大値210c~214cは、良好な状態の屋根のグレースケール色分布の最高確率を示している。例えば、値は、0(完全に黒)~255(完全に白)であり得る。
【0043】
[0055] 一方、劣悪な状態の航空画像216a~220aのセットは、対応する劣悪な状態のヒストグラム216b~220bと共に示されている。図示されている実施形態では、劣悪な状態のヒストグラム216b~220bは、グレースケール色分布の確率の指標を示しており、個々の最大値216c~220cは、良好な状態の屋根のグレースケール色分布の最高確率を示している。劣悪な状態の屋根上面216a~220aに対応する最大値216c~220cは、良好な状態の屋根上面210a~214aの対応する最大値210c~214cに比べて著しく低い。さらに、劣悪な状態のヒストグラム216b~220bの分布幅は、良好な状態のヒストグラム210b~214bの分布幅に比べて著しく広くなり得る。劣悪な状態の屋根上面216a~220aの航空画像から分かるように、色分布はまばらで色あせており、屋根上面のエッジの鮮明なラインが無くなっている。一方、良好な状態の屋根上面の航空画像210a~214aを見ると、屋根上面は、色が実質的により均一であり、エッジの鮮明なラインを有する。
【0044】
[0056]
図2Cを参照すると、屋根上面の状態の状態プロファイル230が示されている。いくつかの実施態様では、ヒストグラム210b~220bのような画素値分布ヒストグラムは、屋根上面の状態に対応する状態プロファイル例230を作成するために組み合わせられ得る。状態プロファイル230は、例えば、
図1の状態プロファイル114の1つとして含められ得る。状態プロファイル230上の参照バー232a、232bは、劣化していない寄棟屋根214aと劣化した寄棟屋根216aにそれぞれ対応する値を示している。いくつかの実施例では、参照バー232の値がY軸上に1に近いほど、屋根の状態が良好であり、0に近い値は劣悪な状態の屋根上面であることを示している。一実施例では、状態プロファイル例230の参照バー232は、2500枚の画像を含む試験状態サンプルデータセットに対応する。いくつかの実施形態では、参照バー232は、ロジスティック回帰で組み合わされて、屋根の状態プロファイルグラフ236が作成される。画像ヒストグラムの正解率は、いくつかの検証に基づいて80%になる。
【0045】
[0057] 異なるタイプの屋根上面(例えば、少なくとも寄棟屋根の屋根上面216aおよび切妻屋根の屋根上面234)に対応する1つの状態プロファイル230として図示されているが、他の実施形態では、各々の資産特性に対して個々の状態プロファイル114(例えば、切妻屋根に固有のプロファイル、入母屋屋根に固有のプロファイル、平屋根に固有のプロファイル、寄棟屋根に固有のプロファイル、方形屋根に固有のプロファイルなど)が作成され得る。さらなる改良において、特定の実施形態では、個々の状態プロファイル114は、資産特性の組み合わせ(例えば、切妻の板葺き屋根、切妻の瓦葺き屋根、切妻の金属屋根など)に対して、組み合わされた特性に対応する画素密度に基づいて正解率を向上させるように作成される。資産特徴の特性の多くの組み合わせは、対応する資産特徴の状態を正確に識別するように設計された状態プロファイル114を作成するために、単独でまたは組み合わせて使用され得る。
【0046】
[0058]
図1に戻ると、いくつかの実施態様では、資産特性110および/または状態特性116は、災害の1つまたは複数のタイプに基づいて損傷のリスクに対応するリスク推定値122を計算する(120)ために解析され得る。災害のタイプは、いくつかの実施例では、地震、ハリケーン、竜巻、高潮、直進性の風、または噴火を含み得る。いくつかの実施形態では、災害のタイプおよび推定される深刻度は、特定の資産所在地102bに基づき得る。例えば、活断層近くの資産は、地震の影響をより受けやすく、沿岸の資産は、高潮の被害をより受けやすくなり得る。リスク推定値122は、いくつかの実施例では、特定の資産特性に基づく損傷の可能性を示す保険数理的割合を含み得る。例えば、異なる資産特性は、特定のタイプの損傷の影響を他のものよりも受けやすくなり得る。例えば、平屋根の屋根上面は、堆積した過度の雪による損傷の影響をより受けやすく、ひさしのある屋根上面は、強風の影響をより受けやすくなり得る。
【0047】
[0059] いくつかの実施形態では、損傷リスクを計算する際に、資産特性に基づいて1つまたは複数の災害リスクプロファイル118が適用され得る。災害による損傷に対する脆弱性は、いくつかの実施例では、位置、高度、傾斜、屋根上面の形状、屋根上面の状態、クラッディングのタイプ、クラッディングの状態、および/またはパウンディングによって、変化し得る。特定の実施例では、
図2Aに示されているように、グラフィカルなリスクプロファイル206は、強風に対する脆弱性によって屋根上面のタイプをランク付けしている。風による損傷に対する脆弱性は、最低の脆弱性(平屋根の屋根上面202e)から、方形屋根202d、寄棟屋根202c、切妻屋根202bへと高くなり、入母屋屋根202aでは、風による損傷に対する脆弱性は最高になる。脆弱性は、災害の様々なタイプおよび/または深刻度による過去の損傷結果から構築された統計情報に基づいて数学的にモデル化され得る。位置に基づく脆弱性を個々の資産特性に基づく脆弱性と組み合わせると、災害による損傷のリスクは、より正確に推定され得る。
【0048】
[0060]
図1に戻ると、リスク推定値122は、いくつかの実施形態では、保険の査定に使用され得る。例えば、リスク推定値122は、資産が潜在的な損傷に対して適切に保証されるかどうかを決定するのに使用され得る。さらに、近い将来の自然災害を追跡するときに、保険会社は、リスク推定値122を使用して、暴風雨の予想進路および深刻度に基づいて保険金を推定する。さらに、リスク推定値122は、投資ポートフォリオのための投資資産を選択する際に、投資者によって利用され得る。
【0049】
[0061] いくつかの実施態様では、良好な状態または「新築同様の」状態の1つまたは複数の資産特性を配置するためのコスト推定値128を決定するために、補修または建て替えコストが計算され得る(126)。コスト推定値128は、いくつかの実施形態では、一部は1つまたは複数の建て替えコストプロファイル120に基づき得る。建て替えコストは、いくつかの実施例では、材料のタイプ(例えば、屋根上面の材料、クラッディングの材料など)、作業の規模(例えば、屋根の推定面積、フェンスの推定長さなど)、および/または追加の資産特性(例えば、仕事の複雑さに寄与する)に基づいて変化し得る。建て替えプロファイル120は、別の実施例では、一部は位置に基づき得る(例えば、地域ごとに材料および労力のコストは異なる)。いくつかの実施態様では、資産特性の補修または建て替えのためのコスト推定値128は、保険業者または不動産投資ブローカーのような請求者のリモート・コンピューティング・デバイスのダッシュボード・インターフェース・スクリーンに出力され得る。
