IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ジェンザイム・コーポレーションの特許一覧

特開2024-20447糖類工学による部位特異的抗体-薬物コンジュゲーション
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024020447
(43)【公開日】2024-02-14
(54)【発明の名称】糖類工学による部位特異的抗体-薬物コンジュゲーション
(51)【国際特許分類】
   C12N 15/13 20060101AFI20240206BHJP
   C07K 16/18 20060101ALI20240206BHJP
   C12P 21/08 20060101ALI20240206BHJP
   C12N 15/63 20060101ALI20240206BHJP
   C12N 5/10 20060101ALI20240206BHJP
   C12N 1/19 20060101ALI20240206BHJP
   C12N 1/15 20060101ALI20240206BHJP
   C12N 1/21 20060101ALI20240206BHJP
   A61K 47/68 20170101ALI20240206BHJP
【FI】
C12N15/13
C07K16/18 ZNA
C12P21/08
C12N15/63 Z
C12N5/10
C12N1/19
C12N1/15
C12N1/21
A61K47/68
【審査請求】有
【請求項の数】1
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2023195664
(22)【出願日】2023-11-17
(62)【分割の表示】P 2022014608の分割
【原出願日】2014-03-10
(31)【優先権主張番号】61/776,710
(32)【優先日】2013-03-11
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】61/776,724
(32)【優先日】2013-03-11
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】61/776,715
(32)【優先日】2013-03-11
(33)【優先権主張国・地域又は機関】US
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.TWEEN
(71)【出願人】
【識別番号】500034653
【氏名又は名称】ジェンザイム・コーポレーション
(74)【代理人】
【識別番号】100127926
【弁理士】
【氏名又は名称】結田 純次
(74)【代理人】
【識別番号】100140132
【弁理士】
【氏名又は名称】竹林 則幸
(72)【発明者】
【氏名】クラーク・パン
(72)【発明者】
【氏名】チュイン・ジョウ
(72)【発明者】
【氏名】ジェームズ・ステファノ
(72)【発明者】
【氏名】プラディープ・ダル
(72)【発明者】
【氏名】ボー・チェン
(72)【発明者】
【氏名】ディエゴ・ジアノリオ
(72)【発明者】
【氏名】ロバート・ミラー
(72)【発明者】
【氏名】ホアウエイ・チウ
(57)【要約】      (修正有)
【課題】薬物のコンジュゲーションを保証し、抗体の構造または機能に対する有害効果を最小にする上で極めて有用な、規定されたコンジュゲーション部位および安定な連結を有するADCを提供する。
【解決手段】本開示は、結合性ポリペプチドの天然の、または改変されたグリカン内に、部位特異的に改変された薬物-グリカン連結を含む、結合性ポリペプチド(例えば、抗体)、およびそれとエフェクター部分のコンジュゲート(例えば、抗体-薬物コンジュゲート、すなわちADC)を提供する。本開示は、抗原結合性ポリペプチドをコードする核酸、組換え発現ベクター、およびこのような抗原結合性ポリペプチドを作製するための宿主細胞も提供する。疾患を処置するための、本明細書に開示する抗原結合性ポリペプチドを用いる方法も提供する。
【選択図】図1
【特許請求の範囲】
【請求項1】
少なくとも1つの式(IV):
-Gal-Sia-C(H)=N-Q-CON-X
式(IV)
[式中、
A)Qは、NHまたはOであり、
B)CONは、接続部分であり、
C)Xは、エフェクター部分であり、
D)Galは、ガラクトース由来の構成成分であり、
E)Siaは、シアル酸由来の構成成分であり、
Siaは、存在または非存在である]
部分を含む、少なくとも1つの修飾グリカンを含む結合性ポリペプチド。
【請求項2】
修飾グリカンは二分岐グリカンである、請求項1に記載の結合性ポリペプチド。
【請求項3】
二分岐グリカンは、フコシル化されており、または非フコシル化である、請求項1または2に記載の結合性ポリペプチド。
【請求項4】
前記修飾グリカンは、少なくとも2つの式(IV)部分を含み、Siaは、2つの部分のうち1つのみに存在する、請求項1~3のいずれか1項に記載の結合性ポリペプチド。
【請求項5】
前記修飾グリカンは、少なくとも2つの式(IV)部分を含み、Siaは、2つの部分の両方に存在する、請求項1~3のいずれか1項に記載の結合性ポリペプチド。
【請求項6】
修飾グリカンは、結合性ポリペプチドに対してN結合している、請求項1~5のいずれか1項に記載の結合性ポリペプチド。
【請求項7】
結合性ポリペプチドはFcドメインを含む、請求項1~6のいずれか1項に記載の結合性ポリペプチド。
【請求項8】
修飾グリカンは、EUナンバリングによるFcドメインのアミノ酸297位のアスパラギン残基を介して結合性ポリペプチドに対してN結合している、請求項7に記載の結合性ポリペプチド。
【請求項9】
修飾グリカンは、EUナンバリングによるFcドメインのアミノ酸298位のアスパラギン残基を介して結合性ポリペプチドに対してN結合している、請求項8に記載の結合性ポリペプチド。
【請求項10】
Fcドメインはヒトである、請求項1~9のいずれか1項に記載の結合性ポリペプチド。
【請求項11】
結合性ポリペプチドはCH1ドメインを含む、請求項1~10のいずれか1項に記載の結合性ポリペプチド。
【請求項12】
修飾グリカンは、KabatナンバリングによるCH1ドメインのアミノ酸114位のアスパラギン残基を介して結合性ポリペプチドに対してN結合している、請求項11に記載の結合性ポリペプチド。
【請求項13】
エフェクター部分は細胞毒である、請求項1~12のいずれか1項に記載の結合性ポリ
ペプチド。
【請求項14】
細胞毒は、表1に列挙した細胞毒からなる群から選択される、請求項13に記載の結合性ポリペプチド。
【請求項15】
エフェクター部分は検出剤である、請求項1~13のいずれか1項に記載の結合性ポリペプチド。
【請求項16】
エフェクター部分は標的化部分である、請求項1~13のいずれか1項に記載の結合性ポリペプチド。
【請求項17】
標的化部分は、炭水化物または糖ペプチドである、請求項16に記載の結合性ポリペプチド。
【請求項18】
標的化部分はグリカンである、請求項16に記載の結合性ポリペプチド。
【請求項19】
接続部分は、pH感受性のリンカー、ジスルフィドリンカー、酵素感受性のリンカー、または他の切断可能なリンカー部分を含む、請求項1~18のいずれか1項に記載の結合性ポリペプチド。
【請求項20】
接続部分は、表2または14に示すリンカー部分の群から選択されるリンカー部分を含む、請求項1~19のいずれか1項に記載の結合性ポリペプチド。
【請求項21】
抗体またはイムノアドヘシンである、請求項1~20のいずれか1項に記載の結合性ポリペプチド。
【請求項22】
請求項1~21のいずれか1項に記載の結合性ポリペプチド、および薬学的に許容される担体または賦形剤を含む、組成物。
【請求項23】
治療用または診断用のエフェクター部分の、結合性ポリペプチドに対する比率は4未満である、請求項22に記載の組成物。
【請求項24】
治療用または診断用のエフェクター部分の、結合性ポリペプチドに対する比率は約2である、請求項23に記載の組成物。
【請求項25】
有効量の請求項24の組成物を投与することを含む、それを必要とする患者を処置する方法。
【請求項26】
請求項1~21のいずれか1項に記載の結合性ポリペプチドをコードする、単離されたポリヌクレオチド。
【請求項27】
請求項26に記載のポリヌクレオチドを含むベクター。
【請求項28】
請求項26または27に記載のポリヌクレオチドまたはベクターを含む宿主細胞。
【請求項29】
請求項1~28のいずれか1項に記載の結合性ポリペプチドを作製する方法であって、式(I):
NH-Q-CON-X
式(I)
[式中、
A)Qは、NHまたはOであり、
B)CONは、接続部分であり、
C)Xは、エフェクター部分である]
のエフェクター部分を、酸化されたグリカンを含む変更された結合性ポリペプチドと反応させることを含む、前記方法。
【請求項30】
酸化されたグリカンを含む変更された結合性ポリペプチドは、グリカンを含む結合性ポリペプチドを、穏やかな酸化剤と反応させることによって産生される、請求項29に記載の方法。
【請求項31】
穏やかな酸化剤は、過ヨウ素酸ナトリウムである、請求項30に記載の方法。
【請求項32】
1mM未満の過ヨウ素酸ナトリウムを用いる、請求項31に記載の方法。
【請求項33】
酸化剤はガラクトースオキシダーゼである、請求項30に記載の方法。
【請求項34】
グリカンを含む結合性ポリペプチドは、1つまたは2つの末端シアル酸残基を含む、請求項29~33のいずれか1項に記載の方法。
【請求項35】
末端シアル酸残基は、結合性ポリペプチドを、シアリルトランスフェラーゼ、またはシアリルトランスフェラーゼとガラクトシルトランスフェラーゼとの組合せで処理することにより導入される、請求項34に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本出願は、2013年3月11日出願の「糖類工学による部位特異的抗体薬物コンジュゲーション」という表題の米国仮特許出願第61/776,724号;2013年3月11日出願の「高グリコシル化結合性ポリペプチド」という表題の米国仮特許出願第61/776,710号、および2013年3月11日出願の「変更されたグリコシル化および低減されたエフェクター機能を有するFc含有ポリペプチド」という表題の米国仮特許出願第61/776,715号の優先権を主張するものである。前述の出願の内容は、その全文が参照によって本明細書に組み入れられる。
【背景技術】
【0002】
癌の処置は人類にとって依然として意義深い挑戦である。現在の標準的な治療法は、外科手術、照射、および化学療法を含めて多くの患者の命を救ってきたが、より有効な治療法、特に、より有効性が高く、治療ウインドウの大きな標的特異的治療法が大いに必要とされている。これら標的特異的治療法の1つは抗体-薬物コンジュゲート(ADC)を使用するものであり、ADCでは、抗原特異的な抗体が、腫瘍部位に対して非特異的な化学療法薬を標的にする。これら分子は、臨床設定において、有効性および良好な安全性プロファイルを有することが示されている。しかし、このような治療法の開発は、抗体自体および連結の安定性を含めた多くの要因のため困難であり得、腫瘍特異性に対して重大な影響があり得、そのため有効性は低下する。ADCは非特異的な結合性が高く、循環中の安定性が低いため、腫瘍に到達する前に正常な組織によって除去される。さらに、薬物のローディングが高い重大な亜集団を有するADCは、マクロファージによって排除される凝集物を産生し得、そのため半減期は短くなる。よって、決定的なプロセスの制御および改善、ならびに、生成物の凝集およびIgGからの非特異的な毒性などの複雑化の防止がますます必要とされる。
【0003】
現在の方法によって産生されるADCは有効であるが、用いられるコンジュゲーションの化学反応の結果にはしばしば異種性の混合物があるため、このような治療法の開発は困難であり得る。例えば、抗体のリジン残基に対する薬物のコンジュゲーションは、コンジュゲーションに利用できる抗体中に多くのリジン残基が存在する(およそ30個)という事実により複雑になっている。薬物対抗体比(DAR)の最適数は非常に低いため(例えば、およそ4:1)、リジンのコンジュゲーションは、非常に不均一なプロファイルをしばしば産生する。さらに、多くのリジンが、CDR領域の決定的な抗原結合部位に位置し、薬物コンジュゲーションは抗体の親和性の低下をもたらし得る。一方、チオール媒介性のコンジュゲーションは、ヒンジのジスルフィド結合に関与する8個のシステインを主に標的にするが、様々な調製物の中で、8個のシステインのうちどの4個が一貫してコンジュゲートするかを予想し、同定するのは依然として難しい。より最近では、遊離のシステイン残基を遺伝子操作することで、チオールベースの化学反応での部位特異的コンジュゲーションが可能になっているが、このような連結はしばしば、極めて変わりやすい安定性を表し、薬物-リンカーは、アルブミンおよび他のチオール含有血清分子と交換反応をうける。したがって、規定されたコンジュゲーション部位および安定な連結を有するADCを産生する、部位特異的コンジュゲーション戦略は、薬物のコンジュゲーションを保証し、抗体の構造または機能に対する有害効果を最小にする上で、極めて有用である。
【発明の概要】
【課題を解決するための手段】
【0004】
本開示は、結合性ポリペプチド(例えば、抗体)、およびそれとエフェクター部分のコンジュゲート(例えば、薬物コンジュゲート)を提供する。所定の実施形態において、コ
ンジュゲートは、結合性ポリペプチドの天然の、または改変されたグリカン内に、部位特異的に改変された薬物-グリカン連結を含む。本開示は、このような抗原結合性ポリペプチドを作製するための、抗原結合性ポリペプチドをコードする核酸、組換え発現ベクター、および宿主細胞も提供する。本明細書で開示される抗原結合性ポリペプチドを用いて疾患を処置する方法も提供する。
【0005】
所定の実施形態において、本発明の結合性ポリペプチドは、エフェクター部分(例えば、薬物部分)を、安定な(例えば、オキシム)連結によってカップリングすることにより得ることができる。この戦略により、in vivoの安定性が増強し、凝集の低減した、高度に規定された生成物が提供される。他の実施形態において、さらなる部位選択性および均一性を提供するために、エフェクター部分のコンジュゲート(例えば、薬物コンジュゲート)が、IgGグリカンの末端糖残基(例えば、末端シアル酸またはガラクトース残基)へのカップリングにより形成され得る。末端糖残基は、穏やかな酸化(例えば、過ヨウ素酸ナトリウムでの)によって反応性アルデヒド形態に容易に変換され得る。酸化された糖残基を、次いで、アルデヒド反応性アミノオキシ薬物-リンカーにコンジュゲートして、タンパク質-薬物コンジュゲート(例えば、ADC)の安定かつ均一な集団を提供することができる。
【0006】
したがって、一態様において、本発明は、少なくとも1つの式(IV):
-Gal-Sia-C(H)=N-Q-CON-X
式(IV)
[式中、
A)Qは、NHまたはOであり、
B)CONは、接続部分であり、
C)Xは、エフェクター部分(例えば、薬物部分または標的化部分)であり、
D)Galは、ガラクトース由来の構成成分であり、
E)Siaは、シアル酸由来の構成成分であり、
Siaは、存在または非存在である]
部分を含む、少なくとも1つの修飾グリカンを含む結合性ポリペプチドを提供する。
【0007】
一実施形態において、修飾グリカンは、二分岐グリカンである。別の一実施形態において、二分岐グリカンは、フコシル化されており、または非フコシル化である。別の一実施形態において、修飾グリカンは、少なくとも2つの式(IV)部分を含み、Siaは2つの部分のうち1つのみに存在する。別の一実施形態において、修飾グリカンは、少なくとも2つの式(IV)部分を含み、Siaは2つの部分の両方に存在する。別の一実施形態において、修飾グリカンは、結合性ポリペプチドに対してN結合している。
【0008】
別の一実施形態において、結合性ポリペプチドはFcドメインを含む。別の一実施形態において、修飾グリカンは、EUナンバリングによるFcドメインのアミノ酸297位のアスパラギン残基を介して結合性ポリペプチドに対してN結合している。別の一実施形態において、修飾グリカンは、EUナンバリングによるFcドメインのアミノ酸298位のアスパラギン残基を介して結合性ポリペプチドに対してN結合している。別の一実施形態において、Fcドメインはヒトである。
【0009】
別の一実施形態において、結合性ポリペプチドはCH1ドメインを含む。一実施形態において、修飾グリカンは、KabatのナンバリングによるCH1ドメインのアミノ酸114位のアスパラギン残基を介して結合性ポリペプチドに対してN結合している。一実施形態において、結合性ポリペプチドは抗体またはイムノアドヘシンである。
【0010】
一実施形態において、エフェクター部分は細胞毒である。別の一実施形態において、細
胞毒は、表1に列挙する細胞毒からなる群から選択される。別の一実施形態において、エフェクター部分は検出剤である。所定の実施形態において、エフェクター部分は標的化部分である。一実施形態において、標的化部分は炭水化物または糖ペプチドである。別の一実施形態において、標的化部分はグリカンである。
【0011】
別の一実施形態において、接続部分は、pH感受性のリンカー、ジスルフィドリンカー、酵素感受性のリンカー、または他の切断可能なリンカー部分を含む。別の一実施形態において、接続部分は、表2または14に示すリンカー部分の群から選択されるリンカー部分を含む。
【0012】
他の態様において、本発明は、本発明の結合性ポリペプチドおよび薬学的に許容される担体または賦形剤を含む組成物を提供する。一実施形態において、治療用または診断用のエフェクター部分の、結合性ポリペプチドに対する比率は4未満である。別の一実施形態において、治療用または診断用のエフェクター部分の、結合性ポリペプチドに対する比率は約2である。
【0013】
別の態様において、本発明は、有効量の本発明の組成物を投与することを含む、それを必要とする患者を処置する方法を提供する。
【0014】
別の一態様において、本発明は、本発明の結合性ポリペプチドをコードする、単離されたポリヌクレオチドを提供する。別の態様において、本発明は、ポリヌクレオチドを含むベクターを提供する。別の態様において、本発明は、ポリヌクレオチドもしくはベクターを含む宿主細胞を提供する。
【0015】
さらに他の態様において、本発明は、本発明の結合性ポリペプチドを作製する方法であって、式(I):
NH-Q-CON-X
式(I)
[式中、
A)Qは、NHまたはOであり、
B)CONは、接続部分であり、
C)Xは、エフェクター部分である]
のエフェクター部分を、酸化されたグリカンを含む変更された結合性ポリペプチドと反応させることを含む方法を提供する。
【0016】
一実施形態において、変更された結合性ポリペプチドは、グリカンを含む結合性ポリペプチドを、穏やかな酸化剤と反応させることによって産生される、酸化されたグリカンを含む。所定の実施形態において、穏やかな酸化剤は過ヨウ素酸ナトリウムである。所定の実施形態において、1mM未満の過ヨウ素酸ナトリウムが用いられる。一実施形態において、酸化剤は、ガラクトースオキシダーゼである。別の一実施形態において、グリカンを含む結合性ポリペプチドは、1つまたは2つの末端シアル酸残基を含む。別の一実施形態において、末端シアル酸残基は、結合性ポリペプチドを、シアリルトランスフェラーゼ、またはシアリルトランスフェラーゼとガラクトシルトランスフェラーゼとの組合せで処理することにより導入される。
【図面の簡単な説明】
【0017】
図1】毒素部分が、抗体のグリカンの酸化されたシアル酸残基にオキシム結合を用いて連結されている、抗体薬物コンジュゲートの合成を示す模式図である。
図2】グリコシル化変異体の発現および精製を示す、クーマシーブルー染色したゲルを示す図である。
図3】αβTCR HEBE1 IgG抗体の変異体の、組換えヒトFcγRIIIa(V158およびF158)に対する結合を評価するのに用いた、表面プラズモン共鳴実験の結果を示す図である。
図4】αβTCR HEBE1 IgG抗体の変異体の、組換えヒトFcγRIに対する結合を評価するのに用いた、表面プラズモン共鳴実験の結果を示す図である。
図5】変異抗αβTCR抗体の存在下の、TNFa、GM-CSF、IFNy、およびIL10に対するPBMCからのサイトカイン放出のプロファイルを示す図である(2日目)。
図6】変異抗αβTCR抗体の存在下の、IL6、IL4、およびIL2に対するPBMCからのサイトカイン放出のプロファイルを示す図である(2日目)。
図7】変異抗αβTCR抗体の存在下の、TNFa、GM-CSF、IFNy、およびIL10に対するPBMCからのサイトカイン放出のプロファイルを示す図である(4日目)。
図8】変異抗αβTCR抗体の存在下の、IL6、IL4、およびIL2に対するPBMCからのサイトカイン放出のプロファイルを示す図である(4日目)。
図9】ウエスタンブロットおよび表面プラズモン共鳴による、2C3変異体の発現レベルを調査する実験の結果を示す図である。
図10】PNGaseF処理前および処理後の2C3変異体のグリコシル化を調査する実験の結果を示す図である。
図11】細胞培養物から単離した2C3変異体に対するグリコシル化部位を調査するSDS-PAGE実験の結果を示す図である。
図12】修飾抗CD52の、組換えヒトFcγRIIIa(V158)に対する結合を評価するのに用いた表面プラズモン共鳴実験の結果を示す図である。FcドメインにS298N/Y300S変異を含む抗CD52を用いて、修飾分子のエフェクター機能を評価した。CD52ペプチドに対する結合(A)、FcγRIIIaに対する結合(V158、B)、およびマウスFcRnに対する対照の結合(C)。
図13】2C3変異体のFc結合特性を調査する表面プラズモン共鳴実験の結果を示す図である。
図14】修飾抗CD52の、FcγRIIIa(Val158)(上記の通り)およびFcγRIIIa(Phe158)両方に対する結合を調査する表面プラズモン共鳴実験の結果を示す図である。FcドメインにS298N/Y300S変異を含む抗CD52抗体を用いて、修飾分子のFcγRIIIa(Val158、図14A)およびFcγRIIIa(Phe58、図14B)に対する結合のエフェクター機能を評価した。
図15】S298N/Y300S変異体およびWT2C3対照(A)におけるC1q結合の分析、ならびにウェルの等価なコーティングを確認するEliza分析の結果を示す図である。
図16】CD-52ペプチド741に対する2C3変異体の結合動力学を測定するプラズモン共鳴実験の結果を示す図である。
図17】WT抗CD-52 2C3およびA114N高グリコシル化変異体の抗原結合親和性を比較するプラズモン共鳴実験の結果を示す図である。
図18-1】2C3変異体のグリカン含量を決定するための等電点電気泳動および質量分析による電荷の特徴付け実験の結果を示す図である。
図18-2】図18-1の続き。
図18-3】図18-2の続き。
図19】WT抗CD-52 2C3および変異体の抗原結合親和性を比較する、濃度(Octet)およびプラズモン共鳴実験の結果を示す図である。
図20】抗TEM1 A114N変異体のさらなるグリコシル化を実証する、SDS-PAGE実験の結果を示す図である。
図21】A114N抗Her2変異体のSDS-PAGEおよび疎水性相互作用クロマトグラフィー分析の結果を示す図である。
図22】アミノオキシ連結によるPEGの2C3 A114N変異体へのコンジュゲーションを実証するSDS-PAGE実験の結果を示す図である。
図23】抗TEM1 A114N高グリコシル化変異体のグリカン含量を決定するためのLC-MS実験の結果を示す図である。
図24】野生型HER2抗体およびA114N抗Her2高グリコシル化変異体のグリカン含量を決定するためのLC-MS実験の結果を示す図である。
図25A】本発明の方法による抗体の部位特異的コンジュゲーションを行うための例示的な方法を示す図である。
図25B】本発明の方法による抗体の部位特異的コンジュゲーションを行うための例示的な方法を示す図である。
図25C】本発明の方法による抗体の部位特異的コンジュゲーションを行うための例示的な方法を示す図である。
図26】本発明の例示的なエフェクター部分である、アミノオキシ-Cys-MC-VC-PABC-MMAEおよびアミノオキシ-Cys-MC-VC-PABC-PEG8-Dol10の合成を示す図である。
図27】シアリル化した(sialylated)HER2抗体に対する特徴付け情報を示す図である。
図28】酸化されたシアリル化した抗HER2抗体に対する特徴付け情報を示す図である。
図29】3つの異なるシアリル化した抗体で調製した複合糖質(glycoconjugate)の、2つの異なるアミノオキシ基との疎水性相互作用クロマトグラフを示す図である。
図30】GAM(+)化学反応を用いて調製した、抗Her2 A114グリコシル化変異体のAO-MMAEとのコンジュゲートのHICクロマトグラフを示す図である。
