IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 東洋紡株式会社の特許一覧

<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024180442
(43)【公開日】2024-12-26
(54)【発明の名称】ラミネート積層体
(51)【国際特許分類】
   B32B 27/36 20060101AFI20241219BHJP
   B32B 9/00 20060101ALI20241219BHJP
   B65D 65/40 20060101ALI20241219BHJP
【FI】
B32B27/36
B32B9/00 A
B65D65/40 D
【審査請求】有
【請求項の数】7
【出願形態】OL
(21)【出願番号】P 2024176573
(22)【出願日】2024-10-08
(62)【分割の表示】P 2021562590の分割
【原出願日】2020-11-25
(31)【優先権主張番号】P 2019220373
(32)【優先日】2019-12-05
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000003160
【氏名又は名称】東洋紡株式会社
(72)【発明者】
【氏名】山崎 敦史
(72)【発明者】
【氏名】沼田 幸裕
(72)【発明者】
【氏名】稲垣 京子
(72)【発明者】
【氏名】山口 雄也
(72)【発明者】
【氏名】石丸 慎太郎
(57)【要約】
【課題】環境に配慮したリサイクル材料を含有しつつ、ポリエステルを主体とした環境負荷が少ないほぼ単一の樹脂種から構成されたラミネート構成を有すると共に、包装材料に求められるガスバリア性やヒートシール性、強靭性、透明性等の必要性能を有するラミネート積層体を提供すること。
【解決手段】 ペットボトルからリサイクルされたポリエステル樹脂を50重量%以上含有するポリエステル基材フィルム、ヒートシール性樹脂層がこの順にラミネートされてなるラミネート積層体であって、前記基材フィルムは片面に無機薄膜層(A)およびウレタン樹脂を含有する保護層(a)を有する積層フィルムであって、前記ヒートシール性樹脂層はエチレンテレフタレートを主たる構成成分とするポリエステル系樹脂からなり、突き刺し強度が10N以上かつヘイズが20%以下であることを特徴とするラミネート積層体。
【選択図】なし
【特許請求の範囲】
【請求項1】
ペットボトルからリサイクルされたポリエステル樹脂を含有するポリエステル基材フィルム、ヒートシール性樹脂層がこの順にラミネートされてなるラミネート積層体であって、前記基材フィルムは片面に無機薄膜層(A)およびウレタン樹脂を含有する保護層(a)を有する積層フィルムであって、前記ヒートシール性樹脂層はエチレンテレフタレートを主たる構成成分とするポリエステル系樹脂からなり、前記ラミネート積層体の突き刺し強度が10N以上かつヘイズが20%以下であり、前記ヒートシール性樹脂層上に無機薄膜層(B)が積層され、総厚みに対するポリエステル系素材の厚みが90%以上であることを特徴とするラミネート積層体。
【請求項2】
前記基材フィルムとヒートシール性樹脂層の間に、接着剤を介して中間層フィルムを有し、前記中間層フィルムがポリブチレンテレフタレート樹脂を70質量%以上含む樹脂組成物からなることを特徴とする請求項1に記載のラミネート積層体。
【請求項3】
前記中間層フィルム上に無機薄膜層(C)が積層されていることを特徴とする請求項2に記載のラミネート積層体。
【請求項4】
前記中間層フィルムの無機薄膜層(C)上にウレタン樹脂を含有する保護層(b)が積層されていることを特徴とする請求項2または3に記載のラミネート積層体。
【請求項5】
前記基材フィルムと前記無機薄膜層(A)の間に、被覆層(X)を有することを特徴とする、請求項1~4のいずれかに記載のラミネート積層体。
【請求項6】
前記中間層フィルムと前記無機薄膜層(C)の間に、被覆層(Y)を有することを特徴とする、請求項2~4のいずれかに記載のラミネート積層体。
【請求項7】
前記無機薄膜層(A)~(C)がいずれも酸化アルミニウムまたは酸化ケイ素と酸化アルミニウムの複合酸化物からなる層であることを特徴とする請求項1~6のいずれかに記載のラミネート積層体。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、食品、医薬品、工業製品等の包装分野に用いられる積層体に関する。更に詳しくは、ガスバリア性、加工性、強靭性に優れ、さらに内容物の可視化が可能で、電子レンジ用途にも対応できる利便性を備えた、環境対応型のラミネート積層体に関する。
【背景技術】
【0002】
近年、欧州はじめ世界各国において、使い捨てプラスチック使用削減に向けた規制が強化されている。その背景には、資源循環への国際的な意識の高まりや新興国におけるごみ問題の深刻化がある。そのため、食品、医薬品等に求められるプラスチック製包装材料についても、3R(recycle, reuse, reduce)の観点から環境対応型の製品が求められている。
【0003】
前述の環境に優しい包装材料に求められる性能として、(1)リサイクル材料から成ること、(2)各種ガスを遮断し賞味期限を延長できるガスバリア性能を有すること、(3)環境負荷が少ないラミネート構成にすること(例えば有機溶剤を使用しないことや材料の使用量自体が少ないこと、モノマテリアル化可能であること)等が挙げられる。
【0004】
前記(1)について、代表的なリサイクル材料として、ペットボトルからリサイクルされたポリエステル樹脂が知られており、オリゴマー含有量の少ないペットボトル由来のポリエステル樹脂から、生産性、品位を損なうことなく静電気によるトラブルが少ない胴巻ラベル用ポリエステルフィルムにするという技術が知られている(例えば特許文献1参照)。今後の環境規制の高まりにより、こういったフィルム用途としての需要拡大が見込まれている。
【0005】
前記(2)について、水蒸気や酸素等の各種ガスの遮断を必要とする食品用途においては、プラスチックからなる基材フィルムの表面に、アルミニウム等からなる金属薄膜、酸化ケイ素や酸化アルミニウム等の無機酸化物からなる無機薄膜を形成したガスバリア性積層体が、一般的に用いられている。中でも、酸化ケイ素や酸化アルミニウム、これらの混合物等の無機酸化物の薄膜(無機薄膜層)を形成したものは、透明であり内容物の確認が可能であること、電子レンジでの使用が可能であることから、脱アルミ箔という環境的側面からも、その需要を伸ばしている。
【0006】
前述のリサイクル材料と無機薄膜から成るガスバリアフィルムについて、ペットボトルからリサイクルされたポリエステル樹脂を用い、低熱収縮性、厚みムラが小さいことにより無機薄膜層およびシーラント層を備えたガスバリア性積層フィルムとした際、良好なガスバリア性を発現する積層フィルムが提案されている(例えば特許文献2参照)。しかし、かかる従来技術では、アルミ箔を代替するにはバリア性能が不十分であった。
【0007】
前記(3)について、アルミ箔を使用しないパウチは、袋のバリア性、耐熱性、強靭性(耐破袋性や耐ピンホール性)、高いシール性が同時に求められることから、袋の外側に蒸着ポリエステルフィルム、中間層にポリアミドフィルム、内側(内容物側)にオレフィン系ヒートシール性樹脂を接着剤を介してドライラミネートした少なくとも3層以上の構成が一般的である。
【0008】
前述のレトルトパウチ構成において、環境的側面からモノマテリアル化を達成するためには、袋としてのバリア性能のさらなる向上(アルミ箔並)、ポリアミドフィルムおよびオレフィン系シーラントを使用しない、またはポリエステル系材料に変更することが必要であるが、従来技術では変更は容易ではなかった。また、オレフィン系シーラントを用いた構成にした場合、透明性が不十分である場合があり、視認安全性の観点や、印刷後の外観の観点で好ましくない問題があった。
【0009】
ポリアミドフィルムの代替として、二軸延伸したポリブチレンテレフタレート(以下PBTと略記する場合がある)フィルムをもちいることが検討されている(例えば特許文献3参照)。では、少なくともポリブチレンテレフタレート樹脂、またはポリブチレンテレフタレート樹脂に対してポリエチレンテレフタレート(以下PETと略記する場合がある)樹脂を30重量%以下の範囲で配合したポリエステル系樹脂組成物のいずれかからなる樹脂組成物を縦横それぞれ2.7~4.0倍同時二軸延伸することにより得られた二軸延伸PBT系フィルムを基材フィルム層に使用することが知られていた。かかる技術によれば、耐屈曲ピンホール性、および耐衝撃性を持ち、かつ優れた保香性を併せ持つ液体充填用包材が得られるというものである。しかし、本文献ではバリア性能の具体的な数値や効果についての検討が不十分であった。
【0010】
また、オレフィン系シーラントの代替として、低吸着性・耐熱性を向上させたポリエステル系シーラントが開示されている(例えば特許文献4参照)。特許文献4のシーラントは、ヒートシール性を有する層とそれ以外の層を分け、これらの層の原料組成をそれぞれ別々に制御することにより、ヒートシール性と耐熱性を満足させている。しかし、特許文献4に記載のシーラントには、酸素や水蒸気といった気体を遮断する性能(ガスバリア性)がないため、パウチとしてのバリア性能向上には寄与していなかった。
【先行技術文献】
【特許文献】
【0011】
【特許文献1】特開2012-91862号公報
【特許文献2】特許第6500629号公報
【特許文献3】特開2017-094746号公報
【特許文献4】特開2017-165059号公報
【発明の概要】
【発明が解決しようとする課題】
【0012】
上記特許文献1~4では、個々の素材としての性能等については述べられているが、前記の環境に優しい包装材料に求められる性能としての(1)リサイクル材料を構成材料として含むこと、(2)各種ガスを遮断し賞味期限を延長できるガスバリア性能を有すること、(3)リサイクルしやすく環境負荷が少ないラミネート構成にすること(モノマテリアル化) の3点と、さらにパウチとしての基本性能(ヒートシール性と強靭性、透明性の両立については検討されていなかった。前記構成と性能をいずれも満足するポリエステル系包装材料は、従来はなかった。
【0013】
本発明は、かかる従来技術の問題点を背景になされたものである。
すなわち、本発明の課題は環境に配慮したリサイクル材料を含有しつつ、ポリエステルを主体とした環境負荷が少ないほぼ単一の樹脂種から構成されたラミネート構成を有すると共に、包装材料に求められるガスバリア性やシール性、強靭性、透明性等の必要性能を有するラミネート積層体を提供することである。
【課題を解決するための手段】
【0014】
本発明者らは、要求されるバリア性能に合わせ無機薄膜層、被覆層、バリア保護層を各フィルム(樹脂層)上に積層し貼り合わせることでガスバリア性能を大きく向上させ、さらに環境負荷の少ないペットボトル由来のポリエステル樹脂を用いた基材フィルムと、ポリエステル成分からなるシーラントをラミネートすることで、強靭性とシール性、透明性を保持したままモノマテリアル化を実現した。
【0015】
すなわち本発明は、以下の構成からなる。
1.ペットボトルからリサイクルされたポリエステル樹脂を50重量%以上含有するポリエステル基材フィルム、ヒートシール性樹脂がこの順にラミネートされてなるラミネート積層体であって、前記基材フィルムは片面に無機薄膜層(A)およびウレタン樹脂から成る保護層(a)を有する積層フィルムであって、前記ヒートシール性樹脂はエチレンテレフタレートを主たる構成成分とするポリエステル系成分からなり、突き刺し強度が10N以上かつヘイズが20%以下であることを特徴とするラミネート積層体。
2.前記基材フィルムとヒートシール性樹脂の間に、接着剤を介して中間層フィルムを有し、前記中間層フィルムがPBT樹脂を70質量%以上含む樹脂組成物からなることを特徴とする1.に記載のラミネート積層体。
3.前記ヒートシール性樹脂の少なくとも片面に無機薄膜層(B)が積層されていることを特徴とする1.または2.に記載のラミネート積層体。
4.前記中間層フィルムの少なくとも片面に無機薄膜層(C)が積層されていることを特徴とする1.~3.のいずれかに記載のラミネート積層体。
5.前記中間層フィルムの無機薄膜層(C)上にウレタン樹脂を有する保護層(b)が積層されていることを特徴とする1.~4.のいずれかに記載のラミネート積層体。
6.前記基材フィルムと前記無機薄膜層(C)の間に、被覆層(Y)を有することを特徴とする、1.~5.のいずれかに記載のラミネート積層体。
7.前記中間層フィルムと前記無機薄膜層(C)の間に、被覆層(Y)を有することを特徴とする、4.~6.のいずれかに記載のラミネート積層体。
8.前記無機薄膜層(A)~(C)が酸化アルミニウムまたは酸化ケイ素と酸化アルミニウムの複合酸化物からなる層であることを特徴とする1.~7.に記載のラミネート積層体。
【発明の効果】
【0016】
本発明者らは、かかる技術によって、環境に配慮しつつ、包装材料に求められるバリア性やシール性、強靭性等の必要性能を有するラミネート積層体を提供することが可能となった。
【発明を実施するための形態】
【0017】
以下、本発明について詳細に説明する。
本発明のラミネート積層体は、ペットボトルからリサイクルされたポリエステル樹脂を50重量%以上含有するポリエステル基材フィルム、ヒートシール性樹脂層がこの順にラミネートされてなるラミネート積層体であって、前記基材フィルムは片面に無機薄膜層(A)およびウレタン樹脂を含有する保護層(a)を有する積層フィルムであって、前記ヒートシール性樹脂層はエチレンテレフタレートを主たる構成成分とするポリエステル系樹脂からなり、突き刺し強度が10N以上かつヘイズが20%以下であることを特徴とするものである。
【0018】
[基材フィルム層]
本発明においては後述の通り、酸成分としてイソフタル酸成分を含有するペットボトルから再生されたリサイクルポリエステル樹脂を基材フィルムの原料として使用することが好ましい態様である。従って、基材フィルムはリサイクルされたポリエステル樹脂とバージン原料、即ちリサイクルされていない樹脂との混合樹脂となり、前記フィルムを構成している樹脂の極限粘度とは、これらフィルムを構成する混合樹脂の極限粘度を測定して得られた値であることを意味する。基材フィルムを測定して得られるフィルムを構成している樹脂の極限粘度の下限は0.58dl/gであることが好ましく、より好ましくは0.60dl/gである。0.58dl/g未満であると、ペットボトルからなるリサイクル樹脂は極限粘度が0.68dl/gを超えるものが多く、それを用いてフィルムを作製する際に粘度を低下させると厚みムラ不良となることがあるので好ましくない。また、フィルムが着色する場合があるため好ましくない。上限は0.70dl/gであることが好ましく、より好ましくは0.68dl/gである。0.70dl/gを超えると押出機からの樹脂が吐出しにくくなり生産性が低下することがあるので好ましくない。
【0019】
基材フィルムの厚みの下限は好ましくは8μmであり、より好ましくは10μmであり、さらに好ましくは12μmである。8μm未満であるとフィルムとしての強度が不足となることがあるので好ましくない。上限は好ましくは200μmであり、より好ましくは50μmであり、さらに好ましくは30μmである。200μmを超えると厚くなりすぎて加工が困難となることがある。また、フィルムの厚みが厚くなることは環境負荷の面でも好ましくなく、できるだけ減容化することが好ましい。
【0020】
基材フィルムの厚み方向の屈折率の下限は好ましくは1.4930であり、より好ましくは1.4940である。1.4930未満であると配向が十分でないため、ラミネート強度が得られない場合がある。上限は好ましくは1.4995であり、より好ましくは1.4980である。1.4995を超えると、面の配向が崩れ、力学的特性が不足することがあるので好ましくない。
【0021】
基材フィルムの縦方向(MDと記載することがある)及び横方向(TDと記載することがある)の150℃、30分処理による熱収縮率の下限は好ましくは0.1%であり、より好ましくは0.3%である。0.1%未満であると改善の効果が飽和するほか、力学的に脆くなってしまうことがあるので好ましくない。上限は好ましくは3.0%であり、より好ましくは2.5%である。3.0%を超えると印刷などの加工時の寸法変化により、ピッチズレなどが起こることがあるので好ましくない。また、3.0%を超えると印刷などの加工時の寸法変化により、幅方向での縮みなどが起こることがあるため好ましくない。
【0022】
