(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024178232
(43)【公開日】2024-12-24
(54)【発明の名称】アンモニア吸収システムを有する大型2ストロークユニフロー掃気ターボ過給式内燃機関
(51)【国際特許分類】
F02B 43/00 20060101AFI20241217BHJP
F02B 43/10 20060101ALI20241217BHJP
F02M 21/00 20060101ALI20241217BHJP
F02M 21/02 20060101ALI20241217BHJP
【FI】
F02B43/00 Z
F02B43/10 Z
F02M21/00
F02M21/02 V
【審査請求】未請求
【請求項の数】14
【出願形態】OL
(21)【出願番号】P 2024157965
(22)【出願日】2024-09-12
(62)【分割の表示】P 2023133778の分割
【原出願日】2022-05-19
(31)【優先権主張番号】PA202170273
(32)【優先日】2021-05-26
(33)【優先権主張国・地域又は機関】DK
(71)【出願人】
【識別番号】597061332
【氏名又は名称】エムエーエヌ・エナジー・ソリューションズ・フィリアル・アフ・エムエーエヌ・エナジー・ソリューションズ・エスイー・ティスクランド
(74)【代理人】
【識別番号】100127188
【弁理士】
【氏名又は名称】川守田 光紀
(72)【発明者】
【氏名】ハンセン キム レーン
(72)【発明者】
【氏名】ハンセン イェスパー ムンク
(72)【発明者】
【氏名】クリステンセン ヘンリック
(57)【要約】 (修正有)
【課題】アンモニアを主燃料とした運転モードを少なくとも1つ有する大型2ストロークユニフロー掃気ターボ過給式内燃機関を提供する。
【解決手段】シリンダライナと、前記シリンダライナ内の往復ピストンと、自身をカバーするシリンダカバーとを有する少なくとも1つのシリンダと、前記シリンダ内の前記往復ピストンと前記シリンダカバーとの間に形成される燃焼室と、前記シリンダカバー又は前記シリンダライナに配される燃料弁に加圧されたアンモニアを供給するように構成されるアンモニア燃料システム(30)と、前記アンモニア燃料システムの出口を前記アンモニア吸収システムの入口に接続する前記アンモニア排出流路(42,44,47)と、を備え、前記アンモニア吸収システムは、使用中、前記アンモニア排出流路を通じて供給されるアンモニアを水に吸収させてアンモニア水を作る。
【選択図】
図4
【特許請求の範囲】
【請求項1】
主燃料がアンモニアである運転モードを少なくとも1つ有する大型2ストロークユニフロー掃気ターボ過給式内燃機関であって、
・ シリンダライナと、前記シリンダライナ内の往復ピストンと、自身をカバーするシリンダカバーとを有する少なくとも1つのシリンダと、
・ 前記往復ピストンと前記シリンダカバーとの間において前記シリンダ内に形成される燃焼室と、
・ 前記シリンダカバー又は前記シリンダライナに配される燃料弁に加圧されたアンモニアを供給するように構成されるアンモニア燃料システムと、
・ アンモニア吸収システムと、
・ アンモニア排出流路と、
を備え、
前記アンモニア排出流路は前記アンモニア燃料システムの出口を前記アンモニア吸収システムの入口に接続し、
前記アンモニア吸収システムは、使用中、前記アンモニア排出流路を通じて供給されるアンモニアを水に吸収させてアンモニア水を作り、
前記アンモニア吸収システムは気相アンモニアを受け取り前記気相アンモニアを水に溶かすための、ひとまとまりのアンモニア吸収タワーを備える、
機関。
【請求項2】
気相アンモニアを取り入れるための気相アンモニア入口を備え、
前記ひとまとまりのアンモニア吸収タワーは水の供給源に接続される、
請求項1に記載の機関。
【請求項3】
前記ひとまとまりのアンモニア吸収タワーはアンモニア水を排出するためのアンモニア水出口を有する、
請求項2に記載の機関。
【請求項4】
前記機関の排気流路内にSCRリアクターを備え、前記アンモニア水出口は前記SCRリアクターに関連付けられる還元剤入口に接続される、請求項3に記載の機関。
【請求項5】
前記アンモニア燃料システムは該アンモニア燃料システムから前記アンモニア吸収システムへとアンモニアを排出するように構成されるパージシステムを備える、請求項1に記載の機関。
【請求項6】
前記パージシステムは加圧窒素源を備える、請求項5に記載の機関。
【請求項7】
前記加圧窒素源はパージバルブを介して前記アンモニア燃料システムに接続される、請求項6に記載の機関。
【請求項8】
前記パージシステムは、前記アンモニア燃料システムから前記アンモニア吸収システムにアンモニアをパージするために前記アンモニア排出流路を使用する、請求項5に記載の機関。
【請求項9】
前記アンモニア燃料システムは液相アンモニア燃料タンクと、低圧ポンプの動作により前記液相アンモニア燃料タンクを中圧燃料ポンプの入口に接続する低圧アンモニア供給ラインとを備える、請求項1に記載の機関。