図31】抗HER2の複合糖質およびチオールコンジュゲートのin vitroの効力の比較を示す図である。
図32】抗FAP B11の複合糖質およびチオールコンジュゲートのin vitroの効力の比較を示す図である。
図33】Her2+腫瘍細胞異種移植片モデルにおける抗HER2の複合糖質およびチオールコンジュゲートのin vivoの効力の比較を示す図である。
図34】S298N/Y300S変異を含む変異体の抗αβTCR抗体のグリカン含量を決定するためのLC-MS実験の結果を示す図である。
図35】野生型の抗αβTCR抗体、およびS298N/Y300S変異を含む変異抗αβTCR抗体の相対的な熱安定性を決定するための円二色性実験の結果を示す図である。
図36】A114N高グリコシル化変異およびAO-MMAEを保有する抗HER抗体と調製したADCに対する細胞増殖アッセイの結果を示す図である。
【発明を実施するための形態】
【0018】
本開示は、結合性ポリペプチド(例えば、抗体)、およびそれとエフェクター部分のコンジュゲート(例えば、薬物コンジュゲート)を提供する。所定の実施形態において、コンジュゲートは、IgG分子などの抗原結合性ポリペプチドの、天然の、または改変されたグリカン内に、部位特異的に改変された薬物-グリカン連結を含む。本開示は、このような抗原結合性ポリペプチドを作製するための、抗原結合性ポリペプチドをコードする核酸、組換え発現ベクター、および宿主細胞も提供する。本明細書で開示される抗原結合性ポリペプチドを用いて疾患を処置する方法も提供する。
【0019】
I.定義
本明細書で用いられる「結合性ポリペプチド」または「結合性ポリペプチド」という用
語は、対象の標的抗原(例えば、ヒト抗原)に対する選択的な結合を担う少なくとも1つの結合部位を含むポリペプチド(例えば、抗体)を意味する。例示的な結合部位には、抗体可変ドメイン、受容体のリガンド結合部位、またはリガンドの受容体結合部位が含まれる。ある態様において、本発明の結合性ポリペプチドは、複数の(例えば、2つ、3つ、4つ、またはそれより多くの)結合部位を含む。
【0020】
本明細書で用いられる「天然の残基」という用語は、結合性ポリペプチド(例えば、抗体またはそのフラグメント)の特定のアミノ酸位置に天然に生じ、人の手によって修飾、導入、または変更されていないアミノ酸残基を意味する。本明細書で用いられる「変更された結合性ポリペプチド」または「変更された結合性ポリペプチド」という用語は、少なくとも1つの非天然の変異させたアミノ酸残基を含む結合性ポリペプチド(例えば、抗体またはそのフラグメント)を含む。
【0021】
本明細書で用いられる「特異的に結合する」という用語は、抗体またはその抗原結合性フラグメントが、最大で約1×10-6M、1×10-7M、1×10-8M、1×10-9M、1×10-10M、1×10-11M、1×10-12M、またはそれ未満の解離定数(Kd)で抗原に結合する能力、および/または非特異的な抗原に対する親和性より少なくとも2倍より高い親和性で抗原に結合する能力を意味する。
【0022】
本明細書で用いられる「抗体」という用語は、対象の抗原に対して重要な既知の特異的免疫反応活性を有する集合体(例えば、インタクトな抗体分子、抗体フラグメント、またはこれらのバリアント)を意味する。抗体および免疫グロブリンは、鎖間共有結合を有する、または有さない軽鎖および重鎖を含む。脊椎動物系の基本的な免疫グロブリン構造は、比較的よく理解されている。
【0023】
下記でより詳しく論じる通り、「抗体」という総称は、生化学的に区別することができる5つの別個のクラスの抗体を含む。5つのクラスの抗体はいずれも明確に本開示の範囲内であるが、以下の議論は、概ねIgGクラスの免疫グロブリン分子に対するものである。IgGに関して、免疫グロブリンは、分子量およそ23000ダルトンの2本の同一の軽鎖、および分子量53000~70000の2本の同一の重鎖を含む。4本の鎖はジスルフィド結合で「Y」型に連結されており、軽鎖は、「Y」の開口部から始まり可変領域に続く部分で重鎖と繋がっている。
【0024】
免疫グロブリンの軽鎖は、カッパまたはラムダ(κ、λ)のいずれかに分類される。各重鎖のクラスはカッパまたはラムダの軽鎖のいずれかと結合し得る。一般的に、軽鎖および重鎖は相互に共有結合しており、2本の重鎖の「尾」の位置は、免疫グロブリンがハイブリドーマ、B細胞、または遺伝子操作された宿主細胞のいずれかによって産生される場合は共有結合でのジスルフィド連結または非共有結合での連結によって相互に結合している。重鎖では、アミノ酸配列は、Y型のフォーク状の終端のN末端から各鎖の底部のC末端方向に配列される。当業者であれば、重鎖は、ガンマ、ミュー、アルファ、デルタ、またはイプシロン(γ、μ、α、δ、ε)と分類され、この中にいくつかのサブクラス(例えば、γ1~γ4)があることを理解されよう。抗体の「クラス」をそれぞれIgG、IgM、IgA、IgG、またはIgEと決定するのは、この鎖の性質である。免疫グロブリンアイソタイプのサブクラス(例えば、IgG1、IgG2、IgG3、IgG4、IgA1など)は十分に特徴付けられており、機能的な特化をもたらすことが知られている。当業者であれば、これらのクラスおよびアイソタイプ各々の修飾型は、本開示を考慮すれば容易に認識することが可能なことから、これらも本開示の範囲内である。
【0025】
軽鎖および重鎖はいずれも、構造的に相同な領域と機能的に相同な領域とに分割される。「領域」という用語は、免疫グロブリンまたは抗体の鎖の一要素または一部分を意味し
、定常領域または可変領域、および前記領域のさらに別個の一要素または一部分を含む。例えば、軽鎖可変領域は、本明細書で規定される「フレームワーク領域」または「FR」中に点在する「相補性決定領域」または「CDR」を含む。
【0026】
免疫グロブリン重鎖または軽鎖の領域は、「定常」(C)領域または「可変」(V)領域と定義される場合があり、「定常領域」の場合は、多様なクラスメンバーの領域内の配列の変化が相対的にないことに基づき、または「可変領域」の場合は、多様なクラスメンバーの領域内で重大な変化があることに基づきそのように定義される。「定常領域」および「可変領域」という用語は、機能的に用いられる場合もある。この点で、免疫グロブリンまたは抗体の可変領域が、抗原の認識および特異性を決定することが理解されよう。反対に、免疫グロブリンまたは抗体の定常領域は、例えば、分泌、経胎盤移行性、Fc受容体の結合性、補体の結合性などの重要なエフェクター機能を付与する。免疫グロブリンの多様なクラスの定常領域のサブユニット構造および三次元配置がよく知られている。
【0027】
免疫グロブリン重鎖および軽鎖の定常領域および可変領域は、ドメインに折りたたまれる。「ドメイン」という用語は、βプリーツシートおよび/または鎖間ジスルフィド結合などによって安定化されたペプチドループを含む(例えば、3個から4個のペプチドループを含む)、重鎖または軽鎖の球状の領域を意味する。免疫グロブリン軽鎖上の定常領域ドメインは、それぞれ同じ意味で「軽鎖定常領域ドメイン」、「CL領域」、または「CLドメイン」と呼ばれる。重鎖上の定常ドメイン(例えば、ヒンジ、CH1、CH2、またはCH3ドメイン)は、それぞれ同じ意味で「重鎖定常領域ドメイン」、「CH」領域ドメイン、または「CHドメイン」と呼ばれる。軽鎖上の可変ドメインは、それぞれ同じ意味で「軽鎖可変領域ドメイン」、「VL領域ドメイン」、または「VLドメイン」と呼ばれる。重鎖上の可変ドメインは、それぞれ同じ意味で「重鎖可変領域ドメイン」、「VH領域ドメイン」、または「VHドメイン」と呼ばれる。
【0028】
慣例により、可変定常領域ドメインのナンバリングは、可変定常領域ドメインが免疫グロブリンまたは抗体の抗原結合部位またはアミノ末端からより遠位になるに従って増大する。免疫グロブリンの重鎖および軽鎖それぞれのN末端は可変領域であり、C末端は定常領域であるが、実際には重鎖および軽鎖のカルボキシ末端はそれぞれCH3およびCLドメインに含まれる。したがって、免疫グロブリンの軽鎖ドメインは、VL-CLの配置で並べられ、重鎖ドメインはVH-CH1-ヒンジ-CH2-CH3の配置で並べられる。
【0029】
CH1、ヒンジ、CH2、CH3、およびCLドメインにおけるアミノ酸位置などの重鎖定常領域におけるアミノ酸位置は、Kabatインデックスナンバリングシステムに従ってナンバリングしてもよい(Kabatら、「Sequences of Proteins of Immunological Interest」、アメリカ合衆国保健福祉省、第5版、1991年を参照されたい)。あるいは、抗体のアミノ酸位置は、EUインデックスナンバリングシステムに従ってナンバリングしてもよい(Kabatら、同書を参照されたい)。
【0030】
本明細書で用いられる「VHドメイン」という用語は、免疫グロブリン重鎖のアミノ末端可変ドメインを含み、「VLドメイン」という用語は、免疫グロブリン軽鎖のアミノ末端可変ドメインを含む。
【0031】
本明細書で用いられる「CH1ドメイン」という用語は、例えば、Kabatのナンバリングシステムの約114~223位(EU118~215位)にわたる免疫グロブリン重鎖の第1の(アミノ末端の一番端の)定常領域ドメインを含む。CH1ドメインは、免疫グロブリン重鎖のVHドメインとヒンジ領域のアミノ末端とに接しており、Fc領域の一部を形成しない。
【0032】
本明細書で用いられる「ヒンジ領域」という用語は、CH1ドメインをCH2ドメインに繋げる重鎖分子の一部分を含む。このヒンジ領域は、およそ25個の残基を含み、柔軟であることから、2つのN末端抗原結合性領域を独立して動かすことができる。ヒンジ領域は、上部、中央、および下部のヒンジドメインである3つの個々のドメインに細分することができる(Rouxら、J.Immunol.、1998年、161巻、4083頁)。
【0033】
本明細書で用いられる「CH2ドメイン」という用語は、例えば、Kabatのナンバリングシステムにおいて約244~360位(EU231~340位)にわたる重鎖免疫グロブリン分子の一部分を含む。CH2ドメインは、他のドメインと緊密に対形成しないという点で独特である。それとは異なり、インタクトな天然IgG分子の2つのCH2ドメインの間には、2つのN結合型分岐状炭水化物鎖が介在する。一実施形態において、本開示の結合性ポリペプチドは、IgG1分子(例えば、ヒトIgG1分子)に由来するCH2ドメインを含む。
【0034】
本明細書で用いられる「CH3ドメイン」という用語は、CH2ドメインのN末端からおよそ110残基にわたる、例えばKabatのナンバリングシステムの約361~476位(EU341~445位)にわたる重鎖免疫グロブリン分子の一部分を含む。CH3ドメインは、典型的には抗体のC末端部分を形成する。しかし、いくつかの免疫グロブリンでは、CH3ドメインからさらなるドメインが伸長して分子のC末端部分(例えば、IgMのμ鎖およびIgEのe鎖におけるCH4ドメイン)を形成する場合もある。一実施形態において、本開示の結合性ポリペプチドは、IgG1分子(例えば、ヒトIgG1分子)に由来するCH3ドメインを含む。
【0035】
本明細書で用いられる「CLドメイン」という用語は、例えばKabatの約107A~216位にわたる免疫グロブリン軽鎖の定常領域ドメインを含む。CLドメインはVLドメインに隣接する。一実施形態において、本開示の結合性ポリペプチドは、カッパ軽鎖(例えば、ヒトカッパ軽鎖)に由来するCLドメインを含む。
【0036】
本明細書で用いられる「Fc領域」という用語は、パパイン切断部位(すなわち、重鎖定常領域の最初の残基を114として、IgGの残基216)のすぐ上流のヒンジ領域に始まり、抗体のC末端で終わる、重鎖定常領域部分と規定される。したがって、完全なFc領域は、少なくとも、ヒンジドメイン、CH2ドメイン、およびCH3ドメインを含む。
【0037】
本明細書で用いられる「天然のFc」という用語は、単量体の形態かまたは多量体の形態かに関わらず、抗体の消化によって得られた、または他の手段によって生成させた非抗原結合性フラグメントの配列を含む分子を意味し、ヒンジ領域を含み得る。天然のFcのオリジナルの免疫グロブリンの起源はヒト起源であるのが好ましく、あらゆる免疫グロブリンであってよいが、IgG1およびIgG2が好ましい。天然のFc分子は、共有結合性(すなわち、ジスルフィド結合)および非共有結合性の会合によって二量体または多量体の形態に連結できる単量体ポリペプチドで構成される。天然のFc分子の単量体サブユニット間の分子間ジスルフィド結合の数は、クラス(例えば、IgG、IgA、およびIgE)またはサブクラス(例えば、IgG1、IgG2、IgG3、IgA1、およびIgGA2)に応じて1から4までの範囲である。天然のFcの一例は、IgGのパパイン消化によって得られた、ジスルフィド結合した二量体である。本明細書で用いられる「天然のFc」という用語は、単量体、二量体、および多量体の形態に対する総称である。
【0038】
本明細書で用いられる「Fcバリアント」という用語は、天然のFcから改変されてい
るが、サルベージ受容体であるFcRn(新生児Fc受容体)に対する結合部位を依然として含む、分子または配列を意味する。例示的なFcバリアント、およびこれらのサルベージ受容体との相互作用は、当技術分野において知られている。このように、「Fcバリアント」という用語は、非ヒトの天然Fcからヒト化された分子または配列を含み得る。さらに、天然のFcは、本発明の抗体様の結合性ポリペプチドに必要とされない、構造上の特徴または生物学的活性を提供するため除去することができる領域を含む。このように、「Fcバリアント」という用語は、(1)ジスルフィド結合の形成、(2)選択される宿主細胞との不適合性、(3)選択される宿主細胞で発現される時のN末端の不均一性、(4)グリコシル化、(5)補体との相互作用、(6)サルベージ受容体以外のFc受容体に対する結合、または(7)抗体依存性細胞傷害(ADCC)に影響を及ぼし、または関与する、1つもしくはそれ以上の天然のFc部位もしくは残基が欠失した、または1つもしくはそれ以上のFc部位もしくは残基が修飾された分子または配列を含む。
【0039】
本明細書で用いられる「Fcドメイン」という用語は、天然のFcおよびFcバリアント、ならびに上記で規定された配列を包含する。Fcバリアントおよび天然のFc分子と共に、「Fcドメイン」という用語は、全体の抗体から消化により得られたかまたは他の手段によって生成したかに関わらず、単量体または多量体の形態の分子を含む。
【0040】
上記で指摘した通り、抗体は、抗体の可変領域により、抗原上のエピトープを選択的に認識し、特異的に結合することができるようになる。すなわち、抗体のVLドメインおよびVHドメインが組み合わさって、3次元の抗原結合部位を規定する可変領域(Fv)が形成される。抗体のこの4次構造が、Yの各腕の終端に存在する抗原結合部位を形成する。より詳しく述べると、抗原結合部位は、重鎖および軽鎖の可変領域の各々の上の3つの相補性決定領域(CDR)によって規定される。本明細書で用いられる「抗原結合部位」という用語は、抗原(例えば、細胞表面または可溶性抗原)に特異的に結合する(と免疫反応する)部位を含む。抗原結合部位は、免疫グロブリンの重鎖および軽鎖の可変領域を含み、これら可変領域によって形成される結合部位が抗体の特異性を決定する。抗原結合部位は、抗体ごとに変動する可変領域によって形成される。本開示の変更された抗体は少なくとも1つの抗原結合部位を含む。
【0041】
所定の実施形態において、本開示の結合性ポリペプチドは、結合性ポリペプチドと選択された抗原との会合をもたらす、少なくとも2つの抗原結合性ドメインを含む。抗原結合性ドメインは、必ずしも同じ免疫グロブリン分子由来でなくてもよい。この点において、可変領域は、体液性応答を開始し、所望の抗原に対する免疫グロブリンを産生するように誘発され得るあらゆるタイプの動物由来であってもよい。したがって、結合性ポリペプチドの可変領域は、例えば、哺乳動物起源であってよく、例えば、ヒト、マウス、ラット、ヤギ、ヒツジ、非ヒト霊長動物(例えば、カニクイザル、マカクなど)、オオカミ、またはラクダ(例えば、ラクダ、ラマ、および関連の種由来)であってよい。
【0042】
天然に存在する抗体では、各単量体の抗体上に存在する6個のCDRは、抗体が水性環境中でその3次元立体構造を呈すると抗原結合部位が形成されるように特異的に配置されたアミノ酸の短い非隣接配列である。重鎖および軽鎖可変領域の残りは、アミノ酸配列における分子間可変性をあまり示さず、フレームワーク領域と呼ばれる。フレームワーク領域は、概ねβシート立体配置をとり、CDRは、βシート構造に接続するか、場合によりβシート構造の一部を形成するループを形成する。このように、これらのフレームワーク領域は、鎖間の、非共有結合性の相互作用によって6個のCDRを正確な位置に配置させる骨格を形成するように作用する。位置付けされたCDRによって形成される抗原結合性ドメインは、免疫反応性の抗原上のエピトープに相補的である表面を規定する。この相補的な表面により、抗体の、免疫反応性の抗原エピトープに対する非共有結合が促進される。
【0043】
本発明の例示的な結合性ポリペプチドは、抗体バリアントを含む。本明細書で用いられる「抗体バリアント」という用語は、天然に存在しないように変更された、合成された、改変された形態の抗体、例えば、少なくとも2つの重鎖の一部分を含むが、2つの完全な重鎖は含まない抗体(例えば、ドメイン欠失抗体またはミニボディ(minibodies))、2つ以上の異なる抗原または単一の抗原上の異なるエピトープに結合するように変更された多特異的な形態の抗体(例えば、二重特異性、三重特異性など)、scFv分子に繋がっている重鎖分子などを含む。さらに、「抗体バリアント」という用語は、多価の形態の抗体(例えば、3価、4価など)、同じ抗原の3つ、4つ、またはそれより多くのコピーに結合する抗体を含む。
【0044】
本明細書で用いられる「結合価」という用語は、ポリペプチドにおける潜在的な標的結合部位の数を意味する。各標的結合部位は、1個の標的分子または標的分子上の特定の部位に特異的に結合する。ポリペプチドが1つより多くの標的結合部位を含む場合、各標的結合部位は、同じまたは異なる分子に特異的に結合し得る(例えば、異なるリガンドもしくは異なる抗原、または同じ抗原上の異なるエピトープに結合し得る)。対象の結合性ポリペプチドが、ヒト抗原分子に特異的な結合部位を少なくとも1つ有するのが好ましい。
【0045】
「特異性」という用語は、所与の標的抗原(例えば、ヒト標的抗原)と特異的に結合する(例えば、免疫反応する)能力を意味する。結合性ポリペプチドは単一特異性であり、標的に特異的に結合する1つまたはそれ以上の結合部位を含んでいてもよく、またはポリペプチドは多特異性であり、同じもしくは異なる標的に特異的に結合する2つ以上の結合部位を含んでいてもよい。所定の実施形態において、本発明の結合性ポリペプチドは、同じ標的の2つの異なる(例えば、重複しない)部分に特異的である。所定の実施形態において、本発明の結合性ポリペプチドは、1つより多くの標的に特異的である。腫瘍細胞上で発現される抗原に結合する抗原結合部位を含む例示的な結合性ポリペプチド(例えば、抗体)が当技術分野において知られており、このような抗体からの1つまたはそれ以上のCDRが、本発明の抗体に含まれていてもよい。
【0046】
「連結部分」という用語は、本明細書で開示される結合性ポリペプチドにエフェクター部分を連結させることができる部分を含む。連結部分が切断できるように(例えば、酵素により切断できるように、もしくはpH感受性となるように)、または切断できないように、連結部分を選択してもよい。例示的な連結部分を、本明細書の表2に記載する。
【0047】
本明細書で用いられる「エフェクター部分」という用語は、生物学的活性または他の機能的活性を有する作用剤(例えば、タンパク質、核酸、脂質、炭水化物、糖ペプチド、薬物部分、およびこれらのフラグメント)を含む。例えば、結合性ポリペプチドにコンジュゲートしたエフェクター部分を含む修飾結合性ポリペプチドは、コンジュゲートしていない抗体に比べて少なくとも1つのさらなる機能または性質を有する。例えば、細胞毒性剤(例えば、エフェクター部分)の、結合性ポリペプチドへのコンジュゲーションは、第2の機能として(すなわち、抗原結合性に加えて)、薬物細胞毒性を有する結合性ポリペプチドの形成をもたらす。別の一例では、第2の結合性ポリペプチドの、結合性ポリペプチドへのコンジュゲーションは、さらなる結合特性を付与し得る。所定の実施形態において、エフェクター部分が遺伝的にコードされる治療用または診断用のタンパク質または核酸である場合、エフェクター部分は、当技術分野においてよく知られている、ペプチド合成法または組換えDNA法のいずれかによって合成し、または発現させることができる。別の一態様において、エフェクター部分が非遺伝的にコードされるペプチド、または薬物部分である場合、エフェクター部分は、人工的に合成されてもよいし、または天然の供給源から精製されてもよい。本明細書で用いられる「薬物部分」という用語は、抗炎症剤、抗癌剤、抗感染剤(例えば、抗真菌剤、抗菌剤、抗寄生虫剤、抗ウイルス剤など)、および
麻酔性の治療剤を含む。さらなる一実施形態において、薬物部分は、抗癌剤または細胞毒性剤である。適用可能な薬物部分はまた、プロドラッグを含み得る。例示的なエフェクター部分を、本明細書の表1に記載する。
【0048】
所定の実施形態において、「エフェクター部分」は「標的化部分」を含む。本明細書で用いられる「標的化部分」の語は、標的分子に結合するエフェクター部分を意味する。標的化部分は、制限なく、タンパク質、核酸、脂質、炭水化物(例えば、グリカン)、およびこれらの組合せ(例えば、糖タンパク質、糖ペプチド、および糖脂質)を含むことができる。
【0049】
本明細書で用いられる「プロドラッグ」という用語は、親の薬物に比べて活性が低く、反応性が低く、または副作用を起こしにくく、酵素的に活性化することができ、またはそれ以外の方法でin vivoでより活性な形態に変換することができる、薬学上活性な薬剤の前駆体または誘導体の形態を意味する。本開示の組成物で適用可能なプロドラッグとしては、これらに限定されないが、より活性な細胞毒性の遊離の薬物に変換することができる、ホスフェート含有プロドラッグ、アミノ酸含有プロドラッグ、チオホスフェート含有プロドラッグ、サルフェート含有プロドラッグ、ペプチド含有プロドラッグ、β-ラクタム含有プロドラッグ、場合により置換されているフェノキシアセトアミド含有プロドラッグ、または場合により置換されているフェニルアセトアミド含有プロドラッグ、5-フルオロシトシンおよび他の5-フルオロウリジンプロドラッグが挙げられる。当業者であれば、本開示の修飾結合性ポリペプチドを調製する目的で、この化合物の反応をより便利にするために、所望の薬物部分またはそのプロドラッグに化学修飾を行うことができる。薬物部分には、本明細書に記載する薬物部分の誘導体、薬学的に許容される塩、エステル、アミド、およびエーテルも含まれる。誘導体は、特定の薬物の所望の治療活性を改善できるかまたは著しく低減させない、本明細書で特定された薬物に対する修飾を含む。
【0050】
本明細書で用いられる「抗癌剤」という用語は、新生物細胞または腫瘍細胞の成長および/または増殖に有害であり、悪性疾患を低減し、阻害し、または破壊するように作用し得る薬剤を含む。このような薬剤の例としては、これらに限定されないが、細胞分裂阻害剤、アルキル化剤、抗生物質、細胞毒性ヌクレオシド、チューブリン結合剤、ホルモン、ホルモンアンタゴニスト、細胞毒性剤などが挙げられる。細胞毒性剤には、トマイマイシン誘導体、メイタンシン誘導体、クリプトフィシン(cryptophycine)誘導体、アントラサイクリン誘導体、ビスホスホネート誘導体、レプトマイシン誘導体、ストレプトニグリン誘導体、アウリスタチン誘導体、およびデュオカルマイシン誘導体が含まれる。免疫反応性の細胞または悪性細胞の成長を遅延させ、または遅くするように作用するあらゆる薬剤が本開示の範囲内である。
【0051】
本明細書で用いられる「抗原」または「標的抗原」という用語は、結合性ポリペプチドの結合部位によって結合することが可能な分子または分子の一部を意味する。標的抗原は1つまたはそれ以上のエピトープを有し得る。
【0052】
II.結合性ポリペプチド
一態様において、本開示は、グリコシル化されたドメイン、例えば、グリコシル化された定常ドメインを含む、結合性ポリペプチド(例えば、抗体、抗体フラグメント、抗体バリアント、および融合タンパク質)を提供する。本明細書に開示する結合性ポリペプチドは、N結合型グリコシル化部位を有するドメインを含むあらゆる結合性ポリペプチドを包含する。所定の実施形態において、結合性ポリペプチドは、抗体、またはそのフラグメントもしくは誘導体である。あらゆる源または種からのあらゆる抗体を、本明細書に開示する結合性ポリペプチドにおいて用いることができる。適切な抗体には、制限なく、ヒト抗体、ヒト化抗体、またはキメラ抗体が含まれる。
【0053】
所定の実施形態において、グリコシル化ドメインはFcドメインである。所定の実施形態において、グリコシル化ドメインは、N297の天然のグリコシル化ドメインである。