【0050】
[0062] いくつかの実施形態では、コスト推定値128は、自動的に保険金請求を解析するのに使用され得る。コスト推定値128はさらに、特定の資産所在地102bの保険の補償範囲の妥当性を解析する際に、リスク推定値122と組み合わされ得る。また、コスト推定値128は、特定の投資資産を維持/アップグレードするコストを決定する際に投資者によって使用され得る。
【0051】
[0063] 動作フローは一連の計算処理段階として示されているが、他の実施態様では、それよりも多い、または少ない計算処理段階が含まれる場合がある。例えば、航空画像102cは、(例えば、所有者が損傷した資産特性を直接補修/建て替えを行うのではなく、資産をアップグレードした場合に、)被保険資産が補修されたことを確認するために、および/または資産の推定値をアップグレードするために、保険金が支払われた後に解析され得る。
【0052】
[0064] さらに、他の実施態様では、特定の計算処理段階は、異なる順序で実行され得る。例えば、コスト推定値128は、リスク推定値122の前に計算され得る。動作フロー100の他の修正も可能である。
【0053】
[0065]
図3は、航空画像の地形学的特徴を対応する資産保守管理レベルと照合するための環境例300のブロック図である。環境例300は、例えば、
図1に関して説明されている動作フロー100を実装するのに使用され得る。環境例300は、クライアント・コンピューティング・システム(単数または複数)306と通信する資産特性分類/状態解析システム302と、多数のコストデータおよび/またはリスクデータソース・コンピューティング・システム(単数または複数)308と、多数の形状マップ、航空画像、および/または地上画像・ソース・コンピューティング・システム(単数または複数)304とを含む。通信接続は、様々なネットワークタイプを経由する、有線または無線接続であり得る。概して、システム302は、クライアント・コンピューティング・システム(単数または複数)306から資産識別子(単数または複数)340を取得し、画像ソース・コンピューティング・システム(単数または複数)304から資産識別子340によって識別された資産の画像にアクセスし、資産特性(単数または複数)342および状態特性(単数または複数)344を決定するために画像を解析する。コスト/リスクデータソース・コンピューティング・システム(単数または複数)308から取得されたコストデータおよび/またはリスクデータを使用することで、システム302は、資産特性および資産の状態に基づいて建て替えコスト推定値データ350および/または災害リスク推定値データ352を決定することができる。
【0054】
[0066] いくつかの実施態様では、特定のクライアント・コンピューティング・システム306のユーザが、グラフィカル・ユーザインターフェース・エンジン334によって提供されたグラフィカル・ユーザインターフェースを介してシステム302に要求を提出する。要求は、例えば、少なくとも1つの資産識別子340ならびに1つまたは複数の資産特性342、および/または建て替えもしくは補修コスト推定値、災害リスク推定値、および補修査定の確認の識別を含み得る。資産識別子340は、いくつかの実施例では、位置情報(例えば、住所、地理位置座標、区画境界など)を含み得る。位置情報は、例えば、
図1に関して説明した資産所在地情報102bと合致し得る。他の実施形態では、資産識別子340は、データストア310内の資産所在地情報を検索するのに使用される固有の資産識別子(例えば、数字または文字列)であり得る。別の実施形態では、ユーザは、資産識別子を提出するのではなく、ユーザに関連付けられた1つまたは複数の資産(例えば、保険のクライアントが保険を掛けている資産、投資のクライアントによって保持されている資産など)を検索するのに使用される固有のユーザ識別子を提出する場合がある。
【0055】
[0067] 一実施例では、
図8Aを参照すると、ユーザは、グラフィカル・マップ・インターフェース800内の資産を選択することによって、1つまたは複数の資産の位置を識別することができる。ピン804のような関連ピンで示されているように、マップ・ビュー・ユーザインターフェース800内で、多くの資産が識別される。ピンは、いくつかの実施例では、特定の保険業者の保険対象である資産、資産のタイプ(例えば、商業用、工業用、居住用など)、および/または値の範囲(例えば、範囲内、閾値を超えるなど)の資産を示し得る。ピンは、例えば、ユーザによって提供された、または別の形でユーザプロファイル(例えば、保険業者識別)に関連付けられたフィルタリングオプションに基づいて表示され得る。特定の実施例では、ユーザは、3つの吹き出し802に関連付けられた3つの資産を選択することができる。図示されているように、各々の吹き出しは、資産に関連付けられた建て替え費用を識別し、詳細コントロールを使用して、選択された資産に関する詳細を精査するようユーザに勧める。
【0056】
[0068] いくつかの実施態様では、ユーザは、各々の選択された資産に関連付けられた資産特性を入力する。他の実施態様では、特性は、資産の識別(例えば、
図8Aに示されているように、資産を識別するピンの選択)の際にアクセスされ得る。例えば、資産特性342は、
図3に示されているように、データストア310から取得され得る。
図8Bを参照すると、資産特性ユーザインターフェース例820は、建物面積特性822(例えば、建物面積822a、階数822b、および建物延面積824c)、および構造特性824(例えば、構造材料824a、建物構造クラス824b)を提示する。記載されているように、異なる、または追加の特性は、実施態様ごとに異なり得る。いくつかの実施形態では、ユーザは、ユーザインターフェース820を介して、例えば、編集コントロール828aまたは828bを使用して、建物面積特性822および/または構造特性824を編集することができる。例えば、最近の開発または改築(例えば、増築)の状況では、ユーザは、以前に記憶された特性値を修正することができる。例えば、資産特性ユーザインターフェース820は、
図8Aのユーザインターフェースで示されている吹き出し802の1つの詳細コントロールの選択の際に、ユーザに提示され得る。
【0057】
