(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024022629
(43)【公開日】2024-02-16
(54)【発明の名称】分割瞳のための空間光変調器照明を伴うディスプレイシステム
(51)【国際特許分類】
G02B 27/02 20060101AFI20240208BHJP
G02B 5/32 20060101ALI20240208BHJP
【FI】
G02B27/02 Z
G02B5/32
【審査請求】有
【請求項の数】19
【出願形態】OL
(21)【出願番号】P 2023203661
(22)【出願日】2023-12-01
(62)【分割の表示】P 2022121456の分割
【原出願日】2018-03-21
(31)【優先権主張番号】62/474,568
(32)【優先日】2017-03-21
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】514108838
【氏名又は名称】マジック リープ, インコーポレイテッド
【氏名又は名称原語表記】Magic Leap,Inc.
【住所又は居所原語表記】7500 W SUNRISE BLVD,PLANTATION,FL 33322 USA
(74)【代理人】
【識別番号】100078282
【弁理士】
【氏名又は名称】山本 秀策
(74)【代理人】
【識別番号】100113413
【弁理士】
【氏名又は名称】森下 夏樹
(74)【代理人】
【識別番号】100181674
【弁理士】
【氏名又は名称】飯田 貴敏
(74)【代理人】
【識別番号】100181641
【弁理士】
【氏名又は名称】石川 大輔
(74)【代理人】
【識別番号】230113332
【弁護士】
【氏名又は名称】山本 健策
(72)【発明者】
【氏名】フイ-チュアン チェン
(72)【発明者】
【氏名】チュルウ オ
(72)【発明者】
【氏名】クリントン カーライル
(72)【発明者】
【氏名】マイケル アンソニー クルグ
(72)【発明者】
【氏名】ウィリアム モルテーニ
(57)【要約】
【課題】好適な分割瞳のための空間光変調器照明を伴うディスプレイシステムを提供すること。
【解決手段】異なる色を側方に変位されたビームに分離する、照明システムが、画像を眼内に表示するために、異なる色画像コンテンツを接眼レンズの中に指向するために使用されてもよい。そのような接眼レンズは、例えば、拡張現実頭部搭載型ディスプレイのために使用されてもよい。照明システムは、1つ以上の導波管を利用して、光源からの光を空間光変調器に向かって指向するように提供されてもよい。空間光変調器からの光は、接眼レンズに向かって指向されてもよい。本発明のいくつかの側面は、異なる色の光が、1つ以上の導波管から異なる角度で外部結合され、異なるビーム経路に沿って指向されることをもたらす。
【選択図】
図11D
【特許請求の範囲】
【請求項1】
ディスプレイデバイスであって、
光源と、
前記光源からの光を受光するように前記光源に対して配置された1つ以上の導波管であって、前記1つ以上の導波管は、光を前記1つ以上の導波管から外に射出するように構成される外部結合光学要素を含む、1つ以上の導波管と、
前記1つ以上の導波管から射出された前記光を受光し、前記光を変調させるように前記1つ以上の導波管に対して配置された空間光変調器と
を備え、
前記外部結合光学要素は、複数の体積位相格子を備える、ディスプレイデバイス。
【請求項2】
前記複数の体積位相格子は、スタックに配列されている、請求項1に記載のディスプレイデバイス。
【請求項3】
前記複数の体積位相格子内の各体積位相格子は、異なる個別の波長を有する光を回折するように構成されている、請求項2に記載のディスプレイデバイス。
【請求項4】
前記複数の体積位相格子内の各体積位相格子は、同一色の光を異なる個別の回折角に回折するように構成されている、請求項2に記載のディスプレイデバイス。
【請求項5】
前記スタックは、前記1つ以上の導波管の第1の表面上に位置付けられ、かつ、前記光源からの前記光を受光するように配列され、前記複数の体積位相格子の各体積位相格子は、前記光源から受光された前記光を前記1つ以上の導波管の前記第1の表面に向かって異なる個別の回折角で反射することにより、前記1つ以上の導波管から射出された前記光が前記異なる個別の回折角に対応する異なる場所へと出射するようにするように構成されている、請求項2に記載のディスプレイデバイス。
【請求項6】
前記外部結合要素の結合効率は、前記光源から離れる距離を伴って勾配を呈する、請求項1に記載のディスプレイデバイス。
【請求項7】
前記外部結合要素の前記結合効率は、前記光源に近いほど低く、前記光源から遠いほど高い、請求項6に記載のディスプレイデバイス。
【請求項8】
前記1つ以上の導波管は、楔形状を有する、請求項1に記載のディスプレイデバイス。
【請求項9】
前記1つ以上の導波管は、湾曲形状を有する、請求項1に記載のディスプレイデバイス。
【請求項10】
ディスプレイデバイスであって、
第1のスペクトル分布を有する光源と、
前記光源からの光を受光するように前記光源に対して配置された1つ以上の導波管であって、前記1つ以上の導波管は、光を前記1つ以上の導波管から外に射出するように構成された外部結合光学要素を含む、1つ以上の導波管と、
前記1つ以上の導波管から射出された前記光を受光し、前記光を変調させるように前記1つ以上の導波管に対して配置された空間光変調器と
を備え、
前記外部結合光学要素は、液晶を備え、前記液晶は、円偏光を回折するように構成されており、前記空間光変調器は、線形偏光を変調させるように構成されている、ディスプレイデバイス。
【請求項11】
前記液晶から回折された円偏光を線形偏光に変換するための前記空間光変調器と前記液晶との間に配列された第1の光学リターダをさらに備える、請求項10に記載のディスプレイデバイス。
【請求項12】
第2の光学リターダをさらに備え、前記第1の光学リターダは、前記空間光変調器と前記1つ以上の導波管との間で前記1つ以上の導波管の第1の側に配置され、前記第2の光学リターダは、前記1つ以上の導波管の前記第1の側とは反対の前記1つ以上の導波管の第2の側に配置されている、請求項11に記載のディスプレイデバイス。
【請求項13】
前記第1の光学リターダは、4分の1波リターダである、請求項12に記載のディスプレイデバイス。
【請求項14】
前記液晶は、結合効率における勾配を有する、請求項10に記載のディスプレイデバイス。
【請求項15】
前記液晶は、前記光源から遠いほど高い回折効率を有し前記光源に近いほど低い回折効率を有するように構成されている、請求項14に記載のディスプレイデバイス。
【請求項16】
前記液晶は、コレステリック液晶回折要素のスタックを備え、前記コレステリック液晶回折要素のスタックの各コレステリック液晶回折要素は、異なる個別の色を回折するように構成されている、請求項10に記載のディスプレイデバイス。
【請求項17】
前記1つ以上の導波管は、楔形状を有する、請求項10に記載のディスプレイデバイス。
【請求項18】
前記1つ以上の導波管は、湾曲形状を有する、請求項10に記載のディスプレイデバイス。
【請求項19】
頭部搭載型ディスプレイのためのディスプレイデバイスであって、
導波管ベースの画像源であって、
光を放出するように構成された1つ以上の光エミッタと、
1つ以上の導波管と
を備え、前記1つ以上の導波管は、光が全内部反射を介して前記1つ以上の光導波路内で誘導されるように前記1つ以上の光エミッタからの光を受光するように前記1つ以上の光エミッタに対して配置されており、前記1つ以上の導波管は、光を前記1つ以上の導波管から外に射出するように構成されている、導波管ベースの画像源と、
1つ以上の導波管から射出された前記光を受光し、前記光を変調させるように前記1つ以上の導波管に対して配置された空間光変調器と、
導波管ベースの配光システムを備える接眼レンズ要素と
を備え、
前記1つ以上の光エミッタは、第1および第2の色に対応するスペクトル成分を含むスペクトル分布を有する光を放出するように構成されており、
前記導波管ベースの画像源は、前記第1および第2の色の前記光が、前記空間光変調器によって変調された後に個別の第1および第2の経路に沿って指向され、前記1つ以上の導波管および前記空間光変調器からある距離に位置する個別の第1および第2の空間場所に指向されるように構成されており、
前記導波管ベースの配光システムは、
第1の接眼レンズ導波管であって、前記第1の接眼レンズ導波管は、1つ以上の第1の導波管および前記第1の経路に対して配置され、前記空間光変調器によって変調された後に、前記1つ以上の導波管からの光を受光する、それと関連付けられた内部結合光学要素を有する、第1の接眼レンズ導波管と、
第2の接眼レンズ導波管であって、前記第2の接眼レンズ導波管は、前記1つ以上の導波管および前記第2の経路に対して配置され、前記空間光変調器によって変調された後に前記1つ以上の導波管からの光を受光する、それと関連付けられた内部結合光学要素を有する、第2の接眼レンズ導波管と
を備え、
それぞれ前記第1および第2の接眼レンズ導波管と関連付けられた前記内部結合光学要素は、それぞれ前記第1および第2の色の前記光を受光するように、それぞれ前記第1および第2の経路に沿って前記第1および第2の空間場所に位置する、ディスプレイデバイス。
【発明の詳細な説明】
【技術分野】
【0001】
(参照による援用)
本願は、2017年3月21日に出願された米国仮出願第62/474,568号(代理人管理番号MLEAP.084PR)に対する35 U.S.C. § 119(e)のもとでの優先権の利益を主張するものであり、該米国仮出願は、その全体が参照により本明細書中に援用される。
【背景技術】
【0002】
本開示は、仮想現実および拡張現実結像および可視化システムを含む、光学デバイスに関する。
【0003】
現代のコンピューティングおよびディスプレイ技術は、いわゆる「仮想現実」または「拡張現実」体験のためのシステムの開発を促進しており、デジタル的に再現された画像またはその一部が、現実であるように見える、またはそのように知覚され得る様式でユーザに提示される。仮想現実または「VR」シナリオは、典型的には、他の実際の実世界の視覚的入力に対する透過性を伴わずに、デジタルまたは仮想画像情報の提示を伴い、拡張現実または「AR」シナリオは、典型的には、ユーザの周囲の実際の世界の可視化に対する拡張としてのデジタルまたは仮想画像情報の提示を伴う。複合現実または「MR」シナリオは、一種のARシナリオであって、典型的には、自然世界の中に統合され、それに応答する、仮想オブジェクトを伴う。例えば、MRシナリオでは、AR画像コンテンツは、実世界内のオブジェクトによってブロックされて見える、または別様にそれと相互作用するように知覚され得る。
【0004】