【0054】
他の実施形態において、グリコシル化ドメインは、改変されたグリコシル化ドメインである。Fcドメインにおける例示的な改変されたグリコシル化ドメインは、EUナンバリングによるアミノ酸298位にアスパラギン残基;およびEUナンバリングによるアミノ酸300位にセリンまたはスレオニン残基を含む。
【0055】
本明細書で開示される結合性ポリペプチドにおいては、あらゆる免疫グロブリンのクラス(例えば、IgM、IgG、IgD、IgA、およびIgE)ならびに種からのFcドメインを用いることができる。異なる種またはIgクラスからのFcドメインの一部を含むキメラのFcドメインも用いることができる。所定の実施形態において、FcドメインはヒトIgG1のFcドメインである。ヒトIgG1のFcドメインの場合、野生型アミノ酸のKabatの298位のアスパラギンへの変異、およびKabatの300位のセリンまたはスレオニンへの変異により、N結合型グリコシル化コンセンサス部位(すなわち、Xがプロリン以外のあらゆるアミノ酸である、N-X-T/Sシークオン)の形成がもたらされる。しかし、他の種および/またはIgクラスもしくはアイソタイプのFcドメインの場合、当業者であれば、N-X-T/Sシークオンを再び作製するためにプロリン残基が存在する場合、FcドメインのKabatの299位を変異させることが必要な場合があることを理解されよう。
【0056】
他の実施形態において、本開示は、N結合型グリコシル化部位を有する少なくとも1つのCH1ドメインを含む、結合性ポリペプチド(例えば、抗体、抗体フラグメント、抗体バリアント、および融合タンパク質)を提供する。このような例示的な結合性ポリペプチドは、例えば、Kabatのナンバリングによる114位に改変されたグリコシル化部位を含むことができる。
【0057】
あらゆる免疫グロブリンのクラス(例えば、IgM、IgG、IgD、IgA、およびIgE)ならびに種からのCH1ドメインを、本明細書に開示する結合性ポリペプチドにおいて用いることができる。異なる種またはIgのクラスからのCH1ドメインのポーションを含むキメラのCH1ドメインも用いることができる。所定の実施形態において、CH1ドメインは、ヒトIgG1のCH1ドメインである。ヒトIgG1ドメインの場合、114位の野生型アミノ酸のアスパラギンへの変異により、N結合型グリコシル化コンセンサス部位(すなわち、Xがプロリン以外のあらゆるアミノ酸である、N-X-T/Sシークオン)の形成がもたらされる。しかし、他の種および/またはIgクラスもしくはアイソタイプの他のCH1ドメインの場合、当業者であれば、CH1ドメインの115位および/または116位を変異させて、N-X-T/Sシークオンを作製することが必要であり得ることを理解されよう。
【0058】
所定の実施形態において、本開示の結合性ポリペプチドは、抗体の抗原結合性フラグメントを含み得る。「抗原結合性フラグメント」という用語は、抗原に結合するか、または抗原結合(すなわち、特異的結合)に関してインタクトな抗体と(すなわち、抗原結合性フラグメントが誘導されたインタクトな抗体と)競合する、免疫グロブリンまたは抗体のポリペプチドフラグメントを意味する。抗原結合性フラグメントは、当技術分野においてよく知られている組換え法または生化学的方法によって生成できる。例示的な抗原結合性フラグメントは、Fv、Fab、Fab’、および(Fab’)2を含む。好ましい実施形態において、本開示の抗原結合性フラグメントは、少なくとも1つの改変されたグリコシル化部位を含む変更された抗原結合性フラグメントである。例示の一実施形態において、本開示の変更された抗原結合性フラグメントは、上記に記載した変更されたVHドメイ
ンを含む。別の例示的な一実施形態において、本開示の変更された抗原結合性フラグメントは、上記に記載する変更されたCH1ドメインを含む。
【0059】
例示的な実施形態において、結合性ポリペプチドは、単鎖可変領域配列(ScFv)を含む。単鎖可変領域の配列は、柔軟なリンカーによってVHドメインに連結しているVLドメインなど、1つまたはそれ以上の抗原結合部位を有する単一のポリペプチドを含む。ScFv分子は、VH-リンカー-VLの配置またはVL-リンカー-VHの配置で構築できる。抗原結合部位を構成するVLドメインとVHドメインとを連結する柔軟なヒンジは、好ましくはアミノ酸残基約10個から約50個を含む。接続ペプチドは当技術分野において知られている。本発明の結合性ポリペプチドは、少なくとも1個のscFvおよび/または少なくとも1個の定常領域を含み得る。一実施形態において、本開示の結合性ポリペプチドは、CH1ドメイン(例えば、Kabatの114位にアスパラギン残基を含むCH1ドメイン)、ならびに/またはCH2ドメイン(例えば、EU298位にアスパラギン残基、およびEU300位にセリンもしくはスレオニン残基を含むCH2ドメイン)を含む抗体またはフラグメントに連結または融合した少なくとも1つのscFvを含み得る。
【0060】
ある例示的な実施形態において、本開示の結合性ポリペプチドは、ScFv分子(例えば、変更されたScFv分子)を有する抗体をコードするDNA配列を融合することにより作製される、多価(例えば、4価)抗体である。例えば、一実施形態において、これらの配列は、ScFv分子(例えば、変更されたScFv分子)がそのN末端またはC末端で柔軟なリンカー(例えば、gly/serリンカー)によって抗体のFcフラグメントに連結するように組み合わされている。別の一実施形態において、本開示の4価抗体は、ScFv分子を、CH1ドメイン(例えば、Kabatの114位にアスパラギン残基を含むCH1ドメイン)に融合した接続ペプチドに融合させてScFv-Fabの4価分子を構築することにより作製することができる。
【0061】
別の一実施形態において、本開示の結合性ポリペプチドは変更されたミニボディである。本開示の変更されたミニボディは、CH3ドメインまたはその一部に接続ペプチドによって融合した、各々がScFv分子(例えば、上記に記載した変更されたVHドメインを含む変更されたScFv分子)を含む2本のポリペプチド鎖を構成する二量体分子である。ミニボディは、ScFv構成成分を構築し、当技術分野で説明されている方法を用いてペプチド-CH3構成成分を接続することにより作製することができる(例えば、米国特許第5,837,821号またはWO94/09817Alを参照されたい)。別の一実施形態において、4価のミニボディを構築することができる。4価のミニボディは、2個のScFv分子を柔軟なリンカーを用いて連結する以外は、ミニボディと同じ方法で構築することができる。連結されたscFv-scFv構築物は、次いで、CH3ドメインに繋げられる。
【0062】
別の一実施形態において、本開示の結合性ポリペプチドは二重特異性抗体を含む。二重特異性抗体は、各々がscFv分子に類似のポリペプチドを有するが、同じポリペプチド鎖上のVLおよびVHドメインが相互作用することができないように、両方の可変ドメインを接続する短い(10個未満、好ましくは1~5個の)アミノ酸残基のリンカーを通常有する、二量体の、4価の分子である。代わりに、1つのポリペプチド鎖のVLおよびVHドメインは、第2のポリペプチド鎖上のVHおよびVLドメインと(それぞれ)相互作用する(例えば、WO02/02781を参照されたい)。本開示の二重特異性抗体は、CH3ドメインに融合したscFv分子を含む。
【0063】
他の実施形態において、本発明の結合性ポリペプチドは、同じポリペプチド鎖上に連続して1つまたはそれ以上の可変ドメインを含む多重特異的または多価の抗体、例えば、タ
ンデム型可変ドメイン(TVD)ポリペプチドを含む。例示的なTVDポリペプチドは、米国特許第5,989,830号に記載されている「ダブルヘッド」または「デュアルFv」の立体配置を含む。デュアルFv立体配置では、2つの異なる抗体の可変ドメインが、2つの別々の鎖(重鎖1本および軽鎖1本)上でタンデム型の配置で発現され、この場合、1本のポリペプチド鎖に、VHドメインがペプチドリンカーで隔てられて連続2つ存在し(VH1-リンカー-VH2)、他のポリペプチド鎖はペプチドリンカーによって連続して接続された相補的なVLドメインからなる(VL1-リンカー-VL2)。交差したダブルヘッドの立体配置では、2つの異なる抗体の可変ドメインが、タンデム型の配置で2つの別々のポリペプチド鎖(重鎖1本および軽鎖1本)上に発現され、この場合、1本のポリペプチド鎖は、2つのVHドメインがペプチドリンカーで隔てられたて連続して存在し(VH1-リンカー-VH2)、他のポリペプチド鎖は、逆の配置でペプチドリンカーによって連続して接続された相補的なVLドメインからなる(VL2-リンカー-VL1)。「デュアル-Fv」のフォーマットに基づいたさらなる抗体バリアントは、デュアル-可変ドメインIgG(DVD-IgG)二重特異的抗体(米国特許第7,612,181号を参照されたい)およびTBT1フォーマット(US2010/0226923A1を参照されたい)を含む。定常ドメインをデュアル-Fvのそれぞれの鎖に(CH1-Fcを重鎖に、カッパまたはラムダ定常ドメインを軽鎖に)付加することにより、さらなる修飾をまったく必要とせずに機能的な二重特異的抗体がもたらされる(すなわち、安定性を増強するための定常ドメインが明確に付加される)。
【0064】
別の例示的な一実施形態において、結合性ポリペプチドは、「ダブルヘッド」の立体配置(その全文が参照によって本明細書に組み入れられる、US20120251541A1を参照されたい)に基づく、交差した二重可変ドメインIgG(CODV-IgG)を有する二重特異的抗体を含む。CODV-IgG抗体バリアントは、連続してCLドメインに接続しているVLドメイン(VL1-L1-VL2-L2-CL)を有する1本のポリペプチド鎖、および連続して反対の配向においてCH1ドメインに接続している相補的なVHドメイン(VH2-L3-VH1-L4-CH1)を有する第2のポリペプチド鎖を有し、ポリペプチド鎖は交差した軽鎖-重鎖対を形成する。所定の実施形態において、第2のポリペプチドはFcドメインにさらに接続していてもよい(VH2-L3-VH1-L4-CH1-Fc)。所定の実施形態において、リンカーL3は、リンカーL1の少なくとも2倍の長さであり、かつ/またはリンカーL4はリンカーL2の少なくとも2倍の長さである。例えば、L1およびL2はアミノ酸残基の長さ1~3個であってよく、L3はアミノ酸残基の長さ2から6個であってよく、L4はアミノ酸残基の長さ4から7個であってよい。適切なリンカーの例は、単一のグリシン(Gly)残基、ジグリシンペプチド(Gly-Gly)、トリペプチド(Gly-Gly-Gly)、グリシン残基4個のペプチド(Gly-Gly-Gly-Gly)、グリシン残基5個のペプチド(Gly-Gly-Gly-Gly-Gly)、グリシン残基6個のペプチド(Gly-Gly-Gly-Gly-Gly-Gly)、グリシン残基7個のペプチド(Gly-Gly-Gly-Gly-Gly-Gly-Gly)、グリシン残基8個のペプチド(Gly-Gly-Gly-Gly-Gly-Gly-Gly-Gly)を含む。ペプチドGly-Gly-Gly-Gly-Ser、およびペプチドGly-Gly-Gly-Gly-Ser-Gly-Gly-Gly-Gly-Serなどの他の組合せのアミノ酸残基を用いてもよい。
【0065】
所定の実施形態において、結合性ポリペプチドは、抗体定常領域に融合した非抗体結合領域(例えば、受容体、リガンド、または細胞接着分子)を含む、イムノアドヘシン分子を含む(例えば、その全文が参照によって本明細書に組み入れられる、Ashkenaziら、Methods、1995年、8巻(2)、104~115号を参照されたい)。
【0066】
所定の実施形態において、結合性ポリペプチドは免疫グロブリン様ドメインを含む。適
切な免疫グロブリン様ドメインとしては、これらに限定されないが、フィブロネクチンドメイン(例えば、その全文が参照によって本明細書に組み入れられる、Koideら(2007年)、Methods Mol.Biol.、352巻、95~109頁、DARPin(例えば、その全文が参照によって本明細書に組み入れられる、Stumppら(2008年)、Drug Discov.Today、13巻(15~16)、695~701頁を参照されたい)、プロテインAのZドメイン(その全文が参照によって本明細書に組み入れられる、Nygrenら(2008年)、FEBS J.、275巻(11)、2668~76頁を参照されたい)、リポカリン(例えば、その全文が参照によって本明細書に組み入れられる、Skerraら(2008年)、FEBS J.、275巻(11)、2677~83頁を参照されたい)、アフィリン(Affilins)(例えば、その全文が参照によって本明細書に組み入れられる、Ebersbachら(2007年)、J.Mol.Biol.、372巻(1)、172~85頁を参照されたい)アフィチン(Affitins)(例えば、その全文が参照によって本明細書に組み入れられる、Krehenbrinkら(2008年)、J.Mol.Biol.、383巻(5)、1058~68頁を参照されたい)、アヴィマー(Avimers)(例えば、その全文が参照によって本明細書に組み入れられる、Silvermanら(2005年)、Nat.Biotechnol.、23巻(12)、1556~61頁を参照されたい)、フィノマー(Fynomers)(例えば、その全文が参照によって本明細書に組み入れられる、Grabulovskiら(2007年)、J Biol Chem、282巻(5)、3196~3204頁を参照されたい)、およびクニッツ(Kunitz)ドメインペプチド(例えば、その全文が参照によって本明細書に組み入れられる、Nixonら(2006年)、Curr Opin Drug Discov Devel、9巻(2)、261~8頁を参照されたい)が挙げられる。
【0067】
III.N結合型グリカン
所定の実施形態において、本発明の結合性ポリペプチドは、結合性ポリペプチドのポリペプチドバックボーンにおけるグリコシル化部位に、アスパラギン残基を介して「N-連結」している、N結合型グリカンを使用する。グリコシル化部位は天然でも、または改変されたグリコシル化部位でもよい。さらに、またはあるいは、グリカンは、天然のグリカンでも、または非天然の連結を含む改変されたグリカンでもよい。
【0068】
所定の例示的な実施形態において、本発明の結合性ポリペプチドは、抗体Fcドメインの天然のグリコシル化部位を含む。この天然のグリコシル化部位は、EUナンバリングによるFcドメインの297位に野生型のアスパラギン残基を含む(N297)。この位置にある天然のN結合型グリカンは、一般的にβ-グリコシルアミド連結によってN297側鎖の窒素基に連結している。しかし、技術分野で認められている、他の適切な連結も用いることができる。他の例示的な実施形態において、本発明の結合性ポリペプチドは、1つまたはそれ以上の改変されたグリコシル化部位を含む。このような改変されたグリコシル化部位は、結合性ポリペプチドのポリペプチドバックボーンに1つまたはそれ以上の野生型アミノ酸の、細胞のグリコシル化酵素によってN-グリコシル化することができるアスパラギン残基での置換を含む。本発明の、例示的な改変されたグリコシル化部位は、Fcドメインのアミノ酸298位(298N)またはCH1ドメインのアミノ酸114位(114N)のアスパラギン変異の導入を含む。
【0069】
あらゆるタイプの天然に存在する、または合成の(すなわち、非天然の)N結合型グリカンが、本発明の結合性ポリペプチドのグリコシル化部位に連結することができる。所定の実施形態において、グリカンは糖(例えば、オリゴ糖の末端に位置する糖残基)を含み、糖は、酸化されて(例えば、過ヨウ素酸処理またはガラクトースオキシダーゼによって)、エフェクター部分(例えば、反応性アルデヒド基)に対するコンジュゲーションに適する基を生成することができる。適切な酸化可能な糖としては、これらに限定されないが
、ガラクトースおよびシアル酸(例えば、N-アセチルノイラミン酸)が挙げられる。所定の実施形態において、グリカンは二分岐グリカンである。所定の実施形態において、グリカンは天然に存在する哺乳動物の糖型である。
【0070】
グリコシル化は、当技術分野において知られているあらゆる手段によって達成できる。所定の実施形態において、グリコシル化は、N結合型グリコシル化が可能である細胞中で結合性ポリペプチドを発現させることによって達成される。あらゆる天然の、または改変された細胞(例えば、原核もしくは真核)を用いることができる。一般的に、グリコシル化を達成するには哺乳動物細胞が用いられる。哺乳動物細胞で生成したN-グリカンは通常、複合型、高マノース型、ハイブリッド型N-グリカンと呼ばれる(例えば、その全文が参照によって本明細書に組み入れられる、Drickamer K、Taylor ME(2006年)、Introduction to Glycobiology、第2版を参照されたい)。これらの複合型N-グリカンは、内部コア構造であるManGlcNAcに連結したシアリルラクトースアミン配列を典型的に有する、2個から6個の外部分岐を有する構造を有する。複合型N-グリカンは、オリゴ糖で終わり、GlcNAcとガラクトース(Gal)残基とが交互になった、少なくとも1個、好ましくは少なくとも2個の分岐を有しており、例えば、NeuNAc-;NeuAcα2,6 GalNAcα1-;NeuAcα2,3 Galβ1,3 GalNAcα1-;およびNeuAcα2,3/6 Galβ1,4 GlcNAcβ1などが挙げられる。さらに、硫酸エステルがガラクトース、GalNAc、およびGlcNAc残基上に存在していてもよい。NeuAcは、O-アセチル化されていてもよいし、またはNeuGlで置き換えられてもよい(N-グリコリルノイラミン酸)。複合型N-グリカンには、バイセクト型GlcNAcおよびコアのフコース(Fuc)の鎖間置換があってもよい。
【0071】
さらに、またはあるいは、グリコシル化は、in vitroで酵素的手段によって達成または修飾することができる。例えば、1つまたはそれ以上のグリコシルトランスフェラーゼを用いて、特定の糖残基を、結合性ポリペプチドの天然の、または改変されたN-グリカンに付加してもよく、1つまたはそれ以上のグリコシダーゼを用いて不要の糖をN結合型グリカンから除去してもよい。このような酵素的手段は当技術分野においてよく知られている(例えば、その全文が参照によって本明細書に組み入れられる、WO2007/005786を参照されたい)
【0072】
IV.免疫学的エフェクター機能およびFc修飾
所定の実施形態において、本発明の結合性ポリペプチドは、1つまたはそれ以上のエフェクター機能を媒介する抗体定常領域(例えば、IgG定常領域、例えば、ヒトIgG定常領域、例えば、ヒトIgG1またはIgG4定常領域)を含み得る。例えば、C1複合体は抗体定常領域に結合すると、補体系を活性化し得る。補体システムの活性化はオプソニン作用、および細胞の病原体の溶解において重要である。補体システムの活性化はまた、炎症反応を刺激し、自己免疫の過敏性にも関与し得る。さらに、抗体は、多様な細胞上の受容体にFc領域によって結合する(抗体Fc領域上のFc受容体結合部位は細胞上のFc受容体(FcR)に結合する)。IgG(ガンマ受容体)、IgE(イプシロン受容体)、IgA(アルファ受容体)、およびIgM(ミュー受容体)など、様々なクラスの抗体に特異的な数々のFc受容体が存在する。抗体が細胞表面上のFc受容体に結合すると、抗体がコーティングする粒子の貪食および破壊、免疫複合体のクリアランス、抗体がコーティングする標的細胞のキラー細胞による溶解(抗体依存的細胞媒介性細胞毒性すなわちADCCと呼ばれる)、炎症メディエーターの放出、胎盤移行、および免疫グロブリン生成の制御など、数々の重要かつ多種多様な生物学的応答が誘発される。好ましい実施形態において、本発明の結合性ポリペプチド(例えば、抗体またはその抗原結合性フラグメント)は、Fc-ガンマ受容体に結合する。代替の実施形態において、本発明の結合性ポリペプチドは、1つまたはそれ以上のエフェクター機能(例えば、ADCC活性)を欠
く定常領域を含み得、かつ/またはFcγ受容体に結合することができない。
【0073】
本発明の所定の実施形態は、免疫原性がおよそ同じである未変更の全抗体と比べた場合に、エフェクター機能の低減もしくは増強、非共有結合で二量体化する能力、腫瘍の部位に局在する能力の増大、血清半減期の低減、または血清半減期の増大など、所望の生化学的特徴をもたらすために、1つまたはそれ以上の定常領域ドメインにおける少なくとも1つのアミノ酸が欠失し、または別の方法で変更された抗体を含む。例えば、本明細書に記載する診断方法および処置方法で用いるためのある種の抗体は、免疫グロブリン重鎖に類似のポリペプチド鎖を含むが、1つまたはそれ以上の重鎖ドメインの少なくとも一部が欠失したドメイン欠失抗体である。例えば、ある種の抗体では、修飾抗体の定常領域の1個のドメイン全体が欠失し、例えば、CH2ドメインの全部または部分が欠失している。
【0074】
他の所定の実施形態において、結合性ポリペプチドは、様々な抗体のアイソタイプに由来する定常領域(例えば、ヒトIgG1、IgG2、IgG3、またはIgG4の2つ以上からの定常領域)を含む。他の実施形態において、結合性ポリペプチドは、キメラのヒンジ(すなわち、様々な抗体のアイソタイプのヒンジドメインに由来するヒンジ部分を含むヒンジ、例えば、IgG4分子からの上部ヒンジドメインおよびIgG1中央ヒンジドメイン)を含む。一実施形態において、結合性ポリペプチドは、分子のコアヒンジ領域に、ヒトIgG4分子からのFc領域またはその一部、およびSer228Pro変異(EUナンバリング)を含む。
【0075】
所定の実施形態において、Fc部分を、当技術分野において知られている技術を用いて、エフェクター機能を増大または低減するように変異させてもよい。例えば、定常領域ドメインの欠失または不活化(点変異または他の手段によって)により、循環性の修飾抗体のFc受容体結合を低減することができ、それによって腫瘍の局在化が増大する。他の場合では、本発明と一致する定常領域の修飾は補体の結合を緩和するため、血清半減期およびコンジュゲートした細胞毒の非特異的な会合が低減される。定常領域のさらに他の修飾を用いてジスルフィド連結またはオリゴ糖部分を修飾してもよく、これらの修飾は抗原の特異性または柔軟性を増大することで局在化を増強させる。得られた生理学的プロファイル、バイオアベイラビリティ、および修飾の他の生化学的効果、例えば、腫瘍の局在化、体内分布、および血清半減期は、過度の実験をせずに、よく知られている免疫学的技術を用いて、容易に測定および定量され得る。
【0076】
所定の実施形態において、本発明の抗体において用いられるFcドメインはFcバリアントである。本明細書で用いられる「Fcバリアント」という用語は、それに前記Fcドメインが由来する野生型Fcドメインに比べて、少なくとも1つのアミノ酸置換を有するFcドメインを意味する。例えば、FcドメインがヒトIgG1抗体に由来する場合、前記ヒトIgG1のFcドメインのFcバリアントは、前記Fcドメインに比べて少なくとも1つのアミノ酸置換を含む。
【0077】
Fcバリアントのアミノ酸置換(複数可)は、Fcドメイン内のあらゆる位置(すなわち、あらゆるEU規則のアミノ酸位置)に位置していてよい。一実施形態において、Fcバリアントは、ヒンジドメインまたはその一部に位置するアミノ酸位置の置換を含む。別の一実施形態において、Fcバリアントは、CH2ドメインまたはその一部に位置するアミノ酸位置の置換を含む。別の一実施形態において、Fcバリアントは、CH3ドメインまたはその一部に位置するアミノ酸位置の置換を含む。別の一実施形態において、Fcバリアントは、CH4ドメインまたはその一部に位置するアミノ酸位置の置換を含む。
【0078】
本発明の結合性ポリペプチドは、エフェクター機能および/またはFcR結合における改善(例えば、低減もしくは増強)をもたらすことが知られている、あらゆる技術分野で
認められているFcバリアントを用いることができる。前記Fcバリアントは、例えば、その各々が全体、参照によって本明細書に組み入れられる、国際PCT公開WO88/07089A1、WO96/14339A1、WO98/05787A1、WO98/23289A1、WO99/51642A1、WO99/58572A1、WO00/09560A2、WO00/32767A1、WO00/42072A2、WO02/44215A2、WO02/060919A2、WO03/074569A2、WO04/016750A2、WO04/029207A2、WO04/035752A2、WO04/063351A2、WO04/074455A2、WO04/099249A2、WO05/040217A2、WO05/070963A1、WO05/077981A2、WO05/092925A2、WO05/123780A2、WO06/019447A1、WO06/047350A2,およびWO06/085967A2、または米国特許第5,648,260号、第5,739,277号、第5,834,250号、第5,869,046号、第6,096,871号、第6,121,022号、第6,194,551号、第6,242,195号、第6,277,375号、第6,528,624号、第6,538,124号、第6,737,056号、第6,821,505号、第6,998,253号、および第7,083,784号に開示されたアミノ酸置換のいずれか1つを含んでいてもよい。例示的な一実施形態において、本発明の結合性ポリペプチドは、EU268位にアミノ酸置換を含むFcバリアント(例えば、H268DまたはH268E)を含み得る。別の例示的な一実施形態において、本発明の結合性ポリペプチドは、アミノ酸置換を、EU239位(例えば、S239DもしくはS239E)および/またはEU332位(例えば、I332DもしくはI332Q)に含んでいてもよい。