基材フィルムの原料としては酸成分としてイソフタル酸成分を含有するペットボトルからなるリサイクルポリエステル樹脂を使用することが好ましい。ペットボトルに使用されているポリエステルにはボトル外観を良好にするため、結晶性の制御が行われており、その結果、10モル%以下のイソフタル酸成分を含むポリエステルが用いられていることがある。リサイクル樹脂を活用するためには、イソフタル酸成分を含む材料を使用することになる場合がある。
【0023】
基材フィルム中に含まれるポリエステル樹脂を構成する全ジカルボン酸成分に占めるテレフタル酸成分の量の下限は好ましくは95.0モル%であり、より好ましくは96.0モル%であり、さらに好ましくは96.5モル%であり、特に好ましくは97.0モル%である。95.0モル%未満であると結晶性が低下するため、熱収縮率が高くなることがあり、あまり好ましくない。また、フィルム中に含まれるポリエステル樹脂のテレフタル酸成分の量の上限は好ましくは99.5モル%であり、より好ましくは99.0モル%である。ペットボトルからなるリサイクルポリエステル樹脂は、イソフタル酸に代表されるテレフタル酸以外のジカルボン酸成分を有するものが多いため、フィルム中のポリエステル樹脂を構成するテレフタル酸成分が99.5モル%を超えることは、リサイクル樹脂の比率の高いポリエステルフィルムの製造が結果として困難になり、あまり好ましくない。
【0024】
基材フィルム中に含まれるポリエステル樹脂を構成する全ジカルボン酸成分に占めるイソフタル酸成分の量の下限は好ましくは0.5モル%であり、より好ましくは0.7モル%であり、さらに好ましくは0.9モル%であり、特に好ましくは1.0モル%である。ペットボトルからなるリサイクルポリエステル樹脂は、イソフタル酸成分を多く含むものがあるため、フィルム中のポリエステル樹脂を構成するイソフタル酸成分が0.5モル%未満であることは、リサイクル樹脂の比率の高いポリエステルフィルムの製造が結果として困難になり、あまり好ましくない。フィルム中に含まれるポリエステル樹脂を構成する全ジカルボン酸成分に占めるイソフタル酸成分の量の上限は好ましくは5.0モル%であり、より好ましくは4.0モル%であり、さらに好ましくは3.5モル%であり、特に好ましくは3.0モル%である。5.0モル%を超えると結晶性が低下するため、熱収縮率が高くなることがあり、あまり好ましくない。また、イソフタル酸成分の含有率を上記範囲とすることでラミネート強度、収縮率、厚みムラに優れたフィルムの作成が容易となり好ましい。
【0025】
ペットボトルからなるリサイクル樹脂の極限粘度の上限は好ましくは0.90dl/gであり、より好ましくは0.80dl/gであり、さらに好ましくは0.77dl/gであり、特に好ましくは0.75dl/gである。0.9dl/gを超えると押出機からの樹脂が吐出しにくくなって生産性が低下することがあり、あまり好ましくない。
【0026】
フィルムに対するペットボトルからリサイクルされたポリエステル樹脂の含有率の下限は好ましくは50重量%であり、より好ましくは65重量%であり、さらに好ましくは75重量%である。50重量%未満であるとリサイクル樹脂の活用としては、含有率に乏しく、環境保護への貢献の点であまり好ましくない。リサイクル樹脂は固相重合により作成されるため、フィルム白化の要因となりうるオリゴマーの含有量が少ない。そのため、リサイクル樹脂の含有率が大きい方が、レトルト処理後のフィルム白化が改善される傾向にある。リサイクル樹脂の含有率が50%未満であると、レトルト処理後のフィルムの白化ムラが助長される懸念がある。一方、ペットボトルからリサイクルされたポリエステル樹脂の含有率の上限は特に限定されないが、好ましくは95重量%であり、より好ましくは90重量%であり、さらに好ましくは85重量%である。95重量%を超えるとフィルムとして機能向上のために無機粒子などの滑剤や添加剤を十分に添加することができない場合があり、あまり好ましくない。なお、フィルムとして機能向上のために無機粒子などの滑剤や添加剤を添加する場合に用いるマスターバッチ(高濃度含有樹脂)としてペットボトルからリサイクルされたポリエステル樹脂を用いることもできる。
【0027】
滑剤種としてはシリカ、炭酸カルシウム、アルミナなどの無機系滑材のほか、有機系滑剤が好ましく、シリカ、炭酸カルシウムがより好ましい。これらにより透明性と滑り性を発現することができる。
【0028】
基材フィルム中の滑剤含有率の下限は好ましくは0.01重量%であり、より好ましくは0.015重量%であり、さらに好ましくは0.02重量%である。0.01重量%未満であると滑り性が低下することがある。上限は好ましくは1重量%であり、より好ましくは0.2重量%であり、さらに好ましくは0.1重量%である。1重量%を超えると透明性が低下することがあり、あまり好ましくない。
【0029】
本発明のラミネート積層体に使用される基材フィルムの製造方法は特に限定されないが、例えば、以下のような製造方法が推奨される。押出機内の樹脂を溶融、押出するための温度設定が重要になる。基本的な考え方は、(1)ペットボトルに使用されるポリエステル樹脂はイソフタル酸成分を含有することから、できるだけ低い温度で押出することで劣化を抑えながら、(2)極限粘度や微細な高結晶性部分を十分かつ均一に溶融するために、高温や高圧力などで溶融する部分を有することにある。イソフタル酸成分の含有は、ポリエステルの立体規則性の低下となり、融点の低下につながる。そのため、高い温度での押出しでは、熱による溶融粘度の大幅な低下や劣化となり、機械的強度低下や劣化異物の増大となる。また、押出し温度を下げるだけでは、十分な溶融混練ができず、厚みムラの増大やフィッシュアイなどの異物が問題となる場合がある。以上のとこから、推奨する製造方法としては、例えば、押出機を2台タンデムで使用することやフィルタ部での圧力を上げる方法、スクリュー構成の一部に剪断力の強いスクリューを用いる方法などが挙げられる。
【0030】
押出機内の樹脂溶融部の設定温度(押出機内のスクリューの圧縮部の最高の設定温度を除く)の下限は好ましくは270℃であり、上限は好ましくは290℃である。270℃未満では押出が困難であり、290℃を超えると樹脂の劣化が起こることがあり、あまり好ましくない。
【0031】
押出機内のスクリューの圧縮部の最高の設定温度の下限は好ましくは295℃である。ペットボトルに使用されるポリエステル樹脂は、透明性の点から高融点の結晶(260℃~290℃)が存在していることが多い。また、添加剤や結晶化核剤などが添加されており、樹脂材料内の微細な溶融挙動にバラツキがみられる。295℃未満であるとそれらを十分に溶融させることが困難となり、あまり好ましくない。押出機内のスクリューの圧縮部の最高の設定温度の上限は好ましくは310℃である。310℃を超えると樹脂の劣化が起こる場合があり、あまり好ましくない。
【0032】
押出機内のスクリューの圧縮部の最高の設定温度の領域を樹脂が通過する時間の下限は好ましくは10秒であり、より好ましくは15秒である。10秒未満であるとペットボトルに使用されるポリエステル樹脂を十分に溶融させることができず、あまり好ましくない。上限は好ましくは60秒、より好ましくは50秒である。60秒を超えると樹脂の劣化が起こり易くなり、あまり好ましくない。押出機の設定をこのような範囲にすることで、ペットボトルからリサイクルされたポリエステル樹脂を多く用いながら、厚みムラやフィッシュアイなどの異物、着色の少ないフィルムを得ることができる。
【0033】
このようにして溶融された樹脂は、冷却ロール上にシート状に押し出された後、二軸延伸される。延伸方法としては同時二軸延伸方式でも構わないが、特に逐次二軸延伸方式が好ましい。これらにより生産性と本発明に求める品質とを満たすことが容易になる。
【0034】
本発明においてフィルムの延伸方法は特に限定されないが、以下のような点が重要となる。極限粘度が0.58dl/g以上でイソフタル酸成分を含有する樹脂を延伸するには、縦方向(MD)延伸と横方向(TD)延伸の倍率と温度が重要である。MD延伸倍率や温度が適切でないと、均一に延伸の力がかからず、分子の配向が不十分となり、厚みムラの増大や力学特性が不十分となる場合がある。また、次のTD延伸工程でフィルムの破断が発生したり、極端な厚みムラの増大が発生したりする場合がある。TD延伸倍率や温度が適切でないと、均一に延伸されず、縦横の配向バランスが悪く、力学特性が不十分となる場合がある。また、厚みムラが大きい状態や分子鎖の配向性が不十分な状態で次の熱固定の工程に進んだ場合、均一に緩和ができず、厚みムラの更なる増大や力学特性が不十分となる問題が起こる。そのため、基本的には、MD延伸では以下に述べる温度調節を行って段階的に延伸を行い、TD延伸では配向バランスが極端に悪くならないように適切な温度で延伸することが推奨される。以下の態様に限定されるものではないが、一例を挙げて説明する。
【0035】
縦方向(MD)延伸方法としてはロール延伸方式、IR加熱方式が好ましい。
【0036】
MD延伸温度の下限は好ましくは100℃であり、より好ましくは110℃であり、さらに好ましくは120℃である。100℃未満であると極限粘度が0.58dl/g以上のポリエステル樹脂を延伸し、縦方向に分子配向させても、次の横延伸工程でフィルムの破断が発生したり、極端な厚み不良が発生したりして好ましくない。上限は好ましくは140℃であり、より好ましくは135℃であり、さらに好ましくは130℃である。140℃を超えると分子鎖の配向性が不十分となり、力学特性が不十分となる場合があるので、あまり好ましくない。
【0037】
MD延伸倍率の下限は好ましくは2.5倍であり、より好ましくは3.5倍であり、さらに好ましくは4倍である。2.5倍未満であると極限粘度が0.58dl/g以上のポリエステル樹脂を延伸し、縦方向に分子配向させても、次の横延伸工程でフィルムの破断が発生したり、極端な厚み不良が発生する場合があり、あまり好ましくない。上限は好ましくは5倍であり、より好ましくは4.8倍であり、さらに好ましくは4.5倍である。5倍を超えると力学強度や厚みムラ改善の効果が飽和することがあり、あまりその意義がない。
【0038】
MD延伸方法としては上記の一段延伸でも構わないが、延伸を二段以上に分けることがより好ましい。二段以上に分けることで、極限粘度が高く、イソフタル酸を含有するリサイクル樹脂からなるポリエステル樹脂を良好に延伸することが可能となり、厚みムラやラミネート強度、力学的特性などが良好となる。
【0039】
好ましい一段目のMD延伸温度の下限は110℃であり、より好ましくは115℃である。110℃未満であると熱不足となり、十分に縦延伸できず、平面性が乏しくなって好ましくない。好ましい一段目のMD延伸温度の上限は125℃であり、より好ましくは120℃である。125℃を超えると分子鎖の配向性が不十分となり、力学特性が低下する場合があるのであまり好ましくない。
【0040】
好ましい一段目のMD延伸倍率の下限は1.1倍であり、より好ましくは1.3倍である。1.1倍以上であると一段目の弱延伸とすることで、最終的に極限粘度が0.58dl/g以上のポリエステル樹脂を十分に縦延伸し、生産性を上げることができる。好ましい一段目のMD延伸倍率の上限は2倍であり、より好ましくは1.6倍である。2倍を超えると縦方向の分子鎖の配向性が高くなりすぎるため、二段目以降の延伸がしづらくなることや厚みムラが不良のフィルムとなることがあり、あまり好ましくない。
【0041】
好ましい二段目(または最終段)のMD延伸温度の下限は好ましくは110℃であり、より好ましくは115℃である。110℃以上であると極限粘度が0.58dl/g以上のポリエステル樹脂を十分に縦延伸し、次工程での横延伸が可能となり、縦横方向の厚みムラが良好となる。上限は好ましくは130℃であり、より好ましくは125℃である。130℃を超えると結晶化が促進され、横延伸が困難になったり、厚みムラが大きくなることがあり、あまり好ましくない。
【0042】
好ましい二段目(または最終段)のMD延伸倍率の下限は好ましくは2.1倍であり、より好ましくは2.5倍である。2.1倍未満であると極限粘度が0.58dl/g以上のポリエステル樹脂を延伸し、縦方向に分子配向させても、次の横延伸工程でフィルムの破断が発生したり、極端な厚み不良が発生する場合があり、あまり好ましくない。上限は好ましくは3.5倍であり、より好ましくは3.1倍である。3.5倍を越えると縦配向が高くなりすぎるため、二段目以降の延伸ができなくなったり、厚みムラが大きいフィルムとなることがあり、あまり好ましくない。
【0043】
TD延伸温度の下限は好ましくは110℃であり、より好ましくは120℃であり、さらに好ましくは125℃である。110℃未満であると横方向への延伸応力が高くなり、フィルムの破断が発生したり、厚みムラが極端に大きくなる場合があり、あまり好ましくない。上限は好ましくは150℃であり、より好ましくは145℃であり、さらに好ましくは140℃である。150℃を超えると分子鎖の配向性が高まらないため力学特性が低下することがあり、あまり好ましくない。
【0044】
横方向(TD)延伸倍率の下限は好ましくは3.5倍であり、より好ましくは3.9倍である。3.5倍未満であると、分子配向が弱く、力学強度が不十分となる場合があり、あまり好ましくない。また、縦方向の分子鎖の配向性が大きく、縦横のバランスが悪くなることで、厚みムラが大きくなり、あまり好ましくない。上限は好ましくは5.5倍であり、より好ましくは4.5倍である。5.5倍を超えると破断することがあり、あまり好ましくない。
【0045】
本発明の積層フィルムに使用される基材フィルムを得るためには、TD延伸終了後引き続きテンター内で行われる熱固定および、その後フィルムを室温まで低下するときの条件を適切に設定することが望ましい。イソフタル酸を含有するペットボトルからなるリサイクル樹脂を含むポリエステルフィルムは通常のイソフタル酸を含まないポリエチレンテレフタレートフィルムに比べると結晶性が低く、また極微小に溶融しやすくなっており、また力学的強度も低い。そのため延伸終了後に急激に緊張下で高温にさらされる場合やまた高温の熱固定終了後に急激に緊張下で冷却すると、避けがたいフィルムの幅方向での温度差により幅方向での張力バランスが乱れ、厚みムラや力学的特性が不良となる。一方、熱固定温度を下げてこの現象に対応しようとすると十分なラミネート強度が得られない場合がある。本発明においては、延伸終了後に、やや低温の熱固定1と十分高温な熱固定2(必要に応じて熱固定3)、その後に徐冷工程を設けて室温まで下げることが推奨される。ただし、この方法に限定されるものではなく、例えばテンター内での熱風の速度や各ゾーンの温度に合わせフィルム張力を制御する方法、延伸終了後に炉長が十分にある比較的温度が低い熱処理をする方法および熱固定終了後に加熱ロールで緩和させる方法なども挙げられる。
【0046】
一例として、テンターの温度制御による方法を以下に示す。
【0047】
熱固定1の温度の下限は好ましくは160℃であり、より好ましくは170℃である。160℃未満であると最終的に熱収縮率が大きくなり、加工時のズレや縮みが起こるとなることがあり、あまり好ましくない。上限は好ましくは215℃であり、より好ましくは210℃である。215℃を超えると急激に高温がフィルムにかかることになり、厚みムラが大きくなったり、破断したりすることがあるので、あまり好ましくない。
【0048】
熱固定1の時間の下限は好ましくは0.5秒であり、より好ましくは2秒である。0.5秒未満であるとフィルム温度上昇不足となることがある。上限は好ましくは10秒であり、より好ましくは8秒である。10秒を超えると生産性が低下する場合があり、あまり好ましくない。
【0049】
熱固定2の温度の下限は好ましくは220℃であり、より好ましくは227℃である。220℃未満であると熱収縮率が大きくなり、加工時のズレや縮みとなることがあり、あまり好ましくない。上限は好ましくは240℃であり、より好ましくは237℃である。240℃を超えるとフィルムが融けてしまう場合があるほか、融けない場合でも脆くなるとなることがあり、あまり好ましくない。
【0050】
熱固定2の時間の下限は好ましくは0.5秒であり、より好ましくは3秒である。0.5秒未満であると熱固定時に破断が起こりやすくなるとなることがあり、あまり好ましくない。上限は好ましくは10秒であり、より好ましくは8秒である。10秒を超えると、たるみなどが生じて厚みムラが発生することがあり、あまり好ましくない。
【0051】
必要に応じて、熱固定3を設ける場合の温度の下限は好ましくは205℃であり、より好ましくは220℃である。205℃未満であると熱収縮率が大きくなり、加工時のズレや縮みとなることがあり、あまり好ましくない。上限は好ましくは240℃であり、より好ましくは237℃である。240℃を超えるとフィルムが融けてしまうほか、融けない場合でも脆くなるとなることがあり、あまり好ましくない。
