(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024022593
(43)【公開日】2024-02-16
(54)【発明の名称】冷凍システム
(51)【国際特許分類】
F25B 1/10 20060101AFI20240208BHJP
F25B 1/00 20060101ALI20240208BHJP
F25B 43/00 20060101ALI20240208BHJP
F04C 29/02 20060101ALI20240208BHJP
【FI】
F25B1/10 E
F25B1/00 396A
F25B1/10 G
F25B1/10 D
F25B1/10 R
F25B1/00 387A
F25B43/00 K
F04C29/02 C
【審査請求】未請求
【請求項の数】12
【出願形態】OL
【公開請求】
(21)【出願番号】P 2023191545
(22)【出願日】2023-11-09
(71)【出願人】
【識別番号】521362885
【氏名又は名称】コベルコ・コンプレッサ株式会社
(74)【代理人】
【識別番号】100145403
【弁理士】
【氏名又は名称】山尾 憲人
(74)【代理人】
【識別番号】100111039
【弁理士】
【氏名又は名称】前堀 義之
(74)【代理人】
【識別番号】100218132
【弁理士】
【氏名又は名称】近田 暢朗
(72)【発明者】
【氏名】壷井 昇
(72)【発明者】
【氏名】中村 元
(72)【発明者】
【氏名】山本 祐介
(57)【要約】
【課題】 超低温用途に対応する冷凍システムにおいて、環境への負荷が小さい冷媒を使用しても、圧縮機の効率の低下を抑制する。
【解決手段】 冷凍システム1が、低段側多段圧縮機11、高段側多段圧縮機12、油分離器13、凝縮器14、及び蒸発器18を有する冷媒回路2を備える。冷媒は、GWPが750未満であり且つ-80℃における飽和圧力が0.017MPaA以上である。低段側多段圧縮機11は低段側モータ11cで駆動され、高段側多段圧縮機12は別の高段側モータ12cで駆動される。冷媒回路2は、凝縮器14と蒸発器18との間の冷媒の一部を低段側多段圧縮機11の中間段に戻す第1戻しライン41、凝縮器14と蒸発器18との間の冷媒の一部を低段側多段圧縮機11と高段側多段圧縮機12との間に戻す第2戻しライン42、及び凝縮器14と蒸発器18との間の冷媒の一部を高段側多段圧縮機12の中間段に戻す第3戻しライン43を有する。
【選択図】
図1
【特許請求の範囲】
【請求項1】
低段側多段圧縮機、高段側多段圧縮機、油分離器、凝縮器、及び蒸発器を有し、冷媒をこの順で循環させる冷媒回路を備え、
前記冷媒は、GWPが750未満であり且つ-80℃における飽和圧力が0.017MPaA以上であり、
前記低段側多段圧縮機と前記高段側多段圧縮機とは、それぞれ別のモータで駆動され、
前記冷媒回路が、
前記凝縮器と前記蒸発器との間の前記冷媒の一部を前記低段側多段圧縮機の中間段に戻す第1戻しラインと、
前記凝縮器と前記蒸発器との間の前記冷媒の一部を前記低段側多段圧縮機と前記高段側多段圧縮機との間に戻す第2戻しラインと、
前記凝縮器と前記蒸発器との間の前記冷媒の一部を前記高段側多段圧縮機の中間段に戻す第3戻しラインと、
を更に有する、冷凍システム。
【請求項2】
前記冷媒は、R32である、
請求項1に記載の冷凍システム。
【請求項3】
前記冷媒回路が、
前記凝縮器と前記蒸発器との間の前記冷媒の一部を前記低段側多段圧縮機と前記高段側多段圧縮機との間に戻す第4戻しラインと、
前記凝縮器と前記蒸発器との間に介在すると共に前記第4戻しライン上に介在し、前記凝縮器から前記蒸発器に流れる前記冷媒と、前記第4戻しラインを通流する前記冷媒との間で熱交換を行わせる第1エコノマイザと、
前記第4戻しラインを介して前記第1エコノマイザに供給される前記冷媒を減圧する第1エコノマイザ用膨張機構と、
を更に有する、請求項1又は2に記載の冷凍システム。
【請求項4】
前記第1戻しラインは、前記第1エコノマイザと前記蒸発器との間の前記冷媒を戻し、
前記第2戻しライン及び前記第3戻しラインは、前記凝縮器と前記第1エコノマイザとの間の前記冷媒を戻す、
請求項3に記載の冷凍システム。
【請求項5】
前記冷媒回路が、
前記凝縮器と前記蒸発器との間の前記冷媒の一部を前記低段側多段圧縮機の前記中間段に戻す第5戻しラインと、
前記第1エコノマイザと前記蒸発器との間に介在すると共に前記第5戻しライン上に介在し、前記第1エコノマイザから前記蒸発器に流れる前記冷媒と、前記第5戻しラインを通流する前記冷媒との間で熱交換を行わせる第2エコノマイザと、
前記第5戻しラインを介して前記第2エコノマイザに供給される前記冷媒を減圧する第2エコノマイザ用膨張機構と、
を更に有する、請求項3に記載の冷凍システム。
【請求項6】
前記油分離器で回収されたオイルを少なくとも前記低段側多段圧縮機に戻すオイル戻しラインと、
前記オイル戻しラインを流れる前記オイルから、前記オイルに溶解している前記冷媒を除去する脱気器と、
前記脱気器で分離された前記冷媒を、前記低段側多段圧縮機の中間段または、前記低段側多段圧縮機と前記高段側多段圧縮機との間の戻し先に戻す脱気冷媒戻しラインと、
前記脱気器の内圧を前記戻し先の圧力よりも高圧に調整する圧力調整弁と、
を更に備える、請求項1又は2に記載の冷凍システム。
【請求項7】
前記蒸発器は、前記冷媒で冷却対象物を直接冷却する熱交換器である、
請求項1又は2に記載の冷凍システム。
【請求項8】
前記冷媒回路が、前記凝縮器と、前記蒸発器としての前記熱交換器との間に介在する受液器を更に有し、
前記受液器で貯留された前記冷媒が前記熱交換器に供給され、前記冷却対象物との熱交換後のガス状の前記冷媒が、前記低段側多段圧縮機へと循環される、
請求項7に記載の冷凍システム。
【請求項9】
前記低段側多段圧縮機と前記高段側多段圧縮機との間の圧力である中間圧力を検出する中間圧力センサと、
前記中間圧力センサにより検出された前記中間圧力に応じて前記高段側多段圧縮機の回転数を制御する制御装置と、
を更に備える、請求項1又は2に記載の冷凍システム。
【請求項10】
前記低段側多段圧縮機が、
その第1段圧縮部の回転軸の吸込側の端部を回転可能に支持する吸込側軸受と、
前記吸込側軸受を収容する吸込側軸受室と、
を含み、
前記吸込側軸受室には、前記吸込側軸受に対して前記第1段圧縮部とは反対側に配置された壁部が設けられ、前記吸込側軸受と前記壁部との間にオイルが溜められる、
請求項1又は2に記載の冷凍システム。
【請求項11】
前記低段側多段圧縮機の前記吸込側軸受にオイルを案内する油供給ラインが設けられていない、
請求項10に記載の冷凍システム。
【請求項12】
前記低段側多段圧縮機が、
その第1段圧縮部の回転軸の吸込側の端部を回転可能に支持する吸込側軸受と、
前記吸込側軸受を収容する吸込側軸受室と、
を含み、
前記油分離器のオイルを前記吸込側軸受に案内する油供給ラインが設けられ、
前記油供給ラインには、制御装置により開閉制御される開閉バルブが設けられ、
前記制御装置は、前記低段側多段圧縮機が駆動すると前記開閉バルブを閉め、前記低段側多段圧縮機が停止すると前記開閉バルブを開けるように前記開閉バルブの開閉を制御する、
請求項1又は2に記載の冷凍システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、冷凍システムに関する。
【背景技術】
【0002】
本書において、「R」及びこれに続く数字及び添え字によって表される記号は、ISO817において定められた冷媒番号である。用語「超低温」は、例えば、-70℃~-90℃の温度を指すものとしている。
【0003】
特許文献1は、中温側及び低温側冷凍機の冷媒にR23を使用する三元式の冷凍システムを開示している。R23を冷媒に使用する場合、例えば、-80℃以下の超低温を得ることができる。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
R23は、GWP(Global Warming Potential:地球温暖化係数)が極端に高いため、将来使用できなくなる。R23に代わる冷媒の一例として、R32(CH2F2)が着目されている。R32は、GWPが低い一方、-85℃のような超低温では、圧縮機の吸込み圧力が非常に低くなり、圧縮機の効率を悪くする。