【0079】
所定の実施形態において、本発明の結合性ポリペプチドは、抗体の抗原非依存的エフェクター機能、特に結合性ポリペプチドの循環半減期を変更するアミノ酸置換を含む、Fcバリアントを含み得る。このような結合性ポリペプチドは、これらの置換のない結合性ポリペプチドに比べた場合、増大または低減されたFcRnに対する結合のいずれかを示すことから、それぞれ増大または低減した血清中の半減期を有する。FcRnに対して改善された親和性を有するFcバリアントの血清半減期はより長いと予測され、このような分子は、慢性疾患または障害の処置など、投与する抗体の半減期が長いことが望ましい、哺乳動物を処置する方法において有利に適用される。これとは対照的に、FcRn結合親和性が低減されたFcバリアントの半減期はより短いと予想され、このような分子はまた、例えば、in vivoの診断画像法、または初発の抗体が循環中に長期間存在する場合に毒性の副作用がある状況など、循環時間の短縮が有利であり得る場合の哺乳動物への投与などに有用である。低減したFcRn結合親和性を有するFcバリアントはまた、胎盤を移行する可能性が低く、したがって妊婦の疾患または障害を処置するのにも有用である。さらに、低減したFcRn結合親和性が望ましいことがある他の適用には、脳、腎臓、および/または肝臓に局在化された適用が含まれる。例示的な一実施形態において、本発明の変更された結合性ポリペプチド(例えば、抗体またはその抗原結合性フラグメント)は、脈管構造から腎糸球体の上皮を横切った輸送の低下を示す。別の一実施形態において、本発明の変更された結合性ポリペプチド(例えば、抗体およびその抗原結合性フラグメント)は、脈管の間隙中へ、脳から血液脳関門(BBB)を横切った輸送の低減を示す。一実施形態において、変更されたFcRn結合を有する抗体は、Fcドメインの「FcRn結合性ループ」内に1つまたはそれ以上のアミノ酸置換を有するFcドメインを含む。FcRn結合性ループは、アミノ酸残基280~299(EUナンバリングによる)からなる。FcRn結合活性を変更する例示的なアミノ酸置換は、参照によって全体が本明細書に組み入れられる、国際PCT公開第WO05/047327に開示されている。例示的な所定の実施形態において、本発明の結合性ポリペプチド(例えば、抗体またはその抗原結合性フラグメント)は、1つまたはそれ以上の以下の置換:V284E、H285E、N286D、K290E、およびS304D(EUナンバリング)を有するFcドメインを含む。さらに他の例示的な実施形態において、本発明の結合性分子は、二重変異H4
33K/N434Fを有するヒトFcドメインを含む(例えば、米国特許第8,163,881号を参照されたい)。
【0080】
他の実施形態において、本明細書に記載する診断方法および処置方法で用いるための結合性ポリペプチドは、グリコシル化が低減または排除されるように変更された、定常領域、例えばIgG1またはIgG4重鎖定常領域を有する。例えば、本発明の結合性ポリペプチド(例えば、抗体またはその抗原結合性フラグメント)はまた、抗体Fcのグリコシル化を変更するアミノ酸置換を含むFcバリアントも含み得る。例えば、前記Fcバリアントのグリコシル化は低減されていてもよい(例えば、NまたはO結合型グリコシル化)。例示的な実施形態において、Fcバリアントは、アミノ酸297位(EUナンバリング)に通常見出されるN結合型グリカンのグリコシル化の低減を含む。別の一実施形態において、抗体は、アミノ酸配列NXTまたはNXSを含むN結合型グリコシル化モチーフなど、グリコシル化モチーフ付近またはモチーフ内にアミノ酸置換を有する。特定の一実施形態において、抗体は、アミノ酸228位または299位(EUナンバリング)に、アミノ酸置換を有するFcバリアントを含む。より特定の実施形態において、抗体は、S228PおよびT299A変異(EUナンバリング)を含むIgG1またはIgG4定常領域を含む。
【0081】
グリコシル化の低減または変更を付与する例示的なアミノ酸置換は、その全文が参照によって本明細書に組み入れられる、国際PCT公開第WO05/018572号に開示されている。好ましい実施形態において、本発明の結合性ポリペプチドはグリコシル化を排除するように修飾される。このような結合性ポリペプチドは、「アグリ(agly)」結合性ポリペプチド(例えば、「アグリ」抗体)と呼ぶことができる。理論に拘泥するわけではないが、「アグリ」結合性ポリペプチドは、in vivoで改善された安全性および安定性のプロファイルを有し得ると考えられている。アグリ結合性ポリペプチドは、そのあらゆるアイソタイプまたはサブクラス、例えば、IgG1、IgG2、IgG3、またはIgG4のものであってよい。所定の実施形態において、アグリ結合性ポリペプチドは、Fc-エフェクター機能を欠くIgG4抗体の非グリコシル化のFc領域を含み、そのため、IL-6を発現する正常な重要な器官に対するFc媒介性毒性の可能性が排除される。さらに他の実施形態において、本発明の結合性ポリペプチドは、変更されたグリカンを含む。例えば、抗体は、Fc領域のAsn297のN-グリカン上に少数のフコース残基を有し得る、すなわち、非フコシル化である(afucosylated)。非フコシル化により、NK細胞上のFcγRII結合性は増大し、ADCCを潜在的に増大する。抗IL-6のscFvおよび抗CD3のscFvを含むダイアボディは、ADCCによるIL-6発現性細胞の死滅を誘発することが示されている。したがって、一実施形態において、非フコシル化された抗IL-6抗体を用いて、IL-6発現性細胞を標的にし、死滅させる。別の一実施形態において、結合性ポリペプチドは、Fc領域のAsn297のN-グリカン上に、変更された数のシアル酸残基を有し得る。「アグリ」抗体または変更されたグリカンを有する抗体を作製するのに、技術分野で認められた多数の方法を利用できる。例えば、修飾グリコシル化経路(例えば、グリコシルトランスフェラーゼ欠失)を有する、遺伝子改変した宿主細胞(例えば、修飾された酵母菌、例えば、ピキア(Picchia)またはCHO細胞)を用いてこのような抗体を生成することができる。
【0082】
V.エフェクター部分
所定の実施形態において、本開示の結合性ポリペプチドは、エフェクター部分(例えば、薬物部分および標的化部分)を含む。一般的に、これらのエフェクター部分は、結合性ポリペプチド上のN結合型グリカンに(直接、またはリンカー部分を介してのいずれかで)コンジュゲートする(例えば、N結合型グリカンがCH2ドメインのN298(EUナンバリング)および/またはCH1ドメインのN114(Kabatナンバリング)に連結している)。所定の実施形態において、結合性ポリペプチドは、Kabat114位に
グリカンを有するCH1ドメインを2個含む全長抗体であり、この場合、グリカンは両方とも、1つまたはそれ以上のエフェクター部分にコンジュゲートしている。
【0083】
あらゆるエフェクター部分を、本明細書で開示される結合性ポリペプチドに付加することができる。エフェクター部分は、結合性ポリペプチドの固有の活性を大幅に変更することなく、変更された抗体またはそのフラグメントに非天然の機能を加えるのが好ましい。エフェクター部分は、例えば、これらに限定されないが、治療剤または診断剤であってよい。本開示の修飾結合性ポリペプチド(例えば、抗体)は、1つまたはそれ以上のエフェクター部分を含んでいてもよく、これらは同じでもよいし、または異なっていてもよい。
【0084】
一実施形態において、エフェクター部分は、式(I):
N-Q-CON-X
式(I)
であってよく、
式中、
A)Qは、NHまたはOであり、
B)CONは、接続部分であり、
C)Xは、エフェクター部分(例えば本明細書で規定される治療剤または診断剤)である。
【0085】
接続部分は、治療剤をHN-Q-に接続する。接続部分は、例えば、アルキレニル構成成分、ポリエチレングリコール構成成分、ポリ(グリシン)構成成分、ポリ(オキサゾリン)構成成分、カルボニル構成成分、システインアミド由来の構成成分、シトルリンにカップリングするバリン由来の構成成分、および4-アミノベンジルカーバメート由来の構成成分、またはこれらのあらゆる組合せなど、当業者に知られているあらゆる適切な構成成分を少なくとも1つ含んでいてもよい。
【0086】
別の一実施形態において、式(I)のエフェクター部分は、式(Ia):
N-Q-CH-C(O)-Z-X
式(Ia)
であってよく、
式中、
A)Qは、NHまたはOであり、
B)Zは、-Cys-(MC)-(VC)-(PABC)-(C1632であり、
式中、
i.Cysは、システインアミド由来の構成成分であり、
ii.MCは、マレイミド由来の構成成分であり、
iii.VCは、シトルリンにカップリングするバリン由来の構成成分であり、
iv.PABCは、4-アミノベンジルカーバメート由来の構成成分であり、
v.Xは、エフェクター部分(例えば本明細書で規定される治療剤または診断剤)であり、
vi.aは、0または1であり、
vii.bは、0または1であり、
viii.cは、0または1であり、
ix.fは、0または1である。
【0087】
「システインアミド由来の構成成分」は、HN-Q-CH-C(O)-への付着点である。一実施形態において、「システインアミド由来の構成成分」は、構造:
【化1】
を有するエフェクター部分の1つまたはそれ以上の部分を指す場合がある。
【0088】
一実施形態において、エフェクター部分の「Cys」構成成分は、このような部分を1つ含んでいてもよい。例えば、以下の構造は、このような部分を1つ有するエフェクター部分を示す(式中、「Cys」構成成分を点線のボックスで示す):
【化2】
【0089】
別の一実施形態において、エフェクター部分の「Cys」構成成分は、このような部分を2つ以上含んでいてもよい。例えば、以下の部分はこのような部分を2つ含む。
【化3】
【0090】
構造からわかるように、「Cys」構成成分は、-(MC)-(VC)-(PABC)-(C1632-X基を保有する。
【0091】
一実施形態において、「マレイミド由来の構成成分」という表現は、構造:
【化4】
を有するエフェクター部分のあらゆる部分を指す場合があり、式中、dは2から5の整数である。エフェクター部分におけるあらゆるCys-(MC)-(VC)-(PABC)-(C1632-X基に含まれるMC構成成分の数は、下付き
数字「a」によって示され、0または1であり得る。一実施形態において、aは1である。別の一実施形態において、bは0である。
【0092】
一実施形態において、「Cys」構成成分は、以下の構造における点線ボックスで示す通り、「Cys」構成成分中の硫黄原子を介して「MC」構成成分に接続していてよい:
【化5】
【0093】
一実施形態において、「シトルリンとカップリングするバリン由来の構成成分」という表現は、以下の構造を有するエフェクター部分のあらゆる部分を指す場合がある:
【化6】
【0094】
エフェクター部分におけるあらゆるCys-(MC)-(VC)-(PABC)-(C1632-X基に含まれるVC構成成分の数は、下付き文字「b」で示され、0または1であってよい。一実施形態において、bは1である。別の一実施形態において、bは0である。
【0095】
一実施形態において、「4-アミノベンジルカーバメート由来の構成成分」という表現は、以下の構造を有するエフェクター部分のあらゆる部分を指す場合がある:
【化7】
【0096】
エフェクター部分におけるあらゆるCys-(MC)-(VC)-(PABC)-(C1632-X基に含まれるPABC構成成分の数は、下付き文字「c」によって示され、0または1であってよい。一実施形態において、cは1である。別の一実施形態において、cは0である。
【0097】
一実施形態において、「C1632」は以下の構造を指す:
【化8】
【0098】
エフェクター部分におけるあらゆるCys-(MC)-(VC)-(PABC)-(C1632-X基に含まれるC1632の単位の数は、下付き文字「f」によって示される。一実施形態において、fは1である。別の一実施形態において、fは0である。
【0099】
一実施形態において、aは1であり、bは1であり、cは1であり、fは0である。
【0100】
a)治療用エフェクター部分
所定の実施形態において、本開示の結合性ポリペプチドは、治療剤、例えば、薬物部分(もしくはそのプロドラッグ)、または放射標識した化合物を含むエフェクター部分にコンジュゲートしている。一実施形態において、治療剤は細胞毒である。例示的な細胞毒性治療剤を、本明細書の表1に記載する。
【0101】
【表1】
【0102】
【表2】
【0103】
さらなる例示的な薬物部分は、抗炎症剤、抗癌剤、抗感染剤(例えば、抗真菌剤、抗菌剤、抗寄生虫剤、抗ウイルス剤など)、および麻酔性の治療剤を含む。さらなる一実施形態において、薬物部分は抗癌剤である。例示的な抗癌剤は、これらに限定されないが、細胞分裂阻害剤、酵素阻害剤、遺伝子調節剤(gene regulator)、細胞毒性ヌクレオシド、チューブリン結合薬またはチューブリン阻害剤、プロテアソーム阻害剤、ホルモンおよびホルモンアンタゴニスト、血管新生阻害剤などを含む。例示的な細胞分裂阻害性の抗癌剤は、アルキル化剤、例えば、アントラサイクリンファミリーの薬物(例えば、アドリアマイシン、カルミノマイシン、シクロスポリンA、クロロキン、メトプテリン、ミトラマイシン、ポルフィロマイシン、ストレプトニグリン、ポルフィロマイシン、アントラセンジオン、およびアジリジン)を含む。他の細胞分裂阻害性の抗癌剤は、DNA合成阻害剤(例えば、メトトレキセートおよびジクロロメトトレキセート、3-アミノ-1,2,4-ベンゾトリアジン1,4-ジオキシド、アミノプテリン、シトシンβ-D-アラビノフラノシド、5-フルオロ-5’-デオキシウリジン、5-フルオロウラシル、ガンシクロビル、ヒドロキシ尿素、アクチノマイシンD、およびマイトマイシンC)、DNAインターカレーターまたは架橋剤(例えば、ブレオマイシン、カルボプラチン、カルムスチン、クロラムブシル、シクロホスファミド、シス-ジアミン白金(II)ジクロリド(シスプラチン)、メルファラン、ミトキサントロン、およびオキサリプラチン)、ならびにDNA-RNA転写調節剤(例えば、アクチノマイシンD、ダウノルビシン、ドキソルビシン、ホモハリングトニン、およびイダルビシン)を含む。本開示で適用可能な他の例示的な細胞分裂阻害剤は、アンサマイシンベンゾキノン、キノノイド誘導体(例えば、キノロン、ゲニステイン、バクタサイクリン(bactacyclin))、ブスルファン、イホスファミド、メクロレタミン、トリアジクオン(triaziquone)、ジアジクオン(diaziquone)、カルバジルキノン、インドロキノンEO9、ジアジリジニル-ベンゾキノンメチルDZQ、トリエチレンホスホラミド、およびニトロソ尿素化合物(例えば、カルムスチン、ロムスチン、セムスチン)を含む。
【0104】
例示的な細胞毒性ヌクレオシド抗癌剤は、それだけには限定されないが、例えば、アデノシンアラビノシド、シタラビン、シトシンアラビノシド、5-フルオロウラシル、フルダラビン、フロクスウリジン、フトラフール、および6-メルカプトプリンを含む。例示的な抗癌性のチューブリン結合薬は、それだけには限定されないが、タキソイド(例えば、パクリタキセル、ドセタキセル、タキサン)、ノコダゾール、リゾキシン、ドラスタチン(例えば、ドラスタチン-10、-11、または-15)、コルヒチンおよびコルヒチノイド(例えば、ZD6126)、コンブレタスタチン(例えば、コンブレタスタチンA-4、AVE-6032、ならびにビンカアルカロイド(例えば、ビンブラスチン、ビンクリスチン、ビンデシン、およびビノレルビン(ナベルビン))を含む。例示的な抗癌ホルモンおよびホルモンアンタゴニストは、それだけには限定されないが、コルチコステロイド(例えば、プレドニゾン)、プロゲスチン(例えば、ヒドロキシプロゲステロンまた
はメドロプロゲステロン)、エストロゲン(例えば、ジエチルスチルベストロール)、抗エストロゲン(例えば、タモキシフェン)、アンドロゲン(例えば、テストステロン)、アロマターゼ阻害剤(例えば、アミノグルテチミド)、17-(アリルアミノ)-17-デメトキシゲルダナマイシン、4-アミノ-1,8-ナフタルイミド、アピゲニン、ブレフェルジンA、シメチジン、ジクロロメチレン-ジホスホン酸、ロイプロリド(ロイプロレリン)、黄体形成ホルモン放出ホルモン、ピフィスリンa、ラパマイシン、性ホルモン結合性グロブリン、およびタプシガルジンを含む。例示的な抗癌性の抗血管新生化合物は、それだけには限定されないが、アンジオスタチンK1~3、DL-a-ジフルオロメチル-オルニチン、エンドスタチン、フマギリン、ゲニステイン、ミノサイクリン、スタウロスポリン、および(±)-サリドマイドを含む。
【0105】
例示的な抗癌性の酵素阻害剤は、それだけには限定されないが、S(±)-カンプトテシン、クルクミン、(-)-デグエリン、5,6-ジクロロベンズイミダゾール1-β-Dリボフラノシド、エトポシド、フォルメスタン、フォストリエシン、ヒスピジン、2-イミノ-1-イミダゾリジン酢酸(シクロクレアチン)、メビノリン、トリコスタチンA、チロホスチンAG34、およびチロホスチンAG879を含む。
【0106】
例示的な抗癌性の遺伝子調節剤は、それだけには限定されないが、5-アザ-2’-デオキシシチジン、5-アザシチジン、コレカルシフェロール(ビタミンD3)、4-ヒドロキシタモキシフェン、メラトニン、ミフェプリストーン、ラロキシフェン、トランス-レチナール(ビタミンAアルデヒド)、レチノイン酸、ビタミンA酸、9-シス-レチノイン酸、13-シス-レチノイン酸、レチノール(ビタミンA)、タモキシフェン、およびトログリタゾンを含む。
【0107】
他の好ましいクラスの抗癌剤は、それだけには限定されないが、例えば、プテリジンファミリーの薬物、ジイン、およびポドフィロトキシンを含む。これらのクラスの特に有用な種類は、例えば、メトプテリン、ポドフィロトキシン、またはポドフィロトキシン誘導体、例えば、エトポシドまたはエトポシドホスフェート、リューロシジン(leurosidine)、ビンデシン、リューロシン(leurosine)などを含む。
【0108】
本明細書の教示で適用可能なさらに他の抗癌剤は、アウリスタチン(例えば、アウリスタチンEおよびモノメチルアウリスタチンE)、ゲルダナマイシン、カリケアマイシン、グラミシジンD、メイタンシノイド(例えば、メイタンシン)、ネオカルチノスタチン、トポテカン、タキサン、サイトカラシンB、エチジウムブロミド、エメチン、テニポシド、コルヒチン、ジヒドロキシアントラシンジオン、ミトキサントロン、プロカイン、テトラカイン、リドカイン、プロプラノロール、ピューロマイシン、およびこれらの類似体またはホモログを含む。
【0109】
本明細書の教示で適用可能ななお他の抗癌剤は、トマイマイシン誘導体、メイタンシン誘導体、クリプトフィシン誘導体、アントラサイクリン誘導体、ビスホスホネート誘導体、レプトマイシン誘導体、ストレプトニグリン誘導体、アウリスタチン誘導体、およびデュオカルマイシン誘導体を含む。
【0110】
薬物部分として用いることができる別の一クラスの適用可能な抗癌剤は、腫瘍または免疫反応性の細胞を効果的に標的とすることができる放射線増感性の薬物である。このような薬物部分は、電離放射線に対する感受性を増強することによって放射線治療の効能を増大する。理論に限定されるつもりはないが、放射線増感性の薬物部分で修飾され、腫瘍細胞に内在化した抗体は、放射線増感薬を核のより近くに送達することから、そこで放射線増感が最大になると予想される。放射線増感薬部分を失った抗体は血液から速やかに除去され、残った放射線増感薬は標的の腫瘍に局在化し、正常組織への取り込みは最小化され
る。血液から除去された後、腫瘍に局所的にあてられる体外照射、腫瘍への放射能の直接的な埋め込み、または同じ修飾抗体での放射免疫療法によって補助的な放射線治療を施すことができる。
【0111】
一実施形態において、治療剤は放射性核種または高エネルギー電離放射線を持った放射標識を含み、高エネルギー電離放射線は核のDNAで複数の鎖切断を引き起こすことができ、細胞死をもたらす。例示的な高エネルギーの放射性核種は、90Y、125I、131I、123I、111In、105Rh、153Sm、67Cu、67Ga、166Ho、177Lu、186Re、および188Reを含む。これらの同位元素は、軌道の長さの短い、高エネルギーのα粒子またはβ粒子を生成するのが典型的である。このような放射性核種は、極めて近位にある細胞、例えばコンジュゲートが付着しているかまたは侵入した新生物細胞を死滅させる。これらは非局在化細胞にはほとんどまたはまったく効果がなく、本質的に非免疫原性である。あるいは、高エネルギーの同位体は、ホウ素中性子捕捉療法の場合のように、その他の点では安定な同位体の熱放射によって産生され得る(Guanら、PNAS、95巻、13206~10頁、1998年)。
【0112】
一実施形態において、治療剤は、MMAE、MMAF、およびPEG8-Do110から選択される。
【0113】
例示的な治療用エフェクター部分は、以下の構造を含む:
【化9】
【0114】
一実施形態において、エフェクター部分は以下から選択される:
【化10】
【0115】
所定の実施形態において、エフェクター部分は1つより多くの治療剤を含む。これらの複数の治療剤は同じでもよいし、または異なっていてもよい。
【0116】
b)診断用エフェクター部分
所定の実施形態において、本開示の結合性ポリペプチドは、診断剤を含むエフェクター部分にコンジュゲートしている。一実施形態において、診断剤は、ビオチン、フルオロフォア、発色団、スピン共鳴プローブ、または放射標識などの検出可能な小分子標識である。例示的なフルオロフォアは、蛍光色素(例えば、フルオレセイン、ローダミンなど)、および他の発酵分子(例えば、ルミナール)を含む。フルオロフォアは、基質と結合すると構造的な変化を受ける、修飾結合性ポリペプチドにおける1つまたはそれ以上の残基に接近して位置する場合に、その蛍光が変化するように、環境的に感受性であってもよい(例えば、ダンシルプローブ)。例示的な放射標識は、1つまたはそれ以上の低感受性の核を有する原子(13C、15N、2H、125I、124I、123I、99Tc、43K、52Fe、64Cu、68Ga、111Inなど)を含む小分子を含む。放射性核種が、投与とイメージング部位への局在化との間の経過時間後の活性または検出を可能にするのに適した半減期を有するガンマ、光子、またはポジトロン放出性の放射性核種であるのが好ましい。
【0117】
一実施形態において、診断剤はポリペプチドである。例示的な診断用ポリペプチドは、
生成物(すなわち、ルシフェラーゼなどのレポータータンパク質)としてフルオロフォアまたは発色団を形成する基質を切断する能力など、蛍光発生活性または色素産生活性を有する酵素を含む。他の診断用タンパク質は、固有の蛍光発生活性または色素産生活性(例えば、生物発光性の海洋生物からの緑色、赤色、および黄色の蛍光の生物発光のエクオリンタンパク質)を有し得、または1つもしくはそれ以上の低エネルギーの放射性核(13C、15N、2H、125I、124I、123I、99Tc、43K、52Fe、64Cu、68Ga、111Inなど)を含むタンパク質を含み得る。
【0118】
本開示と組み合わせた放射標識したコンジュゲートの使用に関して、本開示の結合性ポリペプチドを直接標識してもよく(例えば、ヨウ素化によって)、またはキレート化剤の使用によって間接的に標識してもよい。本明細書で用いられる「間接的な標識化」および「間接的な標識化のアプローチ」という表現は両方とも、キレート化剤が結合性ポリペプチドに共有結合で付着し、少なくとも1つの放射性核種がキレート化剤と会合していることを意味する。このようなキレート化剤は、ポリペプチドおよび放射性同位元素の両方に結合することから、典型的には二官能性キレート化剤と呼ばれる。例示的なキレート化剤は、1-イソチオシアナトベンジル-3-メチルジエチレントリアミンペンタ酢酸(「MX-DTPA」)およびシクロヘキシルジエチレントリアミンペンタ酢酸(「CHX-DTPA」)誘導体を含む。他のキレート化剤は、P-DOTAおよびEDTA誘導体を含む。間接的な標識化に特に好ましい放射性核種は、111Inおよび90Yを含む。ほとんどのイメージング試験では5mCiの111In標識化抗体が利用される、というのはこの線量は安全であり、低線量に比べてイメージング効率が増大しており、最適なイメージングが抗体投与3日後から6日後に生じるからである。例えば、Murray、(1985年)、J.Nuc.Med.、26巻、3328頁、およびCarraguilloら(1985年)、J.Nuc.Med.、26巻、67頁を参照されたい。直接標識化に特に好ましい放射性核種は、131Iである。当業者であれば、非放射性コンジュゲートは、コンジュゲートさせるために選択した薬剤に応じて組み立てることができることを理解されよう。