【0052】
必要に応じて、熱固定3を設ける場合の時間の下限は好ましくは0.5秒であり、より好ましくは3秒である。0.5秒未満であると熱固定時に破断が起こりやすくなるとなることがあり、あまり好ましくない。上限は好ましくは10秒であり、より好ましくは8秒である。10秒を超えるとたるみなどが生じて厚みムラが発生することがあり、あまり好ましくない。
【0053】
TDリラックスは、熱固定の任意の箇所で実施できる。下限は好ましくは0.5%でありより好ましくは3%である。0.5%未満であると特に横方向の熱収縮率が大きくなり、加工時のズレや縮みとなることがあり、あまり好ましくない。上限は好ましくは10%であり、より好ましくは8%である。10%を超えるとたるみなどが生じて厚みムラが発生することがあり、あまり好ましくない。
【0054】
TD熱固定後の徐冷温度の下限は好ましくは90℃であり、より好ましくは100℃である。90℃未満であるとイソフタル酸を含有するフィルムであることから、急激な温度変化による収縮などにより厚みムラが大きくなったり、破断が発することがあり、あまり好ましくない。徐冷温度の上限は好ましくは150℃であり、より好ましくは140℃である。150℃を超えると十分な冷却効果が得られないことがあり、あまり好ましくない。
【0055】
熱固定後の徐冷時間の下限は好ましくは2秒であり、より好ましくは4秒である。2秒未満であると十分な徐冷効果が得られないことがあるので、あまり好ましくない。上限は好ましくは20秒であり、より好ましくは15秒である。20秒を超えると生産性の点で不利になり易く、あまり好ましくない。
【0056】
本発明における基材フィルム層の厚みあたりのヘイズの上限は好ましくは0.66%/μmであり、より好ましくは0.60%/μmであり、更に好ましくは0.53%/μmである。0.66%/μm以下である基材フィルム層に印刷を施した際に、印刷された文字や画像の品位が向上する。
【0057】
また本発明における基材フィルム層には、本発明の目的を損なわない限りにおいて、コロナ放電処理、グロー放電処理、火炎処理、表面粗面化処理が施されてもよく、また、公知のアンカーコート処理、印刷、装飾などが施されてもよい。
【0058】
また、本発明における基材フィルム層に他素材の層を積層しても良く、その方法として、基材フィルム層を作製後に貼り合わせるか、製膜中に貼り合わせることができる。
【0059】
[無機薄膜層]
本発明では、前記基材フィルムの表面に無機薄膜層(A)を有する。無機薄膜層(A)は金属または無機酸化物からなる薄膜である。無機薄膜層を形成する材料は、薄膜にできるものなら特に制限はないが、ガスバリア性の観点から、酸化ケイ素(シリカ)、酸化アルミニウム(アルミナ)、酸化ケイ素と酸化アルミニウムとの混合物等の無機酸化物が好ましく挙げられる。特に、薄膜層の柔軟性と緻密性を両立できる点からは、酸化ケイ素と酸化アルミニウムとの複合酸化物が好ましい。この複合酸化物において、酸化ケイ素と酸化アルミニウムとの混合比は、金属分の質量比でAlが20~70質量%の範囲であることが好ましい。Al濃度が20質量%未満であると、水蒸気バリア性が低くなる場合がある。一方、70質量%を超えると、無機薄膜層が硬くなる傾向があり、印刷やラミネートといった二次加工の際に膜が破壊されてガスバリア性が低下する虞がある。なお、ここでいう酸化ケイ素とはSiOやSiO2等の各種珪素酸化物又はそれらの混合物であり、酸化アルミニウムとは、AlOやAl2O3等の各種アルミニウム酸化物又はそれらの混合
物である。
【0060】
無機薄膜層(A)の膜厚は、通常1~100nm、好ましくは5~50nmである。無機薄膜層(A)の膜厚が1nm未満であると、満足のいくガスバリア性が得られ難くなる場合があり、一方、100nmを超えて過度に厚くしても、それに相当するガスバリア性の向上効果は得られず、耐屈曲性や製造コストの点でかえって不利となる。
【0061】
無機薄膜層(A)を形成する方法としては、特に制限はなく、例えば真空蒸着法、スパッタリング法、イオンプレーティング法等の物理蒸着法(PVD法)、あるいは化学蒸着法(CVD法)等、公知の蒸着法を適宜採用すればよい。以下、無機薄膜層(A)を形成する典型的な方法を、酸化ケイ素・酸化アルミニウム系薄膜を例に説明する。例えば、真空蒸着法を採用する場合は、蒸着原料としてSiO2とAl2O3の混合物、あるいはSiO2とAlの混合物等が好ましく用いられる。これら蒸着原料としては通常粒子が用いられるが、その際、各粒子の大きさは蒸着時の圧力が変化しない程度の大きさであることが望ましく、好ましい粒子径は1mm~5mmである。加熱には、抵抗加熱、高周波誘導加熱、電子ビーム加熱、レーザー加熱などの方式を採用することができる。また、反応ガスとして酸素、窒素、水素、アルゴン、炭酸ガス、水蒸気等を導入したり、オゾン添加、イオンアシスト等の手段を用いた反応性蒸着を採用することも可能である。さらに、被蒸着体(蒸着に供する積層フィルム)にバイアスを印加したり、被蒸着体を加熱もしくは冷却するなど、成膜条件も任意に変更することができる。このような蒸着材料、反応ガス、被蒸着体のバイアス、加熱・冷却等は、スパッタリング法やCVD法を採用する場合にも同様に変更可能である。
【0062】
[被覆層]
本発明のラミネート積層体は、安定したガスバリア性やラミネート強度を確保することを目的として、基材フィルム層と前記無機薄膜層(A)との間に被覆層(X)を設けることができる。基材フィルム層と前記無機薄膜層(A)との間に設ける被覆層(X)に用いる樹脂組成物としては、ウレタン系、ポリエステル系、アクリル系、チタン系、イソシアネート系、イミン系、ポリブタジエン系等の樹脂に、エポキシ系、イソシアネート系、メラミン系、オキサゾリン系、カルボジイミド系等の硬化剤を添加したものが挙げられる。これらの被覆層(X)に用いる樹脂組成物は、有機官能基を少なくとも1種類以上有するシランカップリング剤を含有することが好ましい。前記有機官能基としては、アルコキシ基、アミノ基、エポキシ基、イソシアネート基等が挙げられる。前記シランカップリング剤の添加によって、レトルト処理後のラミネート強度がより向上する。
【0063】
前記被覆層(X)に用いる樹脂組成物の中でも、オキサゾリン基またはカルボジイミド基を含有する樹脂とアクリル系樹脂及びウレタン系樹脂の混合物を用いることが好ましい。これらの官能基は無機薄膜との親和性が高く、また無機薄膜層形成時に発生する無機酸化物の酸素欠損部分や金属水酸化物とが反応することができ、無機薄膜層と強固な密着性を示す。また被覆層中に存在する未反応の官能基は、基材フィルム層および被覆層の加水分解により発生したカルボン酸末端と反応し、架橋を形成することができる。
【0064】
本発明においては、被覆層(X)の付着量を0.010~0.200(g/m)とすることが好ましい。これにより、被覆層を均一に制御することができるため、結果として無機薄膜層を緻密に堆積させることが可能になる。また、被覆層内部の凝集力が向上し、基材フィルム-被覆層(X)-無機薄膜層(A)の各層間の密着性も高くなるため、被覆層の耐水接着性を高めることができる。被覆層(X)の付着量は、好ましくは0.015(g/m)以上、より好ましくは0.020(g/m)以上、さらに好ましくは0.025(g/m)以上であり、好ましくは0.190(g/m)以下、より好ましくは0.180(g/m)以下、さらに好ましくは0.170(g/m)以下である。被覆層(X)の付着量が0.200(g/mを超えると、被覆層内部の凝集力が不充分となり、良好な密着性を発現できない場合がある。また、被覆層の均一性も低下するため、無機薄膜層に欠陥が生じて、ガスバリア性が低下するおそれがある。しかも、製造コストが高くなり経済的に不利になる。一方、被覆層(X)の膜厚が0.010(g/m)未満であると、基材を十分に被覆することが出来ず、充分なガスバリア性および層間密着性が得られないおそれがある。
【0065】
前記被覆層(X)を形成するための方法としては、特に限定されるものではなく、例えばコート法など従来公知の方法を採用することができる。コート法の中でも好適な方法としては、オフラインコート法、インラインコート法を挙げることができる。例えば基材フィルム層を製造する工程で行うインラインコート法の場合、コート時の乾燥や熱処理の条件は、コート厚みや装置の条件にもよるが、コート後直ちに直角方向の延伸工程に送入し延伸工程の予熱ゾーンあるいは延伸ゾーンで乾燥させることが好ましく、そのような場合には通常50~250℃程度の温度とすることが好ましい。
コート法を用いる場合に使用する溶媒(溶剤)としては、例えば、ベンゼン、トルエン等の芳香族系溶剤;メタノール、エタノール等のアルコール系溶剤;アセトン、メチルエチルケトン等のケトン系溶剤;酢酸エチル、酢酸ブチル等のエステル系溶剤;エチレングリコールモノメチルエーテル等の多価アルコール誘導体等が挙げられる。
【0066】
[保護層]
本発明においては、前記無機薄膜層(A)の上に保護層(a)を有する。金属酸化物層からなる無機薄膜層は完全に密な膜ではなく、微小な欠損部分が点在している。金属酸化物層上に後述する特定の保護層用樹脂組成物を塗工して保護層(a)を形成することにより、金属酸化物層の欠損部分に保護層用樹脂組成物中の樹脂が浸透し、結果としてガスバリア性が安定するという効果が得られる。加えて、保護層(a)そのものにもガスバリア性を持つ材料を使用することで、積層フィルムのガスバリア性能も大きく向上することになる。さらに、バリア性を有する層は基材への熱水の侵入を防ぐため、結果としてフィルムの透明性も保持することができる。
【0067】
本発明においては、保護層(a)の付着量を0.10~0.40(g/m)とすることが好ましい。これにより、塗工において保護層を均一に制御することができるため、結果としてコートムラや欠陥の少ない膜となる。また保護層自体の凝集力が向上し、無機薄膜層-保護層間の密着性も強固になる。さらに、保護層がオリゴマー表出抑制に寄与し、レトルト後のヘイズが安定化する。保護層(a)の付着量は、好ましくは0.13(g/m)以上、より好ましくは0.16(g/m)以上、さらに好ましくは0.19(g/m)以上であり、好ましくは0.37(g/m)以下、より好ましくは0.34(g/m)以下、さらに好ましくは0.31(g/m)以下である。保護層(a)の付着量が0.400(g/m)を超えると、ガスバリア性は向上するが、保護層内部の凝集力が不充分となり、また保護層の均一性も低下するため、コート外観にムラや欠陥が生じたり、ガスバリア性・接着性を充分に発現できない場合がある。一方、保護層(a)の膜厚が0.10(g/m)未満であると、充分なガスバリア性および層間密着性が得られないおそれがある。
【0068】
本発明のラミネート積層体の無機薄膜層の表面に形成する保護層(a)に用いる樹脂組成物としては、ウレタン系樹脂を必須の構成成分として、その他にポリエステル系、アクリル系、チタン系、イソシアネート系、イミン系、ポリブタジエン系等の樹脂を用いることができ、さらにエポキシ系、イソシアネート系、メラミン系等の硬化剤を添加してもよい。
特にウレタン樹脂の含有は、ウレタン結合自体の高い凝集性によるバリア性能に加え、極性基が無機薄膜層と相互作用するとともに、非晶部分の存在により柔軟性をも有するため、屈曲負荷がかかった際にも無機薄膜層へのダメージを抑えることができるため好ましい。また、ポリエステル樹脂も同様の効果が期待できるため、好適である。
【0069】
(ウレタン樹脂)
本発明で使用するウレタン樹脂は、凝集力によるバリア性向上の観点から、ガラス転移温度(Tg)が100℃以上であることが好ましく、より好ましくは110℃以上、さらに好ましくは120℃以上である。ただし、密着力を発現させるために、柔軟性に優れるTg100℃以下の柔軟樹脂を混合して用いてもよい。その場合、前記柔軟樹脂の添加比率は0~80%の範囲内であるのが好ましい。より好ましくは10~70%の範囲内、さらに好ましくは20~60%の範囲内である。添加比率が上記範囲内であると、凝集力と柔軟性を両立させることができ、バリア性と密着性が良好となる。なお、添加比率が80%を超えると、膜が柔らかくなりすぎ、バリア性能の低下を招くがある。
【0070】
前記ウレタン樹脂は、ガスバリア性向上の面から、芳香族または芳香脂肪族ジイソシアネート成分を主な構成成分として含有するウレタン樹脂を用いることがより好ましい。
その中でも、メタキシリレンジイソシアネート成分を含有することが特に好ましい。上記樹脂を用いることで、芳香環同士のスタッキング効果によりウレタン結合の凝集力を一層高めることができ、結果として良好なガスバリア性が得られる。
【0071】
本発明においては、ウレタン樹脂中の芳香族または芳香脂肪族ジイソシアネートの割合を、ポリイソシアネート成分(F)100モル%中、50モル%以上(50~100モル%)の範囲とすることが好ましい。芳香族または芳香脂肪族ジイソシアネートの合計量の割合は、60~100モル%が好ましく、より好ましくは70~100モル%、さらに好ましくは80~100モル%である。このような樹脂として、三井化学社から市販されている「タケラック(登録商標)WPB」シリーズは好適に用いることが出来る。芳香族または芳香脂肪族ジイソシアネートの合計量の割合が50モル%未満であると、良好なガスバリア性が得られない可能性がある。
【0072】
本発明で使用するウレタン樹脂には、膜の凝集力向上および耐湿熱接着性を向上させる目的で、ガスバリア性を損なわない範囲で、各種の架橋剤ケイ素系架橋剤を配合してもよい。保護層にシラノール基を導入する方法として、シランカップリング剤等を後添加する方法も知られている。ただ、この方法の場合、作業の煩雑さの増加や添加量の計量を間違う可能性がある。一方、ポリウレタンディスパージョン骨格に予めシラノール基を含有させておくことで、前述の煩雑さや間違いが防げる利点がある。
【0073】
ポリウレタンディスパージョン中の含有シラノール基量がシラノール基に含まれるSi元素の量としてポリウレタンディスパージョンを構成する樹脂1kg当たり700mg未満では架橋構造の形成が不十分となり、レトルト処理を行った際の樹脂自体の劣化が起こるため、レトルト処理後の密着性やガスバリア性の低下の原因となる。
また、含有シラノール基量がシラノール基に含まれるSi元素の量としてポリウレタンディスパージョンを構成する樹脂1kg当たり1700mgを超えると架橋構造が多くなりすぎるため、保護層の柔軟性が損なわれ、レトルト処理時における無機薄膜の劣化や耐屈曲性の低下が起きる。さらに、未反応シラノール基量が増えるために、耐水性に弱くなり、レトルト処理を行った際の樹脂自体の劣化が起こることも考えられる。
【0074】
一方、後添加できる架橋剤としては、例えば、ケイ素系架橋剤、オキサゾリン化合物、カルボジイミド化合物、エポキシ化合物等が例示できる。その中でも、ケイ素系架橋剤を配合することにより、特に無機薄膜層との耐水接着性を向上させることができる。この観点から、ケイ素系架橋剤が特に好ましい。その他に架橋剤として、オキサゾリン化合物、カルボジイミド化合物、エポキシ化合物等を併用してもよい。
【0075】