【請求項10】
前記アンモニア燃料システムは、前記中圧燃料ポンプの出口を前記燃料弁の入口に接続する中圧燃料ラインを備える、請求項9に記載の機関。
【請求項11】
前記アンモニア燃料システムは、前記燃料弁の出口を前記中圧燃料ポンプの入口に接続する戻しラインを備える、請求項9に記載の機関。
【請求項12】
主燃料がアンモニアである運転モードを少なくとも1つ有する大型2ストロークユニフロー掃気ターボ過給式内燃機関であって、
・ シリンダライナと、前記シリンダライナ内の往復ピストンと、自身をカバーするシリンダカバーとを有する少なくとも1つのシリンダと、
・ 前記シリンダ内の前記往復ピストンと前記シリンダカバーとの間に形成される燃焼室と、
・ 前記シリンダカバー又は前記シリンダライナに配される燃料弁に加圧されたアンモニアを供給するように構成されるアンモニア燃料システムと、
・ アンモニア吸収システムと、
・ アンモニア排出流路と、
を備え、
前記アンモニア排出流路は前記アンモニア燃料システムの出口を前記アンモニア吸収システムの入口に接続し、
前記アンモニア吸収システムは、使用中、前記アンモニア排出流路から供給されるアンモニアを水に吸収させてアンモニア水を作り、
前記アンモニア吸収システムは、使用中に少なくとも部分的に水で満たされる圧力容器を有し、前記圧力容器には、該圧力容器の温度を下げるための冷却システムが設けられる、
機関。
【請求項13】
前記圧力容器は、気相アンモニアを取り入れるための気相アンモニア入口を有する、請求項12に記載の機関。
【請求項14】
前記圧力容器は水の供給源に接続されており、また前記圧力容器はアンモニア水を排出するためのアンモニア水出口を有する、請求項12に記載の機関。
【発明の詳細な説明】
【技術分野】
【0001】
本明細書で開示される事項は、期間で燃焼させる燃料としてアンモニアで動作する少なくとも1つのモードにある大型2ストロークユニフロー掃気ターボ過給式内燃機関に関する。
【背景】
【0002】
大型2ストロークユニフロー掃気ターボ過給式内燃機関は、典型的には、大型船舶の推進システムや、発電プラントの原動機として用いられる。その大きさや重量、出力は、大型2ストロークターボ過給式圧縮着火内燃機関を他の燃焼機関からかけ離れたものとしており、このタイプの圧縮内燃機関を独特の分類に位置づけている。
【0003】
内燃機関はこれまで、ディーゼル油のような燃料油や、天然ガス又は石油ガスのような燃料ガスといった、炭化水素燃料によって主に運転されてきた。炭化水素燃料の燃焼は、二酸化炭素(CO2)等の温室効果ガスの発生を伴うが、これらは大気汚染や気候変動の原因になり得る。副生成物の排出を生じる石油燃料の不純物と違って、CO2の発生は、炭化水素の燃焼に不可避である。燃料のエネルギー密度やCO2フットプリントは、炭化水素鎖の長さと炭化水素分子の複雑さに依存する。このためガスの炭化水素燃料は、液体の炭化水素燃料よりもフットプリントが小さい。しかしガスの炭化水素燃料は、取り扱いや貯蔵の点でより難しくコストもかかる。CO2フットプリントを小さくするため、非炭化水素燃料が検討されてきている。
【0004】
アンモニアは、石油やバイオマス、再生可能エネルギー源(風力、太陽光、水力、地熱)によって得られる合成物である。再生可能エネルギー源を用いて生成したアンモニアは、燃焼させたときのカーボンフットプリントは事実上ゼロであり、又はCO2やSOx、粒子状物質、未燃焼炭化水素の排出が事実上ゼロである。
【0005】
アンモニアは、火花点火内燃機関において、小さなスケールでテストされ使用されてきた。しかし、圧縮着火内燃機関を運転するためには未だ使用されていない。
【0006】
アンモニアは有害であり刺激臭を有する。このため、アンモニアが機関から漏れ出ることは防がねばならない。アンモニアによる運転が停止され、例えば従来の燃料による運転に変更されると、燃料システム中のアンモニアはパージ(除去)されねばならないが、除去されたアンモニアを単純に周囲環境に放出することはできない。余分なアンモニアを処理しなければならない他のシナリオが、例えばリークや、機関の故障等によって生じうる。このようなシナリオのアンモニアについてのソリューションを機関に提供する必要がある。
【0007】
CN112696289は、船舶用液体アンモニア燃料供給システム及び燃料リサイクルシステムを開示している。このシステムはアンモニア燃料機関、液体アンモニア供給システム、液体アンモニアリサイクルシステム、液体アンモニア窒素パージ換気システムを備える。このシステムによれば、船舶用液体アンモニア燃料の高圧(70bar,45+/-10℃)の液体供給が実現される。パイプライン中の消費されなかった液体アンモニア燃料はリサイクルされ、大量の燃料を節約することができる一方、換気塔に排出されるアンモニア燃料の量は減り、船舶及び人員の安全性が向上する。
【発明の概要】
【0008】
目的は、上述の問題を解決するか又は少なくとも緩和する、大型2ストロークユニフロー掃気ターボ過給式内燃機関を提供することである。