【0119】
所定の実施形態において、診断用エフェクター部分はFRET(蛍光共鳴エネルギー転移)プローブである。FRETは、癌の診断などの多様な診断応用に用いられている。FRETプローブは、FRETプローブのドナーとアクセプター部分とを接続する切断可能なリンカー(酵素感受性またはpHリンカー)を含んでいてもよく、切断により、増強された蛍光(近赤外線を含む)がもたらされる(例えば、A.Cobos-Correaら、Membrane-bound FRET probe visualizes MMP12 activity in pulmonary inflammation、Nature Chemical Biology (2009年)、5巻(9)、628~63頁、S.Gehrigら、Spatially Resolved Monitoring of Neutrophil Elastase Activity with Ratiometric Fluorescent Reporters (2012年)Angew.Chem.Int.Ed.、51巻、6258~6261頁を参照されたい)。
【0120】
一実施形態において、エフェクター部分は以下から選択される:
【化11】
【0121】
c)官能基化されたエフェクター部分
所定の実施形態において、エフェクター部分自体の他にさらなる基が含まれるように、本発明のエフェクター部分を官能基化してもよい。例えば、エフェクター部分は、特定の条件下でエフェクター部分を結合性ポリペプチドから放出する、切断可能なリンカーを含んでいてもよい。例示的な実施形態において、エフェクター部分は、細胞の酵素によって切断され、かつ/またはpH感受性であるリンカーを含んでいてもよい。さらに、またはあるいは、エフェクター部分は、細胞中に取り込まれると細胞内グルタチオンによって切断されるジスルフィド結合を含んでいてもよい。例示的なジスルフィドおよびpH感受性のリンカーを以下に示す:
【化12】
【0122】
さらに他の実施形態において、エフェクター部分は、ポリ(グリシン)、ポリ(オキサゾリン)、またはPEG部分など、親水性および生体適合性の部分を含んでいてもよい。例示的な構造(「Y」)を以下に提供する:
【化13】
【0123】
所定の実施形態において、エフェクター部分は、安定なオキシム結合によって結合性ポリペプチドに対するコンジュゲーションを促進するアミノオキシ基を含む。アミノオキシ基を含めた例示的なエフェクター部分を、本明細書の表2に記載する。
【0124】
【表3】
【0125】
【表4】
【0126】
他の実施形態において、エフェクター部分は、安定なヒドラゾン結合によって結合性ポリペプチドに対するコンジュゲーションを促進するための、ヒドラジドおよび/またはN-アルキル化ヒドラジン基を含む。アミノオキシ基を含む例示的なエフェクター部分を、本明細書の表14に記載する。
【0127】
【表5】
【0128】
d)標的化部分
所定の実施形態において、エフェクター部分は、1つまたはそれ以上の標的分子に特異的に結合する標的化部分を含む。制限なく、タンパク質、核酸、脂質、炭水化物(例えば、グリカン)、およびこれらの組合せ(例えば、糖タンパク質、糖ペプチド、および糖脂質)を含めた、あらゆるタイプの標的化部分を用いることができる。所定の実施形態において、標的化部分は、炭水化物または糖ペプチドである。所定の実施形態において、標的化部分はグリカンである。標的化部分は、天然または非天然に存在する分子であってよい。
【0129】
VI.エフェクター部分の結合性ポリペプチドに対するコンジュゲーション
所定の実施形態において、エフェクター部分は、変更された結合性ポリペプチド(例えば、抗体のCH1ドメインのN114が改変されたグリカンである、または抗体FドメインのN297が天然のグリカンである)の酸化されたグリカン(例えば、酸化されたN結合型グリカン)に、(直接、またはリンカー部分を介してのいずれかで)コンジュゲートする。「酸化されたグリカン」という用語は、グリカン上のアルコール置換基が酸化されておりカルボニル置換基になっていることを意味する。カルボニル置換基は適切な窒素求核試薬と反応して、炭素-窒素二重結合を形成することができる。例えば、カルボニル基がアミノオキシ基またはヒドラジン基と反応すると、それぞれオキシムまたはヒドラジンが形成される。一実施形態において、カルボニル置換基はアルデヒドである。適切な酸化されたグリカンには、酸化されたガラクトースおよび酸化されたシアル酸が含まれる。
【0130】
一実施形態において、式(II)の修飾ポリペプチドは式(II):
Ab(Gal-C(O)H)(Gal-Sia-C(O)H)
式(II)
で示すことができ、
式中、
A)Abは、抗体、または本明細書で規定される他の結合性ポリペプチドであり、
B)Galは、ガラクトース由来の構成成分であり、
C)Siaは、シアル酸由来の構成成分であり、
D)xは、0から5であり、
E)yは、0から5であり、
xおよびyの少なくとも1つは0ではない。
【0131】
当技術分野で認められているあらゆる化学反応を用いて、エフェクター部分(例えば、リンカー部分を含むエフェクター部分)をグリカンにコンジュゲートすることができる(例えば、その全文が本明細書に組み入れられる、Hermanson,G.T.、Bioconjugate Techniques.、Academic Press(1996年)を参照されたい)。所定の実施形態において、グリカンの糖残基(例えば、シアル酸またはガラクトース残基)を最初に酸化して(例えば、シアル酸の過ヨウ素酸ナトリウム処理またはガラクトースのガラクトースオキシダーゼ処理を用いて)反応性アルデヒド基を産生する。このアルデヒド基を、アミノオキシ基またはヒドラジン基のエフェクター部分と反応させて、それぞれオキシムまたはヒドラゾンリンカーを形成させる。この一般的な反応スキームを用いた例示的な方法を、実施例10から15に記載する。
【0132】
所定の実施形態において、結合性ポリペプチドの天然の、または改変されたグリカンを、最初にin vitroでグリコシルトランスフェラーゼ酵素と前処理して、適切な反応性を有する末端の糖残基をもたらす。例えば、シアリル化は、最初にガラクトシルトランスフェラーゼ(GalT)およびシアリルトランスフェラーゼ(SialT)の組合せを用いて達成してもよい。所定の実施形態において、ガラクトースを欠く(G0FもしくはG0)、またはガラクトースを1つだけ含む(G1FもしくはG1)二分岐グリカンを、コンジュゲーションに適した高次のガラクトシル化またはシアリル化された構造(G1F、G1、G2F、G2、G1S1F、G1S1、G2S1F、G2S1、G2S2F、もしくはG2S2)に変換してもよい。
【0133】
シアリル化した複合糖質を生成するための例示的な一コンジュゲートスキームを、図25Cに示す。シアル酸残基を酵素的に、および部位特異的に、抗体のグリカン(例えば、Asn-297が天然のグリカン)に、ガラクトシルトランスフェラーゼ(GalT)およびシアリルトランスフェラーゼ(SialT)の組合せを用いて導入する。導入したシアル酸残基を、低濃度の過ヨウ素酸ナトリウムで引き続き酸化させて、抗体薬物コンジュゲート(ADC)(例えば、オキシム結合したADC)を産生するための薬物-リンカー(例えば、アミノオキシ薬物リンカー)と適切な反応性を有する反応性シアル酸を得る。グリカンの数およびシアル残基の数をin vitroの再構築で制御することにより、当業者であればADCの薬物-抗体比(DAR)にわたって正確な制御をすることができる。例えば、およそ1個のシアル酸を、各重鎖における単一の二分岐グリカン(A1F)上に付加する場合、DARが2である抗体または結合性ポリペプチドを均一に得ることができる。
【0134】
VII.修飾結合性ポリペプチド
所定の実施形態において、本発明は、変更された結合性ポリペプチド(例えば、抗体CH1ドメインのN114が改変されたグリカンまたは抗体FドメインのN297が天然のグリカン)の酸化されたグリカン(例えば、酸化されたN結合型グリカン)にエフェクター部分を(直接的、またはリンカー部分によってのいずれかで)コンジュゲートしてなる生成物である、修飾ポリペプチドを提供する。
【0135】
一実施形態において、結合性ポリペプチドは式(III):
Ab(Gal-C(H)=N-Q-CON-X)(Gal-Sia-C(H)=N-Q
-CON-X)
式(III)
で示すことができ、
式中、
A)Abは、本明細書で規定される抗体であり、
B)Qは、NHまたはOであり、
C)CONは、本明細書で規定される接続部分であり、
D)Xは、本明細書で規定される治療剤または診断剤であり、
E)Galは、ガラクトース由来の構成成分であり、
F)Siaは、シアル酸由来の構成成分であり、
G)xは、0から5であり、
H)yは、0から5であり、
xおよびyの少なくとも1つは0ではない。
【0136】
一実施形態において、結合性ポリペプチドは式(III):
Ab(Gal-C(H)=N-Q-CH-C(O)-Z-X)(Gal-Sia-C(H)=N-Q-CH-C(O)-Z-X)
式(IIIa)
で示すことができ、
式中、
A)Abは、抗体であり、
B)Qは、NHまたはOであり、
C)Zは、Cys-(MC)-(VC)-(PABC)-(C1632-であり、
式中、
i.Cysは、システインアミド由来の構成成分であり、
ii.MCは、マレイミド由来の構成成分であり、
iii.VCは、シトルリンとカップリングしたバリン由来の構成成分であり、
iv.PABCは、4-アミノベンジルカーバメート由来の構成成分であり、
v.Xは、エフェクター部分(例えば本明細書で規定される治療剤または診断剤)であり、
vi.aは、0または1であり、
vii.bは、0または1であり、
viii.cは、0または1であり、
ix.fは、0または1であり、
D)Xは、本明細書で規定される治療剤であり、
E)Galは、ガラクトース由来の構成成分であり、
F)Siaは、シアル酸由来の構成成分であり、
G)xは、0から5であり、
H)yは、0から5であり、
xおよびyの少なくとも1つは0ではない。
【0137】
式(III)は、抗体、Gal置換基、およびGal-Sia置換基が鎖状に接続されていることを示そうとするものではないことを理解されたい。そうではなく、このような置換基が存在する場合、抗体は、各置換基に直接接続している。例えば、xが1であり、yが2である式(III)の結合性ポリペプチドは、以下に示す配置を有し得る:
【化14】
【0138】
式(III)におけるCON置換基およびその中の構成成分は、エフェクター部分について式(I)に関して記載した通りである。
【0139】
一実施形態において、QはNHである。別の一実施形態において、QはOである。
【0140】
一実施形態において、xは0である。
【0141】
式(III)の抗体Abは、本明細書に記載されるあらゆる適切な抗体であってよい。
【0142】
一実施形態において、式(III)の結合性ポリペプチドを調製するための方法を提供し、方法は式(I):
NH-Q-CON-X
式(I)
[式中、
A)Qは、NHまたはOであり、
B)CONは、接続部分であり、
C)Xは、エフェクター部分(例えば本明細書で規定される治療剤または診断剤)である]
のエフェクター部分を、式(II):
Ab(OXG)
式(II)
[式中、
A)OXGは、酸化されたグリカンであり、
B)rは、0から4から選択される]
の修飾抗体と反応させることを含む。
【0143】
一実施形態において、式(III)の結合性ポリペプチドを調製するための方法を提供し、方法は、式(I):
NH-Q-CON-X
式(I)
[式中、
A)Qは、NHまたはOであり、
B)CONは、接続部分であり、
C)Xは、エフェクター部分(例えば本明細書で規定される治療剤または診断剤)である]
のエフェクター部分を、式(IIa):
Ab(Gal-C(O)H)(Gal-Sia-C(O)H)
式(IIa)、
[式中、
A)Abは、本明細書に記載する抗体であり、
B)Galは、ガラクトース由来の構成成分であり、
C)Siaは、シアル酸由来の構成成分であり、
D)xは、0から5であり、
E)yは、0から5であり、
xおよびyの少なくとも1つは0ではない]
の修飾抗体と反応させることを含む。
【0144】
VII.修飾抗体で処置する方法
一態様において、本発明は、本明細書で開示される結合性ポリペプチドの有効量を投与することを含む、それを必要とする患者を処置または診断する方法を提供する。本開示の好ましい実施形態は、そのような処置を必要とする哺乳動物の対象における、新生物性の障害などの障害を診断および/または処置するためのキットおよび方法を提供する。対象がヒトであるのが好ましい。
【0145】
本開示の結合性ポリペプチドは、数々の様々な適用において有用である。例えば、一実施形態において、対象の結合性ポリペプチドは、結合性ポリペプチドの結合性ドメインに結合することにより認識されるエピトープを保有する細胞を低減または除去するのに有用である。別の一実施形態において、対象の結合性ポリペプチドは、循環中の可溶性抗原の濃度を低減または除去するのに効果的である。一実施形態において、結合性ポリペプチドは、腫瘍のサイズを低減し、腫瘍の成長を阻害し、かつ/または担癌動物の生存時間を延長し得る。したがって、本開示は、ヒトまたは動物に、効果的な、非毒性の量の修飾抗体を投与することにより、このようなヒトまたは他の動物における腫瘍を処置する方法にも関する。当業者であれば、慣例的な実験によって、悪性腫瘍を処置する目的で、修飾結合性ポリペプチドの効果的な非毒性の量がどのくらいであるのかを決定することができる。例えば、修飾抗体またはそのフラグメントの治療有効量は、疾患段階(例えば、ステージI対ステージIV)、年齢、性別、医学上の合併症(例えば、免疫抑制性の状態または疾患)、および対象の体重、ならびに修飾抗体が対象において所望の反応を誘発する能力などの要因に従って変更してもよい。最適な治療応答がもたらされるように、投与量レジメンを調節してもよい。例えば、いくつかの分割された投与量を毎日投与してもよく、または治療的状況の要求に応じて投与量を比例的に低減してもよい。
【0146】
一般的に、本開示で提供される組成物は、修飾抗体による癌性細胞の標的化を可能にする抗原マーカーを含む、あらゆる新生物を予防的または治療的に処置するのに用いることができる。
【0147】
VIII.修飾抗体またはそのフラグメントを投与する方法
本開示の結合性ポリペプチドを調製し、対象に投与する方法は、当業者にはよく知られており、または当業者によって容易に決定される。本開示の結合性ポリペプチドを投与する経路は、経口、非経口、吸入によって、または局所的であってよい。本明細書で用いられる非経口という用語は、静脈内、動脈内、腹腔内、筋肉内、皮下、直腸内、または膣内投与を含む。静脈内、動脈内、皮下、および筋肉内の形態の非経口投与が、一般的に好ましい。これらの投与形態は全て、本開示の範囲内にあることが明らかに企図され、投与のための形態は注射用の、特に静脈内または動脈内の注射または点滴用の溶液である。通常、注射に適する医薬組成物は、バッファー(例えば、酢酸バッファー、リン酸バッファー、またはクエン酸バッファー)、界面活性剤(例えば、ポリソルベート)、場合により安定化剤(例えば、ヒトアルブミン)などを含んでいてもよい。しかし、本明細書の教示で適用可能な他の方法では、修飾抗体を、有害な細胞の集団の部位に直接送達し、それによって罹患している組織の治療剤への暴露を増大することができる。
【0148】
一実施形態において、投与する結合性ポリペプチドは、式(III):
Ab(Gal-C(H)=N-Q-CON-X)(Gal-Sia-C(H)=N-Q-CON-X)
式(III)
の結合性ポリペプチドであり、
式中、
A)Abは、本明細書で規定される抗体であり、
B)Qは、NHまたはOであり、
C)CONは、本明細書で規定される接続部分であり、
D)Xは、エフェクター部分(例えば本明細書で規定される治療剤または診断剤)であり、
E)Galは、ガラクトース由来の構成成分であり、
F)Siaは、シアル酸由来の構成成分であり、
G)xは、0から5であり、
H)yは、0から5であり、
xおよびyの少なくとも1つは0ではない。
【0149】
非経口投与のための調製物は、無菌の水性または非水性の溶液、懸濁液、およびエマルジョンを含む。非水性溶媒の例として、プロピレングリコール、ポリエチレングリコール、オリーブ油などの植物油、およびオレイン酸エチルなどの注射用有機エステルがある。水性の担体は、水、アルコール性/水性の溶液、エマルジョンまたは懸濁液、例えば、食塩水および緩衝化媒体を含む。本開示の組成物および方法において、薬学的に許容される担体としては、これらに限定されないが、0.01~0.1M、好ましくは0.05Mのリン酸バッファー、または0.8%食塩水が挙げられる。他の一般定な非経口のビヒクルは、リン酸ナトリウム溶液、デキストロース加リンゲル液、デキストロースおよび塩化ナトリウム、乳酸化リンゲル、または不揮発性油を含む。静脈内ビヒクルは、液体および栄養補充液、電解質補充液、例えば、デキストロース加リンゲル液をベースとしたものなどを含む。例えば、抗微生物剤、抗酸化剤、キレート化剤、および不活性ガスなどの保存剤および他の添加剤も存在してもよい。より具体的には、注射用の使用に適する医薬組成物は、無菌の水溶液(水溶性である場合)、または無菌の注射用溶液または分散液を即時に調製するための分散剤および無菌の粉末を含む。このような場合には、組成物は無菌でなければならず、シリンジ操作性(syringability)が容易になる程度に流動性を有していなければならない。組成物は製造および貯蔵の条件下で安定でなければならず、細菌および真菌などの微生物の汚染作用から保護されていることが好ましい。担体は、例えば、水、エタノール、ポリオール(例えば、グリセリン、プロピレングリコール、および液体ポリエチレングリコールなど)、ならびにこれらの適切な混合物を含む溶媒または分散媒体であってよい。例えば、レシチンなどのコーティングの使用により、分散液の場合は必要とされる粒子サイズを維持することにより、および界面活性剤の使用により、適切な流動性を維持することができる。
【0150】
微生物の作用の防止は、例えば、パラベン、クロロブタノール、フェノール、アスコルビン酸、チメロサールなどの多様な抗菌剤および抗真菌剤によって達成できる。多くの場合、組成物中に、例えば、糖、ポリアルコール、例えばマンニトール、ソルビトール、または塩化ナトリウムなどの等張剤を含むのが好ましい。注射用組成物の長時間の吸収は、組成物中に、モノステアリン酸アルミニウムおよびゼラチンなどの吸収を遅らせる薬剤を含有させることによって達成できる。
【0151】
いずれの場合においても、無菌の注射用溶液は、有効化合物(例えば、修飾結合性ポリペプチドを単独で、または他の活性物質と併用して)を、適宜、本明細書に列挙する成分の1つまたは組合せを含む必要量の好適な溶媒中に入れ、その後濾過滅菌することによって調製することができる。一般的に、分散液は、有効化合物を無菌のビヒクル中に入れる
ことによって調製され、無菌のビヒクルは、基本的な分散媒体、および上記に列挙したものから必要とされる他の成分を含む。無菌の注射用溶液を調製するための無菌の粉末の場合は、好ましい調製方法は真空乾燥および凍結乾燥であり、その場合、有効成分に加えてあらゆるさらなる所望の成分を含む予め滅菌濾過した溶液から、それらの粉末を得る。注射用の調製物は、当技術分野で知られている方法に従って処理加工され、アンプル、バッグ、ボトル、シリンジ、またはバイアルなどの容器中に充填され、無菌的な条件下で密封される。さらに、調製物は、各々が参照によって本明細書に組み入れられる、同時係属中のU.S.S.N.09/259,337およびU.S.S.N.09/259,338に記載されているものなどのキットの形態で包装し、販売してもよい。このような製造品は、関連の組成物が、自己免疫性または新生物性の障害に罹患しているか、またはその素因を有する対象を処置するのに有用であることを示すラベルまたは添付文書を有するのが好ましい。
【0152】
上記に記載した状態を処置するための本開示の組成物の有効投与量は、投与の手段、標的部位、患者の生理学的状態、患者がヒトであるかまたは動物であるか、投与する他の薬物療法、および処置が予防的であるかまたは治療的であるかを含めた多くの様々な要因に応じて変更される。通常、患者はヒトであるが、トランスジェニック哺乳動物を含めた非ヒトの哺乳動物も処置することができる。処置投与量は、安全性および効能を最適化するために当業者に知られている慣例的な方法を用いて決定できる。
【0153】
結合性ポリペプチドでの受動免疫では、投与量は、例えば、宿主の体重の約0.0001から100mg/kg、より一般的には0.01から5mg/kg(例えば、0.02mg/kg、0.25mg/kg、0.5mg/kg、0.75mg/kg、lmg/kg、2mg/kgなど)の範囲であってよい。例えば、投与量は1mg/kg体重、または10mg/kg体重、または1~10mg/kgの範囲内、好ましくは少なくとも1mg/kgであってよい。上記の範囲内の中間値の投与量も、本開示の範囲内であるものとする。対象に、このような投与量を毎日、1日おきに、毎週、または経験的な分析によって決定されるあらゆる他のスケジュールに従って投与することができる。例示的な一処置は、少なくとも6か月などの長期間にわたる、複数回用量での投与を伴う。さらなる例示的な処置レジメンは、2週間ごとに1回、または1か月に1回、または3か月から6か月ごとに1回の投与を伴う。例示的な投与量スケジュールは、毎日1~10mg/kgまたは15mg/kg、1日おきに30mg/kg、または毎週60mg/kgを含む。いくつかの方法では、結合特異性の異なる2種以上のモノクローナル抗体が同時に投与されるが、この場合、投与される各抗体の投与量は示された範囲内である。
【0154】
本開示の結合性ポリペプチドは、複数の機会に投与することができる。1回の投与間の間隔は、週単位、月単位、または年単位であってよい。間隔は、修飾結合性ポリペプチドまたは抗原の患者における血中レベルの測定で示されるように、不規則であってもよい。いくつかの方法では、投与量を調節することにより、修飾結合性ポリペプチドの血漿濃度1~1000μg/mlを達成し、いくつかの方法では25~300μg/mlを達成する。あるいは、結合性ポリペプチドを徐放製剤として投与してもよく、その場合、それほど頻繁に投与しなくてもよい。抗体に対して、投与量および頻度は、患者における抗体の半減期に応じて変更される。一般的に、ヒト化抗体は最長の半減期を示し、その後にキメラ抗体および非ヒト抗体が続く。
【0155】
投与の投与量および頻度を、処置が予防的であるか、または治療的であるかに応じて変更してもよい。予防的適用では、本発明の抗体またはそのカクテルを含む組成物をまだ疾患状態ではない患者に投与することで、患者の抵抗性を増強してもよい。このような量は、「予防有効投与量」と定義される。この使用において、正確な量は、やはり患者の健康状態および全身の免疫性に依存するが、一般的に1投与量あたり0.1から25mg、特
に1投与量あたり0.5から2.5mgの範囲である。相対的に低い投与量を、相対的に低頻度の間隔で長期間にわたって投与する。患者の中には、残りの生涯ずっと処置を受け続ける者もいる。治療的適用では、比較的短い間隔の比較的高投与量(例えば、1投与量あたり抗体約1から400mg/kg、ラジオイムノコンジュゲートの場合は5から25mgの投与量がより一般的に用いられ、細胞毒-薬物修飾抗体の場合はより多くの投与量が用いられる)が、疾患の進行が遅くなるか、または終結するまで、好ましくは患者が疾患の症状の部分的または完全な寛解を示すまで必要となる場合がある。その後、患者に予防的レジメンを投与してもよい。
【0156】
本開示の結合性ポリペプチドは、場合により、処置(例えば、予防的または治療的)を必要とする障害または状態を処置するのに有効な他の薬剤と組み合わせて投与することができる。本開示の90Yで標識した修飾抗体の効果的な単一処置投与量(すなわち、治療有効量)は、約5から約75mCiの間、より好ましくは約10から約40mCiの間の範囲である。131I修飾抗体の効果的な処置1回分の骨髄除去以外の場合の投与量は、約5から約70mCiの間、より好ましくは約5から約40mCiの間の範囲である。131I標識した抗体の有効な処置1回分の除去のための投与量(すなわち、自家骨髄移植を必要とする場合がある)は、約30から約600mCiの間、より好ましくは約50から約500mCi未満の間の範囲である。キメラ抗体と組み合わせると、ヨウ素-131I修飾キメラ抗体の効果的な処置1回分の骨髄除去以外の場合の投与量は、約5から約40mCiの間、より好ましくは約30mCi未満の範囲である。例えば、111In標識に対する画像化判定基準は、約5mCi未満であるのが典型的である。