ケイ素系架橋剤としては、無機物と有機物との架橋という観点から、シランカップリング剤が好ましい。シランカップリング剤としては、加水分解性アルコキシシラン化合物、例えば、ハロゲン含有アルコキシシラン(2-クロロエチルトリメトキシシラン、2-クロロエチルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン等のクロロC2-4アルキルトリC1-4アルコキシシランなど)、エポキシ基を有するアルコキシシラン[2-グリシジルオキシエチルトリメトキシシラン、2-グリシジルオキシエチルトリエトキシシラン、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシジルオキシプロピルトリエトキシシラン等のグリシジルオキシC2-4アルキルトリC1-4アルコキシシラン、3-グリシジルオキシプロピルメチルジメトキシシラン、3-グリシジルオキシプロピルメチルジエトキシシラン等のグリシジルオキシジC2-4アルキルジC1-4アルコキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン等の(エポキシシクロアルキル)C2-4アルキルトリC1-4アルコキシシラン等]、アミノ基を有するアルコキシシラン[2-アミノエチルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン等のアミノC2-4アルキルトリC1-4アルコキシシラン、3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルメチルジエトキシシラン等のアミノジC2-4アルキルジC1-4アルコシシラン、2-[N-(2-アミノエチル)アミノ]エチルトリメトキシシラン、3-[N-(2-アミノエチル)アミノ]プロピルトリメトキシシラン、3-[N-(2-アミノエチル)アミノ]プロピルトリエトキシシラン等の(2-アミノC2-4アルキル)アミノC2-4アルキルトリC1-4アルコキシシラン、3-[N-(2-アミノエチル)アミノ]プロピルメチルジメトキシシラン、3-[N-(2-アミノエチル)アミノ]プロピルメチルジエトキシシラン等の(アミノC2-4アルキル)アミノジC2-4アルキルジC1-4アルコキシシラン等]、メルカプト基を有するアルコキシシラン(2-メルカプトエチルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン等のメルカプトC2-4アルキルトリC1-4アルコキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルメチルジエトキシシラン等のメルカプトジC2-4アルキルジC1-4アルコキシシラン等)、ビニル基を有するアルコキシシラン(ビニルトリメトキシシラン、ビニルトリエトキシシラン等のビニルトリC1-4アルコキシシラン等)、エチレン性不飽和結合基を有するアルコキシシラン[2-(メタ)アクリロキシエチルトリメトキシシラン、2-(メタ)アクリロキシエチルトリエトキシシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシラン等の(メタ)アクリロキシC2-4アルキルトリC1-4アルコキシシラン、3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルメチルジエトキシシラン等の(メタ)アクリロキシジC2-4アルキルジC1-4アルコキシシラン等)等が例示できる。これらのシランカップリング剤は、単独で又は二種以上組み合わせて使用できる。これらのシランカップリング剤のうち、アミノ基を有するシランカップリング剤が好ましい。
【0076】
シランカップリング剤ケイ素系架橋剤は保護層中に、0.25~3.00質量%添加することが好ましく、より好ましくは0.5~2.75質量%、さらに好ましくは0.75~2.50質量%である。添加量が3.00質量%を超えると、膜の硬化が進み凝集力が向上するが、一部未反応部分も生じ、層間の接着性は低下するおそれがある。一方、添加量が0.25質量%未満であると、十分な凝集力が得られないおそれがある。
【0077】
(ポリエステル樹脂)
本発明の保護層に用いるポリエステル樹脂は、多価カルボン酸成分と、多価アルコール成分を重縮合することにより製造される。ポリエステルの分子量としては、コーティング材として十分な膜の靭性や塗工適性、溶媒溶解性が付与できるのであれば特に制限はないが数平均分子量で1000~50000、さらに好ましくは、1500~30000である。ポリエステル末端の官能基としても特に制限はなく、アルコール末端でも、カルボン酸末端でも、これらの両方を持っていても良い。但し、イソシアネート系硬化剤を併用する場合には、アルコール末端が主体であるポリエステルポリオールとする必要がある。
【0078】
[ポリエステルのガラス転移温度(Tg)]
本発明で用いる前記ポリエステルのTgは15℃以上である必要がある。これ以上温度が低いと、樹脂がコーティング操作後に粘着性を持ち、ブロッキングを生じやすくなり、コーティング後の巻き取り操作がしにくくなるためである。Tgが15℃以下になるとブロッキング防止材の添加によっても巻き芯付近の圧力が高い状況下でもブロッキング防止対応が困難になるためである。Tgのより好ましい温度は18℃以上、さらに好ましくは25℃以上である。
【0079】
本発明で用いる前記ポリエステルは、多価カルボン酸成分と、多価アルコール成分とを重縮合して用いる。
[多価カルボン酸成分]
本発明で用いる前記ポリエステルの多価カルボン酸成分は、オルト配向芳香族ジカルボン酸又はその無水物の少なくとも1種を含むことに特徴を有する。
カルボン酸がオルト位に置換された芳香族多価カルボン酸又はその無水物としては、オルトフタル酸又はその無水物、ナフタレン2,3-ジカルボン酸又はその無水物、ナフタレン1,2-ジカルボン酸又はその無水物、アントラキノン2,3-ジカルボン酸又はその無水物、及び2,3-アントラセンカルボン酸又はその無水物等が挙げられる。これらの化合物は、芳香環の任意の炭素原子に置換基を有していてもよい。該置換基としては、クロロ基、ブロモ基、メチル基、エチル基、i-プロピル基、ヒドロキシル基、メトキシ基、エトキシ基、フェノキシ基、メチルチオ基、フェニルチオ基、シアノ基、ニトロ基、アミノ基、フタルイミド基、カルボキシル基、カルバモイル基、N-エチルカルバモイル基、フェニル基又はナフチル基等が挙げられる。また、これらのポリカルボン酸全成分に対する使用率が70~100質量%であるポリエステルポリオールであると、バリア性の向上効果が高い上に、コーティング材として必須の溶媒溶解性に優れることから特に好ましい。
【0080】
本発明で用いる前記ポリエステルは発明の効果を損なわない範囲において、他の多価カルボン酸成分を共重合させてもよい。具体的には、脂肪族多価カルボン酸としては、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等を、不飽和結合含有多価カルボン酸としては、無水マレイン酸、マレイン酸、フマル酸等を、脂環族多価カルボン酸としては1,3-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸等を、芳香族多価カルボン酸としては、テレフタル酸、イソフタル酸、ピロメリット酸、トリメリット酸、1,4-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ナフタル酸、ビフェニルジカルボン酸、ジフェン酸及びその無水物、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸及びこれらジカルボン酸の無水物或いはエステル形成性誘導体;p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸及びこれらのジヒドロキシカルボン酸のエステル形成性誘導体等の多塩基酸を単独で或いは二種以上の混合物で使用することができる。中でも、有機溶剤溶解性とガスバリア性の観点からコハク酸、1,3-シクロペンタンジカルボン酸、イソフタル酸、2,6-ナフタレンジカルボン酸、1,8-ナフタル酸、ジフェン酸が好ましい。
【0081】
[多価アルコール成分]
本発明で用いるポリエステルの多価アルコール成分はガスバリア補填の性能を示すポリエステルを合成することができれば特に限定されないが、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、シクロヘキサンジメタノール、及び1,3-ビスヒドロキシエチルベンゼンからなる群から選ばれる少なくとも1種を含む多価アルコール成分を含有することが好ましい。中でも、酸素原子間の炭素原子数が少ないほど、分子鎖が過剰に柔軟にならずに、酸素透過しにくいと推定されることから、エチレングリコールを主成分として使用することが最も好ましい。
【0082】
本発明で用いるポリエステルは前述の多価アルコール成分を用いることが好ましいが、このほか、本発明の効果を損なわない範囲において、他の多価アルコール成分を共重合させてもよい。具体的には、ジオールとしては1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、メチルペンタンジオール、ジメチルブタンジオール、ブチルエチルプロパンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコールが、三価以上のアルコールとしては、グリセロール、トリメチロールプロパン、トリメチロールエタン、トリス(2-ヒドロキシエチル)イソシアヌレート、1,2,4-ブタントリオール、ペンタエリスリトール、ジペンタエリスルトール等があげられる。特に、三価のアルコールの内、グリセロール及び、トリス(2-ヒドロキシエチル)イソシアヌレートを併用したポリエステルは、分岐構造に由来して架橋密度も適度に高いことにより有機溶媒溶解性が良好な上、バリア機能も優れており、特に好ましく用いられる。
【0083】
本発明で用いる前記ポリエステルを得る反応に用いられる触媒としては、モノブチル酸化錫、ジブチル酸化錫等錫系触媒、テトラ-イソプロピル-チタネート、テトラ-ブチル-チタネート等のチタン系触媒、テトラ-ブチル-ジルコネート等のジルコニア系触媒等の酸触媒が挙げられる。エステル反応に対する活性が高い、テトラ-イソプロピル-チタネート、テトラ-ブチル-チタネート等の上記チタン系触媒と上記ジルコニア触媒を組み合わせて用いることが好ましい。前記触媒量は、使用する反応原料全質量に対して1~1000ppm用いられ、より好ましくは10~100ppmである。1ppmを下回ると触媒としての効果が得られにくく、1000ppmを上回るとイソシアネート硬化剤を用いる場合にウレタン化反応を阻害する問題が生じる場合がある。
【0084】
本発明では、保護層を構成するコーティング剤の主剤としてポリエステル樹脂を用いる場合、硬化剤としてはイソシアネート系のものを用いて、ウレタン樹脂とする必要がある。この場合、コーティング層が架橋系になるため耐熱性や、耐摩耗性、剛性が向上する利点がある。従って、ボイルやレトルト包装にも使用しやすい。その一方で硬化剤を混合した後では液を再利用できない、塗工後に硬化(エージング)工程が必須になる問題点もある。
【0085】
本発明の保護層(a)で用いられるポリイソシアネート化合物は、ポリエステルが水酸基を有する場合、少なくとも一部が反応し、ウレタン構造を作ることで樹脂成分として高極
性化し、ポリマー鎖間を凝集させることでガスバリア機能を更に強化できる。また、コーティング材の樹脂が直鎖型の樹脂である場合に、3価以上のポリイソシアネートで架橋することで、耐熱性や、耐摩耗性を付与することができる。本発明で用いられるポリイソシアネート化合物としてはジイソシアネート、3価以上のポリイソシアネート、低分子化合物、高分子化合物のいずれでもよいが、骨格の一部に芳香族環、または脂肪族環を含有するとガスバリア向上機能の観点から好ましい。たとえば、芳香族環を持つイソシアネートとしては、トルエンジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、ナフタレンジイソシアネート、脂肪族環を持つイソシアネートとしては、水素化キシリレンジイソシアネート、水素化トルエンジイソシアネート、イソホロンジイソシアネート、ノルボルンジイソシアネート、あるいはこれらのイソシアネート化合物の3量体、およびこれらのイソシアネート化合物の過剰量と、たとえばエチレングリコール、プロピレングリコール、トリメチロールプロパン、グリセリン、ソルビトール、エチレンジアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどの低分子活性水素化合物または各種ポリエステルポリオール類、ポリエーテルポリオール類、ポリアミド類の高分子活性水素化合物などと反応させて得られる末端イソシアネート基含有化合物が挙げられる。
【0086】
保護層用樹脂組成物の塗工方式は、フィルム表面に塗工して層を形成させる方法であれば特に限定されるものではない。例えば、グラビアコーティング、リバースロールコーティング、ワイヤーバーコーティング、ダイコーティング等の通常のコーティング方法を採用することができる。
【0087】
保護層(a)を形成する際には、保護層用樹脂組成物を塗布した後、加熱乾燥することが好ましく、その際の乾燥温度は110~190℃が好ましく、より好ましくは130~185℃、さらに好ましくは150~180℃である。乾燥温度が110℃未満であると、保護層に乾燥不足が生じたり、保護層の造膜が進行せず凝集力および耐水接着性が低下し、結果としてバリア性や手切れ性が低下するおそれがある。一方、乾燥温度が190℃を超えると、フィルムに熱がかかりすぎてしまいフィルムが脆くなり突刺し強度が低下したり、収縮して加工性が悪くなったりする虞がある。特に、150℃以上好ましくは160℃以上で乾燥することにより、保護層の造膜が効果的に進行し、保護層の樹脂と無機薄膜層における接着面積がより大きくなるために耐水接着性を向上することができる。保護膜は塗布直後に90℃~110℃の比較的低温条件でまず溶媒を揮発させ、その後150℃以上で乾燥させると、均一で透明な膜が得られるため、特に好ましい。また、乾燥とは別に、できるだけ低温領域で追加の熱処理を加えることも、保護層の造膜を進行させるうえで、さらに効果的である。
【0088】
[中間層フィルム]
本発明では、モノマテリアル化を可能にしつつ、袋の強靭性を確保するため、PBTを主たる構成成分とするポリエステルフィルムを中間層として用いることができる。本発明に用いられる中間層フィルムは、PBTを70質量%以上含む樹脂組成物からなる二軸延伸フィルムである。PBTの含有率は、75質量%以上がより好ましい。PBTの含有率が70質量%未満であると突刺し強度が低下してしまい、フィルム特性としては十分なものでなくなってしまう。
PBTは、ジカルボン酸成分として、テレフタル酸が90モル%以上であることが好ましく、より好ましくは95モル%以上であり、さらに好ましくは98モル%以上であり最も好ましくは100モル%である。グリコール成分として1,4-ブタンジオールが90モル%以上であることが好ましく、より好ましくは95モル%以上であり、さらに好ましくは97モル%以上であり、最も好ましくは重合時に1,4-ブタンジオールのエーテル結合により生成する副生物以外は含まれないことである。
【0089】
本発明の中間層フィルムに用いられる樹脂組成物は二軸延伸時の製膜性や得られたフィルムの力学特性を調整する目的でPBT以外のポリエステルを含有することができる。
PBT以外のポリエステルとしては、PET、ポリエチレンナフタレート、ポリブチレンナフタレート及びポリプロピレンテレフタレートからなる群から選ばれる少なくとも1種のポリエステル、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、シクロヘキサンジカルボン酸、アジピン酸、アゼライン酸及びセバシン酸からなる群から選ばれる少なくとも1種のジカルボン酸が共重合されたPBT、エチレングリコール、1,3-プロピレングリコール、1,2-プロピレングリコール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、シクロヘキサンジオール、ポリエチレングリコール、ポリテトラメチレングリコール及びポリカーボネートジオールからなる群から選ばれる少なくとも1種のジオール成分が共重合されたPBTが挙げられる。
【0090】
これらPBT以外のポリエステル樹脂の添加量の上限としては、30質量%以下が好ましく、より好ましくは25質量%以下である。PBT以外のポリエステルの添加量が30質量%を超えると、ポリブチレンテレフタレートとしての力学特性が損なわれ、衝撃強度、耐ピンホール性、又は耐破袋性が不十分となるほか、透明性やガスバリア性が低下するなどの不具合が起こることがある。
【0091】
本発明に用いるポリブチレンテレフタレート(PBT)の固有粘度の下限は好ましくは0.9dl/gであり、より好ましくは0.95dl/gであり、更に好ましくは1.0dl/gである。
原料であるポリブチレンテレフタレート(PBT)の固有粘度が0.9dl/g未満の場合、製膜して得られるフィルムの固有粘度が低下し、突き刺し強度、衝撃強度、耐ピンホール性、又は耐破袋性などが低下するとなることがある。
ポリブチレンテレフタレートの固有粘度の上限は好ましくは1.4dl/gである。上記を越えると延伸時の応力が高くなりすぎ、製膜性が悪化することがある。固有粘度の高いポリブチレンテレフタレートを使用した場合、樹脂の溶融粘度が高くなるため押出し温度を高温にする必要があるが、ポリブチレンテレフタレートをより高温で押出しすると分解物が出やすくなることがある。
【0092】
前記ポリブチレンテレフタレート(PBT)樹脂は必要に応じ、従来公知の添加剤、例えば、滑剤、安定剤、着色剤、静電防止剤、紫外線吸収剤等を含有していてもよい。