[0069] いくつかの実施態様では、ユーザインターフェース820はさらに、建て替え費用のようなプレミアム特性826を提示する。プレミアム情報は、例えば、資産のために購入された保険契約または(例えば、アップグレードされたまたは新しい特性に基づく)資産を保証するためのパラメータに関連し得る。ユーザは、いくつかの実施形態では、編集コントロール828cを使用してプレミアム情報を更新することができる。
【0058】
[0070] いくつかの実施態様では、システム302は、資産所在地情報を識別するときに、画像取得エンジン336を使用して画像ソース・コンピューティング・システム(単数または複数)304から資産の画像にアクセスする。画像は、いくつかの実施例では、形状マップ(例えば、
図1に関して説明した形状マップ102a)、2次元航空画像(例えば、
図1に関して説明した航空画像102c)、3次元航空画像(例えば、
図1に関して説明した航空画像102c)、および/または地上画像(例えば、
図1に関して説明した地上画像102d)を含み得る。いくつかの実施形態では、画像取得エンジン336によって取得される画像は、ユーザによって識別された資産特性(単数または複数)に基づく。例えば、特定のタイプの画像は、特定のタイプの資産特性を解析するのに好適である。例えば、住宅サイディングは、2次元航空画像よりも地上画像または3次元航空画像からの方が容易に認識される。
【0059】
[0071] いくつかの実施態様では、画像品質解析/前処理エンジン326は、取得画像(単数または複数)が資産識別子340によって識別された資産の十分に鮮明で詳細な画像を含むことを確認するために、取得画像(単数または複数)を解析する。いくつかの実施形態では、画像品質解析/前処理エンジン326は、取得画像(単数または複数)をトリミングする、および/またはサイズ変更する。例えば、画像品質解析/前処理エンジン326は、資産(例えば、建物サイズ)に基づいて取得画像の一部を抽出し得る。いくつかの実施態様では、画像品質解析/前処理エンジン326は、各々の取得画像を標準サイズにサイズ変更する。標準サイズは、特定の実施例では、1枚の画像につき256×256画素であり得る。標準サイズへのサイズ変更は、例えば、後の分類解析の精度を高め得る。いくつかの実施形態では、画像品質解析/前処理エンジン326は、取得画像(単数または複数)に補正を加えるように構成され得る。例えば、画像品質解析/前処理エンジン326は、標準のオルソフォトアングルから、上述したような真のオルソフォトバージョンに、航空画像を調整するように構成され得る。
【0060】
[0072] いくつかの実施態様では、画像品質解析/前処理エンジン326は、解析の一部として形状輪郭を使用する。例えば、合成画像生成エンジン318は、
図5Cに関して説明したように、航空画像を形状マップ画像と重ね合わせ得る。画像品質解析/前処理エンジン326は、生成された合成画像を使用して、航空画像が都市計画図または他の資産配置ガイド(例えば、ナビゲーション・マップ・データなど)と合致することを確認し得る。さらに、画像品質解析/前処理エンジン326は、航空画像が真のオルソフォトアングルへの補正が必要であるかどうか、および/または資産(および、任意で、資産の区画または近隣の一部のような資産にすぐ隣接する周囲)をキャプチャするために画像をどの程度までトリミングするかを決定する際に、重ね合わされた形状マップを目安として使用し得る。
【0061】
[0073] いくつかの実施態様では、画像品質解析/前処理エンジン326が、取得画像が不十分であると判断した場合、画像品質解析/前処理エンジン326は、画像取得エンジン336からの差し替え画像を要求し得る。例えば、画像取得エンジン336は、いくつかの実施例では、キャプチャの最新性、解像度、コスト、および/または特定の資産特性解析への適用可能性を含む様々な要素に基づいて画像を取得し得る。画像品質解析/前処理エンジン326によって、第1の取得画像が不十分であると判断されると、例えば、画像取得エンジン336は、資産の画像を取得するために、次に最適なソースを決定し得る。
【0062】
[0074] いくつかの実施態様では、画像品質解析/前処理エンジン326によって画像が承認される(任意で、前処理および/または補正される)と、特徴識別エンジン320は、識別された資産特性342に関連する資産画像(単数または複数)から特徴を抽出する。例えば、フェンスの場合、特徴識別エンジン320は、フェンスを示すものとして、資産に隣接して資産から延在する外周囲いまたは部分的な外周囲いを識別し得る。
【0063】
[0075] いくつかの実施態様では、特徴識別エンジン320によって特徴が識別されると、資産特性分類エンジン322が資産特性を分類する。例えば、特徴は、
図1の計算処理段階106(各々の画像の特徴を分類する)に関して説明したように、1つまたは複数の機械学習技術を使用して分類され得る。資産特性分類エンジン322は、例えば、特定の資産特徴のグループ化、タイプ、または他の特性化を表す資産特性342を生成し得る。続いて、フェンスの特定の例では、抽出された特徴は、高さおよび/または材料に関して解析され、分類され得る。資産特性が分類されると、資産特性分類は、資産特性342(
図1の資産特性110と同様)としてデータストア310に記憶され得る。
【0064】
[0076] いくつかの実施態様では、資産特性分類エンジン322は、資産特性を分類する際に特性プロファイル(単数または複数)360を使用する。資産特性分類エンジン322は、例えば、解析されている各々の資産特性に対して、プロファイル・データストア314から特定の特性プロファイル360を取得し得る。特性プロファイルは、例えば、
図1に関して説明した特性プロファイル108と同様であり得る。
【0065】
[0077] いくつかの実施態様では、資産特性プロファイル360は、特性分類学習エンジン328によって生成される。特性分類学習エンジン328は、例えば、
図2Aに関して大まかに説明したようなサンプルデータセット学習プロセスを使用して特性プロファイル360を生成し得る。特定の実施例では、特性分類学習エンジン328は、様々な屋根上面の形状を認識するために、JPG(Joint Photographic Experts Groupによって開発された不可逆的圧縮デジタル画像標準)を解析し得る。
【0066】
[0078] 特定の資産特性分類は、解析によって行われるが、いくつかの実施態様では、1つまたは複数の特徴分類は、以前に記憶されている資産特性342から取得され得る。例えば、納税記録、不動産記録などに基づいて、資産に関するいくつかの基本的な材料および構造の情報は、ローカルおよび/または遠隔のデータベースシステム(単数または複数)を介してすぐに利用可能であり得る。他の実施例では、以前に記憶されている資産特性342はさらに、システム302によって資産所在地に対して実行された以前の状態査定から取得され得る。