【0009】
上述の目的やその他の目的が、独立請求項に記載の特徴により達成される。より具体的な実装形態は、従属請求項や発明の詳細な説明、図面から明らかになるだろう。
【0010】
第1の捉え方によれば、主燃料がアンモニアである運転モードを少なくとも1つ有する大型2ストロークユニフロー掃気ターボ過給式内燃機関が提供される。この機関は、
・ シリンダライナと、前記シリンダライナ内の往復ピストンと、自身をカバーするシリンダカバーとを有する少なくとも1つのシリンダと、
・ 前記シリンダ内の前記往復ピストンと前記シリンダカバーとの間に形成される燃焼室と、
・ 前記シリンダカバー又は前記シリンダライナに配される燃料弁に加圧されたアンモニアを供給するように構成されるアンモニア燃料システムと、
・ アンモニア吸収システムと、
・ 前記アンモニア燃料システムの出口を前記アンモニア吸収システムの入口に接続する前記アンモニア排出流路と、
を備え、前記アンモニア吸収システムは、使用中、前記アンモニア排出流路を通じて供給されるアンモニアを水に吸収してアンモニア水を形成するために前記水を有する。
【0011】
排出流路とアンモニア吸収システムとを利用することにより、機関からの余分なアンモニアに対処しなければならないような突然の事態にも対応可能となる。例えば、アンモニア燃料運転が停止したり、リークが発生したりしたような場合はアンモニアを排出しなければならないが、そのような事態にも対応可能となる。水を含む吸収システムにアンモニアを溶かすことにより、相当量のアンモニアを水中に一時保存し、またアンモニア水を生成することができる。アンモニア水は、機関で燃料として用いることもできるし、SCRリアクターで還元剤として利用することにより排気を浄化するために使用することもできる。
【0012】
本願の発明者は、水温が低いと、アンモニアの溶解度は一般に増大することを理解した。水を冷却する冷却回路装置を加えることにより、再生システム(タンク)で再生されるアンモニアの実質量が増大し、高い再生率が実現されうる。
【0013】
前記第1の捉え方の実装形態の一例において、前記アンモニア吸収システムは、使用中に少なくとも部分的に水で満たされる少なくとも1つの容器を備え、前記少なくとも1つの容器は水源を接続するための水入口を備えることが好ましく、また前記アンモニア水を排出するためのアンモニア水出口を備えることが好ましい。
【0014】
前記第1の捉え方の実装形態の一例において、前記機関は二元燃料機関であり、好ましくは、機関のシリンダに従来燃料を供給する燃料システムを備える。
【0015】
前記第1の捉え方の実装形態の一例において、前記アンモニア水出口は、前記機関内で前記アンモニア水を燃焼させるべく前記アンモニア燃料システムに接続される。
【0016】
前記第1の捉え方の実装形態の一例において、前記機関の排気流路内にSCRリアクターを備え、前記アンモニア水出口は前記SCRリアクターに関連付けられる還元剤入口に接続される
【0017】
前記第1の捉え方の実装形態の一例において、前記アンモニア吸収システムは、使用中に少なくとも部分的に水で満たされる圧力容器を備え、前記圧力容器には好ましくは該圧力容器の温度を下げるための冷却システムが備えられ、前記圧力容器は気相アンモニアを取り入れるための気相アンモニア入口を備えることが好ましく、前記圧力容器は好ましくは水源に接続されており、前記圧力容器はアンモニア水を排出するためのアンモニア水出口を備えることが好ましい。
【0018】
前記第1の捉え方の実装形態の一例において、前記アンモニア吸収システムはひとまとまりにされた吸収タワーを備え、前記吸収タワーは気相アンモニアを取り入れるための気相アンモニア入口を備えることが好ましく、前記吸収タワーは好ましくは水源に接続されており、前記吸収タワーはアンモニア水を排出するためのアンモニア水出口を備えることが好ましい、。
【0019】
前記第1の捉え方の実装形態の一例において、前記アンモニア吸収システムは、使用中はそれぞれ少なくとも部分的に水で満たされる複数の水タンクのカスケードを備え、第1の水タンクは、気相アンモニア入口及び気相アンモニア出口と、水入口と、アンモニア水出口とを好ましくは有し、後続の水タンクは、前記第1の水タンクの前記気相アンモニア出口に接続された気相アンモニア入口と、前記第1の水タンクの前記水入口に接続されたアンモニア水出口と、気相アンモニア出口とを好ましくは有し、前記カスケードは気相アンモニアの流れに対して反対方向である水の流れのために好ましくは構成されており、使用中において前記気相アンモニアの流れの最も上流の水タンクはタンク内の水のアンモニア濃度が最も高く、アンモニア水出口が設けられており、使用中に前記気相アンモニアの流れの最も下流の水タンクはタンク内の水のアンモニア濃度が最も低く、該タンクから気相物質を排出するためのベントが好ましくは設けられる。
【0020】