滑剤種としてはシリカ、炭酸カルシウム、アルミナなどの無機系滑剤のほか、有機系滑剤が好ましく、シリカ、炭酸カルシウムがより好ましく、中でもシリカがヘイズを低減する点で特に好ましい。これらにより透明性と滑り性と発現することができる。
滑剤濃度の下限は好ましくは100ppmであり、より好ましくは500ppmであり、さらに好ましくは800ppmである。上記未満であると基材フィルム層の滑り性が低下となることがある。滑剤濃度の上限は好ましくは20000ppmであり、より好ましくは10000ppmであり、さらに好ましくは1800ppmである。上記を越えると透明性が低下となることがある。
【0093】
本発明における中間層フィルムを構成する二軸延伸ポリエステルフィルムの縦延伸(長手)方向(MD)及び横延伸(幅)方向(TD)における150℃で15分間加熱後の熱収縮率の上限は好ましくは4.0%であり、より好ましくは3.0%であり、さらに好ましくは2%である。上限を越えると無機薄膜層・保護層の形成工程や、レトルト殺菌処理のような高温処理において生じる中間層フィルムの寸法変化により無機薄膜層に割れが生じ、ガスバリア性が低下する恐れがあるばかりか、印刷などの加工時の寸法変化により、ピッチズレなどが起こることがある。
【0094】
本発明における中間層フィルムを構成する二軸延伸ポリエステルフィルムの縦延伸方向(MD)及び横延伸方向(TD)における150℃で15分間加熱後の熱収縮率の下限は好ましくは0%である。上記下限を下回っても改善の効果がそれ以上得られない(飽和する)ほか、力学的に脆くなってしまうことがある。
【0095】
本発明における中間層フィルムを構成する二軸延伸ポリエステルフィルムの衝撃強度の下限は好ましくは0.05J/μmである。0.05J/μm以上であると袋として用いる際に強度が十分となる。
本発明における中間層フィルムを構成する二軸延伸ポリエステルフィルムの衝撃強度の上限は好ましくは0.2J/μmである。上記上限を上回っても改善の効果がそれ以上得られない(飽和する)。
【0096】
本発明の中間層フィルムであるPBTフィルムの面配向度(ΔP)の下限は、好ましくは0.144であり、より好ましくは0.148であり、さらに好ましくは0.15である。上記未満であると配向が弱いため、十分な強度が得られず、突刺し強度が低下することがあるばかりか、中間層フィルム上に無機薄膜層(C)を設けて積層フィルムとした場合に、無機薄膜層形成時にかかる張力と温度によって伸び易くなり、無機薄膜層が割れてしまうために、ガスバリア性が低下することがある。
本発明における中間層フィルムの面配向度(ΔP)の上限は、好ましくは0.1 60であり、より好ましくは0.158である。上記を超えると配向が強くなりすぎて、製膜時に破断しやすくなる。また、配向を高くする分、熱収縮率を低減するために高い温度での熱固定が必要となり、結晶化によりかえってフィルムの強度を低下させてしまう恐れがある。
【0097】
本発明における中間層フィルムを構成する二軸延伸ポリエステルフィルムの厚みあたりのヘイズの上限は好ましくは0.66%/μmであり、より好ましくは0.60%/μmであり、更に好ましくは0.53%/μmである。0.66%/μm以下である基材層に印刷を施した際に、印刷された文字や画像の品位が向上する。
【0098】
本発明における中間層フィルムを構成する二軸延伸ポリエステルフィルムの固有粘度(I.V.)の上限は好ましくは1.20dl/gであり、より好ましくは1.15dl/gであり、更に好ましくは1.10dl/gである。上限を越えるとフィルムの強度は向上するが、押出時のフィルターにかかる圧力負荷が大きくなり、製造が困難となる。また下限は好ましくは0.60dl/gであり、より好ましくは0.65dl/gであり、更に好ましくは0.70dl/gである。下限を下回るとフィルムの強度が低下するおそれがある。
【0099】
また本発明における中間層フィルムを構成する二軸延伸ポリエステルフィルムには、本発明の目的を損なわない限りにおいて、コロナ放電処理、グロー放電処理、火炎処理、表面粗面化処理が施されてもよく、また、公知のアンカーコート処理、印刷、装飾などが施されてもよい。
【0100】
次に、本発明の中間層フィルムを構成する二軸延伸ポリエステルフィルムを得るため製造方法を具体的に説明する。これらに限定されるものではない。
本発明の中間層フィルムを構成する二軸延伸ポリエステルフィルムを得るための製造方法は、ポリエステル原料樹脂をシート状に溶融押出し、キャスティングドラム上で冷却して未延伸シートを成形する工程、成形された前記未延伸シートを長手方向に延伸する縦延伸工程、前記縦延伸後に横延伸可能な温度に予熱する予熱工程、前記長手方向と直交する幅方向に延伸する横延伸工程、前記縦延伸及び横延伸を行なった後のフィルムを加熱し結晶化させる熱固定工程、前記熱固定されたフィルムの残留歪みを除去する熱緩和工程、および熱緩和後のフィルムを冷却する冷却工程からなる。
【0101】
[未延伸シート成形工程]
まず、フィルム原料を乾燥あるいは熱風乾燥する。次いで、原料を計量、混合して押し出し機に供給し、加熱溶融して、シート状に溶融キャスティングを行う。
さらに、溶融状態の樹脂シートを、静電印加法を用いて冷却ロール(キャスティングロール)に密着させて冷却固化し、未延伸シートを得る。静電印加法とは、溶融状態の樹脂シートが回転金属ロールに接触する付近で、樹脂シートの回転金属ロールに接触した面の反対の面の近傍に設置した電極に電圧を印加することによって、樹脂シートを帯電させ、樹脂シートと回転冷却ロールを密着させる方法である。
【0102】
樹脂の加熱溶融温度の下限は好ましくは200℃であり、より好ましくは250℃であり、さらに好ましくは260℃である。上記未満であると吐出が不安定となることがある。樹脂溶融温度の上限は好ましくは280℃であり、より好ましくは270℃である。上記を越えると樹脂の分解が進行し、フィルムが脆くなってしまう。
【0103】
溶融したポリエステル樹脂を押出し冷却ロール上にキャスティングする時に、幅方向の結晶化度の差を小さくすることが好ましい。このための具体的な方法としては、溶融したポリエステル樹脂を押出し、キャスティングする時に同一の組成の原料を多層化してキャスティングすること、またさらに冷却ロール温度を低温とすることが挙げられる。
PBT樹脂は結晶化速度が速いため、キャスティング時にも結晶化が進行する。
このとき、多層化せずに単層でキャストした場合には、結晶の成長を抑制しうるような障壁が存在しないために、サイズの大きな球晶へと成長してしまう。その結果、得られた未延伸シートの降伏応力が高くなり、二軸延伸時に破断しやすくなるばかりでなく、得られた二軸延伸フィルムの衝撃強度、耐ピンホール性、又は耐破袋性が不十分なフィルムとなってしまう。一方、同一の樹脂を多層積層することで、未延伸シートの延伸応力を低減でき、その後の二軸延伸を安定して行うことが可能となる。
【0104】
溶融したポリエステル樹脂を押出し、キャスティングする時に同一の組成の原料を多層化してキャスティングする方法は、具体的にはPBT樹脂を70重量%以上含む樹脂組成物を溶融して溶融流体を形成する工程(1)、形成された溶融流体からなる積層数60以上の積層流体を形成するする工程(2)、形成された積層流体をダイスから吐出し、冷却ロールに接触させて固化させ積層未延伸シートを形成する工程(3)、前記積層未延伸シートを二軸延伸する工程(4)を少なくとも有する。
工程(1)と工程(2)、工程(2)と工程(3)の間には、他の工程が挿入されていても差し支えない。例えば、工程(1)と工程(2)の間には濾過工程、温度変更工程等が挿入されていても良い。また、工程(2)と工程(3)の間には、温度変更工程、電荷付加工程等が挿入されていても良い。但し、工程(2)と工程(3)の間には、工程(2)で形成された積層構造を破壊する工程があってはならない。
【0105】
工程(1)において、ポリエステル樹脂組成物を溶融して溶融流体を形成する方法は特に限定されないが、好適な方法としては、一軸押出機や二軸押出機を用いて加熱溶融する方法を挙げることができる。
【0106】
工程(2)における積層流体を形成する方法は特に限定されないが、設備の簡便さや保守性の面から、スタティックミキサーおよび/または多層フィードブロックがより好ましい。また、シート幅方向の均一性の面から、矩形のメルトラインを有するものがより好ましい。矩形のメルトラインを有するスタティックミキサーまたは多層フィードブロックを用いることがさらに好ましい。なお、複数の樹脂組成物を合流させることによって形成された複数層からなる樹脂組成物を、スタティックミキサー、多層フィードブロックおよび多層マニホールドのいずれか1種または2種以上に通過させてもよい。
【0107】
工程(2)における理論積層数は60以上であることが好ましい。理論積層数の下限は、より好ましくは500である。理論積層数が少なすぎると、あるいは、層界面間距離が長くなって結晶サイズが大きくなりすぎ、本発明の効果が得られない傾向にある。また、シート両端近傍での結晶化度が増大し、製膜が不安定となるほか、成型後の透明性が低下することがある。工程(2)における理論積層数の上限は特に限定されないが、好ましくは100000であり、より好ましくは10000であり、さらに好ましくは7000である。理論積層数を極端に大きくしてもその効果が飽和する場合がある。
【0108】
工程(2)における積層をスタティックミキサーで行う場合、スタティックミキサーのエレメント数を選択することにより、理論積層数を調整することができる。スタティックミキサーは、一般的には駆動部のない静止型混合器(ラインミキサー)として知られており、ミキサー内に入った流体は、エレメントにより順次撹拌混合される。ところが、高粘度流体をスタティックミキサーに通過させると、高粘度流体の分割と積層が生じ、積層流体が形成される。スタティックミキサーの1エレメントを通過するごとに、高粘度流体は2分割され次いで合流し積層される。このため、高粘度流体をエレメント数nのスタティックミキサーに通過させると、理論積層数N=2nの積層流体が形成される。
【0109】
典型的なスタティックミキサーエレメントは、長方形の板を180度ねじる構造を有し、ねじれの方向により、右エレメントと左エレメントがあり、各エレメントの寸法は直径に対して1.5倍の長さを基本としている。本発明に用いることのできるスタティックミキサーはこの様なものに限定されない。
【0110】
工程(2)における積層を多層フィードブロックで行う場合、多層フィードブロックの分割・積層回数を選択することによって、理論積層数を調整することができる。多層フィードブロックは複数直列に設置することが可能である。また、多層フィードブロックに供給する高粘度流体自体を積層流体とすることも可能である。例えば、多層フィードブロックに供給する高粘度流体の積層数がp、多層フィードブロックの分割・積層数がq、多層フィードブロックの設置数がrの場合、積層流体の積層数Nは、N=p×qrとなる。
【0111】
工程(3)において、積層流体をダイスから吐出し、冷却ロールに接触させて固化させる。
冷却ロール温度の下限は好ましくは-10℃である。上記未満であると結晶化抑制の効果が飽和することがある。冷却ロール温度の上限は好ましくは40℃である。上記を越えると結晶化度が高くなりすぎて延伸が困難となることがある。冷却ロール温度の上限は好ましくは25℃である。また冷却ロールの温度を上記の範囲とする場合、結露防止のため冷却ロール付近の環境の湿度を下げておくことが好ましい。冷却ロール表面の幅方向の温度差は少なくすることが好ましい。このとき、未延伸シートの厚みは15~2500μmの範囲が好適である。
上述における多層構造の未延伸シートは、少なくとも60層以上、好ましくは250層以上、更に好ましくは1000層以上である。層数が少ないと、延伸性の改善効果が失われる。
【0112】
[縦延伸および横延伸工程]
次に延伸方法について説明する。延伸方法は、同時二軸延伸でも逐次二軸延伸でも可能であるが、突き刺し強度を高めるためには、面配向度を高めておく必要があるほか、製膜速度が速く生産性が高いという点においては逐次二軸延伸が最も好ましい。
【0113】
縦延伸方向の延伸温度の下限は好ましくは55℃であり、より好ましくは60℃である。55℃以上であると破断が起こりにくい。また、フィルムの縦配向度が強くなり過ぎないため、熱固定処理の際の収縮応力を抑えられ、幅方向の分子配向の歪みの少ないフィルムが得られる。縦延伸方向の延伸温度の上限は、好ましくは100℃であり、より好ましくは95℃である。100℃以下であるとフィルムの配向が弱くなり過ぎないためフィルムの力学特性が低下しない。
【0114】
縦延伸方向の延伸倍率の下限は好ましくは2.8倍であり、特に好ましくは3.0倍である。2.8倍以上であると面配向度が大きくなり、フィルムの突き刺し強度が向上する。
縦延伸方向の延伸倍率の上限は好ましくは4.3倍であり、より好ましくは4.0倍であり、特に好ましくは3.8倍である。4.3倍以下であると、フィルムの横方向の配向度が強くなり過ぎず、熱固定処理の際の収縮応力が大きくなり過ぎず、フィルムの横方向の分子配向の歪みが小さくなり、結果として縦方向の直進引裂き性が向上する。また、力学強度や厚みムラの改善の効果はこの範囲では飽和する。
【0115】
横延伸方向の延伸温度の下限は好ましくは60℃であり、60℃以上であると破断が起こりにくくなることがある。横延伸方向の延伸温度の上限は好ましくは100℃であり、100℃以下であると横方向の配向度が大きくなるため力学特性が向上する。
【0116】
横延伸方向の延伸倍率の下限は好ましくは3.5倍であり、より好ましくは3.6倍であり、特に好ましくは3.7倍である。3.5倍以上であると横方向の配向度が弱くなり過ぎず、力学特性や厚みムラが向上する。横延伸方向の延伸倍率の上限は好ましくは5倍であり、より好ましくは4.5倍であり、特に好ましくは4.0倍である。5.0倍以下
であると力学強度や厚みムラ改善の効果はこの範囲でも最大となる(飽和する)。
【0117】
[熱固定工程]
熱固定工程での熱固定温度の下限は好ましくは195℃であり、より好ましくは200℃である。195℃以上であるとフィルムの熱収縮率が小さくなり、ボイル処理後においても、無機薄膜層がダメージを受けにくいため、ガスバリア性が向上する。熱固定温度の上限は好ましくは220℃であり、220℃以下であると基材フィルム層が融けることがなく、脆くなり難い。
【0118】
[熱緩和部工程]
熱緩和部工程でのリラックス率の下限は好ましくは0.5%である。0.5%以上であると熱固定時に破断が起こりにくくなることがある。リラックス率の上限は好ましくは10%である。10%以下であると熱固定時の長手方向への収縮が小さくなる結果、フィルム端部の分子配向の歪みが小さくなり、直進引裂き性が向上する。また、フィルムのたるみなどが生じにくく、厚みムラが発生しにくい。
【0119】
[冷却工程]
熱緩和部工程でのリラックスを行った後の冷却工程において、ポリエステルフィルムの端部の表面の温度を80℃以下とすることが好ましい。
冷却工程通過後のフィルム端部の温度が80℃を超えていると、フィルムを巻き取る際にかかる張力により端部が引き伸ばされ、結果的に端部の縦方向の熱収縮率が高くなってしまうため、ロールの幅方向の熱収縮率分布が不均一となり、このようなロールを加熱搬送して蒸着加工などを行う際に、筋状のシワが発生してしまい、最終的に得られるガスバリアフィルムの物性が幅方向で不均一となってしまうことがある。
【0120】
前記冷却工程において、フィルム端部の表面温度を80℃以下とする方法としては、冷却工程の温度や風量を調整するほか、冷却ゾーンの幅方向における中央側に遮蔽板を設けて端部を選択的に冷却する方法や、フィルムの端部に対し局所的に冷風を吹き付けるといった方法を用いることが出来る。
【0121】
本発明の中間層フィルムは、十分なバリア性やラミネート強度を確保することを目的として、基材フィルム同様に被覆層(Y)・無機薄膜層(C)・保護層(b)を設けることができる。被層(Y)としては、前記被覆層(X)として記載されている前記の、組成、付着量、および被覆層を形成する方法が適用できる。無機薄膜層(C)としては、無機薄膜層(A)としてとして記載されている前記の、組成、膜厚、および無機薄膜層を形成する方法が適用できる。保護層(b)としては、保護層(a)として記載されている前記の、組成、付着量、および保護層を形成する方法が適用できる。
【0122】
[ヒートシール性樹脂層]