図1を参照すると、拡張現実場面10が、描写され、AR技術のユーザには、人々、木々、背景における建物、およびコンクリートプラットフォーム30を特徴とする、実世界公園状設定20が見える。これらのアイテムに加え、AR技術のユーザはまた、実世界プラットフォーム30上に立っているロボット像40と、マルハナバチの擬人化のように見える、飛んでいる漫画のようなアバタキャラクタ50等の「仮想コンテンツ」を「見ている」と知覚するが、これらの要素40、50は、実世界には存在しない。ヒトの視知覚系は、複雑であって、他の仮想または実世界画像要素間における仮想画像要素の快適で、自然のような感覚で、かつ豊かな提示を促進する、AR技術の生成は、困難である。
【0005】
本明細書に開示されるシステムおよび方法は、ARおよびVR技術に関連する種々の課題に対処する。
【発明の概要】
【課題を解決するための手段】
【0006】
本願明細書は、例えば、以下の項目も提供する。
(項目1)
ディスプレイデバイスであって、
第1のスペクトル分布を有する第1の光エミッタと、
第1の導波管であって、前記第1の導波管は、前記第1の光エミッタに対して配置され、前記第1の光エミッタからの光を受光し、前記第1の導波管は、第1の経路に沿って、光を導波管から外に射出するように構成される、第1の導波管と、
前記第1の光エミッタの前記第1のスペクトル分布と異なる第2のスペクトル分布を有する第2の光エミッタと、
第2の導波管であって、前記第2の導波管は、前記第2の光エミッタに対して配置され、前記第2の光エミッタからの光を受光し、前記第2の導波管は、第2の経路に沿って、光を導波管から外に射出するように構成される、第2の導波管と、
空間光変調器であって、前記空間光変調器は、前記第1および第2の導波管に対して配置され、前記第1および第2の導波管から射出された前記光を受光し、前記光を変調させる、空間光変調器と
を備え、
前記ディスプレイデバイスは、前記第1および第2の導波管からの前記光が、前記空間光変調器によって変調された後、前記第1および第2の経路に沿って、異なる角度で指向され、前記第1の導波管からの前記光および前記第2の導波管からの前記光が、前記空間光変調器によって変調された後、前記導波管および空間光変調器からある距離における個別の第1および第2の空間場所上に入射するように構成される、ディスプレイデバイス。
(項目2)
前記第1および第2の光エミッタは、発光ダイオード(LED)を備える、項目1に記載のディスプレイデバイス。
(項目3)
前記第1および第2の光エミッタは、第1および第2の色の発光ダイオード(LED)を備え、前記第1の色のLEDは、前記第2のLEDと異なる色を有する、項目2に記載のディスプレイデバイス。
(項目4)
前記第1および第2の導波管は、平面導波管を備え、前記第1および第2のエミッタは、前記第1および第2の導波管の縁に対して配置され、光を、それぞれ、前記第1および第2の導波管の縁の中に投入する、項目1-3のいずれかに記載のディスプレイデバイス。
(項目5)
前記第1および第2の導波管は、方向転換特徴を含み、それぞれ、第1および第2の経路に沿って、光を前記第1および第2の導波管から外に射出する、項目1-4のいずれかに記載のディスプレイデバイス。
(項目6)
前記方向転換特徴は、回折光学要素、回折格子、ホログラフィック光学要素、またはメタ表面の一部を形成する、項目5に記載のディスプレイデバイス。
(項目7)
前記空間光変調器は、前記空間光変調器を通して透過される光を変調させるように構成される透過性空間光変調器を備える、項目1-6のいずれかに記載のディスプレイデバイス。
(項目8)
前記空間光変調器は、その上に入射する光を反射および変調させるように構成される反射性空間光変調器を備える、項目1-6のいずれかに記載のディスプレイデバイス。
(項目9)
前記第1および第2のスペクトル分布と異なる第3のスペクトル分布を有する第3の光エミッタと、
第3の導波管であって、前記第3の導波管は、前記第3の光エミッタに対して配置され、前記第3の光エミッタからの光を受光し、前記第3の導波管は、第3の経路に沿って、光を導波管から外に射出するように構成され、前記空間光変調器は、前記第3の導波管に対して配置され、前記第3の導波管から射出された前記光を受光し、前記光を変調させる、第3の導波管と
をさらに備え、
前記ディスプレイデバイスは、前記第3の導波管からの前記光が、前記空間光変調器によって変調された後、前記第3の経路に沿って、前記第1および第2の経路と異なる角度で指向され、前記第1、第2、および第3の導波管からの前記光が、前記空間光変調器によって変調された後、前記導波管および空間光変調器からある距離における個別の第1、第2、および第3の空間場所上に入射するように構成される、項目1に記載のディスプレイデバイス。
(項目10)
前記第1、第2、および第3の光エミッタは、発光ダイオード(LED)を備える、項目9に記載のディスプレイデバイス。
(項目11)
前記第1、第2、および第3の光エミッタは、第1、第2、および第3の色の発光ダイオード(LED)を備え、前記第1の色のLEDは、前記第2の色のLEDおよび第3の色のLEDと異なる色を有し、前記第2の色のLEDは、前記第3の色のLEDと異なる色を有する、項目10に記載のディスプレイデバイス。
(項目12)
前記第1、第2、および第3の光エミッタは、それぞれ、赤色、緑色、および青色の発光ダイオード(LED)を備える、項目11に記載のディスプレイデバイス。
(項目13)
前記第1、第2、および第3の導波管は、平面導波管を備え、前記第1、第2、および第3の光エミッタは、前記第1、第2、および第3の導波管の縁に対して配置され、光を、それぞれ、前記第1、第2、および第3の導波管の縁の中に投入する、項目9-12のいずれかに記載のディスプレイデバイス。
(項目14)
前記第1、第2、および第3の導波管は、方向転換特徴を含み、それぞれ、第1、第2、および第3の経路に沿って、光を前記第1、第2、および第3の導波管から外に射出する、項目9-13のいずれかに記載のディスプレイデバイス。
(項目15)
前記方向転換特徴は、回折光学要素、回折格子、ホログラフィック光学要素、またはメタ表面の一部を形成する、項目14に記載のディスプレイデバイス。
(項目16)
前記空間光変調器は、前記空間光変調器を通して透過される光を変調させるように構成される透過性空間光変調器を備える、項目9-15のいずれかに記載のディスプレイデバイス。
(項目17)
前記空間光変調器は、その上に入射する光を反射および変調させるように構成される反射性空間光変調器を備える、項目9-15のいずれかに記載のディスプレイデバイス。
(項目18)
第4の導波管であって、前記第4の導波管は、前記第1の導波管および前記第1の経路に対して配置され、前記空間光変調器によって変調された後、第1の導波管からの光を受光する、それと関連付けられた内部結合光学要素を有する、第4の導波管と、
第5の導波管であって、前記第5の導波管は、前記第2の導波管および前記第2の経路に対して配置され、前記空間光変調器によって変調された後、第2の導波管からの光を受光する、それと関連付けられた内部結合光学要素を有する、第5の導波管と
をさらに備え、
それぞれ、前記第4および第5の導波管と関連付けられた前記内部結合光学要素は、それぞれ、前記第1および第2の経路に沿って、前記第1および第2の空間場所に位置し、それぞれ、前記第1および第2の光エミッタからの前記光を受光する、項目1-17のいずれかに記載のディスプレイデバイス。
(項目19)
前記第4および第5の導波管と関連付けられた前記内部結合光学要素は、光が、全内部反射によって、前記導波管内で誘導されるように、前記光を、それぞれ、第4および第5の導波管の中に方向転換させるように構成される、項目18に記載のディスプレイデバイス。
(項目20)
前記第4および第5の導波管のための前記内部結合光学要素は、全内部反射によって、その中で誘導されるように、光を、それぞれ、前記第4および第5の導波管の中に再指向するように構成される、方向転換特徴を備える、項目18または19に記載のディスプレイデバイス。
(項目21)
前記内部結合光学要素は、1つ以上の回折光学要素、回折格子、ホログラフィック光学要素、またはメタ表面を備える、項目20に記載のディスプレイデバイス。
(項目22)
前記内部結合光学要素のうちの1つ以上のものは、波長選択的光学要素を備える、項目18-21のいずれか1項に記載のディスプレイデバイス。
(項目23)
第6の導波管をさらに備える、項目18-20のいずれかに記載のディスプレイデバイス。
(項目24)
前記第1および第2のスペクトル分布と異なる第3のスペクトル分布を有する第3の光エミッタと、
第3の導波管であって、前記第3の導波管は、前記第3の光エミッタに対して配置され、前記第3の光エミッタからの光を受光し、前記第3の導波管は、第3の経路に沿って、光を前記導波管から外に射出するように構成され、前記空間光変調器は、前記第3の導波管に対して配置され、前記第3の導波管から射出された前記光を受光し、前記光を変調させる、第3の導波管と
をさらに備え、
前記ディスプレイデバイスは、前記第3の導波管からの前記光が、前記空間光変調器によって変調された後、前記第3の経路に沿って、前記第1および第2の経路と異なる角度で指向され、前記第1、第2、および第3の導波管からの前記光が、前記空間光変調器によって変調された後、前記導波管および空間光変調器からある距離における個別の第1、第2、および第3の空間場所上に入射するように構成される、項目23に記載のディスプレイデバイス。
(項目25)
前記第6の導波管は、前記第3の導波管および前記第3の経路に対して配置され、前記空間光変調器によって変調された後、第3の導波管からの光を受光する、それと関連付けられた内部結合光学要素を有する、項目24に記載のディスプレイデバイス。
(項目26)
前記第6の導波管と関連付けられた前記内部結合光学要素は、前記第3の経路に沿って、前記第3の空間場所に位置し、前記第3の光エミッタからの前記光を受光する、項目25に記載のディスプレイデバイス。
(項目27)
前記第1、第2、および第3の光エミッタは、第1、第2、および第3の色の発光ダイオード(LED)を備え、前記第1の色のLEDは、前記第2の色のLEDおよび第3の色のLEDと異なる色を有し、前記第2の色のLEDは、前記第3の色のLEDと異なる色を有する、項目24-26のいずれかに記載のディスプレイデバイス。
(項目28)
前記第1、第2、および第3の光エミッタは、それぞれ、赤色、緑色、および青色の発光ダイオード(LED)を備える、項目27に記載のディスプレイデバイス。
(項目29)
前記第5の導波管と関連付けられた前記内部結合光学要素は、波長選択的であり、第1の色の光が、全内部反射によって、前記第5の導波管内で誘導されるように、より多くの第1の色の光を前記第5の導波管の中に方向転換させるように構成され、第2の色の光が、全内部反射によって、前記第6の導波管内で誘導されるように、より多くの第2の色の光を前記第6の導波管の中に方向転換させるように構成される、項目23に記載のディスプレイデバイス。
(項目30)