前記第1の捉え方の実装形態の一例において、前記アンモニア燃料システムは該アンモニア燃料システムから前記アンモニア吸収システムへとアンモニアを排出するように構成されるパージシステムを備え、前記パージシステムは好ましくは加圧窒素源を備え、前記加圧窒素源は好ましくはパージバルブを介して前記アンモニア燃料システムに接続され、前記パージシステムは、前記アンモニア燃料システムから前記アンモニア吸収システムにアンモニアをパージするために前記アンモニア排出流路を使用することが好ましい。
【0021】
前記第1の捉え方の実装形態の一例において、前記アンモニア燃料システムは中圧アンモニア供給ライン及びアンモニア戻しラインと、前記中圧アンモニア供給ラインを前記アンモニア吸収システムに接続する第1パージラインと、前記アンモニア戻しラインを前記アンモニア吸収システムに接続する第2パージラインとを備えると共に、好ましくは、前記中圧アンモニア供給ラインと前記アンモニア戻しラインとを選択的に前記アンモニア吸収システムに接続するためのバルブを備える。
【0022】
前記第1の捉え方の実装形態の一例において、前記第1パージライン及び/又は前記第2パージラインにノックアウトドラムを備え、前記ノックアウトドラムは液相アンモニアから気相アンモニアを分離するように構成され、前記ノックアウトドラムは気相アンモニア出口及び液相アンモニア出口を備え、前記ノックアウトドラムの前記気相アンモニア出口は前記アンモニア吸収システムに接続され、前記液相アンモニア出口は前記アンモニア燃料システムに接続されるリカバリータンクに接続されることが好ましい。
【0023】
前記第1の捉え方の実装形態の一例において、前記アンモニア燃料システムは供給ライン及び戻しラインを備え、前記供給ライン及び前記戻しラインを形成する配管は二重壁パイプを有し、前記二重壁パイプの内管と外管との間の空間は前記アンモニア排出流路によって前記アンモニア吸収システムに流体的に接続している。
【0024】
前記第1の捉え方の実装形態の一例において、前記アンモニア燃料システムは液相アンモニア燃料タンクと、低圧ポンプの動作により前記液相アンモニア燃料タンクを中圧燃料ポンプの入口に接続する低圧アンモニア供給ラインとを備え、前記アンモニア燃料システムは、好ましくは、前記中圧燃料ポンプの出口を前記燃料弁の入口に接続する中圧燃料ラインを備え、前記アンモニア燃料システムは、好ましくは、前記燃料弁の出口を前記中圧燃料ポンプの入口に接続する戻しラインを備える。
【0025】
前記第1の捉え方の実装形態の一例において、前記少なくとも1つのシリンダには、その下部領域に掃気ポートが設けられる。
【0026】
前記第1の捉え方の実装形態の一例において、前記シリンダの中央部には排気弁が設けられ、前記排気弁の周囲には2つ以上の燃料弁が配される。
【0027】
第2の捉え方によれば、主燃料がアンモニアである運転モードを少なくとも1つ有する大型2ストロークユニフロー掃気ターボ過給式内燃機関においてアンモニアを管理する方法が提供される。ここで前記機関は、
シリンダライナと、前記シリンダライナ内の往復ピストンと、自身をカバーするシリンダカバーとを有する少なくとも1つのシリンダと、
・ 前記シリンダ内の前記往復ピストンと前記シリンダカバーとの間に形成される燃焼室と、
・ 前記シリンダカバー又は前記シリンダライナに配される燃料弁に加圧されたアンモニアを供給するように構成されるアンモニア燃料システムと、
を備える。そして前記方法は、余分な気相アンモニアを前記アンモニア燃料システムから前記アンモニア吸収システムへと運ぶと共に前記余分な気相アンモニアを水中に吸収し、アンモニア水を形成することを含む。
【0028】
前記第2の捉え方の実装形態の一例において、前記方法は、前記余分な気相アンモニアから得られた液相アンモニアと気相アンモニアとを、好ましくはノックアウトドラムを用いて分離することと、前記気相アンモニアを前記アンモニア吸収システムへ移送することと、移送したアンモニアを水中に吸収してアンモニア水を形成することとを含む。
【0029】
前記第2の捉え方の実装形態の一例において、前記方法は、前記アンモニア水を前記機関の燃料又は前記機関のSCRリアクターの還元剤として用いることを含む。
【0030】
これらの捉え方及び他の捉え方は、以下に説明される実施例により更に明らかになるであろう。
【図面の簡単な説明】
【0031】
以下、図面に示される例示的な実施形態を参照しつつ、様々な捉え方や実施形態、実装例を詳細説明する。
【
図1】ある例示的実施形態に従う大型2ストロークディーゼル機関を正面方向から見た概観を示す図である。
【
図2】
図1の大型2ストローク機関を背面方向から見た概観を示す図である。
【
図3】
図1の大型2ストローク機関の略図表現である。
【
図4】第1の実施例に従う機関の略図表現である。この機関はアンモニア燃料システム、アンモニアパージシステム、アンモニア吸収システムを有する。
【
図5】第2の実施例に従う機関の略図表現である。この機関も、アンモニア燃料システム、アンモニアパージシステム、アンモニア吸収システムを有する。
【詳細説明】
【0032】