本発明のラミネート積層体は、ポリエステルを成分とするヒートシール性樹脂層を有し、さらにバリア性能を向上させたい場合には、ヒートシール性樹脂層の非シール面上に、無機薄膜層(B)、さらに無機薄膜層(B)上に保護層(c)を有することができる。所定のヒートシール強度を満たすため、ヒートシール樹脂層のシール面(非シール面と逆側の面)は積層体における最表層のどちらか一方に設けなければならない。無機薄膜層(B)としては、無機薄膜層(A)としてとして記載されている前記の、組成、膜厚、および無機薄膜層を形成する方法が適用できる。保護層(c)としては、保護層(a)として記載されている前記の、組成、付着量、および保護層を形成する方法が適用できる。
【0123】
本発明のヒートシール性樹脂層の層構成はシール面を構成するヒートシール層に加えて、耐熱層を設けた2層構成であると好ましい。耐熱層は、ヒートシール性樹脂層の非シール面側に配置される。各層に関する構成要件は後述するが、ヒートシール層と耐熱層を含む構成の場合、エチレンテレフタレート成分含有量の最も多い層が耐熱層となる。本発明の積層体の層構成は、いずれか一方の最表層(シール面側)から順に、ヒートシール層/耐熱層/無機物薄膜層(B)の3層で構成されているとより好ましい。
【0124】
本発明のヒートシール性樹脂層は、ヒートシール層と反対側(非シール面側)の最表層に保護層を設けることもできる。この場合、ヒートシール層/耐熱層/無機薄膜層(B)/保護層(c)の順で4層が積層されている構成が好ましい。保護層を設けることにより、ガスバリア性が向上するだけでなく、他素材と積層するときのラミネート強度が向上する、擦れや屈曲によるクラックの発生が抑制できる等のメリットが生まれる。
【0125】
ヒートシール性樹脂層の厚みは特に限定されないが、3μm以上200μm以下が好ましい。ヒートシール性樹脂層の厚みが3μmより薄いとヒートシール強度の不足や印刷等の加工が困難になるおそれがありあまり好ましくない。また積層体の厚みが200μmより厚くても構わないが、積層体の使用重量が増えてコストが高くなるので好ましくない。積層体の厚みは5μm以上160μm以下であるとより好ましく、7μm以上120μm以下であるとさらに好ましい。
ヒートシール性樹脂層全体に対するヒートシール層の層比率は、20%以上~80%以下であることが好ましい。ヒートシール層の層比率が20%より少ない場合、ヒートシール性樹脂層のヒートシール強度が低下してしまうため好ましくない。ヒートシール層の層比率が80%よりも高くなると、ヒートシール性樹脂層のヒートシール性は向上するが、耐熱性が低下してしまうため好ましくない。ヒートシール層の層比率は、30%以上~70%以下がより好ましい。
【0126】
耐熱層の層比率は、20%以上~80%以下であることが好ましい。耐熱層の層比率が20%より少ない場合、フィルムの耐熱性が低下してしまうため好ましくない。耐熱層の層比率が80%よりも高くなると、その分だけ積層体のヒートシール層の比率が低下してしまい、ヒートシール性が犠牲となってしまうため好ましくない。耐熱層の層比率は、30%以上~70%以下がより好ましい。
【0127】
また、本発明の積層体の最表層(ヒートシール層を含む)には、フィルム表面の印刷性や滑り性を良好にするためにコロナ処理、コーティング処理や火炎処理などを施した層を設けることも可能であり、本発明の要件を逸しない範囲で任意に設けることができる。以下の説明では、ヒートシール層や耐熱層といったポリエステル系樹脂からなる層の総称を「ポリエステル系樹脂層」と記載し、無機薄膜層や保護層と区別する。
【0128】
(ヒートシール層の特性)
本発明におけるヒートシール層の厚みあたりのヘイズの上限は好ましくは0.50%/μmであり、より好ましくは0.40%/μmであり、更に好ましくは0.30%/μmである。0.50%/μm以下である基材フィルム層に印刷を施した際に、印刷された文字や画像の品位が向上する。
本発明のラミネート積層体のヒートシール層同士を温度200℃、シールバー圧力0.2MPa、シール時間4秒でヒートシールした際のヒートシール強度が8N/15mm以上30N/15mm以下であることが好ましい。ヒートシール強度が8N/15mm未満であると、シール部分が容易に剥離されるため、包装袋として用いることができない。ヒートシール強度は9N/15mm以上が好ましく、10N/15mm以上がより好ましい。ヒートシール強度は大きいことが好ましいが、現状得られる上限は30N/15mm程度である。
【0129】
本発明のラミネート積層体は、98℃の温湯中で3秒間に亘って処理した場合における幅方向、長手方向の温湯熱収縮率がいずれも-5%以上5%以下であると好ましい。収縮率が5%を超えると、積層体を用いて作製した袋をレトルト処理などの加熱処理するとき、袋の変形が大きくなって元の形状を保てなくなるだけでなく、無機物からなる層にクラックが生じてガスバリア性が低下してしまうため好ましくない。温湯熱収縮率は4%以下であるとより好ましく、3%以下であるとさらに好ましい。一方、温湯熱収縮率が-5%を下回る場合、積層体が伸びることを意味しており、収縮率が高い場合と同様に袋が元の形状を維持できにくくなるため好ましくない。積層体の温湯熱収縮率は-4%以上4%以下であるとより好ましく、-3%以上3%以下であるとさらに好ましい。
【0130】
本発明の積層体は、後述する方法で測定される折りたたみ保持角度が20度以上70度以下であると好ましい。折りたたみ保持角度が70度を超えると、袋としたときに折り目がつきにくくなるため外観が悪くなってしまい好ましくない。一方、折りたたみ保持角度は小さければ小さいほど好ましいが、本発明のカバーできる範囲は20度が下限であり、折りたたみ保持角度が25度以上であっても、実用上は好ましいものといえる。折りたたみ保持角度の上限は65度であるとより好ましく、60度であるとさらに好ましい。
【0131】
(ポリエステル系樹脂層の構成原料)
本発明の積層体を構成するポリエステル系樹脂層の原料種は、エチレンテレフタレートユニットを主たる構成成分とするものである。ここで、「主たる構成成分とする」とは、全構成成分量を100モル%としたとき、50モル%以上含有することを指す。
また、本発明のポリエステル系樹脂層に使用するポリエステルにエチレンテレフタレート以外の成分を1種以上含むことが好ましい。エチレンテレフタレート以外の成分が存在することによって、ヒートシール層のヒートシール強度が向上するためである。耐熱層においては、エチレンテレフタレート以外の成分は少ない方が好ましいが、エチレンテレフタレート以外の成分を含むことによって、ヒートシール層との収縮率差を少なくすることができ、積層体のカールを小さくすることにつながる。各成分の含有量はヒートシール層と耐熱層で異なるため後述する。エチレンテレフタレートを構成するテレフタル酸以外の成分となりうるジカルボン酸モノマーとしては、例えばイソフタル酸、1,4-シクロヘキサンジカルボン酸、2,6-ナフタレンジカルボン酸、オルトフタル酸等の芳香族ジカルボン酸、アジピン酸、アゼライン酸、セバシン酸、デカンジカルボン酸等の脂肪族ジカルボン酸、および脂環式ジカルボン酸が挙げられる。ただし、3価以上の多価カルボン酸(例えば、トリメリット酸、ピロメリット酸およびこれらの無水物等)はポリエステル中に含有させないことが好ましい。
【0132】
また、エチレンテレフタレートを構成するエチレングリコール以外の成分となりうるジオールモノマーとしては、例えばネオペンチルグリコール、1,4-シクロヘキサンジメタノール、ジエチレングリコール、2,2-ジエチル1,3-プロパンジオール、2-n-ブチル-2-エチル-1,3-プロパンジオール、2,2-イソプロピル-1,3-プロパンジオール、2,2-ジ-n-ブチル-1,3-プロパンジオール、ヘキサンジオール、1,4-ブタンジオール等の長鎖ジオール、ヘキサンジオール等の脂肪族ジオール、ビスフェノールA等の芳香族系ジオール等を挙げることができる。ただし、ポリエステルには炭素数8個以上のジオール(例えば、オクタンジオール等)、または3価以上の多価アルコール(例えば、トリメチロールプロパン、トリメチロールエタン、グリセリン、ジグリセリンなど)を含有させないことが好ましい。
【0133】
さらに、ポリエステルを構成する成分として、ε-カプロラクトンやテトラメチレングリコールなどを含むポリエステルエラストマーを含んでいてもよい。ポリエステルエラストマーは、ポリエステル系樹脂層の融点を下げる効果があるため、特にヒートシール層に好適に使用することができる。
【0134】
これらのなかでも、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、1,4-ブタンジオール、ジエチレングリコールのいずれか1種以上を用いることでヒートシール層同士のヒートシール強度を8N/15mm以上としやすくなるので好ましい。ネオペンチルグリコール、1,4-シクロヘキサンジメタノールのいずれか1種以上を用いることがより好ましく、ネオペンチルグリコールを用いることが特に好ましい。
【0135】
本発明のラミネート積層体を構成するポリエステル系樹脂層の中には、必要に応じて各種の添加剤、例えば、ワックス類、酸化防止剤、帯電防止剤、結晶核剤、減粘剤、熱安定剤、着色用顔料、着色防止剤、紫外線吸収剤などを添加することができる。また、フィルムのすべり性を良好にする滑剤としての微粒子を、少なくともフィルムの最表層に添加することが好ましい。微粒子としては、任意のものを選択することができる。例えば、無機系微粒子としては、シリカ、アルミナ、二酸化チタン、炭酸カルシウム、カオリン、硫酸バリウムなどをあげることができ、有機系微粒子としては、アクリル系樹脂粒子、メラミン樹脂粒子、シリコーン樹脂粒子、架橋ポリスチレン粒子などを挙げることができる。微粒子の平均粒径は、コールターカウンタにて測定したときに0.05~3.0μmの範囲内で必要に応じて適宜選択することができる。
【0136】
本発明のラミネート積層体を構成するポリエステル系樹脂層の中に粒子を配合する方法として、例えば、ポリエステル系樹脂(レジン)を製造する任意の段階において添加することができるが、エステル化の段階、もしくはエステル交換反応終了後、重縮合反応開始前の段階でエチレングリコールなどに分散させたスラリーとして添加し、重縮合反応を進めるのが好ましい。また、ベント付き混練押出し機を用いてエチレングリコールや水、そのほかの溶媒に分散させた粒子のスラリーとポリエステル系樹脂原料とをブレンドする方法や、乾燥させた粒子とポリエステル系樹脂原料とを混練押出し機を用いてブレンドする方法なども挙げられる。
以下、ヒートシール層と耐熱層に含まれる好ましい成分について説明する。
【0137】
本発明のラミネート積層体の構成するヒートシール層に用いるポリエステルは、エチレンテレフタレートを構成するテレフタル酸およびエチレングリコール以外の成分となるジカルボン酸モノマーおよび/又はジオールモノマーの含有量が30モル%以上であることが好ましく、32モル%以上がより好ましく、34モル%以上が特に好ましい。また、前記エチレンテレフタレート以外の成分となるモノマー含有量の上限は50モル%である。ヒートシール層に含まれる前記エチレンテレフタレート以外の成分となるモノマーが30モル%より低い場合、溶融樹脂をダイから押し出した後に例え急冷固化したとしても、後の延伸および熱固定工程で結晶化してしまうため、ヒートシール強度を8N/15mm以上とすることが困難となってしまうため好ましくない。
【0138】
一方、ヒートシール層に含まれる前記エチレンテレフタレート以外の成分となるモノマーが50モル%以上である場合、フィルムのヒートシール強度を高くすることができるものの、ヒートシール層の耐熱性が極端に低くなるため、ヒートシールするときにシール部の周囲がブロッキング(加熱用部材からの熱伝導によって、意図した範囲よりも広い範囲でシールされてしまう現象)してしまうため、適切なヒートシールが困難となる。エチレンテレフタレート以外の成分となるモノマーの含有量は48モル%以下であるとより好ましく、46%以下であると特に好ましい。
【0139】
本発明のラミネート積層体を構成しうる耐熱層に用いるポリエステルは、エチレンテレフタレートを構成するテレフタル酸およびエチレングリコール以外の成分となるジカルボン酸モノマーおよび/又はジオールモノマーの含有量が9モル%以上であることが好ましく、10モル%以上がより好ましく、11モル%以上が特に好ましい。また、前記エチレンテレフタレート以外の成分となるモノマー含有量の上限は20モル%である。耐熱層に含まれる前記エチレンテレフタレート以外の成分となるモノマーが9モル%より低い場合、ヒートシール層との熱収縮率差が大きくなり、積層体のカールが大きくなってしまうため好ましくない。耐熱層とヒートシール層に含まれる前記エチレンテレフタレート以外の成分となるモノマー含有量の差が大きくなると、熱固定中の各層における熱収縮率差が大きくなってしまい、たとえ熱固定後の冷却を強化してもヒートシール層側への収縮が大きくなり、カールが大きくなってしまう。
【0140】
一方、耐熱層に含まれる前記エチレンテレフタレート以外の成分となるモノマーが20モル%以上である場合、ヒートシールの際にかかる熱によって穴あきが生じるといったように、シーラントの耐熱性が低下してしまうため好ましくない。前記エチレンテレフタレート以外の成分となるモノマーの含有量は19モル%以下であるとより好ましく、18%以下であると特に好ましい。また、カールを制御するための前記エチレンテレフタレート以外の成分となるモノマー含有量は、上記の各層単体での量に加えて、ヒートシール層と耐熱層との差が20モル%以上35モル%以下であるとより好ましく、21モル%以上34モル%以下であるとさらに好ましい。
【0141】
(積層体の製造条件)
本発明のラミネート積層体を構成するポリエステル系樹脂層(以下、単にフィルムと記載することがある)は、上記3.1.「ポリエステル系樹脂層の原料種」で記載したポリエステル原料を、押し出し機により溶融押し出しして未延伸の積層フィルムを形成し、それを以下に示す所定の方法により延伸することによって得ることができる。なお、フィルムがヒートシール層と耐熱層、またはそれ以外の層を含む場合、各層を積層させるタイミングは延伸の前後いずれであっても構わない。延伸前に積層させる場合、各層の原料となる樹脂をそれぞれ別々の押し出し機によって溶融押し出しし、樹脂流路の途中でフィードブロック等を用いて接合させる方法を採用するのが好ましい。延伸後に積層させる場合、それぞれ別々に製膜したフィルムを接着剤によって貼りあわせるラミネート、単独または積層させたフィルムの表層に溶融させたポリエステル樹脂を流して積層させる押出ラミネートを採用するのが好ましい。これらの中でも、延伸前に各層を積層させる方法が好ましい。
【0142】
ポリエステル樹脂は、前記のように、エチレンテレフタレート以外の成分となり得るモノマーを適量含有するように、ジカルボン酸成分とジオール成分の種類と量を選定して重縮合させることで得ることができる。また、チップ状のポリエステルを2種以上混合してポリエステル系樹脂層の原料として使用することもできる。
原料樹脂を溶融押し出しするとき、各層のポリエステル原料をホッパードライヤー、パドルドライヤー等の乾燥機、または真空乾燥機を用いて乾燥するのが好ましい。そのように各層のポリエステル原料を乾燥させた後、押出機を利用して200~300℃の温度で溶融して積層フィルムとして押し出す。押し出しはTダイ法、チューブラー法等、既存の任意の方法を採用することができる。
その後、押し出しで溶融されたフィルムを急冷することにより、未延伸のフィルムを得ることができる。なお、溶融樹脂を急冷する方法としては、溶融樹脂を口金から回転ドラム上にキャストして急冷固化することにより実質的に未配向の樹脂シートを得る方法を好適に採用することができる。
【0143】
フィルムは、無延伸、一軸延伸(縦(長手)方向、横(幅)方向のいずれか少なくとも一方向への延伸)、二軸延伸いずれの方式で製膜されてもよい。本発明の積層体の機械強度や生産性の観点からは、一軸延伸であることが好ましく、二軸延伸であるとより好ましい。以下では、最初に縦延伸、次に横延伸を実施する縦延伸-横延伸による逐次二軸延伸法について説明するが、順番を逆にする横延伸-縦延伸であっても、主配向方向が変わるだけなので構わない。また同時二軸延伸法でも構わない。
【0144】
縦方向の延伸は、未延伸フィルムを複数のロール群を連続的に配置した縦延伸機へと導入するとよい。縦延伸にあたっては、予熱ロールでフィルム温度が65℃~90℃になるまで予備加熱することが好ましい。フィルム温度が65℃より低いと、縦方向に延伸する際に延伸しにくくなり、破断が生じやすくなるため好ましくない。また90℃より高いとロールにフィルムが粘着しやすくなり、ロールへのフィルムの巻き付きや連続生産によるロールの汚れやすくなるため好ましくない。