前記第5の導波管と関連付けられた前記波長選択的光学要素は、前記第1の色の光が、前記第5の導波管内で誘導され、前記第2の色の光が、前記波長選択的光学要素および前記第5の導波管を通して前記第6の導波管の中に透過され、前記第2の色の光が前記第6の導波管内で誘導されるように、前記波長選択的光学要素によって再指向されるように、反射によって、前記第1の色の光を前記第5の導波管の中に再指向するように構成される、項目29に記載のディスプレイデバイス。
(項目31)
前記第5の導波管と関連付けられた前記波長選択的光学要素は、1つ以上の回折光学要素、回折格子、ホログラフィック光学要素、またはメタ表面を備える、項目29または30に記載のディスプレイデバイス。
(項目32)
第3のスペクトル分布を有する第3の光エミッタをさらに備え、前記第3の光エミッタは、前記第3の導波管が、前記第3の光エミッタからの光を受光し、前記第3の導波管が、前記第3の経路に沿って、前記光を導波管から外に射出し、前記導波管および空間光変調器からある距離における前記第2の空間場所上に入射させるように、前記第3の導波管に対して配置される、項目29-31のいずれかに記載のディスプレイデバイス。
(項目33)
前記第1の光エミッタは、点光源を備える、項目1に記載のディスプレイデバイス。
(項目34)
前記第1の光エミッタは、ライン光源を備える、項目1に記載のディスプレイデバイス。
(項目35)
前記第1の光エミッタは、略線形配列のLEDを備える、項目34に記載のディスプレイデバイス。
(項目36)
前記略線形配列のLEDは、マイクロレンズアレイと関連付けられる、項目35に記載のディスプレイデバイス。
(項目37)
光を前記第1の導波管の中に指向する光ガイドを備える、項目1に記載のディスプレイデバイス。
(項目38)
前記光ガイドは、前記第1の導波管の境界上に配置され、反射要素が、前記光ガイドの1つの境界に沿って配置される、項目37に記載のディスプレイデバイス。
(項目39)
光は、第1の外部結合要素を介して、前記第1の導波管から外部結合される、項目1に記載のディスプレイデバイス。
(項目40)
前記第1の外部結合要素は、体積位相格子を備える、項目39に記載のディスプレイデバイス。
(項目41)
前記第1の外部結合要素は、コレステリック液晶格子を備える、項目39に記載のディスプレイデバイス。
(項目42)
前記第1の外部結合要素の回折効率は、前記第1の光エミッタまでの前記第1の外部結合要素の距離に沿って変動する、項目39-40のいずれかに記載のディスプレイデバイス。
(項目43)
前記回折効率は、前記第1の光エミッタからの距離の増加に伴って、単調に減少する、項目42に記載のディスプレイデバイス。
(項目44)
前記第1の外部結合要素のピッチは、前記第1の光エミッタまでの前記第1の外部結合要素の距離に沿って変動する、項目39-43のいずれかに記載のディスプレイデバイス。
(項目45)
前記第1の外部結合要素は、複数の層のスタックを備える、項目39-43のいずれかに記載のディスプレイデバイス。
(項目46)
前記スタック内の第1の層は、第1の色の光を前記第1の導波管から外部結合するように構成され、前記スタック内の第2の層は、第2の色の光を前記第1の導波管から外部結合するように構成される、項目45に記載のディスプレイデバイス。
(項目47)
前記スタック内の第1の層は、第1の色を外部結合するように構成され、前記スタック内の第2の層は、前記第1の色を外部結合するように構成される、項目45に記載のディスプレイデバイス。
(項目48)
前記スタック内の第1の層は、第1の角度で前記第1の導波管の境界に遭遇する光を外部結合するように構成され、前記スタック内の第2の層は、第2の角度で前記第1の導波管の境界に遭遇する光を外部結合するように構成される、項目45に記載のディスプレイデバイス。
(項目49)
第1の4分の1波リターダが、前記空間光変調器と前記第1の導波管との間に配置される、項目39に記載のディスプレイデバイス。
(項目50)
第2の4分の1波リターダが、前記空間光変調器と反対の前記導波管の境界上に配置される、項目49に記載のディスプレイデバイス。
(項目51)
前記第1の光エミッタからの光は、前記第1の導波管の実質的軸外に指向される、項目1に記載のディスプレイデバイス。
(項目52)
前記ディスプレイデバイスは、集束光学を前記第1の光エミッタと前記第1の導波管との間に備えない、項目1に記載のディスプレイデバイス。
(項目53)
前記第1の導波管は、略楔形状である、項目1に記載のディスプレイデバイス。
(項目54)
前記楔形状の第1の導波管は、前記第1の導波管の境界から反射する光の角度を変化させるように構成される、項目53に記載のディスプレイデバイス。
いくつかの側面によると、ディスプレイデバイスであって、
光を放出するように構成される、1つ以上の光エミッタと、
該1つ以上の光エミッタに対して配置され、該1つ以上の光エミッタからの光を受光する、第1の導波管であって、(i)第1の経路に沿って、第1の色を有する光を該導波管から外に射出し、(ii)第2の経路に沿って、第2の色を有する光を該第1の導波管から外に射出するように構成される、第1の導波管と、
該第1の導波管に対して配置され、該導波管から射出された該光を受光し、該光を変調させる、空間光変調器と、
を備え、
該1つ以上の光エミッタは、該第1および第2の色に対応するスペクトル成分を含む、スペクトル分布を有する、光を放出するように構成され、
該ディスプレイデバイスは、該第1の色および該第2の色の該第1の導波管からの該光が、該空間光変調器によって変調された後、該個別の第1および第2の経路に沿って、異なる角度で指向され、該第1の導波管および空間光変調器からある距離における、個別の第1および第2の空間場所上に入射するように構成される、
ディスプレイデバイスが、提供されてもよい。
【0007】
他の側面によると、ディスプレイデバイスであって、
光を放出するように構成される、1つ以上の光エミッタと、
該1つ以上の光エミッタに対して配置され、光が、全内部反射によって、その中で誘導されるように、該1つ以上の光エミッタからの光を受光する、第1の導波管であって、該第1の導波管内で誘導される光を該導波管から外に射出するように構成される、第1の導波管と、
第1のシャッタおよび第2のシャッタと、それぞれ、第1および第2の色の光を選択的に透過させるように構成される、対応する第1および第2の色のフィルタとを備える、シャッタシステムであって、該第1の導波管に対して配置され、該第1の導波管からの該第1および第2の色の光が、それぞれ、該個別の第1および第2の色のフィルタを通して、および該個別の第1のシャッタおよび第2のシャッタを通して、個別の第1および第2の光学経路に沿って、該第1の導波管からある距離における、個別の第1および第2の空間場所に通過するように、該導波管から射出された該光を受光する、シャッタシステムと、
該第1の導波管に対して配置され、該導波管から射出された該光を受光し、該光を変調させる、空間光変調器であって、該シャッタシステムは、該変調された光が、該第1および第2の光学経路に沿って、該空間光変調器からある距離における、該個別の第1および第2の空間場所に指向されるように、該空間光変調器に対して配置される、空間光変調器と、
該シャッタシステムおよび該空間光変調器と通信し、(i)該空間光変調器が、該第1の色に対応する画像を提示するように構成されると、該第1の色と関連付けられた該シャッタを第1の時間に開放し、該第2の色と関連付けられた該シャッタを閉鎖し、(ii)該空間光変調器が、該第2の色に対応する画像を提示するように構成されると、該第2の色と関連付けられた該シャッタを開放し、該第1の色と関連付けられた該シャッタを第2の時間に閉鎖する、電子機器と、
を備え、該1つ以上の光エミッタは、該第1および第2の色に対応するスペクトル成分を含む、スペクトル分布を有する、光を放出するように構成される、
ディスプレイデバイスが、提供されてもよい。
他の実施形態によると、ディスプレイデバイスであって、
光を放出するように構成される、1つ以上の光エミッタと、
該1つ以上の光エミッタに対して配置され、光が、全内部反射によって、その中で誘導されるように、該1つ以上の光エミッタからの光を受光する、第1の導波管であって、該第1の導波管内で誘導される光を該導波管から外に射出するように構成される、第1の導波管と、
第1のスペクトル分布の光および第1の色の光を第1の方向に沿って、第2のスペクトル分布の光を第2の方向に沿って選択的に指向するように構成される、第1のビームスプリッタであって、該第1のビームスプリッタは、該第1の導波管に対して配置され、該第1の導波管からの該第1および第2のスペクトル分布の光が、該第1のビームスプリッタ上に入射し、該第1および第2のスペクトル分布を有する該光が、個別の第1および第2の光学経路に沿って指向されるように、該導波管から射出された該光を受光し、該第1のスペクトル分布および第1の色の該光は、該第1の導波管からある距離における、個別の第1の空間場所に指向される、第1のビームスプリッタと、
該第1の導波管に対して配置され、該導波管から射出された該光を受光し、該光を変調させる、空間光変調器であって、該第1のビームスプリッタは、該変調された光が、該第1および第2の光学経路に沿って指向され、該第1の色の光が、該空間光変調器からある距離における、該第1の空間場所に指向されるように、該空間光変調器に対して配置される、空間光変調器と、
を備え、該1つ以上の光エミッタは、該個別の第1および第2の光学経路に沿って指向される該第1および第2のスペクトル分布に対応するスペクトル成分を含む、スペクトル分布を有する、光を放出するように構成される、
ディスプレイデバイスが、提供されてもよい。
【0008】
さらなる側面によると、頭部搭載型ディスプレイのためのディスプレイデバイスであって、
導波管ベースの画像源であって、
光を放出するように構成される、1つ以上の光エミッタと、
該1つ以上の光エミッタに対して配置され、光が、全内部反射を介して、該1つ以上の光導波路内で誘導されるように、該1つ以上の光エミッタからの光を受光する、1つ以上の導波管であって、光を該導波管から外に射出するように構成される、1つ以上の導波管と、
1つ以上の導波管に対して配置され、該1つ以上の導波管から射出された該光を受光し、該光を変調させる、空間光変調器と、
を備え、
該1つ以上の光エミッタは、第1および第2の色に対応するスペクトル成分を含む、スペクトル分布を有する、光を放出するように構成され、
該導波管ベースの画像源は、該第1および第2の色の該光が、該空間光変調器によって変調された後、該個別の第1および第2の経路に沿って指向され、該1つ以上の導波管および該空間光変調器からある距離における、個別の第1および第2の空間場所上に入射するように構成される、
導波管ベースの画像源と、
導波管ベースの配光システムを備える接眼レンズ要素であって、
1つ以上の第1の導波管および該第1の経路に対して配置され、該空間光変調器によって変調された後、該1つ以上の導波管からの光を受光する、それと関連付けられた内部結合光学要素を有する、第1の導波管と、
該1つ以上の導波管および該第2の経路に対して配置され、該空間光変調器によって変調された後、該1つ以上の導波管からの光を受光する、それと関連付けられた内部結合光学要素を有する、第2の導波管と、