以下の詳細説明では、実施例のクロスヘッド式大型低速2ストロークユニフロー掃気ターボ過給式内燃機関を参照して、内燃機関が説明される。なお場合によっては、内燃機関は別のタイプの機関で有り得ることに注意されたい。大型2ストローク低速ユニフロー掃気ターボ過給式内燃機関は、ピストンの上死点付近又は上死点で燃料が噴射される、圧縮着火型の(すなわち高圧型の)機関であることができる。又は、掃気が圧縮される前又は圧縮される途中で燃料と混合される、火花点火型の(すなわち低圧型の)機関であることができる。後者の場合は通常、確実に点火を行うために、添加液(例えば燃料油)によるパイロット点火が行われる。
【0033】
図1-
図3は、ターボ過給式大型低速2ストロークディーゼル機関を描いている。このエンジンは、クランクシャフト8及びクロスヘッド9を有する。
図3は、ターボ過給式大型低速2ストロークディーゼル機関を、その吸気システム及び排気システムと共に略図により表現したものである。この実施例において、機関は直列に6本のシリンダを有する。ターボ過給式大型低速2ストロークディーゼル機関は通常、直列に配される4から14のシリンダを有する。これらのシリンダはシリンダフレーム23に担持される。シリンダフレーム23は機関フレーム11に担持される。またこのような機関は、例えば、船舶の主機関や、発電所において発電機を動かすための据え付け型の機関として用いられることができる。機関の全出力は、例えば、1000kWから110000kWでありうる。
【0034】
この実施例における機関は、2ストロークユニフロー式圧縮着火型二元機関であり、各シリンダライナ1には、その下部領域に掃気ポート18が設けられ、その頂部中央には排気弁が配される。この機関は少なくとも1つのアンモニアモード及び少なくとも1つの従来燃料モードを有する。アンモニアモードにおいて、機関はアンモニア燃料又はアンモニアベースの燃料で運転される。従来燃料モードにおいては従来の燃料、例えば燃料油(船舶用ディーゼル燃料)や重油で運転される。
【0035】
掃気は、掃気受け2を通じて、各シリンダ1の掃気ポート18へと導かれる。ピストン10は、シリンダライナ1中で下死点(BDC)と上死点(TDC)の間を往復し、掃気を圧縮する。燃料(アンモニアモードにおいてはアンモニア)は、TDC又はTDCの近傍において、シリンダカバー22に配される複数の(高圧)燃料弁50を通じて、シリンダライナ1内の燃焼室内に噴射される。燃料の噴射に続いて燃焼が生じ、排気が生成される。各シリンダカバー22には2つ以上の燃料弁50が設けられる。燃料弁50は、特定の1つのタイプの燃料(例えばアンモニア)のみを噴射するように構成されてもよい。その場合、燃焼室内に従来燃料を噴射するための2つ以上の燃料弁54も設けられるだろう。従ってそのような場合、機関は4つ以上の燃料弁を有するだろう。燃料弁50がアンモニアと従来燃料の両方を噴射しうるように構成されている場合、各シリンダに設けられる燃料弁50の数は2つ以上でありうる。燃料弁50は、シリンダカバー22において、シリンダカバー22の中央部に配される排気弁4の周囲に配される。図示されていないが、実施例によっては、アンモニア燃料を確実に点火するために点火液を噴射するように構成される、追加の(通常は小さな)燃料弁がシリンダカバーに配されてもよい。点火液は、例えばジメチルエーテル(DME)又は燃料油であってもよい。しかし、例えば水素のような、他の形の点火促進剤であってもよい。機関は二元エンジンであってもよいので、機関は、燃料弁50に従来燃料を供給するための従来燃料供給システムを備えていてもよい(図示されていない)。実施例によっては、シリンダライナに沿って燃料弁50'が配される(破線で示されている)。燃料弁50'は、ピストン10がBDCからTDCに向かう途中であって燃料弁50'を通過する前に、シリンダライナ内に燃料を導入する。その場合、ピストン10は掃気と燃料の混合気を圧縮する。TDC又はその近辺でタイミングをはかって点火が行われる。点火は、火花、レーザー、点火液の噴射等によって行われる。燃料弁50'を有する実施例では、燃料が導入される時点での圧力は、シリンダカバー22に燃料弁50を有する実施例において燃料が噴射される時点での圧力よりもかなり低い。このため、燃料供給システム30が燃料を送達するために必要な圧力はかなり低くあることができ、及び/又は、シリンダカバー22に配される燃料弁50でしばしば使用される圧力ブースターは不要となりうる。
【0036】
排気弁4が開くと、排気は、シリンダ1に設けられる排気ダクトを通って排気受け3へと流れ、さらに選択触媒還元リアクター(SCRリアクター)28を通って第1の排気管19を通り、ターボ過給器5のタービン6へと進む。そこから排気は、第2の排気管25を通ってエコノマイザ20へ流れ、さらに出口21から大気中へと放出される。SCRリアクターは排気中の排出物、特にNOxの排出量を低減する。
【0037】
タービン6は、シャフトを介してコンプレッサ7を駆動する。コンプレッサ9には、空気取り入れ口12を通じて外気が供給される。コンプレッサ7は、圧縮された掃気を、掃気受け2に繋がっている掃気管13へと送り込む。掃気管13の掃気は、掃気を冷却するためのインタークーラー14を通過する。