フィルム温度が65℃~90℃になったら縦延伸を行う。縦延伸倍率は、1倍以上5倍以下とすると良い。1倍は縦延伸をしていないということなので、横一軸延伸フィルムを得るには縦の延伸倍率を1倍に、二軸延伸フィルムを得るには1.1倍以上の縦延伸となる。また縦延伸倍率の上限は何倍でも構わないが、あまりに高い縦延伸倍率だと横延伸しにくくなって破断が生じやすくなるので5倍以下であることが好ましい。
【0145】
また、縦延伸後にフィルムを長手方向へ弛緩すること(長手方向へのリラックス)により、縦延伸で生じたフィルム長手方向の収縮率を低減することができる。さらに、長手方向へのリラックスにより、テンター内で起こるボーイング現象(歪み)を低減することができる。後工程の横延伸や最終熱処理ではフィルム幅方向の両端が把持された状態で加熱されるため、フィルムの中央部だけが長手方向へ収縮するためである。長手方向へのリラックス率は0%以上70%以下(リラックス率0%はリラックスを行わないことを指す)であることが好ましい。長手方向へのリラックス率の上限は、使用する原料や縦延伸条件よって決まるため、これを超えてリラックスを実施することはできない。本発明のポリエステル系シーラントにおいては、長手方向へのリラックス率は70%が上限である。長手方向へのリラックスは、縦延伸後のフィルムを65℃~100℃以下の温度で加熱し、ロールの速度差を調整することで実施できる。加熱手段はロール、近赤外線、遠赤外線、熱風ヒータ等のいずれも用いる事ができる。また、長手方向へのリラックスは縦延伸直後でなくとも、例えば横延伸(予熱ゾーン含む)や最終熱処理でも長手方向のクリップ間隔を狭めることで実施することができ(この場合はフィルム幅方向の両端も長手方向へリラックスされるため、ボーイング歪みは減少する)、任意のタイミングで実施できる。長手方向へのリラックス(リラックスを行わない場合は縦延伸)の後は、一旦フィルムを冷却することが好ましく、表面温度が20~40℃の冷却ロールで冷却することが好ましい。
【0146】
縦延伸の後、テンター内でフィルムの幅方向の両端際をクリップによって把持した状態で、65℃~110℃で3~5倍程度の延伸倍率で横延伸を行うことが好ましい。横方向の延伸を行う前には、予備加熱を行っておくことが好ましく、予備加熱はフィルム表面温度が75℃~120℃になるまで行うとよい。
【0147】
横延伸の後は、フィルムを積極的な加熱操作を実行しない中間ゾーンを通過させることが好ましい。テンターの横延伸ゾーンに対し、その次の最終熱処理ゾーンでは温度が高いため、中間ゾーンを設けないと最終熱処理ゾーンの熱(熱風そのものや輻射熱)が横延伸工程に流れ込んでしまう。この場合、横延伸ゾーンの温度が安定しないため、フィルムの厚み精度が悪化するだけでなく、ヒートシール強度や収縮率などの物性にもバラツキが生じてしまう。そこで、横延伸後のフィルムは中間ゾーンを通過させて所定の時間を経過させた後、最終熱処理を実施するのが好ましい。この中間ゾーンにおいては、フィルムを通過させていない状態で短冊状の紙片を垂らしたときに、その紙片がほぼ完全に鉛直方向に垂れ下がるように、フィルムの走行に伴う随伴流、横延伸ゾーンや最終熱処理ゾーンからの熱風を遮断することが重要である。中間ゾーンの通過時間は、1秒~5秒程度で充分である。1秒より短いと、中間ゾーンの長さが不充分となって、熱の遮断効果が不足する。一方、中間ゾーンは長い方が好ましいが、あまりに長いと設備が大きくなってしまうので、5秒程度で充分である。
【0148】
中間ゾーンの通過後は最終熱処理ゾーンにて、横延伸温度以上250℃以下で熱処理を行うことが好ましい。熱処理温度は横延伸温度以上でなければ熱処理としての効果を発揮しない。この場合、フィルムの80℃温湯収縮率が5%よりも高くなってしまうため好ましくない。熱処理温度が高くなるほどフィルムの収縮率は低下するが、250℃よりも高くなるとフィルムのヘイズが15%よりも高くなったり、最終熱処理工程中にフィルムが融けてテンター内に落下してしまったりするため好ましくない。
【0149】
最終熱処理の際、テンターのクリップ間距離を任意の倍率で縮めること(幅方向へのリラックス)によって幅方向の収縮率を低減させることができる。そのため、最終熱処理では、0%以上10%以下の範囲で幅方向へのリラックスを行うことが好ましい(リラックス率0%はリラックスを行わないことを指す)。幅方向へのリラックス率が高いほど幅方向の収縮率は下がるものの、リラックス率(横延伸直後のフィルムの幅方向への収縮率)の上限は使用する原料や幅方向への延伸条件、熱処理温度によって決まるため、これを超えてリラックスを実施することはできない。本発明のポリエステル系シーラントにおいては、幅方向へのリラックス率は10%が上限である。
【0150】
また、最終熱処理ゾーンの通過時間は2秒以上20秒以下が好ましい。通過時間が2秒以下であると、フィルムの表面温度が設定温度に到達しないまま熱処理ゾーンを通過してしまうため、熱処理の意味をなさなくなる。通過時間は長ければ長いほど熱処理の効果が上がるため、2秒以上であることが好ましく、5秒以上であることがさらに好ましい。ただし、通過時間を長くしようとすると、設備が巨大化してしまうため、実用上は20秒以下であれば充分である。
【0151】
最終熱処理通過後は冷却ゾーンにて、10℃以上30℃以下の冷却風でフィルムを冷却することが好ましい。このとき、テンター出口のフィルムの実温度が、ヒートシール層もしくは耐熱層いずれか低い方のガラス転移温度より低い温度になるよう、冷却風の温度を下げたり風速を上げたりして冷却効率を向上させることが好ましい。なお実温度とは、非接触の放射温度計で測定したフィルム表面温度のことである。テンター出口のフィルムの実温度がガラス転移温度を上回ると、クリップで把持していたフィルム両端部が解放されたときにフィルムが熱収縮してしまう。このとき、フィルムは熱収縮率の大きいヒートシール層へカールしてしまうため、曲率半径が小さくなり好ましくない。
【0152】
冷却ゾーンの通過時間は2秒以上20秒以下が好ましい。通過時間が2秒以下であると、フィルムの表面温度がガラス転移温度に到達しないまま冷却ゾーンを通過してしまうため、曲率半径が小さくなってしまう。通過時間は長ければ長いほど冷却効果が上がるため、2秒以上であることが好ましく、5秒以上であることがさらに好ましい。ただし、通過時間を長くしようとすると、設備が巨大化してしまうため、実用上は20秒以下であれば充分である。後は、フィルム両端部を裁断除去しながら巻き取れば、フィルムロールが得られる。
【0153】
[接着剤層]
本発明で用いられる接着剤層は、汎用的なラミネート用接着剤が使用できる。たとえば、ポリ(エステル)ウレタン系、ポリエステル系、ポリアミド系、エポキシ系、ポリ(メタ)アクリル系、ポリエチレンイミン系、エチレン-(メタ)アクリル酸系、ポリ酢酸ビニル系、(変性)ポリオレフィン系、ポリブタジェン系、ワックス系、カゼイン系等を主成分とする(無)溶剤型、水性型、熱溶融型の接着剤を使用することができる。この中でも、レトルト処理に耐え得る耐湿熱性と、各基材の寸法変化に追随できる柔軟性を考慮すると、ウレタン系またはポリエステル系が好ましい。上記接着剤層の積層方法としては、たとえば、ダイレクトグラビアコート法、リバースグラビアコート法、キスコート法、ダイコート法、ロールコート法、ディップコート法、ナイフコート法、スプレーコート法、フォンテンコート法、その他の方法で塗布することができ、レトルト後に十分な接着性を発現するため、乾燥後の塗工量は1~8g/mが好ましい。より好ましくは2~7g/m、さらに好ましくは3~6g/mである。塗工量が1g/m未満であると、全面で貼り合せることが困難になり、接着力が低下する。また、8g/m以上を超えると、膜の完全な硬化に時間がかかり、未反応物が残りやすく、接着力が低下する。
【0154】
さらに、本発明のラミネート積層体には、無機薄膜層または基材フィルム層とヒートシール性樹脂層との間またはその外側に、印刷層や他のプラスチック基材を少なくとも1層以上積層してもよい。ただし、モノマテリアル化の観点から、積層するのはポリエステル系のものに限定される。
【0155】
印刷層を形成する印刷インクとしては、水性および溶媒系の樹脂含有印刷インクが好ましく使用できる。ここで印刷インクに使用される樹脂としては、アクリル系樹脂、ウレタン系樹脂、ポリエステル系樹脂、塩化ビニル系樹脂、酢酸ビニル共重合樹脂およびこれらの混合物が例示される。印刷インクには、帯電防止剤、光線遮断剤、紫外線吸収剤、可塑剤、滑剤、フィラー、着色剤、安定剤、潤滑剤、消泡剤、架橋剤、耐ブロッキング剤、酸化防止剤等の公知の添加剤を含有させてもよい。印刷層を設けるための印刷方法としては、特に限定されず、オフセット印刷法、グラビア印刷法、スクリーン印刷法等の公知の印刷方法が使用できる。印刷後の溶媒の乾燥には、熱風乾燥、熱ロール乾燥、赤外線乾燥等公知の乾燥方法が使用できる。
【0156】
[ラミネート積層体の特性]
本発明のラミネート積層体は、23℃×65%RH条件下における酸素透過度が5ml/m・d・MPa以下となることが、良好なガスバリア性を発現する点で好ましい。さらに、各フィルム上にバリア層を設けることで、好ましくは4ml/m・d・MPa以下、より好ましくは3ml/m・d・MPa以下とすることができる。酸素透過度が5ml/m・d・MPaを超えると、アルミ箔代替のような、高いガスバリア性が要求される用途に対応することが難しくなる。他方、酸素透過度がいずれも0.5ml/m・d・MPa未満であると、バリア性能には優れるが残留溶剤が袋の外側に透過しにくくなり、相対的に内容物への移行量が増えるおそれがあるので好ましくない。酸素透過度の好ましい下限は、0.5ml/m・d・MPa以上である。
【0157】
本発明の積層体は、40℃×90%RH条件下における水蒸気透過度がいずれも1.0g/m・d以下であることが、良好なガスバリア性を発現する点で好ましい。さらに各フィルム上にバリア層を設けることで、好ましくは0.75g/m・d以下、より好ましくは0.5g/m・d以下とすることができる。水蒸気透過度が1.0g/m・dを超えると、アルミ箔代替のような高いガスバリア性が要求される用途に対応することが難しくなる。他方、水蒸気透過度が0.1g/m未満であると、バリア性能には優れるが残留溶剤が袋の外側に透過しにくくなり、相対的に内容物への移行量が増えるおそれがあるので好ましくない。水蒸気透過度の好ましい下限は、0.1g/m・d以上である。
【0158】
本発明のラミネート積層体は、JIS Z1707に準じて測定した突き刺し強度が10N以上であることが好ましく、より好ましくは12N以上、さらに好ましくは14N以上である。突き刺し強度が10N未満であると、袋として使用した際に、外的負荷がかかると穴が開いて、内容物が漏れ出す恐れがある。
【0159】
本発明のラミネート積層体は、JISK7136に準じて測定したヘイズが20%以下であることが好ましく、より好ましくは18%以下、さらに好ましくは16%以下である。ヘイズが20%以上であると、袋として使用した際に透明性が悪く、安全の観点からの内容物視認性や、印刷後の外観の観点で好ましくない。
【0160】
本発明のラミネート積層体のヒートシール層同士を温度200℃、シールバー圧力0.2MPa、シール時間4秒でヒートシールした際のヒートシール強度が8N/15mm以上30N/15mm以下であることが好ましい。ヒートシール強度が8N/15mm未満であると、シール部分が容易に剥離されるため、包装袋として用いることができない。ヒートシール強度は9N/15mm以上が好ましく、10N/15mm以上がより好ましい。ヒートシール強度は大きいことが好ましいが、現状得られる上限は30N/15mm程度である。
【実施例0161】
次に、実施例により本発明をさらに詳細に説明するが、本発明は以下の例に限定されるものではない。なお、各種評価は次の測定法によって行った。
【0162】
(1)各種フィルムの厚み
JIS K7130-1999 A法に準拠し、ダイアルゲージを用いて測定した。
【0163】
(2)無機薄膜層の組成・膜厚
実施例、比較例で得られた積層フィルム(薄膜積層後)について、蛍光X線分析装置((株)リガク製「ZSX100e」)を用いて、予め作成した検量線により膜厚組成を測定した。なお、励起X線管の条件として50kV、70mAとした。
【0164】
(3) 保護層の付着量
各実施例および比較例において、基材フィルム上に保護層を積層した段階で得られた各積層フィルムを試料とし、この試料から100mm×100mmの試験片を切り出し、1-メトキシ-2-プロパノールまたはジメチルホルムアミドによる保護層の拭き取りを行い、拭き取り前後のフィルムの質量変化から付着量を算出した。
【0165】
[ラミネート積層体の作製]
(4) 評価用ラミネート積層体の作製
実施例、比較例に記載の基材フィルム、中間層フィルム、ヒートシール樹脂について、ウレタン系2液硬化型接着剤(三井化学社製「タケラック(登録商標)A525S」と「タケネート(登録商標)A50」とを13.5:1(質量比)の割合で配合)を用いてドライラミネート法により貼り合せ、40℃で4日間エージングを施すことによって、評価用のラミネートガスバリア性積層体(以下「ラミネート積層体A」と称することもある)を得た。なお、ウレタン系2液硬化型接着剤で形成された接着剤層の乾燥後の厚みはいずれも約4μmであった。
【0166】
(5) 酸素透過度の評価方法
上記(4)で作製したラミネート積層体について、JIS-K7126 B法に準じて、酸素透過度測定装置(MOCON社製「OX-TRAN(登録商標)2/22」)を用い、温度23℃、湿度65%RHの雰囲気下で、酸素透過度を測定した。なお、酸素透過度の測定は、ラミネート積層体の基材フィルム側からヒートシール性樹脂層側に酸素が透過する方向で行った。
【0167】
(6)水蒸気透過度の評価方法
上記(4)で作成したラミネート積層体について、JIS-K7129 B法に準じて、水蒸気透過度測定装置(MOCON社製「PERMATRAN-W 3/33MG」)を用い、温度40℃、湿度90%RHの雰囲気下で、水蒸気透過度を測定した。なお、水蒸気透過度の測定は、ラミネート積層体のヒートシール性樹脂層側から基材フィルム側に向けて水蒸気が透過する方向で行った。
【0168】
(7) ヒートシール強度の評価方法
上記(4)で作製したラミネート積層体について、JISZ1707に準拠してヒートシール強度測定を行った。具体的な手順を示す。ヒートシーラーにて、サンプルのヒートシール面同士を接着した。ヒートシール条件は、上バー温度200℃、下バー温度30℃、圧力0.2MPa、時間4秒とした。接着サンプルは、シール幅が15mmとなるように切り出した。剥離強度は、万能引張試験機「DSS-100」(島津製作所製)を用いて引張速度200mm/分で測定した。剥離強度は、15mmあたりの強度(N/15mm)で示す。
【0169】
(9)突き刺し強度の評価方法
上記(4)で作製したラミネート積層体を5cm角にサンプリングし、株式会社イマダ製デジタルフォースゲージ「ZTS-500N」、電動計測スタンド「MX2-500N」及び突き刺し治具「TKS-250N」を用いて、JIS Z1707に準じてフィルムの突き刺し強度を測定した。
【0170】
(10) ラミネート積層体のヘイズ
実施例、比較例で得られたラミネート積層体に対して、ヘイズメーターNDH-2000(日本電色工業製)にてJISK7136に準じて、ヘイズを測定した。
(11)モノマテリアル化の評価基準
上記(4)で作製したラミネート積層体について、モノマテリアル化の評価基準として、総厚みに対するポリエステル系素材の厚みが90%以上であるものを○(モノマテ)とした。
(12)視認・レンジ適性
上記(4)で作製したラミネート積層体について、ヘイズが20%以下かつアルミ箔を用いていないものを○、ヘイズが20%以上かつアルミ箔を用いていないものを△、アルミ箔を用いているものを×とした。
【0171】
以下に本実施例及び比較例で使用する塗工液の詳細を記す。なお、実施例1~7、及び比較例1~7で使用した。
【0172】
[カルボジイミド系架橋剤(A)]
カルボジイミド系架橋剤として、市販の日清紡社製「カルボジライト(登録商標)SV-02」;固形分40%)を用意した。
[オキサゾリン基を有する樹脂(B)]
オキサゾリン基を有する樹脂として、市販の水溶性オキサゾリン基含有アクリレート(日本触媒社製「エポクロス(登録商標)WS-300」;固形分10%)を用意した。この樹脂のオキサゾリン基量は7.7mmol/gであった。
【0173】
[アクリル樹脂(C)]
アクリル樹脂として、市販のアクリル酸エステル共重合体の25質量%エマルジョン(ニチゴー・モビニール(株)社製「モビニール(登録商標)7980」を用意した。このアクリル樹脂の酸価(理論値)は4mgKOH/gであった。