【0157】
結合性ポリペプチドはすぐ上で説明した通りに投与できるが、他の実施形態では、結合性ポリペプチドを他の点では健康な患者に第一線の治療として投与してもよいことを強調しなければならない。このような実施形態において、結合性ポリペプチドは、正常もしくは平均的な赤色骨髄蓄積量を有する患者に、および/または経験したことがなく、今も経験していない患者に投与してもよい。本明細書で用いられる、補助療法と協同して、または組み合わされてなされる修飾抗体またはそのフラグメントの投与は、治療法および開示する抗体の、逐次の、同時の、所定期間にわたる、随伴的な、または同時期の投与または適用を意味する。当業者であれば、併用の治療レジメンの多様な成分の投与または適用は、処置の全体的な有効性を増強するように時期を選ぶことができることを理解されよう。例えば、化学療法薬を、標準的なよく知られている処置経過で投与した後、数週間以内に本開示のラジオイムノコンジュゲートを投与してもよい。反対に、結合性ポリペプチドに関連する細胞毒を静脈内投与した後、腫瘍に局所的にあてられる体外照射を行ってもよい。さらに他の実施形態において、1回の受診で、修飾結合性ポリペプチドを、1種またはそれ以上の選択された化学療法薬と同時に投与してもよい。当業者(例えば、経験のある腫瘍専門医)であれば、選択される補助療法および本明細書の教示に基づいて過度の実験を行わずに、効果的な併用治療レジメンを識別することが容易にできる。
【0158】
この点では、結合性ポリペプチドと化学療法薬との併用を、患者に治療的利点をもたらすあらゆる順序で、あらゆる時間枠内で投与することができることが理解されよう。すなわち、化学療法薬および結合性ポリペプチドは、あらゆる順序で、または同時に投与することができる。選択された実施形態において、本開示の結合性ポリペプチドを、以前に化学療法を受けたことがある患者に投与する。さらに他の実施形態において、結合性ポリペプチドと化学療法処置とを、実質的に同時に、または並行して投与する。例えば、患者に結合性ポリペプチドを投与する一方で、化学療法の経過を経験させてもよい。好ましい実施形態において、全ての化学療法の薬剤または処置の1年以内に修飾抗体を投与する。他の好ましい実施形態において、全ての化学療法の薬剤または処置の10、8、6、4、または2か月以内に、結合性ポリペプチドを投与する。なお他の好ましい実施形態において、全ての化学療法の薬剤または処置の4、3、2、または1週以内に、結合性ポリペプチ
ドを投与する。さらに他の実施形態において、選択された化学療法の薬剤または処置の5、4、3、2、または1日以内に、結合性ポリペプチドを投与する。2種の薬剤または処置を、数時間または数分以内に(すなわち、実質的に同時に)患者に投与してもよいことがさらに理解されよう。
【0159】
本開示の結合性ポリペプチドは、in vivoで新生物細胞の成長を排除し、低減し、阻害し、または制御するあらゆる化学療法の薬剤または(複数の)薬剤と協同して、または併用して(例えば、併用の治療レジメンを提供するために)用いることができることがさらに理解されよう。本開示で適用可能な例示的な化学療法薬は、アルキル化剤、ビンカアルカロイド(例えば、ビンクリスチンおよびビンブラスチン)、プロカルバジン、メトトレキセート、ならびにプレドニゾンを含む。4つの薬物の併用であるMOPP(メクロレタミン(ナイトロジェンマスタード)、ビンクリスチン(オンコビン)、プロカルバジン、およびプレドニゾン)は、多様なタイプのリンパ腫を処置するのに非常に効果的であり、本発明の好ましい実施形態を含むものである。MOPP抵抗性の患者では、ABVD(例えば、アドリアマイシン、ブレオマイシン、ビンブラスチン、およびダカルバジン)、ChIVPP(クロラムブシル、ビンブラスチン、プロカルバジン、およびプレドニゾン)、CABS(ロムスチン、ドキソルビシン、ブレオマイシン、およびストレプトゾトシン)、MOPPプラスABVD、MOPPプラスABV(ドキソルビシン、ブレオマイシン、およびビンブラスチン)、またはBCVPP(カルムスチン、シクロホスファミド、ビンブラスチン、プロカルバジン、およびプレドニゾン)の併用を用いることができる。Arnold S.FreedmanおよびLee M.Nadler、Malignant Lymphomas、HARRISON’S PRINCIPLES OF INTERNAL MEDICINE、1774~1788頁(Kurt J.Isselbacherら編集、13版、1994年)、ならびにV.T.DeVitaら(1997年)、ならびに標準的な投薬および計画に対して本明細書に引用する参考文献。これらの治療法をそのままで、または特定の患者に対して適宜変更して、本明細書に記載する本開示の1つまたはそれ以上の結合性ポリペプチドと併用して用いることができる。
【0160】
本開示の状況で有用であるさらなるレジメンは、シクロホスファミドもしくはクロラムブシルなどの単一のアルキル化剤、またはCVP(シクロホスファミド、ビンクリスチン、およびプレドニゾン)、CHOP(CVPおよびドキソルビシン)、C-MOPP(シクロホスファミド、ビンクリスチン、プレドニゾン、およびプロカルバジン)、CAP-BOP(CHOPプラスプロカルバジンおよびブレオマイシン)、m-BACOD(CHOPプラスメトトレキセート、ブレオマイシン、およびロイコボリン)、ProMACE-MOPP(プレドニゾン、メトトレキセート、ドキソルビシン、シクロホスファミド、エトポシド、およびロイコボリン、プラス標準のMOPP)、ProMACE-CytaBOM(プレドニゾン、ドキソルビシン、シクロホスファミド、エトポシド、シタラビン、ブレオマイシン、ビンクリスチン、メトトレキセート、およびロイコボリン)、ならびにMACOP-B(メトトレキセート、ドキソルビシン、シクロホスファミド、ビンクリスチン、固定投与量のプレドニゾン、ブレオマイシン、およびロイコボリン)などの併用の使用を含む。当業者であれば、これらの各レジメンに対する標準の投与量および計画を容易に決定することができる。CHOPはまた、ブレオマイシン、メトトレキセート、プロカルバジン、ナイトロジェンマスタード、シトシンアラビノシド、およびエトポシドと併用されている。他の適用可能な化学療法薬としては、これらに限定されないが、2-クロロデオキシアデノシン(2-CDA)、2’-デオキシコホルマイシン、およびフルダラビンが挙げられる。
【0161】
寛解または再発を達成することができない、中等度および高悪性度のNHLを有する患者には、サルベージ治療を用いる。サルベージ治療は、単独でまたは併用で投与されるシトシンアラビノシド、カルボプラチン、シスプラチン、エトポシド、およびイホスファミ
ドなどの薬物を用いる。再発の、または進行が早い形態のある種の新生物性の障害では、以下のプロトコールをしばしば用いる:各々よく知られている投薬速度およびスケジュールでの、IMVP-16(イホスファミド、メトトレキセート、およびエトポシド)、MIME(メチル-gag、イホスファミド、メトトレキセート、およびエトポシド)、DHAP(デキサメタゾン、高投与量シタラビン、およびシスプラチン)、ESHAP(エトポシド、メチルプレドニゾロン、HDシタラビン、シスプラチン)、CEPP(B)(シクロホスファミド、エトポシド、プロカルバジン、プレドニゾン、およびブレオマイシン)、ならびにCAMP(ロムスチン、ミトキサントロン、シタラビン、およびプレドニゾン)。
【0162】
本開示の修飾抗体と併用して用いる化学療法薬の量は、対象によって変更させてもよく、当技術分野において知られているものに従って投与することができる。例えば、Bruce A、Chabnerら、Antineoplastic Agents、GOODMAN&GILMAN’S THE PHARMACOLOGICAL BASIS OF THERAPEUTICS、1233~1287頁(Joel G. Hardmanら編集、9版、1996年)を参照されたい。
【0163】
先に論じた通り、本開示の結合性ポリペプチド、免疫反応性のフラグメント、またはその組換え体を、哺乳動物の障害をin vivoで処置するための薬学的有効量で投与してもよい。この点において、本開示の結合性ポリペプチドは、活性物質の投与を容易にし、その安定性が促進されるように調合される。
【0164】
本開示による医薬組成物が、薬学的に許容される、非毒性の、無菌の担体、例えば、生理学的食塩水、非毒性のバッファー、保存剤などを含むのが好ましい。本出願の目的では、治療剤にコンジュゲートした、またはコンジュゲートしていない、改変された結合性ポリペプチド、免疫反応性フラグメント、またはその組換え体の薬学的有効量は、抗原に対する効果的な結合を達成するのに十分な量、および利点を達成するのに、例えば、疾患もしくは障害の症状を軽減するのに、または物質もしくは細胞を検出するのに十分な量を意味するとされる。腫瘍細胞の場合、修飾結合性ポリペプチドが、新生物上または免疫反応性細胞上の選択された免疫反応性抗原と相互作用し、これら細胞の死滅の増大をもたらすことができるのが好ましい。もちろん、薬学的有効量の修飾結合性ポリペプチドを提供するために、本開示の医薬組成物を単一または複数の投与量で投与してもよい。
【0165】
本発明の範囲を維持する上で、本開示の結合性ポリペプチドを、前述の処置方法に従って、治療効果または予防効果をもたらすのに十分な量において、ヒトまたは他の動物に投与してもよい。本開示の結合性ポリペプチドを、本開示の抗体を従来の薬学的に許容される担体または希釈剤と、既知の技術に従って組み合わせることによって調製される従来の剤形において、このようなヒトまたは他の動物に投与することができる。当業者であれば、薬学的に許容される担体または希釈剤の形態および特徴は、組み合わせようとする有効成分の量、投与経路、および他のよく知られている変数によって決まることが認識されよう。当業者であれば、本開示に記載された結合性ポリペプチドの1つまたはそれ以上の種を含むカクテルが特に効果的であることが証明され得ることをさらに理解されよう。
【0166】
IX.結合性ポリペプチドの発現
一態様において、本発明は、本明細書で開示される結合性ポリペプチドをコードするポリヌクレオチドを提供する。これらのポリヌクレオチドを発現することを含む結合性ポリペプチドを作製する方法も提供する。
【0167】
本明細書で開示される結合性ポリペプチドをコードするポリヌクレオチドは、所望する量の請求する抗体、またはそのフラグメントを生成するのに用いることができる宿主細胞
中に導入するための発現ベクターに挿入されるのが典型的である。したがって、ある態様において、本発明は、本明細書で開示されるポリヌクレオチド、ならびにこれらのベクターおよびポリヌクレオチドを含む宿主細胞を含む発現ベクターを提供する。
【0168】
本明細書において、「ベクター」または「発現ベクター」という用語は、本明細書および特許請求の範囲のために、細胞における所望の遺伝子中に導入し、発現させるためのビヒクルとして本発明に従って用いられるベクターを意味するものとして用いられる。当業者に知られている通り、このようなベクターは、プラスミド、ファージ、ウイルス、およびレトロウイルスからなる群から容易に選択され得る。一般的に、本発明で適用可能なベクターは、選択マーカー、所望の遺伝子のクローニングを促進するのに好適な制限部位、真核細胞または原核細胞中に侵入し、かつ/または中で複製する能力を含む。
【0169】
多数の発現ベクター系を本発明の目的に用いることができる。例えば、1クラスのベクターは、ウシパピローマウイルス、ポリオーマウイルス、アデノウイルス、ワクシニアウイルス、バキュロウイルス、レトロウイルス(RSV、MMTV、もしくはMOMLV)、またはSV40ウイルスなどの動物ウイルスに由来するDNA要素を利用する。他者は、内部リボソーム結合部位を有するポリシストロニック系の使用を伴う。さらに、DNAを自身の染色体に取り込む細胞は、トランスフェクトされた宿主細胞を選択できるようにする1種またはそれ以上のマーカーを導入することにより選択され得る。マーカーは、栄養要求性の宿主に対する原栄養性、殺生物剤耐性(例えば、抗生物質耐性)、または銅などの重金属に対する耐性を付与するものでもよい。選択マーカーの遺伝子は、発現させようとするDNA配列に直接連結させてもよいし、または同時形質転換によって同じ細胞中に導入してもよい。mRNAの最適な合成には、さらなる要素も必要とされ得る。これらの要素は、シグナル配列、スプライスシグナル、ならびに転写プロモーター、エンハンサー、および終結シグナルを含んでいてもよい。特に好ましい実施形態において、上記に論じた通り、クローニングした可変領域の遺伝子を合成的に重鎖および軽鎖の定常領域遺伝子(好ましくはヒト)と一緒に発現ベクター中に挿入する。
【0170】
他の好ましい実施形態において、本発明の結合性ポリペプチドを、ポリシストロニック性の構築物を用いて発現させてもよい。このような発現系において、抗体の重鎖および軽鎖などの対象の複数の遺伝子産物を、単一のポリシストロニック性の構築物から生成してもよい。これらの系は、内部リボソーム侵入部位(IRES)を用いて、宿主の真核細胞中で比較的高レベルの本発明のポリペプチドを提供するのに有利である。適用可能なIRES配列は、参照によって本明細書に組み入れられる米国特許第6,193,980号に開示されている。当業者であれば、このような発現系を用いて、本出願に開示するポリペプチドの全範囲を効果的に生成し得ることを理解されよう。
【0171】
より一般的には、抗体をコードするベクターもしくはDNA配列、またはそれらのフラグメントを調製した後は、発現ベクターを好適な宿主細胞中に導入してもよい。すなわち、宿主細胞を形質転換してもよい。プラスミドの宿主細胞中への導入は、当業者にはよく知られている多様な技術によって遂行することができる。このような技術としては、これらに限定されないが、トランスフェクション(電気泳動および電気穿孔を含む)、原形質融合、リン酸カルシウム沈降、被覆されているDNAでの細胞融合、マイクロインジェクション、ならびにインタクトなウイルスでの感染が挙げられる。Ridgway,A.A.G.、「Mammalian Expression Vectors」、24章.2、470~472頁、Vectors、RodriguezおよびDenhardt編集(Butterworths、Boston、Mass.、1988年)を参照されたい。電気穿孔により宿主中にプラスミドを導入することが最も好ましい。形質転換した細胞を、軽鎖および重鎖の生成に好適な条件下で増殖させ、重鎖および/または軽鎖のタンパク質合成に対してアッセイする。例示的なアッセイ技術は、酵素結合免疫吸着検定法(E
LISA)、ラジオイムノアッセイ(RIA)、または蛍光活性化細胞分取器分析(FACS)、免疫組織化学などを含む。
【0172】
本明細書で用いられる「形質転換」という用語は、広義に用いられ、遺伝子型を変更して結果的にレシピエント細胞における変化をもたらす、レシピエント宿主細胞中へのDNA導入を意味する。
【0173】
それと同じ方針で、「宿主細胞」は、組換えDNA技術を用いて構築された、少なくとも1つの異種性の遺伝子をコードするベクターで形質転換された細胞を意味する。組換え宿主からポリペプチドを単離するためのプロセスの記載において、「細胞」および「細胞培養物」という用語はそれぞれ同じ意味で用いられており、別段の明らかな特定がなければ、抗体の源を意味する。換言すると、「細胞」からのポリペプチドの回収は、全細胞を遠心沈殿したものからの回収、または培地および懸濁した細胞の両方を含む細胞培養物からの回収のいずれかを意味し得る。
【0174】
一実施形態において、抗体の発現に用いる宿主細胞系は哺乳動物起源であり、当業者であれば、その中で発現させようとする所望の遺伝子産物に最適な特定の宿主細胞系を決定することができる。例示的な宿主細胞系としては、これらに限定されないが、DG44およびDUXB11(チャイニーズハムスター卵巣系、DHFRマイナス)、HELA(ヒト子宮頸癌(human cervical carcinoma))、CVI(サル腎臓系)、COS(SV40 T抗原を有するCVIの誘導体)、R1610(チャイニーズハムスター線維芽細胞)BALBC/3T3(マウス線維芽細胞)、HAK(ハムスター腎臓系)、SP2/O(マウスミエローマ)、BFA-1c1BPT(ウシ内皮細胞)、RAJI(ヒトリンパ細胞)、293(ヒト腎臓)が挙げられる。一実施形態において、細胞系は、そこから発現される抗体の、変更されたグリコシル化、例えば、非フコシル化(afucosylation)をもたらす(例えば、PER.C6.RTM.(Crucell)またはFUT8-ノックアウトCHO細胞系(Potelligent.RTM.細胞)(Biowa、Princeton、N.J.))。一実施形態において、NS0細胞を用いることができる。CHO細胞が特に好ましい。宿主細胞系は、典型的には、商業的なサービス、アメリカ培養細胞系統保存機関、または出版されている文献から入手できる。
【0175】
in vitroの生成をスケールアップして、大量の所望のペプチドを得ることもできる。組織培養条件下で哺乳動物細胞を培養するための技術は、当技術分野において知られており、エアリフトリアクター中、または連続撹拌リアクター中などの均一な懸濁培養物、または中空ファイバー中、マイクロカプセル、アガロースマイクロビーズ上、もしくはセラミックカートリッジ上などに固定化もしくは捕捉された細胞培養物を含む。必要であれば、かつ/または所望により、ポリペプチドの溶液を、ゲル濾過、イオン交換クロマトグラフィー、DEAE-セルロース上でのクロマトグラフィー、および/または(免疫)アフィニティクロマトグラフィーなど慣例的なクロマトグラフィー法によって精製することができる。
【0176】
本発明の結合性ポリペプチドをコードする遺伝子は、細菌または酵母菌または植物細胞などの非哺乳動物細胞においても発現させることができる。この点では、細菌など、多様な単細胞の非哺乳動物の微生物、すなわち、培養物または発酵中で増殖させることができるものも形質転換することができることが理解されよう。細菌は形質転換を受けやすく、腸内細菌科の種類、例えば、大腸菌(Escherichia coli)またはサルモネラ(Salmonella)の系統、バシラス科(Bacillaceae)、例えば、枯草菌(Bacillus subtilis)、肺炎球菌(Pneumococcus)、レンサ球菌(Streptococcus)、およびインフルエンザ菌(Haem
ophilus influenzae)の種類を含む。細菌中で発現させる場合は、ポリペプチドは封入体の一部となっている場合があることがさらに理解されよう。ポリペプチドを単離し、精製し、次いで機能的分子に組み立てなければならない。
【0177】
原核生物の他に、真核生物の微生物も用いることができる。出芽酵母(Saccharomyces cerevisiae)、すなわち一般的なパン酵母が、真核生物の微生物の中で最も一般的に用いられるが、数々の他の系統も一般に利用できる。出芽酵母における発現には、プラスミドYRp7、例えば(Stinchcombら、Nature、282巻、39頁(1979年);Kingsmanら、Gene、7巻、141頁(1979年);Tschemperら、Gene、10巻、157頁(1980年))が一般的に用いられる。このプラスミドはすでにTRP1遺伝子を含んでおり、TRP1遺伝子はトリプトファン中で増殖する能力がない酵母菌の変異株に対する選択マーカー、例えば、ATCC No.44076またはPEP4-1(Jones、Genetics、85巻、12頁(1977年))を提供する。酵母菌宿主細胞のゲノムの特徴としてtrp1の破壊が存在することで、トリプトファンの非存在下の増殖による形質転換を検出するのに効果的な環境がもたらされる。
【実施例0178】
本発明を以下の実施例によりさらに説明するが、以下の実施例をさらなる限定と解釈してはならない。本出願を通して引用される配列リスト、図、ならびに全ての参考文献、特許、および公開されている特許出願の内容は、参照によって本明細書に特に組み入れられるものとする。
【実施例0179】
2C3抗CD-52高グリコシル化抗体の変異体のデザイン、調製、および特徴付け
FcγRとの相互作用を変更することにより抗体のエフェクター機能を調節するために嵩高な基を相互作用界面(例えば、抗体の薬物動態を調節するためのFcRn結合部位)に付加する目的で、またはエフェクター部分(これらに限定されないが、薬物、毒素、細胞毒性剤、および放射性核種を含む)のコンジュゲーションのための新規な架橋部位のサブシーケンスの化学修飾を導入するために、複数の高グリコシル化変異を、抗CD-52抗体である2C3の重鎖にデザインした。高グリコシル化された2C3変異体を、表3に記載する。
【0180】
【表6】
【0181】
1A.2C3抗CD-52抗体の高グリコシル化変異体の作製
Kabatのナンバリングシステムに基づいてデザインしたA114N変異を、変異原性PCR(mutagenic PCR)によって、2C3のCH1ドメイン中に導入した。全長の抗体を作製するために、VHドメインプラス変異させたA114N残基を、ライゲーション非依存的クローニング(LIC)によって、抗体CHドメイン1~3をコードするpENTR-LIC-IgG1ベクター中に挿入した。他の全ての変異を、QuikChange部位特異的変異誘発キット(Agilent Technologies,Inc.、Santa Clara、CA、USA)で部位特異的変異誘発によってpENTR-LIC-IgG1上に導入した。WT2C3のVHを、変異させたベクター中にLICによってクローニングした。全長の変異体をpCEP4(-E+I)Dest発現ベクター中にGatewayクローニングによってクローニングした。Fcの変異を、EUナンバリングシステムに基づいてデザインした。DNAシーケンシングによって変異を確認した。WT2C3の重鎖および軽鎖のアミノ酸配列、ならびに変異させた2C3重鎖のアミノ酸配列を表4に記載する。変異させたアミノ酸を灰色で強調し、変異によって作製したコンセンサスグリコシル化標的部位に下線を付す。
【0182】
【表7】
【0183】
【表8】
【0184】
変異体およびWTの対照を、6ウェルプレートのフォーマットでHEK293-EBNA細胞中にトランスフェクトした。図9に示す通り、SDS-PAGEおよびウエスタンブロットによって分析したところ、発現レベルはおよそ0.1μg/mlであることが見出された。さらに馴化培地中の変異体の発現もBiacore上でのプロテインAの捕獲によって測定した。固定化したプロテインA中に注入して6分後の解離応答を用いて濃度を決定した。培地中90μg/mLから1.5ng/mLまで段階希釈した、CHOが生成するWT2C3を標準曲線として用いた。濃度を、4-パラメータの適合を用いて検量線によっておよそ0.2μg/mLまで算出した。図9に示す通り、相対的な発現レベル
は低く、ウエスタンブロットの結果と概ね一致した。
【0185】
1B.高グリコシル化の検証
さらなるグリコシル化部位が変異によって導入されたか否かを決定するために、2C3変異体および野生型のタンパク質を、普遍的な脱グリコシル化酵素であるPNGaseFで処理し、タンパク質の試料をSDS-PAGEおよびウエスタンブロットによって分析した。図10に示す通り、A114N変異体だけに見かけの分子量の増大があり、さらなるN結合型炭水化物の存在が指摘された。
【0186】
小規模の抗体調製物を生成して、グリコシル化部位の導入をさらに検証するための2C3変異体を精製した。図11に示す通り、A114N変異体だけに、さらなるグリコシル化部位の導入があったことが確認された。
【0187】
1C.2C3抗CD-52変異体の結合特性
Biacoreを用いて、精製したタンパク質の結合特性を比較した。マウス、およびSECにより精製したヒトFcRn-HPC4を、アミンカップリングによってCM5チップ上に固定化した。各抗体を200、50、および10nMに希釈し、固定化したFc受容体上に注入した。Campath、CHOが生成したWTの2C3、およびDEPC処理したCampathを、陽性対照および陰性対照として含めた。図13に示す通り、Y436変異体は、ヒトFcRnに対する結合に約2倍の低減を示した。興味深いことに、この変異体の、マウスFcRnに対する結合は影響を受けなかった。他の2C3変異体はどれも、ヒトまたはマウスのFcRn結合に対して際立った効果がまったくなかった。
【0188】