【0006】
本発明は、超低温用途に対応する冷凍システムにおいて、環境への負荷が小さい冷媒を使用しても、圧縮機の効率の低下を抑制することを課題とする。
【課題を解決するための手段】
【0007】
本発明の一態様は、低段側多段圧縮機、高段側多段圧縮機、油分離器、凝縮器、及び蒸発器を有し、冷媒をこの順で循環させる冷媒回路を備え、前記冷媒は、GWPが750未満であり且つ-80℃における飽和圧力が0.017MPaA以上であり、前記低段側多段圧縮機と前記高段側多段圧縮機とは、それぞれ別のモータで駆動され、前記冷媒回路が、前記凝縮器と前記蒸発器との間の前記冷媒の一部を前記低段側多段圧縮機の中間段に戻す第1戻しラインと、前記凝縮器と前記蒸発器との間の前記冷媒の一部を前記低段側多段圧縮機と前記高段側多段圧縮機との間に戻す第2戻しラインと、前記凝縮器と前記蒸発器との間の前記冷媒の一部を前記高段側多段圧縮機の中間段に戻す第3戻しラインと、を更に有する、冷凍システムを提供する。
【0008】
上記構成によれば、冷媒回路において、低段側多段圧縮機及び高段側多段圧縮機が直列に接続される。冷媒は、蒸発器から低段側多段圧縮機に循環され、低段側多段圧縮機及び高段側多段圧縮機をこの順で通過し、その過程で順次に圧縮されていく。低段側多段圧縮機及び高段側多段圧縮機の組合せは、少なくとも4段の圧縮機を備え、その結果、各圧縮機の圧縮比(吸込圧と吐出圧との比、「圧力比」ともいう。)を小さくしても、高圧ひいては超低温を得ることができ、圧縮機の効率低下を防ぐことができる。
【0009】
多数の圧縮機が直列に接続されていると、冷媒は各圧縮機で昇温していく。上記構成によれば、凝縮器から蒸発器に流れる冷媒の一部が、3つの戻しラインを介し、低段側多段圧縮機及び高段側多段圧縮機の組合せにおける異なる3か所に戻される。圧縮機の吐出温度を随時低下させながら、冷媒は順次に圧縮されていく。高段側多段圧縮機の後段側で冷媒が極端に高温になることを防止できる。高段側多段圧縮機は、安定的に作動でき、超低温を得るために要求される圧力まで冷媒を圧縮できる。また、冷媒の高温化による冷媒の劣化を防止できる。
【0010】
前記冷媒は、R32であってもよい。
【0011】
上記構成によれば、圧縮機の吐出温度を下げることができるため、R32のような比熱比が大きい冷媒を使用していても、超低温を得ることができる。R32のGWPは、750未満であるため、冷凍システムの環境負荷を軽減できる。
【0012】
前記冷媒回路が、前記凝縮器と前記蒸発器との間の前記冷媒の一部を前記低段側多段圧縮機と前記高段側多段圧縮機との間に戻す第4戻しラインと、前記凝縮器と前記蒸発器との間に介在すると共に前記第4戻しライン上に介在し、前記凝縮器から前記蒸発器に流れる前記冷媒と、前記第4戻しラインを通流する前記冷媒との間で熱交換を行わせる第1エコノマイザと、前記第4戻しラインを介して前記第1エコノマイザに供給される前記冷媒を減圧する第1エコノマイザ用膨張機構と、を更に有してもよい。
【0013】
上記構成によれば、凝縮器と蒸発器との間の冷媒の一部が、エコノマイザ用膨張機構によって冷却され、エコノマイザで凝縮器から蒸発器に供給される冷媒を冷却し、低段側多段圧縮機と高段側多段圧縮機との間に戻る。凝縮器から蒸発器に供給される冷媒を更に冷却でき、冷凍システムの冷凍能力(成績係数)が向上する。また、圧縮機の吐出温度を更に低下させることができる。
【0014】
前記第1戻しラインは、前記第1エコノマイザと前記蒸発器との間の前記冷媒を戻し、前記第2戻しライン及び前記第3戻しラインは、前記凝縮器と前記第1エコノマイザとの間の前記冷媒を戻してもよい。
【0015】
上記構成によれば、エコノマイザの下流側の比較的に低温の冷媒が、低段側多段圧縮機及び高段側多段圧縮機の組合せにおいて比較的に上流側に戻される。エコノマイザの上流側の比較的に高温の冷媒が、低段側多段圧縮機及び高段側多段圧縮機の組合せにおいて比較的に下流側に戻される。したがって、圧縮機の吐出温度を効果的に冷却できる。
【0016】
前記冷媒回路が、前記凝縮器と前記蒸発器との間の前記冷媒の一部を前記低段側多段圧縮機の前記中間段に戻す第5戻しラインと、前記第1エコノマイザと前記蒸発器との間に介在すると共に前記第5戻しライン上に介在し、前記第1エコノマイザから前記蒸発器に流れる前記冷媒と、前記第5戻しラインを通流する前記冷媒との間で熱交換を行わせる第2エコノマイザと、前記第5戻しラインを介して前記第2エコノマイザに供給される前記冷媒を減圧する第2エコノマイザ用膨張機構と、を更に有してもよい。
【0017】
上記構成によれば、エコノマイザが2段設けられるので、冷凍システムの冷凍能力が更に向上し、また、圧縮機の吐出温度を更に低下させることができる。
【0018】
前記冷凍システムが、前記油分離器で回収されたオイルを少なくとも前記低段側多段圧縮機に戻すオイル戻しラインと、前記オイル戻しラインを流れる前記オイルから、前記オイルに溶解している前記冷媒を除去する脱気器と、前記脱気器で分離された前記冷媒を、前記低段側多段圧縮機の中間段または、前記低段側多段圧縮機と前記高段側多段圧縮機との間の戻し先に戻す脱気冷媒戻しラインと、前記脱気器の内圧を前記戻し先の圧力よりも高圧に調整する圧力調整弁と、を更に備えてもよい。
【0019】
ここで、冷媒がオイルに溶解したままでオイルと共に圧縮機に供給されると、冷媒の蒸発(フラッシュ)により圧縮機の性能低下を引き起こすおそれがある。上記構成によれば、冷媒が脱気器でオイルから除去されるので、このような性能低下を防止できる。冷媒は、脱気器で回収された後に冷媒回路に戻されるので、冷媒回路内の冷媒の減少を防止できる。
【0020】
前記蒸発器は、前記冷媒で冷却対象物を直接冷却する熱交換器であってもよい。
【0021】
上記構成によれば、ブラインが不要となり、冷凍システムの構成を全体として簡素化できる。
【0022】
前記冷媒回路が、前記凝縮器と、前記蒸発器としての前記熱交換器との間に介在する受液器を更に有し、前記受液器で貯留された前記冷媒が前記熱交換器に供給され、前記冷却対象物との熱交換後のガス状の前記冷媒が、前記低段側多段圧縮機へと循環されてもよい。
【0023】
上記構成によれば、受液器で貯留された液相の冷媒がブラインと同様に機能し、ブラインそのものが不要となる。
【0024】
前記冷凍システムが、前記低段側多段圧縮機と前記高段側多段圧縮機との間の圧力である中間圧力を検出する中間圧力センサと、前記中間圧力センサにより検出された前記中間圧力に応じて前記高段側多段圧縮機の回転数を制御する制御装置と、を更に備えてもよい。
【0025】
上記構成によれば、低段側多段圧縮機と前記高段側多段圧縮機の圧縮比が均衡するように制御し、各多段圧縮機の消費電力を最適化できる。すなわち、冷凍システムの性能が向上する。
【0026】
前記低段側多段圧縮機及が、その第1段圧縮部の回転軸の吸込側の端部を回転可能に支持する吸込側軸受と、前記吸込側軸受を収容する吸込側軸受室と、を含み、前記吸込側軸受室には、前記吸込側軸受に対して前記第1段圧縮部とは反対側に配置された壁部が設けられ、前記吸込側軸受と前記壁部との間にオイルが溜められてもよい。また、前記低段側多段圧縮機の前記吸込側軸受にオイルを案内する油供給ラインが設けられていなくてもよい。
【0027】
上記構成によれば、第1段圧縮部の吸込側軸受と壁部との間に溜められたオイルで、第1段圧縮部の吸込側軸受を十分に潤滑できる。
【0028】
前記低段側多段圧縮機が、その第1段圧縮部の回転軸の吸込側の端部を回転可能に支持する吸込側軸受と、前記吸込側軸受を収容する吸込側軸受室と、を含み、前記油分離器のオイルを前記吸込側軸受に案内する油供給ラインが設けられ、前記油供給ラインには、制御装置により開閉制御される開閉バルブが設けられ、前記制御装置は、前記低段側多段圧縮機が駆動すると前記開閉バルブを閉め、前記低段側多段圧縮機が停止すると前記開閉バルブを開けるように前記開閉バルブの開閉を制御してもよい。
【0029】