【0067】
[0079] いくつかの実施態様では、資産特性分類エンジン322が資産特性(単数または複数)を分類すると、特性状態分類エンジン324が各々の資産特性の状態を分類する。例えば、
図1の計算処理段階112(各々の特徴の状態を分類する)に関して説明したように、資産特性が分類され得る。特性状態分類エンジン324は、例えば、特定の特性の状態の評定、適格性、またはランキングを示す状態特性344を生成し得る。いくつかの実施例では、特性状態分類エンジン324は、特性を、(a)「良好」または「不良」、(b)「新築同様」、「許容可能」、「補修が必要」、または「建て替えが必要」、(c)1等級~5等級のような数値規準(5は「新築同様」に対応し、1は「建て替えが必要」に対応し得る)の評定として認定し得る。他の実施態様では、特定の問題は、例えば、いくつかの実施例では、フェンスの特徴が部分的に倒れている、または屋根の特徴が構造的損傷の兆候を示しているというように、特性状態分類エンジン324によって識別され得る。
【0068】
[0080] いくつかの実施態様では、特性状態分類エンジン324は、資産特性状態を分類する際に状態プロファイル(単数または複数)362を使用する。特性状態分類エンジン324は、例えば、解析されている各々の資産特性に対して、プロファイル・データストア314から特定の状態プロファイル362を取得し得る。状態プロファイル362は、例えば、
図1に関して説明した状態プロファイル114と同様であり得る。
【0069】
[0081] いくつかの実施態様では、状態プロファイル362は、状態分類学習エンジン330によって生成される。状態分類学習エンジン330は、例えば、
図2Bに関して大まかに説明したようなサンプルデータセット学習プロセスを使用して状態プロファイル362を生成し得る。特定の実施例では、グレースケール内の画像のピーク画素値を識別
するのに、色ヒストグラム解析が使用され得る。学習エンジンは、計算されたピーク画素値群を使用して、資産状態を特定のカテゴリに分類することができる。
【0070】
[0082] いくつかの実施態様では、資産特性分類エンジン322および/または特性状態分類エンジン324の出力に基づいて、リスク計算エンジン316が災害の1つまたは複数のタイプに基づく損傷リスクを推定し得る。例えば、
図1の計算処理段階120(損傷リスクを計算する)に関して説明したように、災害リスク推定値データ352が計算され得る。災害リスク推定値データ350は、一実施例では、
図1のリスク推定値122に関して説明したように、特定の資産特性および/または資産状態に基づく各々の特定のタイプのリスクによる損傷可能性の割合を含み得る。さらに、いくつかの実施形態では、災害リスク推定値データ350は、いくつかの実施例では、災害の深刻度の数字、災害の特定の進路、および/または災害のハザード強度に基づくリスク推定値セットを含み得る。災害深刻度は、いくつかの実施例では、地震活動のマグニチュードのリヒタースケールまたはSaffir-Simpson Hurricane Wind Scaleカテゴリに対応し得る。災害の進路は、いくつかの実施例では、北東などのような地理的方向、または資産特性(単数または複数)に対する衝突角度を含み得る。災害のハザード強度は、いくつかの実施例では、風速または降水量に関連し得る。補修コストは、例えば、屋根の状態が既知である場合に、より正確に推定され得る。特定の一実施例の屋根上面の劣悪な状態では、屋根は、葺き替えが必要なほどの損傷をより受けやすくなり得る。別の特定の実施例では、劣悪な状態の屋根上面では、内部の資産の損傷(例えば、屋根の割れ目が原因の水害)の可能性は、災害の深刻度の設定レベル以上に高くなり得る。
【0071】
[0083] いくつかの実施形態では、リスク計算エンジン316は、資産特性および/または状態特性に基づいてデータストア314からの1つまたは複数のリスクプロファイル364にアクセスする。リスクプロファイルは、例えば、
図1に関して説明した災害リスクプロファイル118と同様であり得る。リスクプロファイル364は、例えば、コスト/リスクデータ取得エンジン338によって、1つまたは複数のデータソース306から取得され得る。他の実施形態では、システム302は、(例えば、1つまたは複数コスト/リスクデータソース306およびリスクデータ解析エンジン(図示せず)から取得されたリスクデータを使用して)リスクプロファイル364を生成し得る。
【0072】
[0084] リスク推定値データ352は、いくつかの実施形態では、1つまたは複数のクライアント306と共有される。例えば、保険業者クライアント306は、保険の査定を行う際にリスク推定値データを使用し得る。別の実施例では、不動産投資ブローカーまたは会社のクライアント306は、投資ポートフォリオのための投資資産を選択するときにリスク推定値データ352を利用し得る。
【0073】
[0085]
図8Cを参照すると、災害リスクユーザインターフェース840の一例は、選択された資産(例えば、
図8Aの吹き出し802cによって識別される資産の1つ)に関連するリスクプロファイル364に基づいてリスク査定情報を提示する。ユーザインターフェース840は、例えば、ユーザインターフェース820から下にスクロールすることによって、アクセスされ得る。ユーザインターフェース840は、選択された資産用の多数の災害リスクファクタ842および関連するリスク推定値データ844を示している。図示されているように、災害リスクファクタ842は、火事ファクタ842a、風ファクタ842b、洪水ファクタ842c、地震ファクタ842d、津波ファクタ842e、および地滑りファクタ842fを含む。いくつかの実施形態では、本明細書に記載されているリスク査定技術を使用して、リスク推定値データのサブセットのみが決定される。例えば、洪水データ844cは、航空画像査定を使用するのではなく、行政機関の洪水マップ評価に基づいて生成され得るが、火事リスク844aは、少なくとも一部は画像解析によって導出された近隣資産に対する近接度および/または画像解析によって導出された資産構造に基づいて決定され得る。さらに、風リスクデータ842bは、本明細書でさらに詳細に説明されているように、屋根上面解析によって導出され得る。
【0074】