【0038】
冷却された掃気は、電気モーター17により駆動される補助ブロワ16を通る。補助ブロワ16は、ターボ過給器5のコンプレッサ7が掃気受け2のために十分な圧力を提供できない場合、すなわち機関が低負荷又は部分負荷である場合に、掃気流を圧縮する。機関の負荷が高い場合は、ターボ過給器のコンプレッサ7が、十分に圧縮された掃気を供給することができるので、補助ブロワ16は逆止め弁15によってバイパスされ、電気モーター17は停止される。
【0039】
アンモニアモードにおいて、機関はアンモニアを主燃料として運転される。アンモニアは、ほぼ一定の圧力及び温度でアンモニア弁50に供給される。アンモニアはアンモニア弁50に、液相又は気相で供給されうる。液相アンモニアは、アンモニア水(aqueous ammonia)、すなわちアンモニア水溶液であってもよい。
【0040】
従来燃料システムについてはよく知られているので、図示されておらず、また詳細な説明もなされない。アンモニア燃料システム30は、液相のアンモニアを中間的な供給圧力で(例えば30~80bar)で、アンモニア弁50に供給する。代替例では、アンモニア燃料は、気相で、比較的低い供給圧力(例えば8~30bar)で、アンモニア弁50に供給される。圧縮着火型機関の場合、燃料弁50は、アンモニア燃料の圧力を著しく上昇させる圧力ブースターを備える。圧力ブースターは、アンモニア燃料の圧力を中間的な圧力から高圧へと上昇させ、それによって、機関の圧縮圧力よりも高い圧力でアンモニア燃料が噴射されることを可能にする。通常、圧縮着火型機関の噴射圧力は300barより高い。
【0041】
図4を参照すると、アンモニア燃料システム30が、アンモニアパージシステム及びアンモニア九州システム60と共に詳細に示されている。アンモニアは、圧力式貯蔵タンク31に液相で約17barで貯蔵される。アンモニアは、外気温20℃において8.6bar以上であればアンモニア貯蔵タンク31に液相で貯蔵することができる。しかし、外気温が上昇しても液相を保たせるためには、17bar以上でアンモニアを貯蔵することが好ましい。
【0042】
低圧アンモニア供給ライン32が、アンモニア貯蔵タンク31の出口と中圧供給ポンプ35の入口を繋いでいる。低圧供給ポンプ33は、タンク31からの液相アンモニアがフィルタ装置34を通って中圧供給ポンプ35の入口に達するように圧力をかける。中圧供給ポンプ35は、中圧アンモニア供給ライン36から燃料弁50へと液相アンモニアを圧送する。燃料弁50へと供給される液相アンモニアの一部は機関の燃焼室に噴射されるが、別の部分はアンモニア戻しラインライン38に戻される。アンモニア戻しライン38は、燃料弁50の戻しポートを低圧供給ライン32に繋いでいる。従って、液相アンモニア燃料の一部は中圧供給ポンプ35の入口へとリサイクルされる。
【0043】
例えばアンモニア燃料システム30の故障や、従来燃料に切り替える別の理由などにより、アンモニア燃料での運転が停止されると、アンモニア燃料システム30は、システムからアンモニアを除去するためにパージされる。ここで、加圧された窒素のソース40(例えば加圧された窒素容器40)が、パージバルブ41を介して中圧アンモニア供給ライン36に、好ましくは中圧供給ポンプ35のすぐ下流において接続される。
【0044】
第2パージバルブ43を含む第1パージライン42が、中圧アンモニア供給ライン36をノックアウトドラム46に接続する。第3パージバルブ45を含む第2パージライン44が、アンモニア戻しライン38をノックアウトドラム46に接続する。パージ動作において、第1パージバルブ41,第2パージバルブ43、第3パージバルブ45が開かれ、加圧された窒素が、アンモニア供給ライン36及びアンモニア戻しライン38から残留アンモニア燃料をノックアウトドラム46へと押し出す。ノックアウトドラム46は、気相アンモニアから液相アンモニアを分離するように構成される。窒素通気弁49を含む窒素通気ライン48が、ノックアウトドラム46の内部と外部とを繋ぎ、ノックアウトドラム46から窒素を放出する。ノックアウトドラム46の下部領域には液相アンモニア出口が設けられ、リカバリータンク57に繋がっている。実施例によっては、リカバリータンク57内の液相アンモニアはアンモニア貯蔵タンク31へと運ばれ、アンモニア燃料として使用される。ノックアウトドラム46の気相アンモニア出口は、第3のパージライン47を通じてアンモニア吸収システム60に接続される。
【0045】
アンモニア吸収システム60は少なくとも1つの容器を備える。この容器は使われている時に少なくとも部分的に水で満たされる。これは、アンモニアを水で吸収してアンモニア水を形成するためである。
【0046】
アンモニア水(Ammmonia water,Aqueous ammonia)はアンモニア水溶液である。
【0047】