Biacoreを用いて、精製したタンパク質の抗原結合特性を、CD-52ペプチドである741のBiacore結合アッセイを用いて比較した。CD-52ペプチドである741、および対象のペプチドである777をCM5チップに固定化した。抗体を、HBS-EP中60から0.2nMまで2倍段階希釈し、3分間2回ずつ注入し、その後流速50μL/分のバッファー中で5分解離させた。GLD52ロット17200-084を対照として含めた。表面を、40mM HClの1パルスで再生した。1:1の結合モデルを用いて、7.5から0.2nMの曲線に適合させた。図16に示す通り、A114N変異体のCD-52結合親和性はわずかに低く、NGT変異体の親和性は、このアッセイにおける残りの変異体よりもわずかに高かった。CD-52ペプチドである741のBiacore結合アッセイを、より大スケールの調製物(prep)から精製したタンパク質で繰り返した。図17に示す通り、A114N変異体は、WTの2C3に匹敵するCD-52ペプチド結合性を示した。
【0189】
1D.A114N変異体の電荷の特徴付け
等電点電気泳動(IEF)を行って、2C3変異体の電荷を特徴付けた。精製したタンパク質を、固定化したpH勾配(pH3~10)のアクリルアミド(IPG)ゲル上を流した。図18Aに示す通り、A114Nはより陰性の電荷を有することが見出され、シアル酸残基によるものと思われる。インタクトのMSデータにより、シアル酸がA114N変異体上にある複雑な構造が確認された。これとは対照的に、WTの2C3は、優勢なグリコシル化種としてG0FおよびG1Fを有することが示された(それぞれ図18Cおよび18D)。
【実施例0190】
いくつかの抗体のバックボーンにおける高グリコシル化変異体の調製
2C3抗CD-52抗体の他に、A114N変異を他の抗体バックボーンのいくつかに施し、固有の高グリコシル化部位が非関連の重鎖可変ドメイン配列中に導入され得ることを確認した。高グリコシル化の抗-TEM1、抗FAP、および抗Her2変異体を、表
5に記載する。
【0191】
【表9】
【0192】
2A.抗TEM1および抗FAP抗体の高グリコシル化変異体の作製
Kabatのナンバリングシステムに基づいて命名したA114N変異を、抗TEM1および抗FAPのCH1ドメイン中に変異原性PCRによって導入した。全長の抗体を作製するために、変異させたVHプラス残基114を、ライゲーション非依存性クローニング(LIC)によって、抗体のCHドメイン1~3をコードするpENTR-LIC-IgG1ベクター中に挿入した。全長の変異体を、次いで、pCEP4(-E+I)Dest発現ベクター中に、Gatewayクローニングによってクローニングした。DNAシーケンシングによって変異を確認した。抗TEM1野生型のアミノ酸配列、ならびに変異させた重鎖および軽鎖のアミノ酸配列を表6に記載する。変異させたアミノ酸を灰色で強調し、変異によって作製されたコンセンサスのグリコシル化標的部位に下線を付す。
【0193】
【表10】
【0194】
変異体および野生型の対照を、トリプルフラスコのフォーマットでHEK298-EBNA細胞中にトランスフェクトし、HiTrapプロテインAカラム(GE Healthcare Biosciences、Pittsburgh、PA、USA)上で精製した。NanoDrop分光光度計上A280で分析したところ、抗FAPのA114Nおよび抗FAPのA114Cの発現は、それぞれ約3μg/mlおよび約1μg/mlであった。抗TEM1のA114Nの発現は約0.04μg/mlであった。
【0195】
2B.高グリコシル化の検証
さらなるグリコシル化部位がA114N変異体に導入されたことを確認するために、A114N変異体から精製したタンパク質を、野生型の対照のタンパク質と一緒に、還元性SDS-PAGE上で分析した。さらなる1つのグリコシル化部位により、重鎖の分子量に2000~3000ダルトンが加えられる。図20に示す通り、SDS-PAGEにより、抗FAP、および抗TEM1のA114N変異体の重鎖のバンドの見かけの分子量が増大し、さらなるグリコシル化部位が両方の抗体に上首尾に導入されたことと一致したことが指摘される。
【0196】
2C.抗Her2抗体の高グリコシル化変異体の作製
Her-2のA114N、Her-2のA114N/NNAS、およびWTのHer-
2抗体を、ライゲーション非依存的クローニングによって作製した。ハーセプチンのVHドメインを合成し、WTの、またはA114N変異を有するいずれかの、2セットのLIC適合性のプライマーでPCR増幅した。全長の抗体を得るために、増幅したVH挿入断片(WTまたはA114N)を、CH1~3ドメイン、pENTR-LIC-IgG1のWT、およびpENTR-LIC-IgG1のNNASをコードする、2つのpENTRベクター中にクローニングし、pENTR上のエントリークローンとして、3つの全長の変異体(A114N、NNAS、A114N/NNAS)およびWT対照がもたらされた。これらの変異体を、pCEP4(-E+I)Dest発現ベクター中にGatewayクローニングによってクローニングした。DNAシーケンシングによって変異を確認した。抗Her-2の野生型のアミノ酸配列、ならびに変異させた重鎖および軽鎖のアミノ酸配列を、表7に記載する。変異させたアミノ酸を灰色で強調し、変異によって作製したコンセンサスグリコシル化標的部位に下線を付す。
【0197】
【表11】
【0198】
【表12】
【0199】
2D.A114Nの抗Her2抗体の高グリコシル化変異体の発現
A114Nの抗Her2および野生型の構築物を、リポフェクタミン-2000(試薬対DNA比2.5:1)およびXtremeGene HP(試薬対DNA比3:1)で、12個のトリプルフラスコ中のHEK293-EBNA細胞中にトランスフェクトした。3日目の馴化培地(CM)からアリコートをOctetで測定したところ、タンパク質の発現は、リポフェクタミン2000およびXtremeGene HPの両方に対して6個のフラスコにわたり一定であることが示された。表8に示す通り、全体のトランスフェクト効率はXtremeGene HPで30%高かった。3日目に回収した馴化培地を、両方のトランスフェクト条件ごとに一緒にプールし、プロテインAカラムによって精製した。Octetで測定することにより、血清含有疑似培地中の抗体は1.8μg/mlであり、これに対して無血清疑似培地中では0μg/mlであることが示された。
【0200】
【表13】
【0201】
6日目からの馴化培地を回収し、トランスフェクト条件ごとに別々に精製した。両方の
溶離液を別々にPBS、pH7.2にバッファー交換し、Amicon-4(カットオフ50kD)カラムを用いておよそ15倍濃縮した。6日目のCMは、3日目のCMに比べて高い発現レベルを示した。表8に示す通り、合計3mgのハーセプチンA114N 15.59mg/ml(リポフェクタミントランスフェクションから)および6mgのハーセプチンA114N 16.86mg/ml(XtremeGene HPトランスフェクションから)を、抗体-薬物コンジュゲーションなど、さらなる下流の適用のために、6日目の馴化培地から生成した。
【0202】
2E.A114N抗Her2変異体のSDS-PAGEおよびHIC分析
コンジュゲート前、精製したA114Nハーセプチンを、SDS-PAGEおよびHIC(疎水性相互作用クロマトグラフィー)によって特徴付けた。図21に示す通り、精製したA114Nハーセプチンの質は、さらに下流で適用するのに適すると決定された。
【0203】
2F.改変されたグリコシル化に対するコンジュゲーション
以下のことが実証された:a)グリコシル化部位が、抗TEM1上のKabat114位の部位に導入された、b)A114N変異体は、還元性SDS-PAGEにより重鎖上に高グリコシル化を有していた、ならびにc)A114高グリコシル化変異体は、インタクトLC/MSにより、SAMおよびGAMコンジュゲーションに理想的な末端のシアル酸およびガラクトースを含む複雑な炭水化物構造を有していた。改変されたグリコシル化部位がコンジュゲーションに適することを確認するために、抗TEM1 A114Nを、アミノオキシ化学反応によって5kDaのPEGとコンジュゲートさせた。図22に示す通り、PEGを、アミノオキシ連結によって抗TEM1 A114Nに上首尾にコンジュゲートさせた。この変異体をまた、抗FAPおよび抗CD-52の2C3バックボーン上で上首尾に調製した(示さず)。これらのデータは、N114のグリコシル化部位は、エフェクター部分のコンジュゲーションに有用であることを実証するものである。
【実施例0204】
S298N/Y300SのFc変異体の産生
新たなグリコシル化部位を天然に存在するAsn297部位の隣であるEUのSer298位に導入した、改変されたFcバリアントをデザインし、産生した。Asn297のグリコシル化は、維持し、または変異によって除去するいずれかであった。変異および所望のグリコシル化の結果を、表9に記載する。
【0205】
【表14】
【0206】
3A.H66αβ-TCR抗体の変更されたグリコシル化バリアントの作製
pENTR_LIC_IgG1テンプレートを用いてQuikchangeにより、αβT細胞受容体抗体クローン#66の重鎖上に変異を行った。HEBE1 Δab IgG1 #66のVHドメインをLICプライマーで増幅した後、変異型または野生型のpENTR_LIC_IgG1中にLICによってクローニングして、全長の変異体または野生型の抗体を作製した。サブクローニングを、DraIII/XhoI二重消化物で検証し、およそ1250bpサイズのインサートを上首尾なクローンにおいて生成した。次いで、これらの全長の変異体を発現ベクターであるpCEP4(-E+I)Dest中に、Gatewayクローニングによってクローニングした。DNAシーケンシングによって変異を確認した。WTのH66抗-αβTCR重鎖および軽鎖のアミノ酸配列、ならびに変異させたH66の重鎖のアミノ酸配列を表10に記載する。変異させたアミノ酸を灰色で強調し、変異によって作製したコンセンサスグリコシル化標的部位に下線を付す。
【0207】
【表15】
【0208】
【表16】
【0209】
変異体、野生型、ならびに非グリコシル化対照2種(HEBE1 Agly IgG4およびpCEP4中HEBE1 Δab IgG1)の構築物を、発現用にトリプルフラスコ中、HEK293-EBNA細胞中にトランスフェクトした。タンパク質を、HiTrapプロテインAカラム(GE)1mlで、馴化培地(CM)160mlから、マルチチャンネル蠕動ポンプを用いて精製した。得られた各上清の5マイクログラムを4~20%Tris-Glycine還元性および非還元性SDS-PAGEゲル上で分析した(図2を参照されたい)。非グリコシル化変異体(N297Q、T299A、およびAgly対照)の重鎖はより遠くに遊走し(矢印)、これらの抗体におけるグリカンの喪失と一致する。しかし、改変されたグリコシル化抗体(NSY、STY、SY、Δab、およびwt対照、矢印)の重鎖は、野生型対照に同様に遊走した。この結果は、EU298位の改変されたグリコシル化部位の存在に一致した。SEC-HPLC分析により、全ての変異体が単量体として発現されることが指摘された。
【0210】
3B.LC-MSによるグリコシル化分析
改変されたH66 IgG1のFcバリアントを、37℃で30分間、20mMDTTで部分的に還元した。次いで、試料を、QSTARqq TOFハイブリッドシステム(Applied Biosystems)とカップリングさせたAgilent1100キャピラリーHPLCシステム上、キャピラリーLC/MSによって分析した。ベースライン補正をしたベイズ理論によるタンパク質の再構成、およびAnalyst QS1.1(Applied Bisoystem)におけるコンピュータモデリングをデータ解析に用いた。S298N/T299A/Y300SのH66抗体変異体では、1個のグリコシル化部位がアミノ酸298に観察され、二分岐および三分岐の複合型グリカンが、G0F、G1F、およびG2Fに並ぶ主な種として検出された(図34を参照されたい)。この変更されたグリコシル化のプロファイルは、野生型のN297のグリコシル化部位の代わりに、移行したN298のグリコシル化と一致する。
【0211】
3C.Biacoreを用いたヒトFcγRIIIaおよびFcγRIに対するαβTCR抗体変異体の結合特性
Biacoreを用いて、組換えヒトFcγRIIIa(V158およびF158)ならびにFcγRIに対する結合を評価した。CM5チップの4つのフローセル全てを、Biacoreによって提供される標準的なアミンカップリング手順によって、抗HPC4抗体で固定化した。抗HPC4抗体を、カップリング反応用に10mM酢酸ナトリウムpH5.0中50μg/mLに希釈し、5μL/分で25分間注入した。抗体およそ12000RUをチップ表面に固定化した。組換えヒトFcγRIIIa-V158およびFc
γRIIIa-F158を、結合バッファー(1mM CaClを含むHBS-P)中0.6μg/mLに希釈し、それぞれフローセル2および4に5μL/分で3分間注入して、抗HPC4チップ上300~400RU受容体を捕獲した。低バインダー間を区別するために、このアッセイで通常用いるより3倍多いrhFcγRIIIaを抗HPC4表面上に捕獲した。フローセル1および3を基準対照として用いた。各抗体を結合バッファー中200nMに希釈し、4つのフローセル全ての上に4分間注入し、引き続きバッファー中5分間解離させた。表面を、HBS-EPバッファー中10mM EDTAで、20μL/分で3分間再生した。これらの実験の結果を図3に示す。
【0212】
Biacoreをここでも用いて、FcγRI結合を比較した。抗テトラHis抗体を、Zeba Desaltingカラムを用いて、10mM酢酸ナトリウムpH4.0にバッファー交換し、アミノカップリング用に酢酸バッファー中25μg/mLに希釈した。CM5チップのフローセル2個を、5μL/分で20分間注入した後、およそ9000RUの抗テトラHis抗体で固定化した。試料を弱い結合と比べるために、先の実験における通り、10倍多いFcγRIを抗テトラHis表面に捕獲した。組換えヒトFcγRIを、HBS-EP結合バッファー中10μg/mL希釈し、フローセル2に5μL/分で1分間注入して、抗テトラHisチップにおよそ1000RUの受容体を捕獲した。100nMの単一濃度の抗体を、捕獲した受容体および対照の表面上に、30μL/分で3分間注入した。引き続き、解離を3分間モニタリングした。次いで、10mMグリシンpH2.5を20μL/分で30秒間2回注入して表面を再生した。これらの実験の結果を図4に示す。
【0213】
これらの結果は、糖が改変された変異体のFcγRIIIaまたはFcγRIに対する結合における著しい低減を実証するものである。特にH66のS298N/T299A/Y300Sの、両受容体に対する結合は、ほとんど完全に破壊されていた。さらに詳しく分析するために、この変異体を選択した。
【0214】
3D.円偏光二色性を用いた安定性の特徴付け
S298N/T299A/Y300S抗体の変異体の安定性を、216nmおよび222nmのCDシグナルを、抗体のアンフォールディング(変性)をもたらす温度の上昇としてモニタリングする、遠UVのCD熱融解実験によってモニタリングした。
【0215】
温度を、熱電性のペルティエ(JascoモデルAWC100)によって制御し、25~89℃から1℃/分の速度で上昇させた。光路長が10mmである石英キュベット(Hellma,Inc)におけるPBSバッファー中およそ0.5mg/mLのタンパク質濃度で、CDスペクトルをJasco815分光光度計上で収集した。スキャン速度は50nm/分であり、データのピッチ(pitch)は0.5nmであった。感度設定を中程度にし、バンド幅2.5nmを用いた。データ間隔0.5nm、温度間隔1℃でCDシグナルおよびHT電位を210~260nmから回収し、各試料に対して4回の重複するスキャンを行った。結果は、デルタABのH66およびS298N/T299A/Y300SのH66変異体の両方とも類似の熱挙動を示し、分解に対しておよそ同じ開始温度(63℃周辺)を有することを実証するものであり(図35)、これらは匹敵する安定性を有することがさらに示唆される。
【実施例0216】
Fc改変変異体の機能分析
Fc改変された変異体を、PBMC増殖アッセイおよびサイトカイン放出アッセイによって評価した。PBMC増殖アッセイでは、ヒトPBMCを増大濃度の治療用抗体と72時間培養し、H-チミジンを加え、18時間後に細胞を収集した。T細胞枯渇/サイトカイン放出アッセイでは、ヒトPBMCを増大濃度の治療用抗体と培養し、細胞数および
生存性について7日目まで毎日分析した(Vi-Cell、Beckman Coulter)。細胞上清も回収し、-20℃で貯蔵し、8個の構成成分を持つ(8区画の)サイトカインパネル(Bio-Rad)上で分析した。
【0217】
正常ドナーのPBMCを解凍し、以下の条件下で処理した(全て補体を含む培地中):未処理;BMA031、moIgG2b 10μg/ml;OKT3、moIgG2a 10μg/ml;H66、huIgG1デルタAB 10μg/ml、1μg/ml、および0.1μg/ml;H66、huIgG1 S298N/T299A/Y300S 10μg/ml、1μg/ml、および0.1μg/ml。
【0218】
サイトカインを2日目(D2)および4日目(D4)にBioPlex分析用に収集した(IL2、IL4、IL6、IL8、IL10、GM-CSF、IFNg、TNFa)。D4に、細胞を、CD4、CD8、CD25、およびabTCR発現用に染色した。
【0219】
図5~8に示す結果は、H66のS298N/T299A/Y300Sは、行った細胞ベースのアッセイ全てにおいてH66のデルタABと同様の挙動をし、CD25発現によるT細胞の最小の活性化、abTCRに対する結合(デルタABにわずかに異なる動力学で)、ならびにD2およびD4両方の時間点でのサイトカインの最小の放出を示すことを実証するものである。S298N/T299A/Y300S変異体は、このように、デルタAB変異と同じくらい効果的にエフェクター機能を排除した。
【実施例0220】
改変Fcバリアントの抗CD52抗体のバックボーンにおける調製および特徴付け
H66抗αβTCR抗体の他に、S298N/Y300S変異も、抗CD52抗体のバックボーン(クローン2C3)において改変した。次いで、S298N/Y300SのH66抗αTCR抗体に見られる、観察されたエフェクター機能の調節は別の抗体のバックボーンと一致するか否かを決定するために、この変異体を試験した。
【0221】
5A.2C3抗CD52抗体が変更するグリコシル化バリアントの作製
最初に、pENTR_LIC_IgG1を用いたクイックチェンジ変異誘発によってS298N/Y300Sの2C3バリアントDNAを調製し、WTの2C3 VHを、変異したベクター中にLICによってクローニングした。全長の変異体を、pCEP4(-E+I)Dest発現ベクター中に、Gateway技術を用いてクローニングした。引き続き、DNAシーケンシングによって変異を確認し、配列は表11に記載するものであった。次いで、変異体を、6ウェルプレートのフォーマットでHEK293-EBNA細胞中にトランスフェクトし、タンパク質を馴化培地から精製した。抗-CD52の2C3野生型抗体を、対照として並行して生成した。発現レベルは、SD-PAGEおよびウエスタンブロット分析を用いて0.1μg/mLであることが見出された(図9A)。ニートの馴化培地中の変異体の発現も、Biacore上プロテインAの捕獲によって測定した。濃度を、固定化したプロテインAを6分間注入した後の解離応答を用いて決定した。CHOが生成したWT2C3を、培地中90μg/mLから1.5ng/mLに段階希釈し、標準曲線として用いた。4パラメータの適合を用いた検量線により、濃度はおよそ0.2μg/mL以内と算出された。相対的な発現レベルは低く、ウエスタンブロットデータと概ね一致する(図9B)。
【0222】
【表17】
【0223】
5B.PNGaseFを用いたグリコシル化分析
変異によって導入されるさらなるグリコシル化部位を評価するために、濃縮したS298N/Y300S変異体をPNGaseFで脱グリコシル化した。それによれば、分子量の見かけの変化がまったく実証されなかったことから、さらなる炭水化物が存在しなかったことが指摘された(図10)。さらなる特徴付け用にこれらの変異体を精製するために、小規模の調製を行い、結果によりS298N/Y300S変異体上にさらなる炭水化物が存在しなかったことが再確認された(図11)。
【0224】
5C.Biacoreを用いた2C3抗CD-52抗体変異体のヒトFcγRIIIaに対する結合特性
Biacoreをやはり用いて、抗原結合性、FcγRIII、および精製した抗体の結合特性を特徴付けた(図12、13、および14を参照されたい)。S298N/Y300Sの2C3バリアントはCD52ペプチドに強固に結合し、結合性のセンサーグラム(sensorgram)は野生型対照と識別できず、この変異は抗原結合性に影響を及ぼさないことが実証された(図12A)。
【0225】
Fcのエフェクター機能に対してアッセイするために、FcγRIII受容体(Val158)を結合試験で用いた。変異体および野生型の対照の抗体を200nMに希釈し、
HPC4-タグが捕獲したFcγRIIIaに注入した。FcγRIII結合はS298N/Y300S変異体に対してほとんど検出不可能であり、これによりこのバリアントによるエフェクター機能の喪失が指摘された(図12Bおよび図14A)。Fcのエフェクター機能に対してさらにアッセイするために、FcγRIII受容体(Phe158)を結合試験においてやはり用いた。変異体および野生型の対照の抗体を200nMに希釈し、HPC4-タグが捕獲したFcγRIIIaに注入した。FcγRIIIの結合は、S298N/Y300S変異体に対してほとんど検出不可能であり、これによりPhe158バリアントでのエフェクター機能の喪失が指摘された(図14B)。最後に、Biacoreを用いて、精製したタンパク質のFcRn結合特性を比較した。マウス、およびSEC精製したヒトFcRn-HPC4をCM5チップに、アミンカップリングによって固定化した。各抗体を200、50、および10nMに希釈し、受容体上に注入した。Campath、CHOが生成するWT2C3、およびDEPC処理したCampathが、陽性対照および陰性対照として含まれた。これらのデータは、変異体は、ヒトおよびマウス両方のFcRn受容体に、野生型抗体の対照と同じ親和性で結合し、循環半減期または他の薬物動態学的特性に変更のある可能性がないことを示すものである(図12C図13A、およびBを参照されたい)。したがって、S298N/Y300S変異は、ヒトFcγ受容体の関与などによって、望ましくないFcエフェクター機能を低減または排除するために、一般的に抗体に適用できる。
【実施例0226】
S298N/Y300S変異体における循環性免疫複合体の検出
循環性免疫複合体の検出をまた、S298N/Y300S変異体およびWTの対照に対してC1q結合アッセイを用いて調査した。高結合性のCostar96ウェルプレートを、コーティングバッファー(0.1M NaCHO、pH9.2)中10~0.001μg/mlの範囲の濃度の2倍段階希釈した2C3Ab100μlと、4℃で一夜コーティングした。ELISA分析により、C1qの結合は、WTに比べてS298N/Y300S変異体では低減したことが示された(図15A)。抗FabAbのコーティングした2C3Abに対する結合により、ウェルの等しいコーティングが確認された(図15B)。
【実施例0227】
等電点電気泳動を用いたS298N/Y300S変異体の分離および分析
pH3~10の等電点電気泳動(IEF)ゲルを流して、S298N/Y300S変異体を特徴付けた。S298N/Y300Sはより陰性の電荷を有することが見出され、したがって、シアル酸分子である可能性が高い(図18A)。S298N/Y300S変異体およびWTの2C3の両方とも、インタクトMSによって、優勢なグリコシル化種としてG0FおよびG1Fを有することが示された(それぞれ図18BおよびD)。
【実施例0228】
S298N/Y300Sの抗原結合親和性
Biacoreを用いて、小スケール(図16)および大スケール(図17)の発現の両方から調製および精製した、WT抗CD-52の2C3AbおよびS298N/Y300S変異体の抗原結合親和性を比較した。CD52ペプチドである741および対照のペプチドである777で固定化したCM5チップを入手した。抗体を、HBS-EP中60から0.2nMに2倍段階希釈し、次いで、チップ表面にわたって3分間注入し、引き続き流速50μl/分のバッファー中で5分間解離させた。次いで、表面を40mM HClのパルスで再生した。これらの分析を2回ずつ行い、S298N/Y300S変異体およびWTの2C3抗体は匹敵するCD52ペプチド結合性を示すことが実証された。
【0229】
小規模のトランスフェクションの間に作製された抗体をスクリーニングするために、培
地のスクリーニングプラットホームをデザインして、精製前の機能的結合特性を試験した。これらの試験を、Octet(図19A)を用いて行って濃度を決定し、プロテインAバイオセンサーおよびGLD52標準曲線を用いた。試料を、Biacoreを用いたCD52結合の比較用にHBS-Ep中7.5および2nMに希釈した(図19B)。ペプチド結合アッセイの結果により、S298N/Y300S変異体およびWT2C3抗体の両方とも匹敵するCD52ペプチド結合性を有することが示された。さらに、これらの分析により、OctetおよびBiacoreは、小規模のトランスフェクションから抗体による抗原結合性を予測するのに十分に働くことが実証された。