[0086] いくつかの実施態様では、資産特性分類エンジン322および/または特性状態分類エンジン324の出力に基づいて、コスト計算エンジン336が、特性状態分類エンジン324によって識別された問題を改善するために補修コストまたは建て替えコストを計算して、建て替えコスト推定値データ350を生成する。例えば、
図1の計算処理段階126(補修コストまたは建て替えコストを計算する)に関して説明したように、建て替えコスト推定値データ352が計算され得る。建て替えコスト推定値データ350は、例えば、
図1に関して説明したコスト推定値128と同様であり得る。
【0075】
[0087] いくつかの実施態様では、コスト計算エンジン336 は、一部は、(例えば
、
図1のコストプロファイル120と同様の)1つまたは複数のコストプロファイル366に基づいて計算する。いくつかの実施形態では、コスト計算エンジン336は、資産特性および/または状態特性に基づいてデータストア314からの1つまたは複数のコストプロファイル366にアクセスする。コストプロファイル366は、いくつかの実施形態では、コスト/リスクデータ取得エンジン338によって、1つまたは複数のコストデータソース306から取得され得る。他の実施形態では、システム302は、(例えば、1つまたは複数コスト/リスクデータソース306から取得されたコストデータを使用するコストデータ解析エンジン(図示せず)によって)コストプロファイル366を生成し得る。
【0076】
[0088] コスト推定値データ350は、いくつかの実施形態では、1つまたは複数のクライアント306と共有される。例えば、保険業者のクライアント306は、特定の資産の保険の補償範囲の妥当性を決定する際にコスト推定値データを使用し得る。別の実施例では、不動産投資ブローカーまたは不動産投資会社のクライアント306は、特定の投資資産を維持/アップグレードのコストを決定する際にコスト推定値データ350を利用し得る。
【0077】
[0089] いくつかの実施態様では、コスト推定値データ350および/またはリスク推定値データ352は、リアルタイムで、またはほぼリアルタイムで、1つまたは複数の資産の識別の受信に応答して、要求しているクライアント306に提供される。例えば、ダッシュボード・インターフェースにアクセスしているクライアント306は、ダッシュボード・インターフェース内の識別された資産に関するリスク推定値またはコスト推定値の要求をフォーマットして、ネットワークを介してシステム302に要求を提出し得る。システム302は、要求に応答して、大まかに上述した解析を実行し、リアルタイムで、またはほぼリアルタイムで、クライアント306に対してリスク解析またはコスト解析という形で反応を示し得る。例えば、リスク解析情報は、
図8Cのユーザインターフェース840内に提示される。
【0078】
[0090] いくつかの実施態様では、システムは、更新された気象データを使用して、災害によって影響を受けたクライアント不動産ポートフォリオ内の1つまたは複数の資産を識別し得る。システムは、影響を受けた資産の識別に加えて、災害が影響を及ぼした直後に、先を見越して補修推定値を作成して不動産ポートフォリオに対応するクライアントに提供し得る。一実施例では、気象庁は、観測の1時間以内かそこらで、ウェブサイトインターフェースを介して観測データを更新し得る。この実施例では、システムは、災害発生後の1時間~2時間で補修コスト推定値をクライアントに提供し得る。
【0079】
[0091] 他の実施形態では、システム302は、コスト推定値データ350および/またはリスク推定値データ352をクライアント306と直接共有するのではなく、1つまたは複数の資産の状態、損傷、およびリスク査定に関するレポートを作成するレポート生成エンジン(図示せず)を含み得る。さらに、いくつかの実施形態では、システム302は、(例えば、保険金請求の支払いに基づいて)資産所有者が資産の補修を行ったかどうかを確認するために、現在の状態特性344を過去の状態特性344と比較し得る。システム302の他の修正形態も可能である。
【0080】
[0092]
図4は、航空画像解析に基づいて資産の状態特性を分類する方法400の一例を示すフローチャートである。例えば、フローチャートは、
図1に関して説明したような計算処理段階104~112を示し得る。方法400は、例えば、
図3のシステム302によって実行され得る。
【0081】
[0093] いくつかの実施態様では、方法400は、資産の形状を含む2次元形状マップにアクセスするステップ(402)から始まる。形状マップは、例えば、
図3に関して説明したように、形状マップ画像ソース304から画像取得エンジン336によってアクセスされ得る。2次元形状マップは、例えば、
図1に関して説明した形状マップ102aのいずれかの形態を取り得る。特定の実施例では、形状マップは、
図5Aに関して説明した形状マップ500と同様の形態であり得る。
【0082】
[0094] いくつかの実施態様では、資産の画像を含む2次元および/または3次元航空画像がアクセスされる(404)。2次元および/または3次元航空画像は、例えば、
図3に関して説明したように、航空画像ソース304から画像取得エンジン336によってアクセスされ得る。2次元および/または3次元航空画像は、例えば、
図1に関して説明した航空画像102cのいずれかの形態を取り得る。特定の実施例では、2次元航空画像は、
図5Bに関して説明した航空画像510と同様の形態であり得る。
【0083】
[0095] いくつかの実施態様では、航空画像は、形状マップと重ね合わされる(406)。
図3の合成画像生成エンジン318は、例えば、航空画像を形状マップと重ね合わせて合成画像を生成し得る。合成画像は、例えば、
図5Cに関して説明した合成画像520と同様の形態であり得る。
【0084】
[0096] 形状一致が識別されなかった場合(408)、いくつかの実施態様では、方法400は、代替の2次元または3次元航空画像にアクセスする(410)。いくつかの実施形態では、
図3の画像品質解析/前処理エンジン326は、合成画像が対象の資産(単数または複数)の十分な形状一致を示しているかどうかを決定する。画像が一致していないことが判断されると、
図3の画像取得エンジン336は、例えば、航空画像ソース(単数または複数)304から代替の2次元または3次元航空画像を取得し得る。
図3に関して説明したように、例えば画像取得エンジン336は、1つまたは複数の要素に基づく資産の画像を取得するために、次に最適なソースを決定し得る。一方、他の実施態様では(図示せず)、方法400は、形状マップを航空画像と一致させずに、次に進むことができる。
【0085】