上記構成によれば、低段側多段圧縮機の駆動中は、第1吸込側軸受室にオイルが直接供給されないため、第1吸込側軸受室において多量の冷媒ガスが発生するのを防ぐことができる。また、低段側多段圧縮機の停止中には、オイルが第1吸込側軸受に直接供給されるため、差圧が小さいため、供給されたオイルから冷媒ガスが発生しにくい。また、第1吸込側軸受にオイルが直接供給されるため、第1吸込側軸受を確実に潤滑することができるとともに、第1吸込側軸受付近にオイルを十分に溜めておくことができる。
【発明の効果】
【0030】
本発明によれば、超低温用途に対応する冷凍システムにおいて、環境への負荷が小さい冷媒を使用しても、圧縮機の効率の低下を抑制できる。
【図面の簡単な説明】
【0031】
【
図4】第1実施形態に係る冷凍システムにより実行される制御のフローチャート。
【
図5】第1実施形態に係る冷凍システムのモリエル線図。
【
図10】第6実施形態に係る冷凍システムの回路図。
【
図11】第7実施形態に係る冷凍システムの低段側多段圧縮機の概略構成図。
【発明を実施するための形態】
【0032】
以下、図面を参照して実施形態について説明する。なお、同一の又は対応する要素には全図を通じて同一の符号を付し、詳細な説明の重複を省略する。
【0033】
(第1実施形態)
まず、
図1を参照して、第1実施形態に係る冷凍システム1の全体構成を説明する。
【0034】
冷凍システム1は、いわゆる単元型である。冷凍システム1は、低段側多段圧縮機11、高段側多段圧縮機12、油分離器13、凝縮器14、レシーバ15、乾燥器16、膨張弁17、及び蒸発器18を有する冷媒回路2を備え、冷媒がこの順で循環していく。冷凍システム1は、多段圧縮機11,12の安定動作に必要とされるオイルを循環させるオイル循環回路3を更に備えている。油分離器13は、冷媒回路2の構成要素であり、オイル循環回路3の構成要素でもある。オイルは、多段圧縮機11,12の潤滑に使用される。本実施形態においては、多段圧縮機11,12が、油冷式である。オイルは、多段圧縮機11,12の冷却にも使用される。
【0035】
低段側多段圧縮機11は、気体の冷媒を段階的に圧縮していく。高段側多段圧縮機12は、低段側多段圧縮機11で圧縮された気体の冷媒を更に段階的に圧縮していく。油分離器13は、高段側多段圧縮機12で圧縮された高温高圧の気体の冷媒から、オイルを分離する。凝縮器14は、油分離器13でオイルと分離された高温高圧の気体の冷媒を凝縮する。レシーバ15は、凝縮器14で凝縮された中温高圧の液体の冷媒を一時的に貯留し、液体の冷媒から気体の冷媒及びその他のガスを分離する。乾燥器16は、レシーバ15から供給された液体の冷媒から水分を除去する。膨張弁17は、その開度を調整可能に構成され、乾燥器16から供給された液体の冷媒を膨張させる。蒸発器18は、膨張弁17で膨張された低温低圧の液体の冷媒を蒸発させる。蒸発器18で得られた低温低圧の気体の冷媒は、低段側多段圧縮機11に戻される。
【0036】
蒸発器18は、冷媒の冷熱によってブラインを冷却するクーラとしての役割を果たす。本実施形態では、ブラインの温度を-80℃の超低温とすることができる。ブラインは、冷却対象物(図示せず)の冷却に使用される。
【0037】
低段側多段圧縮機11及び高段側多段圧縮機12は、一例として、2段式である。低段側多段圧縮機11は、第1段としての第1低段圧縮部11a、及び第2段(最終段)としての第2低段圧縮部11bを有する。高段側多段圧縮機12は、第1段としての第1高段圧縮部12a、及び第2段(最終段)としての第2高段圧縮部12bを有する。冷媒は、第1低段圧縮部11a、第2低段圧縮部11b、第1高段圧縮部12a、及び第2高段圧縮部12bをこの順番で通過していく過程で、各圧縮部11a,11b,12a,12bで順次圧縮されていく。
【0038】
低段側多段圧縮機11と高段側多段圧縮機12とは、それぞれ別のモータ11c,12cで駆動される。より具体的には、低段側多段圧縮機11は、その圧縮部11a,11bを駆動する低段側モータ11cを有し、高段側多段圧縮機12は、低段側モータ11cとは別体であって、その圧縮部12a,12bを駆動する高段側モータ12cを有する。低段側モータ11c及び高段側モータ12cは、交流モータである。低段側モータ11cは、低段側インバータ11dから交流電流を供給され、そのモータ駆動軸11eを回転させる。高段側モータ12cは、低段側インバータ11dとは別体の高段側インバータ12dから交流電流を供給され、そのモータ駆動軸12eを回転させる。低段側インバータ11d及び高段側インバータ12dのスイッチング動作は、制御装置80によって制御される。低段側モータ11c及び高段側モータ12cは、互いに独立して作動可能である。低段側多段圧縮機11及び高段側多段圧縮機12の回転数は、制御装置80によって互いに独立して制御される。
【0039】
冷媒回路2は、冷媒を循環させるための冷媒循環ライン30を有する。冷媒循環ライン30は、前述した冷媒回路2に含まれる機器(デバイス)のうち隣り合う2つをそれぞれ接続する複数の循環ライン31,32a,32b.32c,33,34,35a,35b,36,37によって構成される。
【0040】
蒸発器18の出口は、循環ライン31を介し、第1低段圧縮部11aの入口と接続される。第1低段圧縮部11aの出口は、循環ライン32aを介し、第2低段圧縮部11bの入口と接続される。第2低段圧縮部11bの出口は、循環ライン32bを介し、第1高段圧縮部12aの入口と接続される。第1高段圧縮部12aの出口は、循環ライン32cを介し、第2高段圧縮部12bの入口と接続される。第2高段圧縮部12bの出口は、循環ライン33を介し、油分離器13の入口と接続される。
【0041】
油分離器13は、縦長のケーシング13a、及びケーシング13a内に収容されたデミスタ13bを有する(
図2を参照)。油分離器13の入口は、ケーシング13a内でデミスタ13bよりも下方に開放される。オイルを含む冷媒は、デミスタ13bで液状のオイルと気体の冷媒とに分離される。冷媒は、デミスタ13bよりも上方に設けられた冷媒出口を介し、ケーシング13a外へと流出可能である。油分離器13の冷媒出口は、循環ライン34を介し、凝縮器14の冷媒入口と接続される。
【0042】
凝縮器14は、冷媒入口を冷媒出口に接続する冷媒通路14aと、冷却液が通流する冷却液通路14bとを有する。凝縮器14にて、冷媒は、冷媒通路14aを通流する過程で、冷却液との熱交換により、冷却され且つ凝縮する。
【0043】
冷媒は、循環ライン35a,35b,36,37を介し、凝縮器14から蒸発器18に流れる。凝縮器14の冷媒出口は、循環ライン35aを介し、レシーバ15の入口に接続される。レシーバ15の出口は、循環ライン35bを介し、乾燥器16の入口に接続される。乾燥器16の出口は、循環ライン36を介し、膨張弁17の入口と接続される。膨張弁17の出口は、循環ライン37を介し、蒸発器18の冷媒入口と接続される。
【0044】
本実施形態に係る蒸発器18は、冷媒入口を冷媒出口に接続する冷媒通路18aと、ブラインが通流するブライン通路18bとを有する。蒸発器18にて、冷媒は、冷媒通路18aを通流する過程で、ブラインとの熱交換により、加熱され且つ蒸発する。
【0045】
冷媒は、GWPが750未満であり且つ-80℃における飽和圧力が0.017MPaA以上である。GWPは、二酸化炭素を基準にして、対象のガスがどれだけ温暖化する能力を有するのかを定量的に示す指標である。GWPの数値が高いほど、温暖化能力すなわち温室効果が高いことを意味する。
【0046】
このような条件を満たす冷媒の好適例として、R32(ジフルオロメタン)を挙げられる。R32のGWPは、675である。R32の-80℃における飽和圧力は、0.018MPaAである。R32のその他の特性として、比熱比が高いことを挙げられる。そのため、冷凍システム1、特に超低温の冷熱を得ることを期待された冷凍システム1の冷媒にR32を使用する場合においては、圧縮時の過度な温度上昇への対策を要する。
【0047】
そこで、冷媒回路2は、凝縮器14と蒸発器18との間(より詳しくは、乾燥器16と膨張弁17との間)の冷媒の一部を、低段側多段圧縮機11の第1段と油分離器13との間の部位に戻す複数の冷媒戻しライン40を有している。本実施形態に係る冷媒回路2には、冷媒戻しライン40として、第1戻しライン41、第2戻しライン42、第3戻しライン43、及び第4戻しライン44が設けられている。
【0048】