を備え、それぞれ、該第1および第2の導波管と関連付けられた該内部結合光学要素は、それぞれ、該第1および第2の経路に沿って、該第1および第2の空間場所に位置し、それぞれ、該第1および第2の色の該光を受光する、
導波管ベースの配光システムを備える接眼レンズ要素と、
を備える、頭部搭載型ディスプレイのためのディスプレイデバイスが、提供されてもよい。
【図面の簡単な説明】
【0009】
【
図1】
図1は、ARデバイスを通した拡張現実(AR)のユーザのビューを図示する。
【0010】
【
図2】
図2は、ウェアラブルディスプレイシステムの実施例を図示する。
【0011】
【
図3】
図3は、ユーザのための3次元画像をシミュレートするための従来のディスプレイシステムを図示する。
【0012】
【
図4】
図4は、複数の深度平面を使用して3次元画像をシミュレートするためのアプローチの側面を図示する。
【0013】
【
図5】
図5A-5Cは、曲率半径と焦点半径との間の関係を図示する。
【0014】
【
図6】
図6は、画像情報をユーザに出力するための導波管スタックの実施例を図示する。
【0015】
【
図7】
図7は、導波管によって出力された出射ビームの実施例を図示する。
【0016】
【
図8】
図8は、スタックされた導波管アセンブリの実施例を図示し、各深度平面は、複数の異なる原色を使用して形成される画像を含む。
【0017】
【
図9A】
図9Aは、それぞれが内部結合光学要素を含むスタックされた導波管のセットの実施例の断面側面図を図示する。
【0018】
【0019】
【
図9C】
図9Cは、
図9Aおよび9Bの複数のスタックされた導波管の実施例の上下平面図を図示する。
【0020】
【
図9D】
図9Dは、複数の入力ビームを、接眼レンズの一部を形成する導波管のスタックと統合された複数の内部結合光学要素に提供する、導波管ベースの画像源を図示する。
【0021】
【
図10A】
図10Aおよび10Bは、単一導波管を備える導波管ベースの画像源を図示し、該単一導波管は、白色の光を受光し得、そして、外部結合光学要素を含み、該外部結合光学要素は、分散度を有し、異なる色の光(例えば、赤色、緑色、青色)を異なる方向に指向する。
【
図10B】
図10Aおよび10Bは、単一導波管を備える導波管ベースの画像源を図示し、該単一導波管は、白色の光を受光し得、そして、外部結合光学要素を含み、該外部結合光学要素は、分散度を有し、異なる色の光(例えば、赤色、緑色、青色)を異なる方向に指向する。
【0022】
【
図11A】
図11A-11Cは、複数の導波管を備える導波管ベースの画像源を図示し、該複数の導波管は、それぞれが異なる色のLED(例えば、赤色、緑色、青色)に光学的に結合され、個別の導波管内の光を異なる方向に指向する外部結合光学要素を有する。
【
図11B】
図11A-11Cは、複数の導波管を備える導波管ベースの画像源を図示し、該複数の導波管は、それぞれが異なる色のLED(例えば、赤色、緑色、青色)に光学的に結合され、個別の導波管内の光を異なる方向に指向する外部結合光学要素を有する。
【
図11C】
図11A-11Cは、複数の導波管を備える導波管ベースの画像源を図示し、該複数の導波管は、それぞれが異なる色のLED(例えば、赤色、緑色、青色)に光学的に結合され、個別の導波管内の光を異なる方向に指向する外部結合光学要素を有する。
【0023】
【
図11D】
図11Dは、3つの色の光エミッタと、2つのエミッタからの色のうちの2つが単一導波管の中に組み合わせられる2つの導波管とを備える、導波管ベースの画像源を示す。
【0024】
【
図12A】
図12Aは、単一導波管を備える導波管ベースの画像源を図示し、該単一導波管は、白色のLEDに結合され得、光を対応する色のフィルタを伴う複数のシャッタに外部結合し、光の異なる色を異なる時間に選択的に通過させる。
【0025】
【
図12B】
図12Bは、シャッタと空間光変調器とを備える
図12Aに示されるような導波管ベースの画像源のための例示的リフレッシュプロセスを図示するフローチャートである。
【0026】
【
図13】
図13は、単一導波管を備える導波管ベースの画像源を図示し、該単一導波管は、白色のLEDに結合され得、そして、光を、複数のダイクロイックビームスプリッタに外部結合し、該複数のダイクロイックビームスプリッタは、異なる色を分割し、異なる側方位置にある異なる色ビームを生産する。
【0027】
【
図14A】
図14Aおよび14Bは、それぞれ、点光源およびライン光源によって照明される導波管を備える、導波管ベースの画像源を図示する。
【
図14B】
図14Aおよび14Bは、それぞれ、点光源およびライン光源によって照明される導波管を備える、導波管ベースの画像源を図示する。
【0028】
【
図14C】
図14C-14Eは、光を導波管の中に結合するための付加的配列を図示する。
【
図14D】
図14C-14Eは、光を導波管の中に結合するための付加的配列を図示する。
【
図14E】
図14C-14Eは、光を導波管の中に結合するための付加的配列を図示する。
【0029】
【
図15A】
図15Aは、導波管と、体積位相回折要素を備える外部結合光学要素とを備える、導波管ベースの画像源を図示する。
【0030】
【
図15B】
図15Bは、異なる色のための体積位相格子(VPG)回折要素のスタックを備える導波管ベースの配光デバイスを図示する。
【0031】
【
図15C】
図15Cは、異なる角度のための体積位相格子(VPG)回折要素のスタックを備える導波管ベースの配光デバイスを図示する。
【0032】
【
図16】
図16は、導波管と、コレステリック液晶格子(CLCG)を備える外部結合光学要素とを備える、導波管ベースの画像源を図示する。
【0033】
【
図17A】
図17Aおよび17Bは、軸外照明を利用するように構成され得る導波管ベースの配光デバイスを図示する。
【
図17B】
図17Aおよび17Bは、軸外照明を利用するように構成され得る導波管ベースの配光デバイスを図示する。
【0034】
【
図18】
図18は、楔形状の導波管を備える導波管ベースの画像源を図示する。
【発明を実施するための形態】
【0035】
ここで、同様の参照番号が全体を通して同様の部分を指す、図を参照する。本明細書に開示される実施形態は、概して、ディスプレイシステムを含む、光学システムを含むことを理解されたい。いくつかの実施形態では、ディスプレイシステムは、装着可能であって、これは、有利には、より没入型のVRまたはAR体験を提供し得る。例えば、1つ以上の導波管(例えば、導波管のスタック)を含有する、ディスプレイは、ユーザの眼または視認者の正面に位置付けられて装着されるように構成されてもよい。いくつかの実施形態では、視認者の眼毎に1つの2つの導波管のスタックが、異なる画像を各眼に提供するために利用されてもよい。
(例示的ディスプレイシステム)
【0036】
図2は、ウェアラブルディスプレイシステム60の実施例を図示する。ディスプレイシステム60は、ディスプレイ70と、そのディスプレイ70の機能をサポートするための種々の機械的および電子的モジュールおよびシステムとを含む。ディスプレイ70は、フレーム80に結合されてもよく、これは、ディスプレイシステムユーザまたは視認者90によって装着可能であって、ディスプレイ70をユーザ90の眼の正面に位置付けるように構成される。ディスプレイ70は、いくつかの実施形態では、アイウェアと見なされてもよい。いくつかの実施形態では、スピーカ100が、フレーム80に結合され、ユーザ90の外耳道に隣接して位置付けられるように構成される(いくつかの実施形態では、示されない別のスピーカが、ユーザの他方の外耳道に隣接して位置付けられ、ステレオ/成形可能音制御を提供してもよい)。いくつかの実施形態では、ディスプレイシステムはまた、1つ以上のマイクロホン110または他のデバイスを含み、音を検出してもよい。いくつかの実施形態では、マイクロホンは、ユーザが、入力またはコマンドをシステム60に提供することを可能にするように構成され(例えば、音声メニューコマンドの選択、自然言語質問等)、および/または他の人物(例えば、類似ディスプレイシステムの他のユーザ)とのオーディオ通信を可能にしてもよい。マイクロホンはさらに、周辺センサとして構成され、オーディオデータ(例えば、ユーザおよび/または環境からの音)を収集してもよい。いくつかの実施形態では、ディスプレイシステムもまた、周辺センサ120aを含んでもよく、これは、フレーム80と別個であって、ユーザ90の身体(例えば、ユーザ90の頭部、胴体、四肢等上)に取り付けられてもよい。周辺センサ120aは、いくつかの実施形態では、ユーザ90の生理学的状態を特徴付けるデータを取得するように構成されてもよい。例えば、センサ120aは、電極であってもよい。
【0037】
図2を継続して参照すると、ディスプレイ70は、有線導線または無線コネクティビティ等の通信リンク130によって、ローカルデータ処理モジュール140に動作可能に結合され、これは、フレーム80に固定して取り付けられる、ユーザによって装着されるヘルメットまたは帽子に固定して取り付けられる、ヘッドホンに内蔵される、または別様にユーザ90に除去可能に取り付けられる(例えば、リュック式構成において、ベルト結合式構成において)等、種々の構成で搭載されてもよい。同様に、センサ120aは、通信リンク120b、例えば、有線導線または無線コネクティビティによって、ローカルプロセッサおよびデータモジュール140に動作可能に結合されてもよい。ローカル処理およびデータモジュール140は、ハードウェアプロセッサおよび不揮発性メモリ(例えば、フラッシュメモリまたはハードディスクドライブ)等のデジタルメモリを備えてもよく、その両方とも、データの処理、キャッシュ、および記憶を補助するために利用され得る。データは、a)画像捕捉デバイス(カメラ等)、マイクロホン、慣性測定ユニット、加速度計、コンパス、GPSユニット、無線デバイス、ジャイロスコープ、および/または本明細書に開示される他のセンサ等のセンサ(例えば、フレーム80に動作可能に結合される、または別様にユーザ90に取り付けられ得る)から捕捉されたデータ、および/またはb)場合によっては処理または読出後にディスプレイ70への通過のために、遠隔処理モジュール150および/または遠隔データリポジトリ160(仮想コンテンツに関連するデータを含む)を使用して取得および/または処理されたデータを含む。ローカル処理およびデータモジュール140は、これらの遠隔モジュール150、160が相互に動作可能に結合され、ローカル処理およびデータモジュール140に対するリソースとして利用可能であるように、有線または無線通信リンク等を介して、通信リンク170、180によって、遠隔処理モジュール150および遠隔データリポジトリ160に動作可能に結合されてもよい。いくつかの実施形態では、ローカル処理およびデータモジュール140は、画像捕捉デバイス、マイクロホン、慣性測定ユニット、加速度計、コンパス、GPSユニット、無線デバイス、および/またはジャイロスコープのうちの1つ以上のものを含んでもよい。いくつかの他の実施形態では、これらのセンサのうちの1つ以上のものは、フレーム80に取り付けられてもよい、または有線または無線通信経路によってローカル処理およびデータモジュール140と通信する、独立構造であってもよい。