[0097] 形状一致が識別された場合(408)、いくつかの実施態様では、航空画像のフォーマットが準備される(411)。いくつかの実施形態では、画像は、対象の資産、または対象の資産とその周囲の一部(例えば、資産および/または資産が存在する場所に近接する近隣の一部を含む区画)を含むようにトリミングされる。トリミングは、例えば、形状マップと資産の相関関係に基づき得る。例として、画像は、資産と境界領域の形状マップ輪郭を含むようにトリミングされ得る。いくつかの実施形態では、トリミングは、形状セット(例えば、X×X画素の正方形、X×Yの長方形など)へのトリミングを含み得る。いくつかの実施形態では、画像のトリミングに加えて、画像はサイズ変更され得る。例えば、航空画像の解像度に基づいて、例えば、X×X画素の正方形またはX×Yの長方形の範囲内に収まるように、解像度が下げられ得る。標準的な画像サイズへのサイズ変更は、解析の整合性および分類精度の向上に寄与し得る。別の実施形態では、航空画像の色深度および/または色マッピングが調整され得る。画像の整合性のある色ヒストグラム解析のために、例えば、色深度および色マッピングは、解析画像全体にわたって一致され得る。特定の実施例では、カラー画像は、グレースケール画像解析用にグレースケールに変換され得る。画像の調整は、例えば、
図3に関して説明した画像品質解析/前処理エンジン326によって行われ得る。
【0086】
[0098] いくつかの実施態様では、航空画像の直交性が査定される(412)。例えば、画像品質解析/前処理エンジン326は、航空画像の直交性を査定し得る。画像品質解析/前処理エンジン326は、一実施例では、直交性の補正が望ましいことを決定し得る。別の実施例では、画像が真のオルソフォトではなく通常のオルソフォトを示している場合、画像品質解析/前処理エンジン326は、航空画像のキャプチャ角度を補正し得る別のモジュールに通知し得る。他の実施態様では(図示せず)、直交性は、重ね合わされた形状マップを使用せずに査定され得る。
【0087】
[0099]
図4に戻ると、いくつかの実施態様では、航空画像が直交性を有さない場合(414)、航空画像の直交バージョンが生成される(416)。例えば、
図3の画像品質解析/前処理エンジン326が、通常のオルソフォト形態を補正して、真のオルソフォト形態を生成し得る。真のオルソフォト形態は、例えば、形状マップと非常にさらに一致し得る。
【0088】
[0100] いくつかの実施態様では、資産の1つまたは複数の資産特性が分類される(418)。資産は、いくつかの実施形態では、資産は、実質的に資産の形状マップによって囲まれた航空画像の一部に基づいて解析される。他の実施形態では、資産解析は、資産の周囲(例えば、資産の区画の資産に近接する特徴、近隣資産など)を網羅する。資産特性(単数または複数)は、例えば、
図3に関して説明したように、資産特性分類エンジン322によって分類され得る。特定の実施例では、屋根上面の資産特徴は、
図2Aに示されているように、様々な屋根上面の形状の1つとして分類され得る。
【0089】
[0101] いくつかの実施態様では、資産特性分類が識別された場合(420)、資産特性の各々の状態が分類され得る(422)。資産特性状態(単数または複数)は、例えば、
図3に関して説明したように、特性状態分類エンジン324によって分類され得る。特定の実施例では、屋根上面の特徴の寄棟の分類は、
図2Bに示されているように、良好な状態および劣悪な状態のうちの1つとして分類され得る。いくつかの実施態様では、資産特性の各々の状態の分類は、ダッシュボード・インターフェース・スクリーンを介して請求者のコンピューティングデバイスに出力され得る(424)。いくつかの実施例では、資産特性に対する状態分類の提供に加えて、ダッシュボード・インターフェース・スクリーンは、資産特性を建て替えするための建て替えコスト、自然災害による損傷に対するリスクコスト推定値、または資産特性に対して補修が行われたかどうかの確認を含み得る。
【0090】
[0102] 一方、分類一致が識別されなかった場合(420)、いくつかの実施態様では、代替の2次元または3次元航空画像がアクセスされ(410)、方法400は、代替航空画像と形状マップとの重ね合わせを再開する(406)。あるいは、いくつかの実施形態では、分類一致が識別されなくても、資産特徴に関連付けられたデフォルトプロファイル(図示せず)に基づいて、状態が査定され得る。例えば、屋根上面の形状がシステムの中にトレーニングされている形状の1つと一致しない場合、屋根上面の状態は、様々な屋根上面の形状によってトレーニングされた全般的な状態プロファイルに基づいて、さらに査定され得る。いくつかの実施例では、屋根上面の状態は、現在の屋根上面の状態を資産に対する以前の状態査定から記憶されている過去の状態特性と比較することによって査定され得る。
【0091】
[0103] 方法400は一連のステップとして示されているが、他の実施態様では、それよりも多い、または少ないステップが含まれる場合がある。例えば、いくつかの実施態様では、
図1の動作フロー100に関して説明したように、地上画像が取得され、同一のおよび/または異なる資産特性を分類するのに使用される。
【0092】
[0104] さらに、他の実施態様では、特定のステップは、異なる順序で実行され得る。例えば、いくつかの実施態様では、資産特性および状態特性は、並行して分類され得る(418、422)。動作フロー100の他の修正も可能である。
【0093】
[0105] 本開示の態様は、航空画像を使用して保険業者または不動産投資ブローカーのようなユーザから受信された要求に応答して動的でリアルタイムの資産状態査定を提供するために、資産特性の補修状態を分類するためのコンピューティングシステムを対象とし得る。本明細書に記載されている実施態様は、資産特性の状態が補修または建て替えが必要なほどまで劣化しているかどうかを査定して、資産特性の検出された状態により資産のリスク曝露量を決定するために、取得画像の検出された資産特性に対して深層学習解析モデルを適用することによって、従来の方法を改善する。本明細書に記載されている実施態様は、システムの処理効率を向上させ、状態査定を実行するのに要する時間を低減し、状態査定プロセスを自動化する。
【0094】
[0106] 次に、
図6を参照しながら、例示的な実施形態のコンピューティングデバイス、モバイル・コンピューティング・デバイス、またはサーバのハードウェア記述について説明する。