第1戻しライン41は、凝縮器14と蒸発器18との間の冷媒の一部を、低段側多段圧縮機11の中間段に戻す。第2戻しライン42は、凝縮器14と蒸発器18との間の冷媒の一部を、低段側多段圧縮機11と高段側多段圧縮機12との間に戻す。第3戻しライン43は、凝縮器14と蒸発器18との間の冷媒の一部を高段側多段圧縮機12の中間段に戻す。第4戻しライン44も、第2戻しライン42と同様にして、凝縮器14と蒸発器18との間の冷媒の一部を、低段側多段圧縮機11と高段側多段圧縮機12との間に戻す。ただし、第4戻しライン44は、第2戻しライン42からは独立している。すなわち、第4戻しライン44は、第2戻しライン42とは流体的に連通することなく、循環ライン36を圧縮機側に接続している。
【0049】
なお、本書において、多段圧縮機11,12の「中間段」とは、当該多段圧縮機11,12の第1段の出口から最終段の入口の間の部位を意味する。本実施形態では、多段圧縮機11,12が2段式であることから、「中間段」は、各多段圧縮機11,12において第1段の出口と第2段の入口との間を接続する流路(すなわち、循環ライン32a,32c)として定義され得る。多段圧縮機11,12が3段以上の型式である場合、「中間段」は、隣接した圧縮部同士を接続している流路のほか、第1段と最終段との間に位置する圧縮部そのもの、又は圧縮部を収容している空間であってもよい。
【0050】
更に、本実施形態に係る冷媒回路2は、エコノマイザ21と、当該エコノマイザ21用の膨張機構22とを有している。エコノマイザ21は、凝縮器14と蒸発器18との間に介在すると共に、第4戻しライン44に介在する。より詳しくは、エコノマイザ21は、乾燥器16と膨張弁17との間に介在する。膨張機構22は、第4戻しライン44を介してエコノマイザ21に供給される冷媒を減圧する。膨張機構22は、その開度を調整可能に構成されたバルブによって実現される。
【0051】
より具体的には、エコノマイザ21は、循環ライン36の一部を構成する供給流路21aと、第4戻しライン44の一部を構成する戻し流路21bとを有する。換言すれば、循環ライン36は、乾燥器16の出口を供給流路21aの入口に接続する上流部36aと、供給流路21aと、供給流路21aの出口を膨張弁17の入口に接続する下流部36bとを含む。第4戻しライン44は、循環ライン36の下流部36bから分岐して戻し流路21bの入口に接続される上流部44aと、戻し流路21bと、戻し流路21bの出口を圧縮機側に接続する下流部44bとを含む。膨張機構22は、第4戻しライン44の上流部44aに介在する。
【0052】
エコノマイザ21は、供給流路21aを通流する冷媒と、戻し流路21bを通流する冷媒との間で熱交換を行わせる。戻し流路21bを通流する冷媒は、膨張機構22の作用で、エコノマイザ21に供給される前に降温する。供給流路21aを通流する冷媒は、戻し流路21bを通流する冷媒によって冷却される。
【0053】
第1~第4戻しライン41~44は、循環ライン36から分岐する。ここで、用語「第N分岐点」を、第N戻し流路の循環ライン36からの分岐点とする(N:自然数)。第3分岐点、第2分岐点、第4分岐点、及び第1分岐点が、循環ライン36上で、乾燥器16から膨張弁17に向かう冷媒の流れ方向において、この順番で並んでいる。第3分岐点及び第2分岐点は、上流部36aにある。第4分岐点及び第1分岐点は、下流部36bにある。
【0054】
第1戻しライン41は、エコノマイザ21と蒸発器18との間の冷媒を戻す。第2戻しライン42は、凝縮器14とエコノマイザ21との間の冷媒を戻す。第3戻しライン43は、第2戻しライン42よりも凝縮器14側から冷媒を戻す。第4戻しライン44は、第1戻しライン41よりもエコノマイザ21側から、エコノマイザ21を介して冷媒を戻す。第1戻しライン41は、循環ライン32aに接続され、第2戻しライン42及び第4戻しライン44は、循環ライン32bに接続され、第3戻しライン43は、循環ライン32cに接続される。第2戻しライン42および第3戻しライン43は、凝縮器14とエコノマイザ21との間の冷媒を戻せばよく、第3戻しライン43は、第2戻しライン42よりもエコノマイザ21側から冷媒を戻すのでもよい。
【0055】
冷媒回路2は、複数の開閉弁及び逆止弁を有している。開閉弁は、電磁弁であり、各開閉弁の動作は制御装置80によって制御される。開閉弁27aが循環ライン31に介在し、開閉弁27bが循環ライン32bに介在し、開閉弁27cが循環ライン33に介在し、開閉弁27dが循環ライン35bに介在し、開閉弁27eが循環ライン36の下流部36bに介在する。開閉弁27fが第1戻しライン41に介在し、開閉弁27gが第2戻しライン42に介在し、開閉弁27hが第3戻しライン43に介在し、開閉弁27iが第4戻しライン44の上流部44aに介在する。開閉弁27eは、下流部36b上において第1分岐点と膨張弁17との間に設けられている。開閉弁27iは、上流部44a上において第4分岐点と膨張機構22との間に設けられている。また、逆止弁28aが、循環ライン31上において開閉弁27aよりも第1低段圧縮部11a側に設けられている。逆止弁28bが、循環ライン32b上において開閉弁27bよりも第1高段圧縮部12a側に設けられている。逆止弁28cが、循環ライン33上において開閉弁27cよりも油分離器13側に設けられている。
【0056】
オイル循環回路3は、前述した油分離器13の他、オイルクーラ51及びオイル戻しライン60を更に有する。油分離器13では、オイルが、ケーシング13aの内下部に貯留される。オイルは、ケーシング13aの底に設けられたオイル出口を介し、ケーシング13a外へと流出可能である。
【0057】
オイル戻しライン60は、油分離器13で回収されたオイルを多段圧縮機11,12に戻す。オイル戻しライン60は、油分離器13のオイル出口から延在する共通部61と、共通部61から分岐して複数の圧縮部11a,11b,12a,12bそれぞれに延在する複数の分岐部62a,62b,63a,63bとを有する。
【0058】
分岐部62aは、第1低段圧縮部11aにオイルを供給する。分岐部62bは、第2低段圧縮部11bにオイルを供給する。分岐部63aは、第1高段圧縮部12aにオイルを供給する。分岐部63bは、第2高段圧縮部12bにオイルを供給する。
【0059】
オイルクーラ51は、共通部61に介在する。オイルは、各圧縮部11a,11b,12a,12bに供給される前に、オイルクーラ51で冷却される。なお、オイル循環回路3は、油分離器13から多段圧縮機11,12にオイルを圧送するオイルポンプを有していてもよい。オイルポンプは、油分離器13内又は共通部61上に設けられ得る。
【0060】
次に、
図2及び
図3を参照して、低段側多段圧縮機11の構造について説明する。圧縮機がスクリュ圧縮機である場合を例にとって説明するが、圧縮機は、ロータリ圧縮機やレシプロ圧縮機など、他の形式の圧縮機であってもよい。
【0061】
図2に示すように、低段側多段圧縮機11は、ケーシング70を備える。ケーシング70は、低段側多段圧縮機11の軸方向に順次に連結される複数のケーシング部材によって構成される。ケーシング70は、モータ室70a、第1吸込側軸受室70b、第1圧縮室70c、第1吐出側軸受室70d、中間圧力室70e、第2吸込側軸受室70f、第2圧縮室70g、及び第2吐出側軸受室70hを形成する。これら8つの室が、低段側多段圧縮機11の軸方向の一方側から他方側へこの順番で並べられている。
【0062】
モータ室70aは、低段側モータ11cを収容する。低段側モータ11cは、一例として、インナーロータ型である。低段側モータ11cが通電されると、モータ駆動軸11eが回転駆動される。
【0063】
第1低段圧縮部11aは、雌雄一対の第1スクリュロータ71A,71B、第1圧縮室70c、及びケーシング70のうち第1圧縮室70cを画定している部分によって構成される。第1圧縮室70cは、互いに噛合された第1スクリュロータ71A,71Bを収容する。第1スクリュロータ71Aは雄型でもよく、雌型でもよい。第1スクリュロータ71Aには、第1回転軸73Aが一体的に設けられ、第1スクリュロータ71Bには、第1回転軸73Bが一体的に設けられている。
【0064】