【0174】
[ウレタン樹脂(D)]
ウレタン樹脂として、市販のポリエステルウレタン樹脂のディスパージョン(三井化学社製「タケラック(登録商標)W605」;固形分30%)を用意した。このウレタン樹脂の酸価25mgKOH/gであり、DSCで測定したガラス転移温度(Tg)は100℃であった。また、1H-NMRにより測定したポリイソシアネート成分全体に対する芳香族または芳香脂肪族ジイソシアネートの割合は、55モル%であった。
[シランカップリング剤(E)]
シランカップリング剤として、市販の信越化学社製「(登録商標)KBM903」;固形分100%)を用意した。使用時は水で希釈して2%水溶液とした。
【0175】
[ウレタン樹脂(F)]
撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、メタキシリレンジイソシアネート143.95質量部、4,4’-メチレンビス(シクロヘキシルイソシアネート)25.09質量部、エチレングリコール28.61質量部、トリメチロールプロパン5.50質量部、ジメチロールプロピオン酸12.37質量部、及び溶剤としてメチルエチルケトン120.97質量部を混合し、窒素雰囲気下、70℃で撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液を35℃にまで降温した後、トリエチルアミン9.14質量部を添加し、ポリウレタンプレポリマー溶液を得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に、水794.97質量部を添加して、15℃に調整して、2000min-1で攪拌混合しながら、ポリウレタンプレポリマー溶液を添加して水分散させ、2-[(2-アミノエチル)アミノ]エタノール22.96質量部と水91.84質量部を混合したアミン水溶液を添加し、次いで、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン(商品名;KBM-603、信越化学社製)2.38質量部と水9.50質量部を混合したアミン水溶液を添加し、鎖伸長反応を行った。その後、減圧下で、メチルエチルケトンおよび水の一部を除去することにより、固形分25質量%、平均粒子径70nmのポリウレタンディスパージョン(E)を得た。得られたポリウレタンディスパージョン(D-1)のSi含有量(仕込み計算による)は1200mg/1kg、メタキシリレン基含有量(仕込み計算による)は32質量%であった。
【0176】
[ポリエステル樹脂(G)]
ポリエステル成分として、ポリエステルポリオール(DIC社製「DF-COAT GEC-004C」:固形分30%)を用いた。
【0177】
[ポリイソシアネート架橋剤(H)]
ポリイソシアネート成分として、メタキシリレンジイソシアネートのトリメチロールプロパンアダクト体(三井化学社製「タケネートD-110N」:固形分75%)を用いた。
【0178】
[シランカップリング剤(I)]
シランカップリング剤として、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン(信越化学社製「KBM-603」)を用いた。
【0179】
[被覆層に用いる塗工液1]
下記の配合比率で各材料を混合し、塗布液(被覆層用樹脂組成物)を作成した。
水 54.40質量%
イソプロパノール 25.00質量%
オキサゾリン基含有樹脂 (A) 15.00質量%
アクリル樹脂 (B) 3.60質量%
ウレタン樹脂 (C) 2.00質量%
【0180】
[被覆層に用いる塗工液2]
下記の配合比率で各材料を混合し、塗布液(被覆層用樹脂組成物)を作成した。
水 57.80質量%
イソプロパノール 25.00質量%
カルボジイミド系架橋剤 (A) 2.10質量%
ウレタン樹脂 (F) 8.00質量%
シランカップリング剤 (E) 7.10質量%
【0181】
[保護層のコートに用いる塗工液3]
下記の塗剤を混合し、塗工液3を作成した。ここでウレタン樹脂(E)の固形分換算の質量比は表1に示す通りである。
水 22.00質量%
イソプロパノール 30.00質量%
ウレタン樹脂(F) 48.00質量%
【0182】
[保護層のコートに用いる塗工液4]
シランカップリング剤(I)をアセトンに溶解した溶液(15%wt)およびイソシアネート(G)を下記比率で混合させ、10分間マグネチックスターラ―を用いて撹拌した。得られた調合液をメチルエチルケトンで希釈し、さらにポリエステル樹脂(G)を添加し、塗工液を得た。混合比を以下に示す。
ポリエステル樹脂(G) 4.90質量%
イソシアネート(H) 1.87質量%
シランカップリング剤(I)※アセトン希釈液 0.85質量%
メチルエチルケトン 92.39質量%
【0183】
以下に各実施例及び比較例で使用する積層フィルムの作製方法を記す。なお、実施例1~8、及び比較例1~7で使用し、表2に示した。
【0184】
1.基材フィルム
(ペットボトルからリサイクルされたポリエステル樹脂の調整)
飲料用ペットボトルから残りの飲料などの異物を洗い流した後、粉砕して得たフレークを押出機で溶融し、順次目開きサイズの細かなものにフィルタを変えて2回更に細かな異物を濾別し、3回目に50μmの最も小さな目開きサイズのフィルタで濾別して、ポリエステル再生原料を得た。得られた樹脂の構成は、テレフタル酸/イソフタル酸//エチレングリコール=97.0/3.0//100(モル%)で、樹脂の極限粘度は0.70dl/gであった。これをポリエステルAとする。
【0185】
(基材フィルムの製造)
ポリエステルBとしてテレフタル酸//エチレングリコール=100//100(モル%)からなる極限粘度0.62dl/gのポリエチレンテレフタレート樹脂を、ポリエステルCとして、ポリエステルBに平均粒子径1.5μmの不定形シリカを0.3%含有するマスターバッチとしてものを作製した。各原料は、33Paの減圧下、125℃で8時間乾燥した。それらをA/B/C=80/10/10(重量比)となるよう混合したものを、一軸押出機に投入した。押出機から、メルトライン、フィルタおよびT-ダイまでは樹脂の温度が280℃となるように温度設定した。ただし、押出機のスクリューの圧縮部の開始点から30秒間は樹脂の温度が305℃となるように設定し、その後は再び、280℃となるようにした。
【0186】
T-ダイから押し出された溶融物を冷却ロールに密着させ、未延伸シートとし、それを引き続き118℃に加熱した周速差のあるロールにて縦方向に1.41倍延伸し(MD1)、さらに128℃に加熱した周速差のあるロールにて縦方向に2.92倍延伸(MD2)した。その縦延伸したシートをテンターに導き、フィルムの片面に、上記塗工液1をファウンテンバーコート法によりコートした。乾燥しつつテンターに導き、121℃で予熱した後に、131℃で4.3倍横延伸した。引き続き熱固定として、180℃、リラックスなし(0%)で2.5秒行った(TS1)後に引き続き231℃、リラックス5%、3.0秒行った(TS2)後に引き続き222℃、リラックスなしで2.5秒行った(TS3)。引き続き、同じテンター内で、120℃で6.0秒間の冷却を行い、最終的にワインダーで巻き取ることで厚さ12μmの二軸延伸ポリエステルフィルムを得た。
【0187】
各実施例および比較例記載の基材フィルム層を調製するにあたり、樹脂A/B/Cの配合量を変更したこと以外は、同様にして積層フィルムを作製し、評価を実施した。
【0188】
2.中間層フィルム
(PBT樹脂の調整)
1)ポリブチレンテレフタレート(PBT)樹脂:後述する二軸延伸ポリエステルフィルムの作製において使用するポリブチレンテレフタレート樹脂は1100-211XG(CHANG CHUN PLASTICS CO.,LTD.、固有粘度1.28dl/g)を用いた。
2)ポリエチレンテレフタレート(PET)樹脂:後述する二軸延伸ポリエステルフィルムの作製において使用するポリエチレンテレフタレート樹脂はテレフタル酸//エチレングリコール=100//100(モル%)(東洋紡社製、固有粘度0.62dl/g)を用いた。
【0189】
(フィルムの製造)
一軸押出機を用い、PBT樹脂を80質量%とPET樹脂を20質量%混合したものに、不活性粒子として平均粒径2.4μmのシリカ粒子をシリカ濃度として混合樹脂に対して900ppmとなるように配合したものを290℃で溶融させた後、メルトラインを12エレメントのスタティックミキサーに導入した。これにより、ポリエステル樹脂溶融体の分割・積層を行い、同一の原料からなる多層溶融体を得た。265℃のT-ダイスからキャストし、15℃の冷却ロールに静電密着法により密着させて未延伸シートを得た。
次いで、60℃で縦方向に2.9倍ロール延伸し、縦延伸後に接着層用樹脂組成物(塗工液1)をファウンテンバーコート法により塗布した。その後、乾燥しながらテンターに導き、次いで、テンターに通して90℃で横方向に4.0倍延伸し、200℃で3秒間の緊張熱処理と1秒間9%の緩和処理を実施した後、50℃で2秒間の冷却を行いフィルムを冷却した。この時のフィルム端部の表面温度は75℃であった。
次いで、両端の把持部を9%ずつ切断除去して厚みが15μmのポリエステルフィルムに0.030g/m2の被覆層が形成された積層フィルムを得た。得られたフィルムの物性を表1に示した。
【0190】
3.ヒートシール性樹脂層
(ポリエステル原料調製)
[合成例1]
撹拌機、温度計および部分環流式冷却器を備えたステンレススチール製オートクレーブに、ジカルボン酸成分としてジメチルテレフタレート(DMT)100モル%と、多価アルコール成分としてエチレングリコール(EG)100モル%とを、エチレングリコールがモル比でジメチルテレフタレートの2.2倍になるように仕込み、エステル交換触媒として酢酸亜鉛を0.05モル%(酸成分に対して)用いて、生成するメタノールを系外へ留去しながらエステル交換反応を行った。その後、重縮合触媒として三酸化アンチモン0.225モル%(酸成分に対して)を添加し、280℃で26.7Paの減圧条件下、重縮合反応を行い、固有粘度0.75dl/gのポリエステル(A)を得た。このポリエステル(A)は、ポリエチレンテレフタレートである。ポリエステルの組成を表1に示す。
[合成例2]
合成例1と同様の手順でモノマーを変更したポリエステル(B)~(E)を得た。各ポリエステルの組成を表1に示す。表1において、TPAはテレフタル酸、BDは1,4-ブタンジオール、NPGはネオペンチルグリコール、CHDMは1,4-シクロヘキサンジメタノール、DEGはジエチレングリコールである。なお、ポリエステル(E)の製造の際には、滑剤としてSiO2(富士シリシア社製サイリシア266)をポリエステルに対して7,000ppmの割合で添加した。各ポリエステルは、適宜チップ状にした。
【0191】
【表1】
【0192】
[フィルム作成]
ヒートシール層の原料としてポリエステルAとポリエステルBとポリエステルDとポリエステルEを質量比10:60:24:6で混合し、耐熱層の原料としてポリエステルAとポリエステルBとポリエステルDとポリエステルEを質量比57:31:6:6で混合した。ヒートシール層及び耐熱層の混合原料はそれぞれ別々の二軸スクリュー押出機に投入し、いずれも270℃で溶融させた。それぞれの溶融樹脂は、流路の途中でフィードブロックによって接合させてTダイより吐出し、表面温度30℃に設定したチルロール上で冷却することによって未延伸の積層フィルムを得た。積層フィルムは片側がヒートシール層、もう片側が耐熱層(ヒートシール層/耐熱層の2種2層構成)となるように溶融樹脂の流路を設定し、ヒートシール層と耐熱層の厚み比率が50/50となるように吐出量を調整した。
【0193】
冷却固化して得た未延伸の積層フィルムを複数のロール群を連続的に配置した縦延伸機へ導き、予熱ロール上でフィルム温度が78℃になるまで予備加熱した後に4.1倍に延伸した。縦延伸直後のフィルムを熱風ヒータで100℃に設定された加熱炉へ通し、加熱炉の入口と出口のロール間の速度差を利用して、長手方向に20%リラックス処理を行った。その後、縦延伸したフィルムを、表面温度25℃に設定された冷却ロールによって強制的に冷却した。
リラックス処理後のフィルムを横延伸機(テンター)に導いて表面温度が105℃になるまで5秒間の予備加熱を行った後、幅方向(横方向)に4.0倍延伸した。横延伸後のフィルムはそのまま中間ゾーンに導き、1.0秒で通過させた。なお、テンターの中間ゾーンにおいては、フィルムを通過させていない状態で短冊状の紙片を垂らしたときに、その紙片がほぼ完全に鉛直方向に垂れ下がるように、最終熱処理ゾーンからの熱風と横延伸ゾーンからの熱風を遮断した。
【0194】
その後、中間ゾーンを通過したフィルムを最終熱処理ゾーンに導き、190℃で5秒間熱処理した。このとき、熱処理を行うと同時にフィルム幅方向のクリップ間隔を狭めることにより、幅方向に3%リラックス処理を行った。最終熱処理ゾーンを通過後はフィルムを30℃の冷却風で5秒間冷却した。このとき、テンター出口のフィルム実温度は45℃であった。両縁部を裁断除去して幅500mmでロール状に巻き取ることによって、厚さ30μmの二軸延伸フィルムを所定の長さにわたって連続的に製造した。
【0195】
以下に各実施例及び比較例で使用する無機薄膜層の作製方法を記す。なお、実施例1~8、及び比較例1~7で使用し、表2に示した。
(無機薄膜層M-1の形成)
無機薄膜層M-1として、基材フィルム層または中間層またはヒートシール樹脂の耐熱
層上に酸化アルミニウムの蒸着を行った。基材フィルム層への酸化アルミニウムを蒸着する方法は、フィルムを連続式真空蒸着機の巻出し側にセットし、冷却金属ドラムを介して走行させフィルムを巻き取る。この時、連続式真空蒸着機を10-4Torr以下に減圧し、冷却ドラムの下部よりアルミナ製るつぼに純度99.99%の金属アルミニウムを装填し、金属アルミニウムを加熱蒸発させ、その蒸気中に酸素を供給し酸化反応させながらフィルム上に付着堆積させ、厚さ10nmの酸化アルミニウム膜を形成した。
【0196】
(無機薄膜層M-2の形成)
無機薄膜層M-2として、基材フィルム層または中間層またはヒートシール樹脂の耐熱層上に、二酸化ケイ素と酸化アルミニウムの複合酸化物層を電子ビーム蒸着法で形成した。蒸着源としては、3mm~5mm程度の粒子状SiO2(純度99.9%)とA12O3(純度99.9%)とを用いた。このようにして得られたフィルム(無機薄膜層/被覆層含有フィルム)における無機薄膜層(SiO2/A12O3複合酸化物層)の膜厚は13nmであった。またこの複合酸化物層の組成は、SiO2/A12O3(質量比)=60/40であった。
【0197】
(蒸着フィルムへの塗工液3のコート(保護層の積層))
上記調製した塗工液3をグラビアロールコート法によって、得られた蒸着フィルムの無機薄膜層上に塗布し、110℃で予備乾燥した後、160℃で本乾燥させ、所定の塗布量の保護層を得た。その後、40℃×2日間の後加熱処理を施した。
【0198】
(蒸着フィルムへの塗工液4のコート(保護層の積層))
上記調製した塗工液4をグラビアロールコート法によって、得られた蒸着フィルムの無機薄膜層上に塗布し、110℃で予備乾燥した後、190℃で本乾燥させ、所定の塗布量の保護層を得た。その後、40℃×4日間の後加熱処理を施した。
【0199】
以上のようにして、各フィルムの上に被覆層/無機薄膜層/保護層を備えた表2に記載のフィルム積層体1~3を作製した。各実施例、比較例は、1~3の各フィルムを使用して、接着剤を用いたドライラミネート法で貼り合わせて表3に記載の構成のラミネート積層体とした。なお、比較例として中間層にポリアミドフィルム(東洋紡製N1100-15μm;NYとする)、ヒートシール樹脂として直鎖状低密度ポリエチレンフィルム(東洋紡製L4102―40μm;LLDPEとする)または無延伸ポリプロピレンフィルム(東洋紡製P1146-70μm;CPPとする)を用いた。作製したラミネート積層体の構成は表3に示す。また、得られたラミネート積層体について、各種評価を実施した。結果を表3に示す。
【0200】
【表2】
【0201】
【表3】
【産業上の利用可能性】
【0202】
本発明により、無機薄膜層、被覆層、バリア保護層を各フィルム上に積層し貼り合わせることでガスバリア性能を大きく向上させ、さらに環境負荷の少ないペットボトル由来のポリエステル樹脂を用いた基材フィルムと、ポリエステル成分からなるシーラントをラミネートすることで、強靭性やシール性、透明性を保持したままモノマテリアル化を実現した。しかも、本発明の積層フィルムは加工工程が少なくかつ容易に製造できるので、経済性と生産安定性の両方に優れており、均質な特性のガスバリア性フィルムを提供することができる。