本実施例は、使われている時に少なくとも部分的に水で満たされる圧力容器58を備える。圧力容器58は好ましくは冷やされる。冷却手段は図示されていない。これは、アンモニアが水に溶ける際に熱が生じるためであり、水温が上がると水のアンモニア吸収能が減少するからである。そこで、冷却手段が圧力容器58内の水の温度を低く保つように構成され、圧力容器58内の水のアンモニア吸収能力を最適化するようにする。
【0048】
圧力容器58は、圧力容器アンモニア供給管59を通じて気相アンモニアを受け取るための気相アンモニア入口を有する。圧力容器アンモニア供給管59は、圧力容器58から第3のパージライン47へ液体が戻ることを防ぐために逆止弁73を有する。圧力容器58は、水(真水)のための入口を有する。この入口は、管を通じて加圧された水(真水)のソース71に接続されている。本明細書において、「真水」とは、溶けているアンモニアの量が実質的になく、アンモニアを吸収する能力がほぼ完全である水を意味する。圧力容器58内の水の高さは上限と下限の間で調節される。圧力容器58に供給される気相アンモニアは水に吸収され、アンモニア水を形成する。圧力容器内の圧力は調節され、水がより多くの量の気相アンモニアを吸収できるように、適切な高圧に保たれる。圧力容器58にはアンモニア水出口が設けられる。圧力容器58内に入り込むことが許される真水の量と、圧力容器58から排出されるアンモニア水の量は、アンモニアを吸収する十分な能力を確保できるように調節される。アンモニア水出口はアンモニア水排出管75を通じて第3の戻しライン55に接続している。アンモニア水排出管75は、圧力容器58から第3の戻しライン55への流れを制御するために弁76を有する。アンモニア水は、第3の戻しライン55から、SCRリアクター28内で還元剤として用いられるべくSCRリアクター28に送られるか、機関で燃料として使用されるべく低圧アンモニア供給ライン32に送られる。これについては後により詳細に説明する。第3のパージライン47は圧力制御弁74を有する。圧力制御弁74は、第3のパージライン47内の圧力が所定値を超えた場合に開く。この所定の圧力は、圧力容器58が動作することができる最大圧力に一致する。この所定の圧力を超えると、気相アンモニアは、順に並んだ3つの吸収タンク(第1吸収タンク61,中間吸収タンク63,最終吸収タンク65)のカスケードに送られる。別の実施例では、第3のパージライン47から圧力容器58又は水タンク61,63,65のカスケードへの気相アンモニアの制御されたフローは、図示される圧力制御システムの代わりに、図示されない電子制御弁によって制御される。
【0049】
最終吸収タンク65には第4のベント66が設けられる。第4のベント66は、最終吸収タンク65を外界に接続している。実施例によっては3つより多い吸収タンクが存在する。これは、最終吸収タンク中の水の上のアンモニア濃度をより低くするためであり、そうして、第4のベント66から排出される気体中のアンモニア濃度をより低くするためである。
【0050】
複数の吸収タンクのカスケードによる吸収効率は、最終吸収タンク65内の水を定期的に交換することにより維持される。この水は、加圧された水(真水)のソース71から供給される。多少アンモニアを含んだ水は、上流のタンクで再使用される。このため、ある程度アンモニアを吸収した最終タンク65の水は、水源71からの水によって置き換えられるが、置き換えられた最終タンク65の水は、第1の水戻し弁65により制御される第1の水戻しライン67を通じて中間吸収タンク63に送られる。同様に、中間吸収タンク63からの水は、第2の水戻し弁70により制御される第2の水戻しライン69を通じて第1吸収タンク61に送られる。システムは、吸収タンク61,63,65から蒸発する水や、第1吸収タンク61から除去されるアンモニア水を補償するように構成される。すなわち、吸収タンク61,63,65内の水の高さは、
図4の破線で示される最低高と最大高の間に維持される。
【0051】
第1吸収タンク61内の水の上にあるアンモニアの蒸気は、第1アンモニア排出ライン62を通じて中間吸収タンク63へと流れる。中間吸収タンク63内の水の上にあるアンモニアの蒸気は、第2アンモニア排出ライン64を通じて最終吸収タンク65へと流れる。このプロセスは、好ましくはパージプロセスの圧力によって遂行される。
【0052】
第4のベント66中のアンモニア濃度は、周囲に放出することが許される程度に十分に低い。しかし、規制に適合させるために必要な場合は、追加の吸収コラムを使用することによって換気塔からのアンモニア放出量を更に減らすことができる。そのような吸収コラムで使用される吸収媒体は酸である。酸は、水溶液中のアンモニアにプロトンを付加し、水酸化アンモニウムを形成する。従って、環境に放出されるアンモニアの量が減少する。
【0053】
動作中、第1吸収タンク61内の水のアンモニア濃度は中間吸収タンク63内の水のアンモニア濃度より高く、中間吸収タンク63内の水のアンモニア濃度は最終吸収タンク65内の水のアンモニア濃度より高い。
【0054】