第2低段圧縮部11bは、雌雄一対の第2スクリュロータ72A,72B、第2圧縮室70g、及びケーシング70のうち当該室70gを画定している部分によって構成される。第2圧縮室70gは、互いに噛合された第2スクリュロータ72A,72Bを収容する。第2スクリュロータ72Aは雄型でもよく、雌型でもよい。第2スクリュロータ72Aには、第2回転軸74Aが一体的に設けられ、第2スクリュロータ72Bには、第2回転軸74Bが一体的に設けられている。
【0065】
モータ駆動軸11eは、高段側モータ11cのステータ及びロータに対し、軸方向他方側に突出する。第1回転軸73A,73Bは、対応する第1スクリュロータ71A,71Bに対し、軸方向両側に突出する。第2回転軸74A,74Bは、対応する第2スクリュロータ72A,72Bに対し、軸方向両側に突出する。モータ駆動軸11e、第1回転軸73A、及び第2回転軸74Aは、互いに同軸である。モータ駆動軸11eの他端部は、第1回転軸73Aの一端部と連結され、第1回転軸73Aの他端部は、第2回転軸74Aの一端部と連結されている。回転軸73B,74Bは、回転軸73A,74Aと平行であって、互いに軸方向に離れている。
【0066】
第1吸込側軸受室70bは、第1回転軸73A,73Bの一端部をそれぞれ回転可能に支持する第1吸込側軸受75A,75Bを収容する。第1吐出側軸受室70dは、第1回転軸73A,73Bの他端部をそれぞれ回転可能に支持する第1吐出側軸受76A,76Bを収容する。第2吸込側軸受室70fは、第2回転軸74A,74Bの一端部をそれぞれ回転可能に支持する第2吸込側軸受77A,77Bを収容する。第2吐出側軸受室70hは、第2回転軸74A,74Bの他端部をそれぞれ回転可能に支持する第2吐出側軸受78A,78Bを収容する。
【0067】
ケーシング70は、第1圧縮室70cに連通する吸込口70iを有する。吸込口70iは、循環ライン31を介して蒸発器18と接続されている。モータ駆動軸11eが回転すると、第1回転軸73A及び第2回転軸74Aが一体に回転する。これにより、第1スクリュロータ71A,71Bが回転し、第2スクリュロータ72A,72Bが回転する。蒸発器18からの冷媒は、吸込口70iを介して第1スクリュロータ71A,71Bがケーシング70の内面と協働して形成する空間に吸い込まれ、当該空間の容積の縮小により圧縮され、当該空間から吐出される。吐出された冷媒は、中間圧力室70eを介して第2圧縮室70gに吸い込まれる。中間圧力室70eは、前述した循環ライン32aと対応する。中間圧力室70eからの冷媒は、第2スクリュロータ72A,72Bがケーシング70の内面と協働して形成する空間に吸い込まれ、当該空間の容積の縮小により圧縮され、当該空間から吐出される。吐出された冷媒は、第2圧縮室70gに連通する吐出口(図示せず)を介し、ケーシング70外に排出される。吐出口は、循環ライン32bを介して高段側多段圧縮機12に接続されている。
【0068】
第1戻しライン41は、中間圧力室70eに接続されている。冷媒は、中間圧力室70e、すなわち循環ライン32aに戻される。これにより、第1低段圧縮部11aから吐出された冷媒が、第2低段圧縮部11bに供給される前に、中間圧力室70e内で冷却される。
【0069】
前述した分岐部62aは、微細には、第1圧縮室70c及び第1吐出側軸受室70dにオイルを供給している。これにより、第1スクリュロータ71A,71B及び第1吐出側軸受76A,76Bが、潤滑及び冷却される。前述した分岐部62bは、微細には、第2吸込側軸受室70f、第2圧縮室70g、及び第2吐出側軸受室70hにオイルを供給している。これにより、第2スクリュロータ72A,72B、第2吸込側軸受77A,77B及び第2吐出側軸受78A,78Bが、潤滑及び冷却される。供給されたオイルは、冷媒と共に吐出口を介してケーシング70外に排出され、高段側多段圧縮機12に供給される。
【0070】
図2及び
図3に示すように、第1吸込側軸受室70bには、壁部79A,79Bが設けられている。壁部79A,79Bは、第1吸込側軸受75A,75Bに対して第1低段圧縮部11aとは反対側(軸方向の一方側)に配置されている。また、壁部79A,79Bは、第1吸込側軸受75A,75Bとの間に所定の間隔を有する。壁部79A,79Bは、第1吸込側軸受75A,75Bの下部と対向する。例えば、壁部79Aの上端を含んで第1回転軸73Aの軸方向に平行な仮想面は、第1吸込側軸受75Aの内輪転送面の最下端と同じ高さ、又はそれよりも下にある。壁部79Bの上端を含んで第1回転軸73Bの軸方向に平行な仮想面は、第1吸込側軸受75Bの内輪転送面の最下端と同じ高さ、又はそれよりも下にある。なお、壁部79A,79Bの形状は、図示例の長方形状に限定されず、円弧板状であってもよい。壁部79A,79bの上辺は、図示例の直円に限定されず、円弧状であってもよい。
【0071】
このような壁部79A,79Bを設けることで、第1吸込側軸受75A,75Bと壁部79A,79Bとの間に油を溜めることができる。その油で、第1吸込側軸受75A,75Bが十分に潤滑される。仮に、油分離器13の油を第1吸込側軸受75A,75Bに直接供給するためのラインを設けた場合、当該油には冷媒が溶解しているため、第1吸込側軸受室70bに供給された油から差圧により多量の冷媒が発生し、第1吸込側軸受室70bの潤滑効率が悪くなる。これに対し、本実施形態では、第1吸込側軸受75A,75Bに対して油を直接供給するためのラインを設けていないため、このような問題の発生を防ぐことができる。
【0072】
なお、高段側多段圧縮機12は、
図2及び
図3に示される低段側多段圧縮機11において壁部79A,79Bを備えないこと以外は概ね同一の構造を有していることから、重複説明は省略する。
【0073】
高段側多段圧縮機12では、モータ室が、高段側モータ12cを収容する。第1圧縮室が、第高低段圧縮部12aを構成する。第2圧縮室は、第2高段圧縮部12bを構成する。吸込口が、循環ライン32bを介して低段側多段圧縮機11と接続され、第1高段圧縮部12aの入口と対応する。中間圧力室が、循環ライン32cと対応し、第3戻しライン43と接続される。吐出口が、循環ライン33を介して油分離器13と接続される。分岐部63aが、第1圧縮室及び第1吐出側軸受室にオイルを供給する。分岐部63bが、第2吸込側軸受室、第2圧縮室、及び第2吐出側軸受室にオイルを供給する。
【0074】
図1に戻り、冷凍システム1は、演算処理及び装置全体の制御のため、制御装置80を備える。制御装置80は、例えば、ソフトウェアと協働して所定の機能を実現するCPU(Central Processing Unit)またはMPU(Micro Processing Unit)を含む。制御装置80は、所定の機能を実現するように設計された専用の電子回路または再構成可能な電子回路等のハードウェア回路で構成されてもよいし、種々の半導体集積回路で構成されてもよい。種々の半導体集積回路としては、例えば、CPU、MPUの他に、マイクロコンピュータ、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)、およびASIC(Application Specific Integrated Circuit)等が挙げられる。また、制御装置80は、RAM(Random Access Memory)およびROM(Read Only Memory)等の記憶装置を含んでもよい。具体的には、制御装置80は、例えば、デスクトップパソコン、ノートパソコン、ワークステーション、またはタブレット端末のような情報処理装置または同等の機能を有するプリント基板等で構成され得る。
【0075】
冷凍システム1は、制御装置80に接続され、冷凍システム1の状態を検出する複数のセンサを備える。制御装置80は、センサによる検出結果に基づいて、低段側インバータ11d、高段側インバータ12d、膨張弁17、膨張機構22、開閉弁27a~27iの動作を制御する。開閉弁27a~27iは、冷凍システム1が稼働して蒸発器18がクーラとして機能している間、典型的には開である。
【0076】
詳細図示を省略するが、制御装置80に接続されるセンサには、循環ライン31の温度(すなわち、蒸発器18から排出される冷媒の温度)を検出する温度センサや、第4戻しライン44の下流部44bの温度(すなわち、エコノマイザ21から圧縮機側に戻される冷媒の温度)を検出する温度センサが含まれ得る。