【実施例0230】
さらなる抗体のバックボーンにおけるS298N/Y300S、S298N/T299A/Y300S、およびS297Q/S298N/Y300Sが変更するグリコシル化変異体の調製
抗αβ-TCR抗体および2C3抗Cd-52抗体の他に、S298/Y300S、S298N/T299A/Y300S、およびN297Q/S298N/Y300S変異を他の抗体のバックボーンで改変して、さらなるタンデム型のグリコシル化部位が非関連の重鎖可変ドメイン配列中に導入され得ることを確認した。交互にグリコシル化されている抗CD-52の12G6および抗Her2変異体を、表12および13に記載する。
【0231】
【表18】
【0232】
【表19】
【0233】
【表20】
【実施例0234】
反応性グリカン部分を含む変更された抗体の産生
誘導体化したエフェクター部分と反応することができるグリカン部分を含む抗体を産生するために、抗HER抗体を最初に、グリコシルトランスフェラーゼおよび関連の糖ヌクレオチドドナーを用いてin vitroでグリコシル化した。例えば、シアル酸残基を導入するために、Kanekoらの方法に従って、ドナー抗体を最初にβ-ガラクトシルトランスフェラーゼでガラクトシル化し、引き続きα2,6-シアリルトランスフェラーゼでシアリル化した(Kaneko,Y.、Nimmerjahn,F.、およびRavetch,J.V.(2006年)、Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation.、Science、313巻、670~3頁)。反応は、β-ガラクトシルトランスフェラーゼ(50mU/mg、Sigma)およびα2,6-シアリルトランスフェラーゼ(5μg/mg、R&Dsystem)を、5mM MnClを含む50mM MESバッファー(pH6.5)中ドナーの糖ヌクレオチド基質であるUDP-ガラクトース(10mM)およびCMP-シアル酸と用いてワンポットの合成工程において行った。5mg/ml抗HER2抗体を含む反応混合物を、37℃で48時間インキュベートした。シアリル化を、PNGaseFで抗体から放出された過剰メチル化されたグリカンのMALDI-TOF MS分析、DionexHPLCを用いたシアル酸含量分析、およびα2,6-シアル酸に特異的なレクチンであるSNAでのレクチンブロッティングを用いて検証した。
【0235】
シアリル化した抗HER2抗体のPNGaseF処理により放出されたグリカンのMALDI-TOF分析により、天然のグリカンは、少量のジシアリル化種と共に、主にモノシアリル化された二分岐構造であるA1F(図27A)で完全に再建されたことが指摘された。抗体を大量のα2,6-シアリルトランスフェラーゼで処理すると、A1Fの糖型のより均一な集団が生成され、酵素活性またはグリカン局在化のいずれかにより完全なシアリル化が妨げられ得ることが示唆された。シアル酸含量は抗体1モルあたりおよそ2molであると決定され、これは主な糖型種としてのA1Fグリカンと一致する(図27B)。α2,6連結したシアル酸に特異的なセイヨウニワトコ(Sambucus nigra)のアグルチニンであるSANレクチンでのレクチンブロッティングにより、シアル酸がα2,6結合の立体配置で存在することが確認された(図27C)。
【0236】
結論として、天然のタンパク質であるグリカンはある程度不均質であるが、ガラクトシルおよびシアリルトランスフェラーゼによる再建により、モノシアリル化されているが完全にガラクトシル化されている二分岐グリカンを有するほぼ均一な抗体が得られる(A1F)。分岐した各グリカン上の2つのガラクトースアクセプターに導入されたシアル酸がほぼ1つだけであったことは、グリカンは抗体中に埋まっていることが多いために1つのガラクトースにしか接近できないことが原因か、またはグリカンのタンパク質表面との非共有結合での相互作用が原因である可能性がある。
【実施例0237】
反応性グリカン部分を含む変更された抗体の酸化
シアリル化を検証した後、シアリル化された抗HER2抗体の、多様な濃度の過ヨウ素酸(0.25から2mM)での製造工程中の酸化を調査した。シアリル化した抗体を最初に、5mM EDTAを含む25mM Tris-HCl(pH7.5)にバッファー交換し、引き続きPBSバッファーとバッファー交換した。次いで、緩衝化した抗体混合物を、PBSバッファーで予め平衡にしたプロテインAセファロースカラムに適用した。カラムを、15カラム容積のPBS、5mM EDTAを含む15カラム容積のPBS、および30カラム容積のPBSで洗浄した後、次いでこれを25mMクエン酸リン酸バッファー(pH2.9)で溶出した。溶出液を、二塩基性リン酸バッファーで直ちに中和し、MilliporeからのAmicon ultraを用いて抗体を濃縮した。精製後、
シアリル化した抗HER2抗体を、次いで、氷上の暗所で30分間、100mM酢酸ナトリウムバッファー(pH5.6)中の過ヨウ素酸ナトリウム(Sigma)で酸化し、氷上の3%グリセリンで15分間、反応をクエンチした。生成物を脱塩し、50kDaのAmicon上5ラウンドの限外濾過によって100mM酢酸ナトリウム(pH5.6)に交換した。図28Aは、多様な量の過ヨウ素酸塩で決定した、シアリル化した抗体のシアル酸含量の分析を示す。シアル酸残基の完全な酸化が、0.5mMより高い過ヨウ素酸塩濃度で達成された。実際、導入されたシアル酸を完全に酸化するには、0.5mM程に低い過ヨウ素酸塩濃度で十分である。したがって、濃度1mMの過ヨウ素酸塩が、薬物コンジュゲート用のシアリル化された抗体の酸化用に選ばれた。
【0238】
酸化は抗体の完全性に対して有害作用があり得る。例えば、FcRn結合部位近くのFcのCH3領域に位置するMet-252およびMet-428を含むメチオニン残基の酸化は、抗体の血清半減期の延長に決定的であるFcRn結合に影響を及ぼすことが知られている(Wang,W.ら(2011年)Impact of methionine
oxidation in human IgG1 Fc on serum half-life of monoclonal antibodies.、Mol Immunol、48巻、860~6頁)。したがって、FcRnの相互作用に決定的であるメチオニン残基(例えば、Met-252)に対する過ヨウ素酸塩酸化の潜在的な副作用を調べるために、シアリル化した抗体の酸化状態を、トリプシンペプチド消化のLC/MS分析によって決定した。分析により、Met-252のおよそ30%の酸化、および1mM過ヨウ素酸塩でシアリル化したトラスツマブを処理した後のMet-428の<10%の酸化が明らかになった。この程度のメチオニン酸化のFcRn結合に対する影響を決定するために、各抗体に対するFcRn結合の動力学を、表面プラズモン共鳴(BIACORE)を用いて評価した。この分析により、酸化の状態はFcRn結合の少量の喪失に相関することが明らかになった(マウスおよびヒトFcRnに対して12%および26%の減少、それぞれ図28Bおよび28Cを参照されたい)。とりわけ、各抗体上に単一のインタクトなFcRn部位があれば機能性およびPKの利点をもたらすのに十分であるため、ヒトFcRnに対するKaにおけるおよそ25%の減少は、ヒトFcRnトランスジェニックマウスにおける血漿半減期に対して効果がないことが報告されている(Wangら、同上)。
【0239】
要約すると、これらのデータは、過ヨウ素酸塩に感受性であるシアル酸残基をシアリルトランスフェラーゼ処理によって導入すると、非常に低濃度の過ヨウ素酸塩が使用できるようになり、抗体-FcRn相互作用に対して最小の副作用、および凝集によって評価される抗体の統一性(≦1%)がもたらされることを指摘するものである。このように、本発明の方法によるシアリル化した抗体を用いることで、用いようとする酸化条件のより広いウインドウがもたらされ、血清半減期に対する効果なしに活性な複合糖質を再現可能に産生できるようになる。
【0240】
高グリコシル化抗体変異体におけるガラクトースも、ガラクトースオキシダーゼを用いて特異的に酸化して、コンジュゲーションのためのアルデヒド基を産生することができる。このアプローチを確認するために、A114N抗TEM1抗体を13~20mg/mlに濃縮し、次いで、PBS中20mU/mgシアリダーゼで37℃で6時間処理した。脱シアリル化した生成物を、次いで、ガラクトースオキシダーゼ(「GAO」)で酸化し、最初にタンパク質1mgあたり5μgのGAOを37℃で一夜、引き続きタンパク質1mgあたり2μgのGAOを加え、さらなる5時間インキュベートした。酢酸ナトリウムを加えてpHを5.6に調節し(0.1v/v、pH5.6)、DMSOを加えて最終反応濃度16%を達成し、コンジュゲーションの前に加えた。高グリコシル化変異体であるA114N抗HER抗体(15mg/ml)をシアリダーゼ(20mU/mg)で同様に脱シアリル化し、37℃で一夜、単一の反応において、タンパク質1mgあたり5μgのG
AOで酸化した。
【実施例0241】
反応性エフェクター部分の合成
本発明のアルデヒドで誘導体化した抗体の糖型とのコンジュゲーションを促進するために、候補の薬物エフェクター部分(例えば、モノメチルアウリスタチンE(MMAE)およびドラスタチン10(Dol10))を、アルデヒドと特異的に反応性である官能基(例えば、アミノオキシ-cys)を含むように、アミノオキシシスタミド(aminooxy-cystamide)で誘導体化した。
【0242】
簡潔に述べると、出発材料としてアミノオキシ-シスタミドを産生するために、S-トリチル-L-システインアミド(362mg、1mmol)を、t-BOC-アミノオキシ酢酸N-ヒドロキシスクシンアミドエステル(289mg、1mmol)のDMF溶液3mLに加えた。反応は、HPLC分析から明らかである通り、3時間後に完了した。引き続き、反応混合物をジクロロメタン30mlで希釈し、0.1M炭酸水素ナトリウム溶液(2×20mL)、水(2×20mL)、およびブライン(2×20mL)で洗浄した。溶液を無水硫酸ナトリウム上で乾燥させ、濾過し、濃縮して乾燥させた。この乾燥した残渣にTFA3mLを加え、引き続きトリエチルシラン150μLを加えた。得られた溶液を、t-ブチルメチルエーテルから沈殿させ、このプロセスを3回繰り返した。濾過後、残渣を減圧下で乾燥させてオフホワイト色の固体205mgを得た(収率67%)。化合物をさらに精製せずに次の工程に用いた。
【0243】
アミノオキシ誘導体化したMMAE(アミノオキシ-Cys-MC-VC-PABC-MMAE)を産生するために、DMF3mL中アミノオキシシスタミド30.1mg(0.098mmol、2当量)を、MC-VC-PABC-MMAE(0.049mmol)64.6mg、およびトリエチルアミン100μLと合わせた。得られた反応混合物を室温で15分間撹拌したが、HPLC分析によるとその時間までに反応は完了する。化合物を分取HPLCによって精製し、オフホワイト色の固体の所望の生成物45mg(62%)を得た。逆相HPLC分析により、化合物の純度は>96%であることが示唆された。ESI:C73H116N14O18S(MH)の計算値1509.8501;実測
値、m/z 1509.8469。
【0244】
アミノオキシ誘導体化したDol10(アミノオキシ-Cys-MC-VC-PABC-PEG8-Dol10)を産生するために、アミノオキシシスタミド7.4mg(0.024mmol、3当量)、MC-VC-PABC-PEG8-Dol10 12mg(0.008mmol)、およびトリエチルアミン30μLを、DMF 3mL中で合わせた。反応は、HPLC分析によると15分以内に完了した。分取HPLCの精製により、オフホワイト色の固体の所望の生成物6.2mg(46%)がもたらされた。逆相HPLC分析により、化合物の純度は>96%であることが示唆された。ESI:C80H12
4N16O19S2(MH)の計算値1678.0664;実測値、m/z 1678.0613。
【実施例0245】
反応性エフェクター部分のシアル酸媒介性(SAM)コンジュゲーション
脱塩後、実施例11の薬物-リンカーを、75%DMSO(0.167v/v)中濃度25mMの実施例10の、酸化し、シアリル化した抗体と合わせて、薬物-リンカー対抗体のモル比24:1、最終抗体濃度5mg/mlを達成した。混合物を室温で一夜インキュベートした。非組み入れの薬物-リンカーおよびあらゆる遊離の薬物を、BioBeadsを用いて捕集した。生成物を、PD-10カラムを用いてヒスチジン-Tweenバッファーにバッファー交換し、滅菌濾過した。内毒素のレベルを決定し、in vivo
試験に0.1EU/mg未満のADCを達成した。
【0246】
図29A~Cは、AO-MMAEにグリココンジュゲートした、様々にシアリル化した抗体(実施例11の抗FAPのB11およびG11、ならびに抗HER2抗体)の疎水性相互作用クロマトグラフ(HIC)を示す。シアリル化したHER2抗体も、薬物-リンカーであるAO-Cys-MC-VC-PABC-PEG8-Dol10とコンジュゲートさせた(図29D)。この分析により、抗体1個あたり主に1個から2個の薬物コンジュゲートが存在し、薬物対抗体比(DAR)は1.3~1.9の範囲であることが明らかになった。Do110複合糖質(図29D)の、MMAE複合糖質(図29C)と比べた保持時間の延長は、Do110の疎水性が大きいことによるものと思われる。
【0247】
30mgのスケールで2つの異なる薬物-リンカー(AO-MMAEまたはAO-PEG8-Dol10)とコンジュゲートした抗HER抗体で、LC-MS分析も行った。この分析により、コンジュゲート後のDAR値は1.7および1.5で似通っていることが示され、これはHIC分析に匹敵する。サイズ排除クロマトグラフィー(SEC)により、これらのコンジュゲート中、非常に低レベルの(1%)凝集物が示された。
【実施例0248】
反応性エフェクター部分のガラクトース媒介性(GAM)コンジュゲート
実施例11に記載した、A114N抗TEM1高グリコシル化変異抗体上、ガラクトースオキシダーゼで産生されたガラクトースアルデヒドを、25℃で一夜インキュベートすることによって抗体を上回って24モル過剰のアミノオキシ-MC-VC-PABC-MMAE薬物-リンカーとコンジュゲートさせ、DAR1.72のADCコンジュゲートを得た。実施例11に記載した通りに調製したガラクトースオキシダーゼ処理した抗HER抗体に対して、10分の1の反応容積の1M酢酸ナトリウム、pH5.6を加えてpHを5.6に調節し、DMSOを加えて最終濃度を14%とした後、アミノオキシMC-VC-PABC-MMAE薬物リンカー24当量を加えた。反応を室温で一夜インキュベートした。遊離の薬物および薬物-リンカーをBiobeadsで捕集し、生成物バッファーをSECにより交換した(収率65%)。生成物コンジュゲートをHICにより分析した。図30に示す通り、AO-MMAEは分子のおよそ60%とコンジュゲートしていた。
【実施例0249】
in vitroのADC細胞増殖アッセイ
本発明の抗HERおよび抗FAPの複合糖質分子のin vitro活性をまた、チオール連結によって同じドナー抗体のヒンジ領域システインに連結している同じ薬物部分を含む対応するチオールコンジュゲートと比べた。チオールコンジュゲートは、複合糖質よりおよそ2倍数の、抗体1個あたりの薬物(DAR)を含んでいた。チオールベースのコンジュゲーションを、Stefanoらによって記載されている通りに行った(出版物、Methods in Molecular Biology、2013年)。次いで、Her2+SK-BR-3およびHer2-MDA-MB-231細胞系を用いて、各ADCの相対的効能を評価した。この分析の結果を、以下の表15に表す。
【0250】
【表21】
【0251】
図31は、抗HER複合糖質およびその対応物であるチオールコンジュゲートのin vitroの効力の比較を示す。細胞生存性を、コンジュゲートをHer2抗原発現性(SK-BR-3)細胞(図31AおよびC)、または非発現性(MDA-MB-231)細胞(図31およびD)に72時間暴露した後に決定した。ADCは、グリカンに連結している(「グリコ」)MMAEもしくはPEG8-Do119のいずれか、または従来の化学反応によってヒンジ領域のシステイン(「チオール」)を含んでいた。図31AおよびCに示す通り、複合糖質に比べてチオールコンジュゲートに対して、およそ2倍低いEC50が観察され、これは後者よりも前者ではDARが2倍高かったことに一致する。最高100μg/mlのあらゆる抗体を有するHer2細胞系に毒性は観察されなかった。
【0252】
同様の傾向が、結腸癌、膵臓癌、および乳癌を含めた上皮癌における反応性間質線維芽細胞によって高度に発現される、腫瘍抗原(FAP)に対する抗体で調製したADCに対する細胞増殖にも観察された(Teicher,B.A.(2009年)、Antibody-drug conjugate targets.、Curr Cancer Drug Targets、9巻、982~1004頁)。これらのコンジュゲートは、アミノオキシMMAE薬物-リンカーまたはマレイミドMMAE薬物-リンカーのいずれかを、グリカンまたはチオール基にコンジュゲートさせることによってやはり調製される。これらのコンジュゲートの細胞増殖アッセイにより、チオールコンジュゲートのEC50は、ヒトFAPをトランスフェクトしたCHO細胞に対して、図32に示す通りFAP発現を欠く同じ細胞よりもおよそ100倍高い効力を有し、図32は、抗FAPのB11複合糖質対チオールコンジュゲートのin vitroの効力の比較を示すものである。細胞生存性を、FAP抗原あり、またはなしでトランスフェクトしたCHO細胞に対するコンジュゲートに暴露した後に決定した。ADCは、グリカンに結合したMMAE(「グリコ」)、または従来の化学成分によってヒンジ領域のシステインに結合したMMAE(「チオール」)を含んでいた。複合糖質に比べてチオールに対するおよそ2倍低いEC50は、抗体1個あたり送達される薬物の相対的な量と一致し、抗原発現性CHO細胞における標的結合性および内部移行に対する同様の効率が想定される。並行して、先に記載した通り、DAR1.5を有する抗FAP(B11)ADCの複合糖質をアッセイし、チオールコンジュゲートに比べておよそ2倍高いEC50が示された(DAR3.3)。
【0253】
図36に示す通り、SK-BR-3発現性細胞またはMDA-MB-231細胞に対してアッセイした場合、同様の傾向が、実施例14に記載したA114N高グリコシル化変
異およびAO-MMAEを保有する抗HER抗体で調製したADCに対する細胞増殖アッセイにおいて観察された。A114N複合糖質は、非発現性の系統全体でHer2発現性細胞系に対して増強された細胞毒性を明らかに示す。同じ抗体で調製したSialT複合糖質に比べた相対的な毒性は、この調製物の薬物含有量(drug loading)がより低いことに一致する。
【0254】
細胞増殖アッセイをまた、実施例14に記載した通りに調製したA114N高グリコシル化変異およびAO-MMAEを保有する抗TEM1抗体で調製したADCに対して行った。非発現性MDA-MB-231系に比べて、TEM1発現細胞系であるSJSA-1およびA673に、高い毒性が観察された。同じ抗体を有する従来のチオールコンジュゲートに比べた毒性のレベルは、この調製物の薬物含有量(DAR)と合致した。
【0255】
【表22】
【0256】
要約すると、切断可能なリンカーを有するグリカンによる薬物の部位特異的コンジュゲーションにより、様々な抗体および様々な薬物-リンカーを用いて実証される通り、毒性のあるADCおよび従来のチオールベースのコンジュゲートに匹敵するin vitroの効能が生成される。さらに、過ヨウ素酸塩2mM未満では、薬物コンジュゲートのレベルはシアル酸の低下に相関する。シアル酸の酸化型への完全な変換から予想される通り、過ヨウ素酸塩の濃度を2mMより高く増大させても利点はほとんどもたらされない。しかし、全ての条件下で、抗体1個あたりの薬物の数は、シアル酸含量よりわずかに少なく、酸化されたシアル酸のいくらかは、埋められていることにより、または他の点で薬物-リンカーのバルクに生じる立体障害によりのいずれかで、同様にカップリングに利用可能ではない可能性があることが指摘される。
【実施例0257】
抗体薬物コンジュゲートのin vivoでの特徴付け
抗HER複合糖質の効能をまた、Her2+腫瘍細胞異種移植片モードで評価し、およそ2倍高いDARを有するチオールコンジュゲートの比較対照(comparator)と比較した。Beige/SCIDマウスにSK-OV-3 Her2+腫瘍細胞を埋め込み、およそ150mmの腫瘍を確立させた後、処置を開始した。3または10mg/kg投与量のADCを、38、45、52、および59日目に尾静脈から注射した。1群あたりマウスはおよそ10匹であった。異なる群のマウスの腫瘍体積を測定し、これらの生存を記録した。生存曲線を、Kaplan-Meier法に基づきプロットした。
【0258】
図33は、Her2+腫瘍細胞異種移植片モデルにおける抗HER複合糖質およびチオールコンジュゲートの、in vivoの効能の比較を示す。SK-OV-3 Her2+腫瘍細胞を埋め込んだBeige/SCIDマウスに、およそ2倍高いDARを含む複合糖質またはチオールコンジュゲートの比較対照を含む、MMAE(図33AおよびB)ならびにPEG8-Dol10(図33CおよびD)を投与した。MMAEコンジュゲートの腫瘍成長の動力学を図33Aに示す。この場合、複合糖質は、ネイキッドの抗体単独(黒色)よりも有意に高いが、およそ2倍高いDAR(緑色)を有するチオールコンジュゲートの比較対照より低い効能を示した。MMAE複合糖質は有意な腫瘍の後退、および腫瘍の成長におけるおよそ20日の遅延を示し(図33A)、第1の投与量からの生存時
間におけるおよそ2倍の増大を示した(図33B)。チオールMMAEコンジュゲートは、同じ投与量のADC(10mg/kg)でほとんど完全な腫瘍の抑制を示した。
【0259】
PEG8-Dol10複合糖質(「グリコDol10」)およびおよそ2倍高いDARを有するチオールコンジュゲートの比較対照(「チオールDol10」)のin vivoの効能も、同じHer2+腫瘍細胞異種移植片モデルにおいて決定した。コンジュゲートは両方とも、先に記載したMMAEコンジュゲートよりも低い効能を示した。しかし、10mg/kgのアミノオキシ-PEG8-Dol10複合糖質(「グリコDol10」)は、腫瘍の増殖において15日の遅れを示し(図33C)、第1の投与後の生存時間におけるおよそ20日(1.7倍)の増大を示した(図33D)。チオールコンジュゲートは同じ投与量ではより有効であり、生存におけるおよそ2倍の増大を示した。低投与量では(3mg/kg)、チオールコンジュゲートは、10mg/kgの複合糖質よりも低い効能を示した。この投与量は1kgあたりのPEG8-Dol10薬物80μmolの投与量に相当し、それに対して複合糖質では1kgあたりのPEG8-Dol10薬物110μmolの投与量である。
【0260】
これらのデータは、抗体のグリカンのシアル酸上への、薬物の部位特異的コンジュゲーションにより、チオールベースの化学反応によって産生されるADCに匹敵する効力の分子が得られることを実証するものである。in vivoの効能が幾分低いのは、各抗体に結合した抗原が内部移行することにより、各抗体によって腫瘍細胞中に運ばれる薬物の数が少ないことに由来する可能性がある。本発明者らは、これらの複合糖質を、DARが同じであるチオールコンジュゲートと比較していないが、投与した薬物が匹敵するレベルであることを示す2つのADCの様々な投与量に観察された効能は、複合糖質がそのチオールの対応物に匹敵する内在性の効能を有することを示し、この部位のコンジュゲーションに有害効果がないことを指摘するものである。さらに、わずかに28%多い薬物を導入するDol10複合糖質の10mg/kg投与量により、チオールコンジュゲート(3mg/kg)を上回る生存における2倍の増大がもたらされ、これらのコンジュゲートは同じDARでさえも優れた効能をもたらし得ることが示唆される。天然のグリカンのシアル酸の組み入れに明らかな制限がある場合、分岐した薬物リンカーの使用またはさらなるグリコシル化部位の導入を含めた数々の異なる戦略によって、および同じ方法を用いて、より高い薬物含有量が達成され得る。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18-1】
図18-2】
図18-3】
図19
図20
図21
図22
図23
図24
図25A
図25B
図25C
図26
図27
図28
図29
図30
図31
図32
図33
図34
図35
図36
【配列表】
2024020447000001.app
【手続補正書】
【提出日】2023-11-27
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
明細書に記載の発明。


【外国語明細書】