【0038】
図2を継続して参照すると、いくつかの実施形態では、遠隔処理モジュール150は、データおよび/または画像情報を分析および処理するように構成される、1つ以上のプロセッサを備えてもよい。いくつかの実施形態では、遠隔データリポジトリ160は、デジタルデータ記憶設備を備え得、これは、インターネットまたは「クラウド」リソース構成における他のネットワーキング構成を通して利用可能であってもよい。いくつかの実施形態では、遠隔データリポジトリ160は、情報、例えば、拡張現実コンテンツを生成するための情報をローカル処理およびデータモジュール140および/または遠隔処理モジュール150に提供する、1つ以上の遠隔サーバを含んでもよい。いくつかの実施形態では、全てのデータが、記憶され、全ての算出が、ローカル処理およびデータモジュール内において実施され、遠隔モジュールからの完全に自律的な使用を可能にする。
【0039】
「3次元」または「3-D」としての画像の知覚は、視認者の各眼への画像の若干異なる提示を提供することによって達成され得る。
図3は、ユーザに関する3次元画像をシミュレートするための従来のディスプレイシステムを図示する。眼210、220毎に1つの2つの明確に異なる画像190、200が、ユーザに出力される。画像190、200は、視認者の視線と平行な光学軸またはz-軸に沿って距離230だけ眼210、220から離間される。画像190、200は、平坦であって、眼210、220は、単一の遠近調節された状態をとることによって、画像上に合焦し得る。そのような3-Dディスプレイシステムは、ヒト視覚系に依拠し、画像190、200を組み合わせ、組み合わせられた画像の深度および/または尺度の知覚を提供する。
【0040】
しかしながら、ヒト視覚系は、より複雑であって、深度の現実的知覚を提供することは、より困難であることを理解されたい。例えば、従来の「3-D」ディスプレイシステムの多くの視認者は、そのようなシステムが不快であることを見出す、または深度の感覚を全く知覚しない場合がある。理論によって限定されるわけではないが、オブジェクトの視認者は、輻輳・開散(vergence)と遠近調節(accmmodation)との組み合わせに起因して、オブジェクトを「3次元」として知覚し得ると考えられる。相互に対する2つの眼の輻輳・開散運動(すなわち、瞳孔が、相互に向かって、またはそこから離れるように移動し、眼の視線を収束させ、オブジェクトを固視するような眼の回転)は、眼の水晶体および瞳孔の合焦(または「遠近調節」)と緊密に関連付けられる。通常条件下、焦点を1つのオブジェクトから異なる距離における別のオブジェクトに変化させるための眼のレンズの焦点の変化または眼の遠近調節は、「遠近調節-輻輳・開散運動反射」および瞳孔拡張または収縮として知られる関係下、輻輳・開散運動の整合変化を自動的に同一距離に生じさせるであろう。同様に、輻輳・開散運動の変化は、通常条件下、水晶体形状および瞳孔サイズの遠近調節における整合変化を誘起するであろう。本明細書に記載されるように、多くの立体視または「3-D」ディスプレイシステムは、3次元視点がヒト視覚系によって知覚されるように、各眼への若干異なる提示(したがって、若干異なる画像)を使用して、場面を表示する。しかしながら、そのようなシステムは、とりわけ、単に、場面の異なる提示を提供するが、眼が全画像情報を単一の遠近調節された状態において視認すると、「遠近調節-輻輳・開散運動反射」に対抗して機能するため、多くの視認者にとって不快である。遠近調節と輻輳・開散運動との間のより優れた整合を提供するディスプレイシステムは、3次元画像のより現実的かつ快適なシミュレーションを形成し、装着持続時間の増加、ひいては、診断および療法プロトコルへのコンプライアンスに寄与し得る。
【0041】
図4は、複数の深度平面を使用して3次元画像をシミュレートするためのアプローチの側面を図示する。
図4を参照すると、z-軸上の眼210、220からの種々の距離におけるオブジェクトは、それらのオブジェクトが合焦するように、眼210、220によって遠近調節される。眼210、220は、特定の遠近調節された状態をとり、オブジェクトをz-軸に沿った異なる距離に合焦させる。その結果、特定の遠近調節された状態は、特定の深度平面におけるオブジェクトまたはオブジェクトの一部が、眼がその深度平面に対して遠近調節された状態にあるとき、合焦するように、関連付けられた焦点距離を有する、深度平面240のうちの特定の1つと関連付けられると言え得る。いくつかの実施形態では、3次元画像は、眼210、220毎に、画像の異なる提示を提供することによって、また、深度平面のそれぞれに対応する画像の異なる提示を提供することによってシミュレートされてもよい。例証を明確にするために、別個であるように示されるが、眼210、220の視野は、例えば、z-軸に沿った距離が増加するにつれて、重複し得ることを理解されたい。加えて、例証を容易にするために、平坦であるように示されるが、深度平面の輪郭は、深度平面内の全ての特徴が特定の遠近調節された状態における眼と合焦するように、物理的空間内で湾曲され得ることを理解されたい。
【0042】
オブジェクトと眼210または220との間の距離はまた、その眼によって視認されるようなそのオブジェクトからの光の発散の量を変化させ得る。
図5A-5Cは、距離と光線の発散との間の関係を図示する。オブジェクトと眼210との間の距離は、減少距離R1、R2、およびR3の順序で表される。
図5A-5Cに示されるように、光線は、オブジェクトまでの距離が減少するにつれてより発散する。距離が増加するにつれて、光線は、よりコリメートされる。換言すると、点(オブジェクトまたはオブジェクトの一部)によって生成されるライトフィールドは、点がユーザの眼から離れている距離の関数である、球状波面曲率を有すると言え得る。曲率は、オブジェクトと眼210との間の距離の減少に伴って増加する。その結果、異なる深度平面では、光線の発散度もまた、異なり、発散度は、深度平面と視認者の眼210との間の距離の減少に伴って増加する。単眼210のみが、例証を明確にするために、
図5A-5Cおよび本明細書の他の図に図示されるが、眼210に関する議論は、視認者の両眼210および220に適用され得ることを理解されたい。
【0043】
理論によって限定されるわけではないが、ヒトの眼は、典型的には、有限数の深度平面を解釈し、深度知覚を提供することができると考えられる。その結果、知覚された深度の高度に真実味のあるシミュレーションが、眼にこれらの限定数の深度平面のそれぞれに対応する画像の異なる提示を提供することによって達成され得る。異なる提示は、視認者の眼によって別個に集束され、それによって、異なる深度平面上に位置する場面のための異なる画像特徴に合焦させるために要求される眼の遠近調節に基づいて、および/または焦点がずれている異なる深度平面上の異なる画像特徴の観察に基づいて、ユーザに深度合図を提供することに役立ててもよい。
【0044】
図6は、画像情報をユーザに出力するための導波管スタックの実施例を図示する。ディスプレイシステム250は、複数の導波管270、280、290、300、310を使用して3次元知覚を眼/脳に提供するために利用され得る、導波管のスタックまたはスタックされた導波管アセンブリ260を含む。いくつかの実施形態では、ディスプレイシステム250は、
図2のシステム60であって、
図6は、そのシステム60のいくつかの部分をより詳細に図式的に示す。例えば、導波管アセンブリ260は、
図2のディスプレイ70の一部であってもよい。ディスプレイシステム250は、いくつかの実施形態では、ライトフィールドディスプレイと見なされてもよいことを理解されたい。
【0045】
図6を継続して参照すると、導波管アセンブリ260はまた、複数の特徴320、330、340、350を導波管の間に含んでもよい。いくつかの実施形態では、特徴320、330、340、350は、1つ以上のレンズであってもよい。導波管270、280、290、300、310および/または複数のレンズ320、330、340、350は、種々のレベルの波面曲率または光線発散を用いて画像情報を眼に送信するように構成されてもよい。各導波管レベルは、特定の深度平面と関連付けられてもよく、その深度平面に対応する画像情報を出力するように構成されてもよい。画像投入デバイス360、370、380、390、400は、導波管のための光源として機能してもよく、画像情報を導波管270、280、290、300、310の中に投入するために利用されてもよく、それぞれ、本明細書に説明されるように、眼210に向かって出力のために各個別の導波管を横断して入射光を分散させるように構成されてもよい。光は、画像投入デバイス360、370、380、390、400の出力表面410、420、430、440、450から出射し、導波管270、280、290、300、310の対応する入力表面460、470、480、490、500の中に投入される。いくつかの実施形態では、入力表面460、470、480、490、500はそれぞれ、対応する導波管の縁であってもよい、または対応する導波管の主要表面の一部(すなわち、世界510または視認者の眼210に直接面する導波管表面のうちの1つ)であってもよい。いくつかの実施形態では、光の単一ビーム(例えば、コリメートされたビーム)が、各導波管の中に投入され、クローン化されたコリメートビームの全体場を出力してもよく、これは、特定の導波管と関連付けられた深度平面に対応する特定の角度(および発散量)において眼210に向かって指向される。いくつかの実施形態では、画像投入デバイス360、370、380、390、400のうちの単一の1つは、複数(例えば、3つ)の導波管270、280、290、300、310と関連付けられ、その中に光を投入してもよい。
【0046】
いくつかの実施形態では、画像投入デバイス360、370、380、390、400はそれぞれ、それぞれの対応する導波管270、280、290、300、310の中への投入のための画像情報を生成する、離散ディスプレイである。いくつかの他の実施形態では、画像投入デバイス360、370、380、390、400は、例えば、画像情報を1つ以上の光学導管(光ファイバケーブル等)を介して画像投入デバイス360、370、380、390、400のそれぞれに送り得る、単一の多重化されたディスプレイの出力端である。画像投入デバイス360、370、380、390、400によって提供される画像情報は、異なる波長または色(例えば、本明細書に議論されるように、異なる原色)の光を含んでもよいことを理解されたい。
【0047】