【0077】
制御装置80は、前述した温度センサにより検出される温度に基づいて、膨張弁17及び膨張機構22の動作を制御する。例えば、制御装置80は、循環ライン31に設けられた温度センサの検出温度に基づいて、循環ライン31における冷媒の過熱度が一定となるように、膨張弁17の開度を調整する。また、制御装置80は、第4戻しライン44に設けられた温度センサの検出温度に基づいて、第4戻しライン44における冷媒の過熱度が一定となるように、膨張弁としての膨張機構22の開度を調整する。
【0078】
制御装置80に接続されるセンサには、低段側多段圧縮機11と高段側多段圧縮機12との間(すなわち、低段側多段圧縮機11の吐出口と高段側多段圧縮機12の吸込口との間)の圧力である中間圧力Pmを検出する中間圧力センサ81が含まれる。制御装置80は、検出された中間圧力Pmに応じて高段側多段圧縮機12の回転数を制御する。この制御の主たる目的は、低段側多段圧縮機11の圧縮比と高段側多段圧縮機12の圧縮比を均衡させること、更には直列に接続された合計4段の圧縮部11a,11b,12a,12bの圧縮比を均衡させることにある。
【0079】
図4に示すフローは、所定の制御周期(例えば、5ミリ秒)おきに繰り返し実行される。制御装置80は、中間圧力センサ81によって検出された中間圧力Pmを制御周期おきに逐次取得する(ステップS1)。
【0080】
制御装置80は、取得された中間圧力Pmを互いに異なる2つの閾値と比較し、取得された中間圧力Pmが2つの閾値によって画定される3つの数値範囲のうちいずれに属しているのかを判定する(ステップS2)。すなわち、制御装置80は、中間圧力Pmが、第1閾値未満であるのか、第1閾値以上且つ第2閾値未満であるのか、又は第2閾値以上であるのかを判定する。
【0081】
なお、第2閾値は第1閾値よりも大きい値である。
図4に示すフローは、単なる一例として、第1閾値は0.1MPaA、第2閾値は0.2MPaAである。ただし、第1閾値及び第2閾値の具体的数値は、低段側多段圧縮機11及び高段側多段圧縮機12の仕様、蒸発器18で求められる冷熱の大きさ等に応じて、適宜変更される。
【0082】
中間圧力Pmが第1閾値未満である場合(例えば、Pm<0.1)、制御装置80は、高段側多段圧縮機12の回転数を減少させるように、高段側インバータ12dのスイッチング動作を制御する(ステップS3a)。これにより、高段側モータ12cに供給される交流電流の周波数が調整され、高段側多段圧縮機12の回転数が減少する。高段側多段圧縮機12の圧縮比が減少し、これに伴い低段側多段圧縮機11の圧縮比を増加させることができる。中間圧力Pmが上昇し、第1閾値未満の数値範囲を脱し、第1閾値以上且つ第2閾値未満の数値範囲に入る。
【0083】
中間圧力Pmが第2閾値以上である場合(例えば、0.2≦Pm)、制御装置80は、高段側多段圧縮機12の回転数を増加させるように、高段側インバータ12dのスイッチング動作を制御する(ステップS3b)。これにより、高段側モータ12cに供給される交流電流の周波数が調整され、高段側多段圧縮機12の回転数が増加する。高段側多段圧縮機12の圧縮比が増加し、これに伴い低段側多段圧縮機11の圧縮比を増加させることができる。中間圧力Pmが下降し、第2閾値以上の数値範囲を脱し、第1閾値以上且つ第2閾値未満の数値範囲に入る。
【0084】
中間圧力Pmが第1閾値以上第2閾値未満である場合(例えば、0.1≦Pm<0.2)、制御装置80は、高段側多段圧縮機12の回転数を維持するように、高段側インバータ12dのスイッチング動作を制御する(ステップS3c)。中間圧力Pmが高過ぎず低過ぎない数値範囲に属しており、低段側多段圧縮機11の圧縮比と高段側多段圧縮機12の圧縮比とが十分に均衡しているように制御している。
【0085】
図5は、本実施形態に係る冷凍システム1において冷媒回路2を循環する冷媒のモリエル線図である。
【0086】
本実施形態においては、蒸発工程において、エンタルピがE1からE2に上昇した後、圧縮工程において、圧力がP1からP2に上がる。この圧縮工程が、合計4段の圧縮部11a,11b,12a,12bで分かれて実行される。このため、1段当たりの圧縮比を小さくすることができる。1段当たりの圧縮比が小さくても、高圧ひいては超低温が得られ、圧縮機の効率低下を防ぐことができる。
【0087】
多数の圧縮部11a,11b,12a,12bが直列に接続されていると、冷媒は、各圧縮部11a,11b,12a,12bで昇温していく。凝縮器14から蒸発器18に流れる冷媒の一部が、第1~第3戻しライン41~43を介し、低段側多段圧縮機11及び高段側多段圧縮機12の組合せにおける異なる3か所に戻される。圧縮部11a,11b,12aの吐出温度を随時低下させながら、冷媒が順次に圧縮されていく。高段側多段圧縮機12の後段側で冷媒が極端に高温になることを防止できる。高段側多段圧縮機12は、安定的に作動でき、超低温を得るために要求される圧力P2まで冷媒を圧縮できる。また、冷媒の高温化による冷媒の劣化を防止できる。
【0088】
特に、本実施形態では、冷媒に、比熱比が大きいR32を使用している。冷媒の比熱比が大きくても、過度の温度上昇を抑制でき、超低温を得るための冷凍システム1を構築できる。R32のGWPは、750未満であり、冷凍システム1の環境負荷を軽減できる。
【0089】
更に、凝縮器14と蒸発器18との間の冷媒の一部が、エコノマイザ用の膨張機構22によって冷却され、エコノマイザ21で凝縮器14から蒸発器18に供給される冷媒を冷却し、低段側多段圧縮機11と高段側多段圧縮機12との間に戻る。凝縮器14から蒸発器18に供給される冷媒を更に冷却でき、冷凍システム1の冷凍能力(成績係数)が向上する。また、圧縮部の吐出温度を更に低下させることができる。
【0090】
第1戻しライン41は、エコノマイザ21と蒸発器18との間の冷媒を戻す。第2戻しライン42は、凝縮器14とエコノマイザ21との間の冷媒を戻し、第3戻しライン43は、凝縮器14とエコノマイザ21との間の冷媒を戻す。エコノマイザ21の下流側の比較的に低温の冷媒が、低段側多段圧縮機11及び高段側多段圧縮機12の組合せにおいて比較的に上流側に戻される。エコノマイザ21の上流側の比較的に高温の冷媒が、低段側多段圧縮機11及び高段側多段圧縮機12の組合せにおいて比較的に下流側に戻される。したがって、吐出温度が効果的に冷却できる。
【0091】
(第2実施形態)
次に、
図6を参照して、第1実施形態との相違を中心に、第2実施形態に係る冷凍システム1について説明する。
【0092】
本実施形態においては、オイル循環回路3が、脱気器52及び圧力調整弁53を有する。冷媒回路2が、脱気冷媒戻しライン49を有する。
【0093】
脱気器52は、タンク状である。脱気器52は、オイル戻しライン60を流れるオイルから、オイルに溶解している冷媒を除去する。オイル戻しライン60は、概略的には、共通部61から、低段側多段圧縮機11に向かう分岐部62a,62bと、高段側多段圧縮機12に向かう分岐部63a,63bとの2系統に分かれている。脱気器52は、オイル戻しライン60のうち低段側多段圧縮機11に向かう部分に設けられている。分岐部63a,63bは、共通部61から脱気器52を経由せず高段側多段圧縮機12に向かっている。
【0094】
別の言い方では、共通部61は、油分離器のオイル出口を脱気器52のオイル入口に接続している。分岐部63a,63bが、オイルクーラ51よりも下流側で共通部61から分岐して高段側多段圧縮機12に接続される一方、分岐部62a,62bは、脱気器52のオイル出口を低段側多段圧縮機11に接続している。
【0095】
脱気冷媒戻しライン49は、脱気器52で分離された冷媒を低段側多段圧縮機11と高段側多段圧縮機12との間に戻す。脱気器52でオイルから分離された冷媒は、脱気器52の上部に溜まる。脱気冷媒戻しライン49は、脱気器52の上部に設けられた冷媒出口を循環ライン32bに接続している。
【0096】
脱気冷媒戻しライン49は、脱気器52で分離された冷媒を低段側多段圧縮機11と高段側多段圧縮機12との間に戻す。脱気器52でオイルから分離された冷媒は、脱気器52の上部に溜まる。脱気冷媒戻しライン49は、脱気器52の上部に設けられた冷媒出口を循環ライン32bに接続している。