図6において、コンピューティングデバイス、モバイル・コンピューティング・デバイス、またはサーバは、上述のプロセスを実行するCPU600を含む。プロセスデータおよび命令は、メモリ602に記憶され得る。さらに、これらのプロセスおよび命令は、ハードドライブ(HDD)または可搬記憶媒体のような記憶媒体ディスク604上に記憶され得る、または遠隔で記憶され得る。さらに、請求される技術進歩は、本発明のプロセスの命令が記憶されるコンピュータ可読媒体の形態に限定されない。例えば、命令は、CD、DVD、フラッシュメモリ、RAM、ROM、EPROM、EEPROM、ハードディスク、またはサーバまたはコンピュータのようなコンピューティングデバイス、モバイル・コンピューティング・デバイス、またはサーバが通信する任意の他の情報処理デバイスに記憶され得る。
【0095】
[0107] さらに、請求される技術進歩の一部は、CPU600およびオペレーティングシステム(Microsoft Windows6、UNIX、Solaris、LINUX、Apple MAC-OS、および当業者に周知の他のシステム)と共に実行するユーティリティアプリケーション、バックグラウンドのデーモン(daemon)、またはオペレーティングシステムのコンポーネント、またはこれらの組み合わせとして提供され得る。
【0096】
[0108] CPU600は、Intel(米国)のXenonもしくはCoreプロセッサ、またはAMD(米国)のOpteronプロセッサであり得る、または当業者によって認識される他のプロセッサタイプであり得る。あるいは、CPU600は、当業者によって認識されるような、FPGA、ASIC、PLD上に、または個別論理回路を使用して実装され得る。さらに、CPU600は、上述の本発明のプロセスの命令を実行するのに、同時に協働する複数のプロセッサとして実装され得る。
【0097】
[0109]
図6のコンピューティングデバイス、モバイル・コンピューティング・デバイス、またはサーバは、ネットワーク6Xとインターフェースするために、Intel社(米国)のIntel Ethernet PROネットワーク・インターフェース・カードのようなネットワークコントローラ606をさらに含む。理解されるように、ネットワーク628は、Internetのような公共ネットワーク、またはLANもしくはWANネットワークのようなプライベートネットワーク、またはこれらの組み合わせであり得、さらにPSTNもしくはISDNサブネットワークを含み得る。さらに、ネットワーク628は、Ethernetネットワークのような有線であり得る、またはEDGE、3Gおよび4G無線セルラーシステムを含むセルラーネットワークのような無線であり得る。無線ネットワークはさらに、Wi-Fi、Bluetooth、または周知の任意の他の無線通信形態であり得る。
【0098】
[0110] コンピューティングデバイス、モバイル・コンピューティング・デバイス、またはサーバはさらに、Hewlett Packard HPL2445w LCDモニタのようなディスプレイ610とインターフェースするために、NVIDIA社(米国)のNVIDIA GeForce GTXもしくはQuadroグラフィックスアダプタのようなディスプレイコントローラ608を含む。汎用I/Oインターフェース612は、ディスプレイ610上で、またはディスプレイ610とは別個に、キーボードおよび/またはマウス614、さらにタッチ・スクリーン・パネル616とインターフェースする。汎用I/Oインターフェースはさらに、Hewlett Packard社のOfficeJetもしくはDeskJetのようなプリンタおよびスキャナを含む様々な周辺機器618に接続する。
【0099】
[0111] さらに、スピーカ/マイク622とインターフェースして音声および/または音楽を提供するために、コンピューティングデバイス、モバイル・コンピューティング・デバイス、またはサーバ内に、Creative社のSound Blaster X-Fi Titaniumのようなサウンドコントローラ620が設けられる。
【0100】
[0112] 汎用ストレージコントローラ624は、コンピューティングデバイス、モバイル・コンピューティング・デバイス、またはサーバのコンポーネントの全てを相互接続するために、通信バス626(ISA、EISA、VESA、PCI等であり得る)によって記憶媒体ディスク604と接続する。ディスプレイ610、キーボードおよび/またはマウス614、さらにディスプレイコントローラ608、ストレージコントローラ624、ネットワークコントローラ606、サウンドコントローラ620、および汎用I/Oインターフェース612の一般的な特徴および機能の説明は、これらの特徴は周知であるので、簡単にするために本明細書では省略されている。
【0101】
[0113] 1つまたは複数のプロセッサは、特に明記しない限り、本明細書に記載されている様々な機能および/またはアルゴリズムを実装するのに使用され得る。さらに、本明細書に記載されている任意の機能および/またはアルゴリズムは、特に明記しない限り、1つまたは複数の仮想プロセッサ上で、例えば、コンピュータファームまたはクラウドドライブのような1つまたは複数の物理的コンピューティングシステム上で実行され得る。
【0102】
[0114] 本開示の実施態様に従う方法、システム、およびコンピュータプログラム製品のフローチャート図およびブロック図について説明してきた。これらの態様は、コンピュータプログラム命令によって実装される。これらのコンピュータプログラム命令は、マシンを作り出すために、汎用コンピュータ、特殊目的コンピュータ、または他のプログラム可能データ処理装置のプロセッサに与えられ、そのことにより、コンピュータまたは他のプログラム可能データ処理装置のプロセッサを介して実行する命令が、フローチャートおよび/またはブロック図のブロック(単数または複数)内で指定された機能/動作を実装するための手段を作成することができる。
【0103】
[0115] これらのコンピュータプログラム命令はさらに、コンピュータまたは他のプログラム可能データ処理装置を特定の方法で機能するように指示することができるコンピュータ可読媒体に記憶され、そのことにより、コンピュータ可読媒体に記憶されている命令が、フローチャートおよび/またはブロック図のブロック(単数または複数)内で指定された機能/動作を実装する命令手段を含む製品を作り出すことができる。
【0104】
[0116] これらのコンピュータプログラム命令はさらに、コンピュータまたは他のプログラム可能データ処理装置上で実行すべき一連の動作ステップにコンピュータ実装プロセスを生成させるために、コンピュータまたは他のプログラム可能データ処理装置にロードされ、そのことにより、コンピュータまたは他のプログラム可能データ処理装置上で実行する命令が、フローチャートおよび/またはブロック図のブロック(単数または複数)内で指定された機能/動作を実装するためのプロセスを生成することができる。