いくつかの実施形態では、導波管270、280、290、300、310の中に投入される光は、光プロジェクタシステム520によって提供され、これは、光モジュール530を備え、これは、発光ダイオード(LED)等の光エミッタを含んでもよい。光モジュール530からの光は、ビームスプリッタ550を介して、光変調器540、例えば、空間光変調器によって指向および修正されてもよい。光変調器540は、導波管270、280、290、300、310の中に投入される光の知覚される強度を変化させるように構成されてもよい。空間光変調器の実施例は、シリコン上液晶(LCOS)ディスプレイを含む、液晶ディスプレイ(LCD)を含む。
【0048】
いくつかの実施形態では、ディスプレイシステム250は、光を種々のパターン(例えば、ラスタ走査、螺旋走査、リサジューパターン等)で1つ以上の導波管270、280、290、300、310の中に、最終的には、視認者の眼210に投影するように構成される、1つ以上の走査ファイバを備える、走査ファイバディスプレイであってもよい。いくつかの実施形態では、図示される画像投入デバイス360、370、380、390、400は、光を1つまたは複数の導波管270、280、290、300、310の中に投入するように構成される、単一走査ファイバまたは走査ファイバの束を図式的に表し得る。いくつかの他の実施形態では、図示される画像投入デバイス360、370、380、390、400は、複数の走査ファイバまたは走査ファイバの複数の束を図式的に表し得、それぞれ、光を導波管270、280、290、300、310のうちの関連付けられた1つの中に投入するように構成される。1つ以上の光ファイバは、光を光モジュール530から1つ以上の導波管270、280、290、300、310に伝送するように構成されてもよいことを理解されたい。1つ以上の介在光学構造が、走査ファイバまたは複数のファイバと、1つ以上の導波管270、280、290、300、310との間に提供され、例えば、走査ファイバから出射する光を1つ以上の導波管270、280、290、300、310の中に再指向してもよいことを理解されたい。
【0049】
コントローラ560は、画像投入デバイス360、370、380、390、400、光エミッタ530、および光モジュール540の動作を含む、スタックされた導波管アセンブリ260のうちの1つ以上のものの動作を制御する。いくつかの実施形態では、コントローラ560は、ローカルデータ処理モジュール140の一部である。コントローラ560は、例えば、本明細書に開示される種々のスキームのいずれかに従って、導波管270、280、290、300、310への画像情報のタイミングおよび提供を調整する、プログラミング(例えば、非一過性媒体内の命令)を含む。いくつかの実施形態では、コントローラは、単一の一体型デバイスまたは有線または無線通信チャネルによって接続される分散型システムであってもよい。コントローラ560は、いくつかの実施形態では、処理モジュール140または150(
図2)の一部であってもよい。
【0050】
図6を継続して参照すると、導波管270、280、290、300、310は、全内部反射(TIR)によって、光を各個別の導波管内で伝搬させるように構成されてもよい。導波管270、280、290、300、310はそれぞれ、主要上部表面および主要底部表面およびそれらの主要上部表面と底部表面との間に延在する縁を伴う、平面である、または別の形状(例えば、湾曲)を有してもよい。図示される構成では、導波管270、280、290、300、310はそれぞれ、光を再指向させ、各個別の導波管内で伝搬させ、導波管から画像情報を眼210に出力することによって、光を導波管から抽出するように構成される、外部結合光学要素570、580、590、600、610を含んでもよい。抽出された光はまた、外部結合光と称され得、光を外部結合する光学要素はまた、光抽出光学要素と称され得る。抽出された光のビームは、導波管によって、導波管内で伝搬する光が光抽出光学要素に衝打する場所において出力され得る。外部結合光学要素570、580、590、600、610は、例えば、本明細書にさらに議論されるような回折光学特徴を含む、格子であってもよい。説明を容易にし、図面を明確にするために、導波管270、280、290、300、310の底部主要表面に配置されて図示されるが、いくつかの実施形態では、外部結合光学要素570、580、590、600、610は、本明細書にさらに議論されるように、上部主要表面および/または底部主要表面に配置されてもよく、および/または導波管270、280、290、300、310の容積内に直接配置されてもよい。いくつかの実施形態では、外部結合光学要素570、580、590、600、610は、透明基板に取り付けられ、導波管270、280、290、300、310を形成する、材料の層内に形成されてもよい。いくつかの他の実施形態では、導波管270、280、290、300、310は、モノリシック材料部品であってもよく、外部結合光学要素570、580、590、600、610は、その材料部品の表面上および/または内部に形成されてもよい。
【0051】
図6を継続して参照すると、本明細書に議論されるように、各導波管270、280、290、300、310は、光を出力し、特定の深度平面に対応する画像を形成するように構成される。例えば、眼の最近傍の導波管270は、眼210にコリメートされた光(そのような導波管270の中に投入された)を送達するように構成されてもよい。コリメートされた光は、光学無限遠焦点面を表し得る。次の上方の導波管280は、眼210に到達し得る前に、第1のレンズ350(例えば、負のレンズ)を通して通過する、コリメートされた光を送出するように構成されてもよい。そのような第1のレンズ350は、眼/脳が、その次の上方の導波管280から生じる光を光学無限遠から眼210に向かって内向きにより近い第1の焦点面から生じるように解釈するように、若干の凸面波面曲率を生成するように構成されてもよい。同様に、第3の上方の導波管290は、眼210に到達する前に、その出力光を第1のレンズ350および第2のレンズ340の両方を通して通過させる。第1のレンズ350および第2のレンズ340の組み合わせられた屈折力は、眼/脳が、第3の導波管290から生じる光が次の上方の導波管280からの光であったよりも光学無限遠から人物に向かって内向きにさらに近い第2の焦点面から生じるように解釈するように、別の漸増量の波面曲率を生成するように構成されてもよい。
【0052】
他の導波管層300、310およびレンズ330、320も同様に構成され、スタック内の最高導波管310は、人物に最も近い焦点面を表す集約焦点力のために、その出力をそれと眼との間のレンズの全てを通して送出する。スタックされた導波管アセンブリ260の他側の世界510から生じる光を視認/解釈するとき、レンズ320、330、340、350のスタックを補償するために、補償レンズ層620が、スタックの上部に配置され、下方のレンズスタック320、330、340、350の集約力を補償してもよい。そのような構成は、利用可能な導波管/レンズ対と同じ数の知覚される焦点面を提供する。導波管の外部結合光学要素およびレンズの集束側面は両方とも、静的であってもよい(すなわち、動的または電気活性ではない)。いくつかの代替実施形態では、一方または両方とも、電気活性特徴を使用して動的であってもよい。
【0053】
いくつかの実施形態では、導波管270、280、290、300、310のうちの2つ以上のものは、同一の関連付けられた深度平面を有してもよい。例えば、複数の導波管270、280、290、300、310が、同一深度平面に設定される画像を出力するように構成されてもよい、または導波管270、280、290、300、310の複数のサブセットが、深度平面毎に1つのセットを伴う、同一の複数の深度平面に設定される画像を出力するように構成されてもよい。これは、それらの深度平面において拡張された視野を提供するようにタイル化された画像を形成する利点を提供し得る。
【0054】
図6を継続して参照すると、外部結合光学要素570、580、590、600、610は、導波管と関連付けられた特定の深度平面のために、光をその個別の導波管から再指向し、かつ本光を適切な量の発散またはコリメーションを伴って出力するように構成されてもよい。その結果、異なる関連付けられた深度平面を有する導波管は、外部結合光学要素570、580、590、600、610の異なる構成を有してもよく、これは、関連付けられた深度平面に応じて、異なる量の発散を伴う光を出力する。いくつかの実施形態では、光抽出光学要素570、580、590、600、610は、光を具体的角度で出力するように構成され得る、体積特徴または表面特徴であってもい。例えば、光抽出光学要素570、580、590、600、610は、体積ホログラム、表面ホログラム、および/または回折格子であってもよい。いくつかの実施形態では、特徴320、330、340、350は、レンズではなくてもよい。むしろ、それらは、単に、スペーサであってもよい(例えば、クラッディング層および/または空隙を形成するための構造)。
【0055】
いくつかの実施形態では、外部結合光学要素570、580、590、600、610は、回折パターンを形成する回折特徴または「回折光学要素」(また、本明細書では、「DOE」とも称される)である。好ましくは、DOEは、ビームの光の一部のみがDOEの各交差部で眼210に向かって偏向される一方、残りが、TIRを介して、導波管を通して移動し続けるように、十分に低回折効率を有する。画像情報を搬送する光は、したがって、複数の場所において導波管から出射する、いくつかの関連出射ビームに分割され、その結果、導波管内でバウンスする本特定のコリメートされたビームに関して、眼210に向かって非常に均一パターンの出射放出となる。
【0056】
いくつかの実施形態では、1つ以上のDOEは、能動的に回折する「オン」状態と有意に回折しない「オフ」状態との間で切替可能であってもよい。例えば、切替可能なDOEは、ポリマー分散液晶の層を備えてもよく、その中で微小液滴は、ホスト媒体中に回折パターンを備え、微小液滴の屈折率は、ホスト材料の屈折率に実質的に整合するように切り替えられてもよい(その場合、パターンは、入射光を著しく回折させない)、または微小液滴は、ホスト媒体のものに整合しない屈折率に切り替えられてもよい(その場合、パターンは、入射光を能動的に回折させる)。
【0057】
いくつかの実施形態では、カメラアセンブリ630(例えば、可視光および赤外線光カメラを含む、デジタルカメラ)が、眼210および/または眼210の周囲の組織の画像を捕捉し、例えば、ユーザ入力を検出する、および/またはユーザの生理学的状態を監視するために提供されてもよい。本明細書で使用されるように、カメラは、任意の画像捕捉デバイスであってもよい。いくつかの実施形態では、カメラアセンブリ630は、画像捕捉デバイスと、光(例えば、赤外線光)を眼に投影し、その光が、次いで、眼によって反射され、画像捕捉デバイスによって検出され得る、光エミッタとを含んでもよい。いくつかの実施形態では、カメラアセンブリ630は、フレーム80(