【0097】
圧力調整弁53は、オイル戻しライン60の共通部61においてオイルクーラ51と脱気器52との間に設けられており、脱気器52の内圧を低段側多段圧縮機11と高段側多段圧縮機12との間の圧力(中間圧力Pm)よりも高圧に調整する。このため、脱気冷媒戻しライン49を使用して、脱気器52で回収された冷媒を循環ライン32bに戻すことができる。また、冷媒の戻し先は、循環ライン32bに限定されない。脱気器52で分離された冷媒を、低段側多段圧縮機11の中間段、例えば、循環ライン32aに戻してもよい。この場合、圧力調整弁53は、脱気器52の内圧を低段側多段圧縮機11の中間段よりも高圧に調整する。
【0098】
本実施形態においても、第1実施形態と同様の作用効果を奏する。ここで、冷媒がオイルに溶解したままでオイルと共に圧縮機に供給されると、冷媒の蒸発(フラッシュ)により圧縮機の性能低下を引き起こすおそれがある。本実施形態によれば、冷媒が脱気器52でオイルから除去されるので、このような性能低下を防止できる。冷媒は、脱気器52で回収された後に冷媒回路2に戻されるので、冷媒回路2内の冷媒の減少を防止できる。
【0099】
(第3実施形態)
次に、
図7を参照して、第1実施形態との相違を中心に、第3実施形態に係る冷凍システム1について説明する。
【0100】
本実施形態に係る蒸発器18は、冷媒を通流させる冷媒通路18aを有する一方、ブライン通路18b(
図1を参照)を備えない。冷却対象物99は、蒸発器18の外表面に接触されている。蒸発器18は、冷媒通路18aを通流する冷媒で冷却対象物99を直接的に冷却する熱交換器として構成されている。
【0101】
本実施形態においても、第1実施形態と同様の作用効果を奏する。更に、ブラインが不要となるので、冷凍システム1の構成を全体として簡素化できる。
【0102】
(第4実施形態)
次に、
図8を参照して、第3実施形態との相違を中心に、第4実施形態に係る冷凍システム1について説明する。
【0103】
本実施形態に係る冷媒回路2は、凝縮器14と、蒸発器18としての熱交換器との間に介在する受液器19と、ポンプ29とを更に有している。膨張弁17の出口が、循環ライン37aを介して受液器19の液体入口に接続されている。受液器19は、タンク状であり、膨張弁17から供給される液体の冷媒を底部に貯留する。受液器19の底部には液体出口が設けられており、受液器19の液体出口は、循環ライン37bを介し、蒸発器18の入口と接続されている。ポンプ29は、循環ライン37b上に介在している。蒸発器18の出口は、循環ライン31aを介し、受液器19の気体入口に接続されている。受液器19の上部には気体出口が設けられており、受液器19の気体出口は、循環ライン31bを介し、低段側多段圧縮機11に接続されている。
【0104】
ポンプ29の駆動時、受液器19内の冷媒は、蒸発器18を通過し、蒸発器18で気体となって受液器19に戻る。蒸発器18で気体となった冷媒は、受液器19を経由して低段側多段圧縮機11に供給される。
【0105】
なお、冷凍システム1は、制御装置80に接続されるセンサとして、受液器19内の冷媒の液面の高さを検出するレベルセンサを備え得る。制御装置80は、レベルセンサによって検出された液面の高さに基づき、膨張弁17の開度を調整してもよい。
【0106】
本実施形態においても、第3実施形態と同様の作用効果を奏する。受液器19で貯留された液相の冷媒がブラインと同様に機能し、冷却対象物99を冷却するに際してブラインそのものが不要となる。
【0107】
(第5実施形態)
次に、
図9を参照して、第1実施形態との相違を中心に、第5実施形態に係る冷凍システムについて説明する。
【0108】
本実施形態に係る冷媒回路2は、第1エコノマイザ21A及び第2エコノマイザ21Bの2つのエコノマイザを備える。また、冷媒戻しライン40が、凝縮器14と蒸発器18との間の冷媒の一部を低段側多段圧縮機11の中間段に戻す第5戻しライン45を更に有する。第5戻しライン45は、第1戻しライン41からは独立している。すなわち、第5戻しライン45は、第1戻しライン41とは流体的に連通することなく、循環ライン36を圧縮機側に接続している。
【0109】
第1エコノマイザ21Aは、第1~第4実施形態に係るエコノマイザ21(
図1等を参照)と同様である。冷媒回路2は、第1エコノマイザ21A用の膨張機構22Aを有する。第1エコノマイザ21Aは、供給流路21Aa及び戻し流路21Abを有する。供給流路21Aaは、第1実施形態に係る供給流路21aと同様に、循環ライン36の一部を構成し、戻し流路21Abは、第1実施形態に係る戻し流路21bと同様に、第4戻しライン44の一部を構成している。
【0110】
第2エコノマイザ21Bは、第1エコノマイザ21Aと蒸発器18との間に介在すると共に、第5戻しライン45に介在する。第2エコノマイザ21Bは、第1エコノマイザ21Aから蒸発器18に流れる冷媒と、第5戻しライン45を通流する前記冷媒との間で熱交換を行わせる。第2エコノマイザ21B用の膨張機構22Bは、第5戻しライン45を介して第2エコノマイザ21Bに供給される冷媒を減圧する。膨張機構22Bは、その開度を調整可能に構成されたバルブによって実現される。
【0111】
第2エコノマイザ21Bは、循環ライン36の一部を構成する供給流路21Baと、第5戻しライン45の一部を構成する戻し流路21Bbとを有する。循環ライン36の上流部36aは、乾燥器16の出口を第1エコノマイザ21Aの供給流路21Aaの入口に接続し、循環ライン36の下流部36bは、第2エコノマイザ21Bの供給流路21Baの出口を膨張弁17の入口に接続している。第1エコノマイザ21Aの供給流路21Aaの出口は、循環ライン36の中間部36cを介し、第2エコノマイザ21Bの供給流路21Baの出口に接続されている。
【0112】
そのため、第4戻しライン44の上流部44aは、循環ライン36の中間部36cから分岐し、第1エコノマイザ21Aの戻し流路21Abの入口に接続されている。第5戻しライン45は、循環ライン36の下流部36bから分岐して第2エコノマイザ21Bの戻し流路21Bbの入口に接続される上流部45aと、戻し流路21Bbと、戻し流路21Bbの出口を圧縮機側に接続する下流部45bとを含む。膨張機構22Bは、第5戻しライン45の上流部45aに介在する。なお、開閉弁27jも、上流部45aに介在している。
【0113】
第3分岐点、第2分岐点、第4分岐点、第1分岐点、及び第5分岐点が、循環ライン36上で、乾燥器16から膨張弁17に向かう冷媒の流れ方向において、この順番で並んでいる。第3分岐点及び第2分岐点は、第1~第4実施形態と同様にして上流部36aある。第4分岐点及び第1分岐点は、中間部36cにある。最下流の第5分岐点は、下流部36bにある。
【0114】
詳細図示を省略するが、冷凍システム1は、制御装置80に接続されるセンサとして、第5戻しライン45の下流部45bの温度(すなわち、第2エコノマイザ21Bから圧縮機側に戻される冷媒の温度)を検出する温度センサが含まれる。制御装置80は、この温度センサの検出温度に基づいて、第5戻しライン45における冷媒の過熱度が一定となるように、膨張弁としての膨張機構22Bの開度を調整する。
【0115】
本実施形態においても、第1実施形態と同様の作用効果を奏する。更に、エコノマイザが2段設けられるので、冷凍システムの冷凍能力が更に向上し、また、圧縮機の吐出温度を更に低下させることができる。
【0116】
(第6実施形態)
次に、
図10を参照して、第1実施形態との相違を中心に、第6実施形態に係る冷凍システムについて説明する。
【0117】
本実施形態では、エコノマイザが冷媒回路2から省略されている。冷媒戻しライン40は、第1~第3戻しライン41~43を有する。本実施形態においても、第1実施形態と同様の作用効果を奏する。
【0118】
(第7実施形態)
図11は本発明の第7実施形態の冷凍システムの要部の概略構成図である。オイル戻しライン60に、第1吸込側軸受75A,75Bに延在する分岐部62cが設けられ、分岐部62cに開閉バルブ64を設けている点が、上記第1実施形態とは異なる。
【0119】