第1吸収タンク61のアンモニア水は、戻しポンプ52を有する第1アンモニア水戻しライン51を通じて第1吸収タンク61から除去される。第1戻し弁54を有する第2アンモニア水戻しライン52が、第1アンモニア水戻しライン51を低圧アンモニア供給ライン32に接続する。このため第1戻し弁54が開くと、第1吸収タンク61からの比較的高濃度のアンモニア水は、アンモニア貯蔵タンク31からの燃料と混じり合う。従って、アンモニア吸収システム60により吸収されたアンモニアは、燃料として機関で再利用される。第2戻し弁56を有する第3アンモニア水戻しライン55が、第1アンモニア水戻しライン51を、SCRリアクター28に関連付けられる還元剤入口に接続する。この還元剤入口はSCRリアクター28の一部であってもよく、またはSCRリアクター28の上流の排気経路に設けられてもよい。第2戻し弁56が開くと、アンモニア吸収システム60により吸収されたアンモニアは、還元剤としてSCRリアクター28で再利用される。
【0055】
水タンク61,63,65のカスケードは完全に受動的な要素である。すなわち、ポンプなどはなく、また、アンモニアの吸収をストップさせることが必要な場合に利用可能な如何なる補助システムも存在しない。このため、システムは本質的に信頼性が高く、必要な場合に利用可能である。
【0056】
実施例によっては、低圧アンモニア供給ライン32、中圧アンモニア供給ライン36、アンモニア戻しライン38は、完全に又は部分的に、内側パイプと外側パイプの間に空間を有する二重壁パイプとして構成される。このような実施例においては、内側パイプと外側パイプの間の空間はパージシステムに接続され、当該空間に意図せずリークしたアンモニア燃料がアンモニア吸収システム60に接続されて吸収されるように構成されている。従って、これらの燃料ラインからリークが生じたとしても、周囲環境へアンモニアが意図せずに放出されることは、アンモニア吸収システム60による吸収を通じて防がれる。内側チューブと外側チューブの間の空間におけるアンモニアの存在を検出する検出システムが設けられることが好ましい。そして、当該空間内でアンモニアが検出されたときは、機関のアンモニアによる運転を停止するようにすることを可能にし、続いてアンモニア燃料システムをパージし、残留アンモニアをアンモニア吸収システム60により吸収してもよい。
【0057】
燃料システム30やパージシステム、アンモニア吸収システム60のポンプやバルブには、電子制御ユニット100が、有線又は無線で接続されている。電子制御ユニット100は、例えばポンプのスピードを調節したりバルブの開閉を制御したりすることにより、これらの要素を制御するように構成される。そうして、燃料システムやパージシステム、アンモニア吸収システムが、上述のように動作することを可能とする。
【0058】
図5は機関の第2実施例を示す。この機関も燃料システムやパージシステム、アンモニア吸収システムを備える。この実施例において、既に説明した又は図示した構成や特徴と同様の構成及び特徴については、前と同じ符号を付している。
図5の実施例は、水タンクのカスケードが、ひとまとめにされた吸収タワー78で置き換えられている点を除き、
図4の実施例と本質的に同一である。吸収タワー78はアンモニアの吸収と、それに続くアンモニア水の排出に使用される。吸収タワー78内における気体と液体(水)の接触は連続的である。タワー78内で、水は、ひとまとまりにされた表面を下向きに流れていき、気相アンモニアはその流れとは逆に、上方向にタワー87内を移動する。吸収タワー78は、充填された部分を有する容器である。吸収タワー78は、1つ又は複数の充填構造部を有し、これらは積層されている。吸収タワー78は、圧力制御弁74を介して第3のパージライン47に接続される入口であってアンモニアガスを受け取るための入口を有する。また吸収タワー78は、第1アンモニア水戻しライン51に接続される出口であってアンモニア水のための出口を有する。この入口は、上記の充填構造部の上に配される。そして、加圧された水(真水)のソース71が吸収タワー78の当該入口に接続される。ベント76は、上記の充填構造部の上の空間を換気するために設けられる。加圧された水(真水)のソース71からの水の流量は、吸収タワー78への気相アンモニアの流量に適合するようにされる。吸収タワー78の底部で収集されるアンモニア水の量は調節され、必要に応じて(図示されない)中間アンモニア水貯蔵タンクへと移送される。
【0059】
多くの側面及び実装形態が、いくつかの実施例と共に説明されてきた。しかし、本願の明細書や図面、特許請求の範囲を検討すれば、当業者は、特許請求の範囲に記載される発明を実施するにおいて、説明された実施例に加えて多くのバリエーションが存在することを理解し、また具現化することができるであろう。特許請求の範囲に記載される「備える」「有する」「含む」との語句は、記載されていない要素やステップが存在することを排除しない。特許請求の範囲において記載される要素の数が複数であると明示されていなくとも、当該要素が複数存在することを除外しない。
【0060】
特許請求の範囲で使用されている符号は発明の範囲を限定するものと解釈されてはならない。特に言及されない限り、図面は明細書と共に読まれることが意図されており、本願による開示の全体の一部である。