図2)に取り付けられてもよく、本明細書に議論されるように、カメラアセンブリ630からの画像情報を処理し、例えば、ユーザの生理学的状態に関する種々の決定を行い得る、処理モジュール140および/または150と電気通信してもよい。ユーザの生理学的状態に関する情報は、ユーザの挙動または感情状態を決定するために使用されてもよいことを理解されたい。そのような情報の実施例は、ユーザの移動および/またはユーザの顔の表情を含む。ユーザの挙動または感情状態は、次いで、挙動または感情状態と、生理学的状態と、環境または仮想コンテンツデータとの間の関係を決定するように、収集された環境および/または仮想コンテンツデータを用いて三角測量されてもよい。いくつかの実施形態では、1つのカメラアセンブリ630が、眼毎に利用され、各眼を別個に監視してもよい。
【0058】
ここで
図7を参照すると、導波管によって出力された出射ビームの実施例が、示される。1つの導波管が図示されるが、導波管アセンブリ260(
図6)内の他の導波管も同様に機能し得、導波管アセンブリ260は、複数の導波管を含むことを理解されたい。光640が、導波管270の入力表面460において導波管270の中に投入され、TIRによって導波管270内を伝搬する。光640がDOE570上に衝突する点では、光の一部は、導波管から出射ビーム650として出射する。出射ビーム650は、略平行として図示されるが、本明細書に議論されるように、また、導波管270と関連付けられた深度平面に応じて、ある角度(例えば、発散出射ビーム形成)において眼210に伝搬するように再指向されてもよい。略平行出射ビームは、眼210からの遠距離(例えば、光学無限遠)における深度平面に設定されるように現れる画像を形成するように光を外部結合する、外部結合光学要素を伴う、導波管を示し得ることを理解されたい。他の導波管または他の外部結合光学要素のセットは、より発散する、出射ビームパターンを出力してもよく、これは、眼210がより近い距離に遠近調節し、網膜に合焦させることを要求し、光学無限遠より眼210に近い距離からの光として脳によって解釈されるであろう。
【0059】
いくつかの実施形態では、フルカラー画像が、原色、例えば、3つ以上の原色のそれぞれに画像をオーバーレイすることによって、各深度平面において形成されてもよい。
図8は、スタックされた導波管アセンブリの実施例を図示し、各深度平面は、複数の異なる原色を使用して形成される画像を含む。図示される実施形態は、深度平面240a-240fを示すが、より多いまたはより少ない深度もまた、検討される。各深度平面は、それと関連付けられた3つ以上の原色画像、すなわち、第1の色Gの第1の画像、第2の色Rの第2の画像、および第3の色Bの第3の画像を含む、3つ以上の原色画像を有してもよい。異なる深度平面は、文字G、R、およびBに続くジオプタ(dpt)に関する異なる数字によって図に示される。単なる実施例として、これらの文字のそれぞれに続く数字は、ジオプタ(1/m)、すなわち、視認者からの深度平面の逆距離を示し、図中の各ボックスは、個々の原色画像を表す。いくつかの実施形態では、異なる波長の光の眼の集束における差異を考慮するために、異なる原色に関する深度平面の正確な場所は、変動してもよい。例えば、所与の深度平面に関する異なる原色画像は、ユーザからの異なる距離に対応する深度平面上に設置されてもよい。そのような配列は、視力およびユーザ快適性を増加させ得、および/または色収差を減少させ得る。
【0060】
いくつかの実施形態では、各原色の光は、単一専用導波管によって出力されてもよく、その結果、各深度平面は、それと関連付けられた複数の導波管を有してもよい。そのような実施形態では、文字G、R、またはBを含む、図中の各ボックスは、個々の導波管を表すものと理解され得、3つの導波管は、深度平面毎に提供されてもよく、3つの原色画像が、深度平面毎に提供される。各深度平面と関連付けられた導波管は、本図面では、説明を容易にするために相互に隣接して示されるが、物理的デバイスでは、導波管は全て、レベル毎に1つの導波管を伴うスタックで配列されてもよいことを理解されたい。いくつかの他の実施形態では、複数の原色が、例えば、単一導波管のみが深度平面毎に提供され得るように、同一導波管によって出力されてもよい。
【0061】
図8を継続して参照すると、いくつかの実施形態では、Gは、緑色であって、Rは、赤色であって、Bは、青色である。いくつかの他の実施形態では、マゼンタ色およびシアン色を含む、光の他の波長と関連付けられた他の色も、加えて使用されてもよい、または赤色、緑色、または青色のうちの1つ以上のものに取って代わってもよい。いくつかの実施形態では、特徴320、330、340、および350は、視認者の眼への周囲環境からの光を遮断または選択するように構成される、能動または受動光学フィルタであってもよい。
【0062】
本開示全体を通した所与の光の色の言及は、その所与の色として視認者によって知覚される、光の波長の範囲内の1つ以上の波長の光を包含するものと理解されると理解されたい。例えば、赤色の光は、約620~780nmの範囲内である1つ以上の波長の光を含んでもよく、緑色の光は、約492~577nmの範囲内である1つ以上の波長の光を含んでもよく、青色の光は、約435~493nmの範囲内である1つ以上の波長の光を含んでもよい。
【0063】
いくつかの実施形態では、光エミッタ530(
図6)は、視認者の視覚的知覚範囲外の1つ以上の波長、例えば、赤外線および/または紫外線波長の光を放出するように構成されてもよい。加えて、ディスプレイ250の導波管の内部結合、外部結合、および他の光再指向構造は、例えば、結像および/またはユーザ刺激用途のために、本光をディスプレイからユーザの眼210に向かって指向および放出するように構成されてもよい。
【0064】
ここで
図9Aを参照すると、いくつかの実施形態では、導波管に衝突する光は、その光を導波管の中に内部結合するために再指向される必要があり得る。内部結合光学要素が、光をその対応する導波管の中に再指向および内部結合するために使用されてもよい。
図9Aは、それぞれ、内部結合光学要素を含む、1つ以上のまたはセットのスタックされた導波管660の実施例の断面側面図を図示する。導波管はそれぞれ、1つ以上の異なる波長または1つ以上の異なる波長範囲の光を出力するように構成されてもよい。スタックされた導波管のセット660は、スタック260(
図6)に対応してもよく、スタックされた導波管のセット660の図示される導波管は、1つ以上の導波管270、280、290、300、310の一部に対応してもよいが、画像投入デバイス360、370、380、390、400のうちの1つ以上のものからの光が、光が内部結合のために再指向されることを要求する位置から導波管の中に投入されることを理解されたい。
【0065】
スタックされた導波管のセット660は、導波管670、680、および690を含む。各導波管は、関連付けられた内部結合光学要素(導波管上の光入力面積とも称され得る)を含み、内部結合光学要素700は、導波管670の主要表面(例えば、上側主要表面)上に配置され、内部結合光学要素710は、導波管680の主要表面(例えば、上側主要表面)上に配置され、内部結合光学要素720は、導波管690の主要表面(例えば、上側主要表面)上に配置される。いくつかの実施形態では、内部結合光学要素700、710、720のうちの1つ以上のものは、個別の導波管670、680、690の底部主要表面上に配置されてもよい(特に、1つ以上の内部結合光学要素は、反射性光学要素である)。図示されるように、内部結合光学要素700、710、720は、その個別の導波管670、680、690の上側主要表面(または次の下側導波管の上部)上に配置されてもよく、特に、それらの内部結合光学要素は、透過性偏向光学要素である。いくつかの実施形態では、内部結合光学要素700、710、720は、個別の導波管670、680、690の本体内に配置されてもよい。いくつかの実施形態では、本明細書に議論されるように、内部結合光学要素700、710、720は、他の光の波長を透過しながら、1つ以上の光の波長を選択的に再指向するような波長選択的である。その個別の導波管670、680、690の片側または角に図示されるが、内部結合光学要素700、710、720は、いくつかの実施形態では、その個別の導波管670、680、690の他の面積内に配置されてもよいことを理解されたい。
【0066】
内部結合光学要素700、710、720は、相互から側方にオフセットされてもよい。いくつかの実施形態では、各内部結合光学要素は、光が別の内部結合光学要素を通して通過することなしに、その光を受光するようにオフセットされてもよい。例えば、各内部結合光学要素700、710、720は、光を異なる画像投入デバイス(例えば、
図6に示されるような画像投入デバイス360、370、380、390、および400)から受光するように構成されてもよく、光を内部結合光学要素700、710、720の他のものから実質的に受光しないように、他の内部結合光学要素700、710、720から分離されてもよい(例えば、側方に離間される)。
【0067】
各導波管はまた、関連付けられた光分散要素を含み、光分散要素730は、導波管670の主要表面(例えば、上部主要表面)上に配置され、光分散要素740は、導波管680の主要表面(例えば、上部主要表面)上に配置され、光分散要素750は、導波管690の主要表面(例えば、上部主要表面)上に配置される。いくつかの他の実施形態では、光分散要素730、740、750は、それぞれ、関連付けられた導波管670、680、690の底部主要表面上に配置されてもよい。いくつかの他の実施形態では、光分散要素730、740、750は、それぞれ、関連付けられた導波管670、680、690の上部および底部両方の主要表面上に配置されてもよい、または光分散要素730、740、750は、それぞれ、異なる関連付けられた導波管670、680、690内の上部主要表面および底部主要表面の異なるもの上に配置されてもよい。
【0068】
導波管670、680、690は、材料のガス、液体、および/または固体層によって離間および分離されてもよい。例えば、図示されるように、層760aは、導波管670および680を分離してもよく、層760bは、導波管680および690を分離してもよい。いくつかの実施形態では、層760aおよび760bは、低屈折率材料(すなわち、導波管670、680、690の直近のものを形成する材料より低い屈折率を有する材料)から形成される。好ましくは、層760a、760bを形成する材料の屈折率は、導波管670、680、690を形成する材料の屈折率と比較して0.05以上または0.10以下である。有利には、より低い屈折率層760a、760bは、導波管670、680、690を通して光のTIR(例えば、各導波管の上部主要表面および底部主要表面の間のTIR)を促進する、クラッディング層として機能してもよい。いくつかの実施形態では、層760a、760bは、空気から形成される。図示されないが、スタックされた導波管のセット660の上部および底部は、直近クラッディング層を含んでもよい。
【0069】