開閉バルブ64は、制御装置80により開閉が制御される。より詳しくは、低段側多段圧縮機11が駆動すると、開閉バルブ64を閉め、低段側多段圧縮機11が停止すると、開閉バルブ64を開けるように、制御装置80が開閉バルブ64の開閉を制御するようになっている。したがって、低段側多段圧縮機11が駆動すると、第1吸込側軸受室70bにオイルが直接供給されないため、第1吸込側軸受室70bにおいて多量の冷媒ガスが発生するのを防ぐことができる。
【0120】
また、低段側多段圧縮機11が停止すると、開閉バルブ91が開くため、分岐部62cからのオイルが第1吸込側軸受75A,75Bに直接供給される。この場合は、差圧が小さいため、第1吸込側軸受75A,75Bにオイルが供給されても、供給されたオイルから冷媒ガスが発生しにくい。また、第1吸込側軸受75A,75Bにオイルが直接供給されるため、第1吸込側軸受75A,75Bを確実に潤滑することができる。また、低段側多段圧縮機11の停止中に、第1吸込側軸受75A,75B付近にオイルを十分に溜めておくことができる。
【0121】
(変形例)
これまで実施形態について説明したが、上記構成は本発明の趣旨の範囲内で適宜変更可能である。
【0122】
図12のように、脱気器52は、オイル戻しライン60上において別の箇所に介在していてもよく、また、オイルクーラ51から脱気器52又は圧力調整弁53への配管の繋ぎ方は、適宜変更可能である。脱気器52は、オイル戻しライン60のうち分岐部62a,62bの途中に設けられてもよい。
【0123】
本開示は、以下の態様を含み得る。
(態様1)
低段側多段圧縮機、高段側多段圧縮機、油分離器、凝縮器、及び蒸発器を有し、冷媒をこの順で循環させる冷媒回路を備え、
前記冷媒は、GWPが750未満であり且つ-80℃における飽和圧力が0.017MPaA以上であり、
前記低段側多段圧縮機と前記高段側多段圧縮機とは、それぞれ別のモータで駆動され、
前記冷媒回路が、
前記凝縮器と前記蒸発器との間の前記冷媒の一部を前記低段側多段圧縮機の中間段に戻す第1戻しラインと、
前記凝縮器と前記蒸発器との間の前記冷媒の一部を前記低段側多段圧縮機と前記高段側多段圧縮機との間に戻す第2戻しラインと、
前記凝縮器と前記蒸発器との間の前記冷媒の一部を前記高段側多段圧縮機の中間段に戻す第3戻しラインと、
を更に有する、冷凍システム。
(態様2)
前記冷媒は、R32である、
態様1に記載の冷凍システム。
(態様3)
前記冷媒回路が、
前記凝縮器と前記蒸発器との間の前記冷媒の一部を前記低段側多段圧縮機と前記高段側多段圧縮機との間に戻す第4戻しラインと、
前記凝縮器と前記蒸発器との間に介在すると共に前記第4戻しライン上に介在し、前記凝縮器から前記蒸発器に流れる前記冷媒と、前記第4戻しラインを通流する前記冷媒との間で熱交換を行わせる第1エコノマイザと、
前記第4戻しラインを介して前記第1エコノマイザに供給される前記冷媒を減圧する第1エコノマイザ用膨張機構と、
を更に有する、態様1又は2に記載の冷凍システム。
(態様4)
前記第1戻しラインは、前記第1エコノマイザと前記蒸発器との間の前記冷媒を戻し、
前記第2戻しライン及び前記第3戻しラインは、前記凝縮器と前記第1エコノマイザとの間の前記冷媒を戻す、
態様3に記載の冷凍システム。
(態様5)
前記冷媒回路が、
前記凝縮器と前記蒸発器との間の前記冷媒の一部を前記低段側多段圧縮機の前記中間段に戻す第5戻しラインと、
前記第1エコノマイザと前記蒸発器との間に介在すると共に前記第5戻しライン上に介在し、前記第1エコノマイザから前記蒸発器に流れる前記冷媒と、前記第5戻しラインを通流する前記冷媒との間で熱交換を行わせる第2エコノマイザと、
前記第5戻しラインを介して前記第2エコノマイザに供給される前記冷媒を減圧する第2エコノマイザ用膨張機構と、
を更に有する、態様3又は4に記載の冷凍システム。
(態様6)
前記油分離器で回収されたオイルを少なくとも前記低段側多段圧縮機に戻すオイル戻しラインと、
前記オイル戻しラインを流れる前記オイルから、前記オイルに溶解している前記冷媒を除去する脱気器と、
前記脱気器で分離された前記冷媒を、前記低段側多段圧縮機の中間段または、前記低段側多段圧縮機と前記高段側多段圧縮機との間の戻し先に戻す脱気冷媒戻しラインと、
前記脱気器の内圧を前記戻し先の圧力よりも高圧に調整する圧力調整弁と、
を更に備える、態様1から5のいずれか1項に記載の冷凍システム。
(態様7)
前記蒸発器は、前記冷媒で冷却対象物を直接冷却する熱交換器である、
態様1から6のいずれかに記載の冷凍システム。
(態様8)
前記冷媒回路が、前記凝縮器と、前記蒸発器としての前記熱交換器との間に介在する受液器を更に有し、
前記受液器で貯留された前記冷媒が前記熱交換器に供給され、前記冷却対象物との熱交換後のガス状の前記冷媒が、前記低段側多段圧縮機へと循環される、
態様7に記載の冷凍システム。
(態様9)
前記低段側多段圧縮機と前記高段側多段圧縮機との間の圧力である中間圧力を検出する中間圧力センサと、
前記中間圧力センサにより検出された前記中間圧力に応じて前記高段側多段圧縮機の回転数を制御する制御装置と、
を更に備える、態様1から8のいずれかに記載の冷凍システム。
(態様10)
前記低段側多段圧縮機及び前記高段側多段圧縮機の少なくともいずれか一方が、
その第1段圧縮部の回転軸の吸込側の端部を回転可能に支持する吸込側軸受と、
前記吸込側軸受を収容する吸込側軸受室と、
を含み、
前記吸込側軸受室には、前記吸込側軸受に対して前記第1段圧縮部とは反対側に配置された壁部が設けられ、前記吸込側軸受と前記壁部との間にオイルが溜められる、
態様1から9のいずれかに記載の冷凍システム。
(態様11)
前記低段側多段圧縮機の前記吸込側軸受にオイルを案内する油供給ラインが設けられていない、
態様10に記載の冷凍システム。
(態様12)
前記低段側多段圧縮機が、
その第1段圧縮部の回転軸の吸込側の端部を回転可能に支持する吸込側軸受と、
前記吸込側軸受を収容する吸込側軸受室と、
を含み、
前記油分離器のオイルを前記吸込側軸受に案内する油供給ラインが設けられ、
前記油供給ラインには、制御装置により開閉制御される開閉バルブが設けられ、
前記制御装置は、前記低段側多段圧縮機が駆動すると前記開閉バルブを閉め、前記低段側多段圧縮機が停止すると前記開閉バルブを開けるように前記開閉バルブの開閉を制御する、
態様1又は2に記載の冷凍システム。
【符号の説明】
【0124】
1 冷凍システム
2 冷媒回路
3 オイル循環回路
11 低段側多段圧縮機
11a 第1低段圧縮部
11b 第2低段圧縮部
11c 低段側モータ
11d 低段側インバータ
11e モータ駆動軸
12 高段側多段圧縮機
12a 第1高段圧縮部
12b 第2高段圧縮部
12c 高段側モータ
12d 高段側インバータ
12e モータ駆動軸
13 油分離器
13a ケーシング
13b デミスタ
14 凝縮器
14a 冷媒通路
14b 冷却液通路
15 レシーバ
16 乾燥器
17 膨張弁
18 蒸発器
18a 冷媒通路
18b ブライン通路
19 受液器
21 エコノマイザ
21A 第1エコノマイザ
21B 第2エコノマイザ
21a,21Aa,21Ba 供給流路
21b,21Ab,21Bb 戻し流路
22,22A,22B 膨張機構
27a~27j 開閉弁
28a~28c 逆止弁
29 ポンプ
30 冷媒循環ライン
31~37 循環ライン
36a 上流部
36b 下流部
36c 中間部
40 冷媒戻しライン
41~45 第1~第5戻しライン
44a,45a 上流部
44b,45b 下流部
49 脱気冷媒戻しライン
51 オイルクーラ
52 脱気器
53 圧力調整弁
60 オイル戻しライン
61 共通部
62a,62b,62c,63a,63b 分岐部
64 開閉バルブ
70 ケーシング
70a モータ室
70b 第1吸込側軸受室
70c 第1圧縮室
70d 第1吐出側軸受室
70e 中間圧力室
70f 第2吸込側軸受室
70g 第2圧縮室
70h 第2吐出側軸受室
70i 吸込口
71A,71B 第1スクリュロータ
72A,72B 第2スクリュロータ
73A,73B 第1回転軸
74A,74B 第2回転軸
75A,75B 第1吸込側軸受
76A,76B 第1吐出側軸受
77A,77B 第2吸込側軸受
78A,78B 第2吐出側軸受
79A,79B 壁部
80 制御装置
81 中間圧力センサ
99 冷却対象物
Pm 中間圧力