【0105】
[0117] さらに、本開示は、本明細書で記載されている特定の回路要素に限定されない、また本開示は、これらの要素の特定のサイズ設定および分類に限定されない。例えば、当業者は、本明細書に記載されている回路は、バッテリのサイズ設定および化学的性質に基づいて、または駆動されるバックアップ負荷の要件に基づいて設計され得る。
【0106】
[0118] 本明細書に記載されている機能および特徴はさらに、システムの様々な分散コンポーネントによって実行され得る。例えば、1つまたは複数のプロセッサは、これらのシステム機能を実行し得、この場合、プロセッサはネットワーク内で通信する複数のコンポーネントにわたって分散され得る。分散コンポーネントは、ヒューマンインターフェース通信デバイス(例えば、ディスプレイモニタ、スマートフォン、タブレット、携帯情報端末(PDA))に加えて、
図8に示されているように、処理を共有し得る1つまたは複数のクライアントマシンおよびサーバマシンを含み得る。ネットワークは、LANもしくはWANのようなプライベートネットワークであり得る、またはInternetのような公共ネットワークであり得る。システムへの入力は、直接のユーザ入力によって受信され、リアルタイムで、またはバッチ処理として、遠隔で受信され得る。さらに、いくつかの実施態様は、記載されているのと同一でないモジュールまたはハードウェア上で実行され得る。したがって、他の実施態様は、請求され得る範囲内にある。
【0107】
[0119] いくつかの実施態様では、
図7に図示されているように、本明細書に記載されている技術革新は、上記で詳述した方法またはアルゴリズムの少なくとも一部を実行するために、Google Cloud Platform(商標)クラウドコンピューティング環境730とインターフェースし得る。本明細書に記載されている方法に関連付けられたプロセスは、データセンタ734によって、Google Compute Engineのような計算プロセッサ上で実行され得る。データセンタ734は、例えば、データを受信し、対応する情報を出力するために本明細書に記載されているシステムとのインターフェースとして使用され得るGoogle App Engineのようなアプリケーションプロセッサも含み得る。クラウドコンピューティング環境730はさらに、クラウドストレージおよびクエリデータベースのような1つまたは複数のデータベース738または他のデータストレージ含み得る。いくつかの実施態様では、Google Cloud Storageのようなクラウドストレージデータベース738は、本明細書に記載されているシステムによって供給された処理データおよび未処理データを記憶し得る。
【0108】
[0120] 本明細書に記載されているシステムは、安全なゲートウェイ732を介してクラウドコンピューティング環境730と通信し得る。いくつかの実施態様では、安全なゲートウェイ732は、Google BigQueryプラットフォームのようなデータベース・クエリ・インターフェースを含む。
【0109】
[0121] クラウドコンピューティング環境102は、リソース管理のためのプロビショニングツール740を含み得る。プロビショニングツール740は、データセンタ734のコンピューティングリソースの提供を容易にするために、データセンタ734のコンピューティングデバイスに接続され得る。プロビショニングツール740は、安全なゲートウェイ732またはクラウドコントローラ736を介してコンピューティングリソースに対する要求を受信し得る。プロビショニングツール740は、データセンタ734の特定のコンピューティングデバイスへの接続を容易にし得る。
【0110】
[0122] ネットワーク702は、クラウド環境730を多数のクライアントデバイス(例えば、いくつかの実施例では、携帯電話710、タブレットコンピュータ712、モバイル・コンピューティング・デバイス714、およびデスクトップ・コンピューティング・デバイス716)に接続する、Internetのような1つまたは複数のネットワークを表している。ネットワーク702はさらに、Wi-Fi、Bluetooth、セルラーネットワーク(EDGE、3Gおよび4G無線セルラーシステムを含む)、または周知の任意の他の無線通信形態のような様々なモバイル・ネットワーク・サービス720を使用して、無線ネットワークを介して通信し得る。いくつかの実施形態では、ネットワーク702は、クライアントデバイスに関連付けられたローカルインターフェースおよびネットワークに依存せず、本明細書に記載されているプロセスを実行するように構成されたローカルインターフェースおよびネットワークの統合を可能にする。
【0111】
[0123] 特定の実施形態について説明したが、これらの実施形態は、単なる例として示されており、本開示の範囲を限定するものではない。実際に、本明細書に記載されている新奇な方法、装置、およびシステムは、様々な他の形態で具現化されてよく、さらに、本開示の精神から逸脱せずに、本明細書に記載されている方法、装置、およびシステムの形態の様々な省略、置換、および変更が行われてよい。添付の請求項およびその同等の内容は、本開示の範囲および精神の範囲内にある、そのような形態または修正形態を包含するものとする。
【手続補正書】
【提出日】2024-09-04
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
資産特性の補修状態を自動的に分類する方法であって、
リモート・コンピューティング・デバイスのユーザから、資産状態分類の要求を受信するステップであって、前記資産分類要求は、資産および少なくとも1つの資産特性の識別を含む、受信ステップと、
前記要求の受信に応答して、コンピューティングシステムの処理回路によって、前記資産を含む地理的領域の航空画像を取得するステップと、
前記処理回路によって、前記資産特性に対応する前記航空画像の複数の特徴を識別するステップと、
前記処理回路によって、資産特性分類を決定するために前記複数の特徴を解析するステップと、
前記処理回路によって、状態分類を決定するために前記資産特性を含む前記航空画像の領域を解析するステップと、
前記処理回路によって、前記資産特性分類および前記状態分類を使用して1つまたは複数の災害による前記資産への損傷のリスク推定値を決定するステップと、
前記要求の受信に応答して、グラフィカル・ユーザインターフェースを介して、前記リモート・コンピューティング・デバイスの前記ユーザに対して、前記状態分類および前記1つまたは複数の災害による前記資産の損傷の前記リスク推定値を含む前記資産特性の状態査定を返すステップと
を含む、方法。
【外国語明細書】