好ましくは、製造および他の考慮点を容易にするために、導波管670、680、690を形成する材料は、類似または同一であって、層760a、760bを形成する材料は、類似または同一である。いくつかの実施形態では、導波管670、680、690を形成する材料は、1つ以上の導波管間で異なってもよい、および/または層760a、760bを形成する材料は、依然として、前述の種々の屈折率関係を保持しながら、異なってもよい。
【0070】
図9Aを継続して参照すると、光線770、780、790が、スタックされた導波管のセット660に入射する。光線770、780、790は、1つ以上の画像投入デバイス360、370、380、390、400によって導波管670、680、690の中に投入されてもよい。
【0071】
いくつかの実施形態では、光線770、780、790は、異なる性質、例えば、異なる色に対応し得る、異なる波長または異なる波長範囲を有する。光線770、780、790はまた、内部結合光学要素700、710、720の側方場所に対応する異なる場所に側方に変位されてもよい。内部結合光学要素700、710、720はそれぞれ、光がTIRによって導波管670、680、690のうちの個別の1つを通して伝搬するように、入射光を偏向する。
【0072】
例えば、内部結合光学要素700は、第1の波長または波長範囲を有する、光線770を偏向させるように構成されてもよい。同様に、内部結合光学要素710は、第2の波長または波長範囲を有する、光線780を偏向させるように構成されてもよい。同様に、内部結合光学要素720は、第3の波長または波長範囲を有する、光線790を偏向させるように構成されてもよい。
【0073】
偏向された光線770、780、790は、対応する導波管670、680、690を通して伝搬するように偏向される。すなわち、各導波管の内部結合光学要素700、710、720は、光をその対応する導波管670、680、690の中に偏向させ、光を対応する導波管670、680、690の中に内部結合する。光線770、780、790は、光をTIRによって個別の導波管670、680、690を通して伝搬させる角度で偏向され、したがって、その中に誘導される。例えば、光線770、780、790の偏向は、ホログラフィック、回折、および/または反射方向転換特徴、反射体、またはミラー等の1つ以上の反射、回折、および/またはホログラフィック光学要素によって生じてもよい。偏向は、ある場合には、例えば、導波管内で誘導されるように、光を方向転換または再指向するように構成される、1つ以上の格子および/またはホログラフィックおよび/または回折光学要素内の回折特徴等のマイクロ構造によって生じてもよい。光線770、780、790は、導波管の対応する光分散要素730、740、750に衝突するまで、その中で誘導されているTIRによって個別の導波管670、680、690を通して伝搬する。
【0074】
ここで
図9Bを参照すると、
図9Aのスタックされた導波管のセットの実施例の斜視図が、図示される。前述のように、内部結合された光線770、780、790は、それぞれ、内部結合光学要素700、710、720によって偏向され、次いで、それぞれ、導波管670、680、690内でTIRによって伝搬し、誘導される。誘導された光線770、780、790は、次いで、それぞれ、光分散要素730、740、750に衝突する。光分散要素730、740、750は、ホログラフィック、回折、および/または反射方向転換特徴、反射体、またはミラー等の1つ以上の反射、回折、および/またはホログラフィック光学要素を含んでもよい。偏向は、ある場合には、例えば、導波管を用いて誘導され得るように、光を方向転換または再指向するように構成される、1つ以上の格子および/またはホログラフィックおよび/または回折光学要素内の回折特徴等のマイクロ構造によって生じてもよい。光線770、780、790は、偏向されるが、しかしながら、光線770、780、790が、依然として、導波管内で誘導される様式において、導波管の対応する光分散要素730、740、750上に衝突するまで、その中で誘導されているTIRによって、個別の導波管670、680、690を通して伝搬する。光分散要素730、740、750は、それぞれ、外部結合光学要素800、810、820に向かって伝搬するように、光線770、780、790を偏向させる。
【0075】
外部結合光学要素800、810、820は、個別の導波管670、680、690内を誘導される光線770、780、790を個別の導波管670、680、690から外に視認者の眼に向かって指向するように構成される。外部結合光学要素800、810、820は、したがって、光線770、780、790が、個別の導波管670、680、690内で誘導されず、代わりに、そこから出射するように、TIRの影響を低減させるために、導波管670、680、690内を誘導される光線770、780、790を導波管670、680、690の表面に対してより法線角度で偏向および再指向するように構成されてもよい。さらに、これらの外部結合光学要素800、810、820は、光線770、780、790を視認者の眼に向かって偏向および再指向するように構成されてもよい。故に、外部結合光学要素800、810、820は、ホログラフィック、回折、および/または反射方向転換特徴、反射体、またはミラー等の1つ以上の反射、回折、および/またはホログラフィック光学要素を含んでもよい。偏向は、ある場合には、例えば、個別の導波管670、680、690を用いて誘導されるように、光線770、780、790を方向転換または再指向するように構成される、1つ以上の格子および/またはホログラフィックおよび/または回折光学要素内の回折特徴等のマイクロ構造によって生じてもよい。光学要素800、810、820は、個別の導波管670、680、690から外にユーザの眼に向かって伝搬するように、光線770、780、790を反射、偏向、および/または回折するように構成されてもよい。
【0076】
いくつかの実施形態では、光分散要素730、740、750は、直交瞳エクスパンダ(OPE)である。OPEは、光を外部結合光学要素800、810、820に偏向または分散させることと、また、ビームまたは複数のビームを複製し、外部結合光学要素800、810、820に伝搬する、より多数のビームを形成することとの両方を行う。ビームが、OPEに沿って進行するにつれて、ビームの一部は、ビームから分裂され、ビームに直交する方向、すなわち、外部結合光学要素800、810、820の方向に進行してもよい。OPE内のビームの直交分裂は、ビームの経路に沿ってOPEを通して繰り返し生じ得る。例えば、OPEは、一連の実質的に均一ビームレットが単一ビームから生産されるように、ビーム経路に沿って増加する反射率を有する格子を含んでもよい。いくつかの実施形態では、外部結合光学要素800、810、820は、光を視認者の眼210(
図7)に指向させる、射出瞳(EP)または射出瞳エクスパンダ(EPE)である。OPEは、例えば、x方向に沿って、アイボックスの寸法を増加させるように構成されてもよく、EPEは、例えば、y方向に沿って、OPEの軸と交差する(例えば、直交する)軸においてアイボックスを増加させてもよい。
【0077】
故に、
図9Aおよび9Bを参照すると、いくつかの実施形態では、スタックされた導波管のセット660は、原色毎に、導波管670、680、690と、内部結合光学要素700、710、720と、光分散要素(例えば、OPE)、740、750と、外部結合光学要素(例えば、EPE)800、810、820とを含む。導波管670、680、690は、各1つの間に空隙および/またはクラッディング層を伴ってスタックされてもよい。内部結合光学要素700、710、720は、(異なる波長の光を受光する異なる内部結合光学要素を用いて)入射光をその個別の導波管670、680、690の中に再指向または偏向させる。光は、次いで、個別の導波管670、680、690内にTIRをもたらすであろう角度で伝搬し、光は、その中で誘導される。示される実施例では、光線770(例えば、青色の光)は、前述の様式において、第1の内部結合光学要素700によって偏光され、次いで、その中で誘導されている導波管670内で伝搬し続け、外部結合光学要素(例えば、EPE)800に伝搬する1つ以上の光線に複製される、光分散要素(例えば、OPE)730と相互作用する。光線780(例えば、緑色)は、導波管670を通して通過し、光線780は、内部結合光学要素710上に衝突し、それによって偏向される。光線780は、次いで、TIRを介して、導波管680を辿ってバウンスし、外部結合光学要素(例えば、EP)810に伝搬する1つ以上の光線に複製される、その光分散要素(例えば、EPE)740に進むであろう。最後に、光線790(例えば、赤色の光)は、導波管670および680を通して通過し、導波管690の内部結合光学要素720に衝突する。光内部結合光学要素720は、光線が、TIRによって外部結合光学要素(例えば、EPE)820に伝搬する1つ以上の光線に複製される、光分散要素(例えば、OPE)750に伝搬するように、TIRによって、光線790を偏向させる。外部結合光学要素820は、次いで、最後に、さらに複製され、光線790を視認者に外部結合し、視認者はまた、他の導波管670、680からの外部結合された光も受光する。
【0078】
図9Cは、
図9Aおよび9Bのスタックされた導波管のセット660の実施例の上下平面図(または正面図)を図示する。図示されるように、導波管670、680、690は、各導波管の関連付けられた光分散要素730、740、750および関連付けられた外部結合光学要素800、810、820とともに、垂直に(例えば、xおよびy方向に沿って)整合されてもよい。しかしながら、本明細書に議論されるように、内部結合光学要素700、710、720は、垂直に整合されない。むしろ、内部結合光学要素700、710、720は、好ましくは、非重複する(例えば、本実施例における正面図の上下図に見られるように、x方向に沿って側方に離間される)。y方向等の他の方向における偏移もまた、採用されることができる。本非重複空間配列は、1対1ベースで異なる光エミッタおよび/またはディスプレイ等の異なるリソースから異なる導波管の中への光の投入を促進し、それによって、具体的光エミッタが具体的導波管に一意に結合されることを可能にする。いくつかの実施形態では、非重複の側方に空間的に分離される内部結合光学要素700、710、720を含む、配列は、偏移瞳システムと称され得、これらの配列内の内部結合光学要素は、サブ瞳に対応し得る。
【0079】
光を導波管から外に結合することに加え、外部結合光学要素800、810、820は、光が、遠距離または近距離、深度、または深度平面においてオブジェクトから生じたかのように、光をコリメートまたは発散させ得る。コリメートされた光は、例えば、ビューから遠いオブジェクトからの光と一致する。増加して発散する光は、より近い、例えば、視認者の正面から5~10フィートまたは1~3フィートのオブジェクトからの光と一致する。眼の自然水晶体は、眼により近いオブジェクトを視認するとき、遠近調節し、脳は、本遠近調節を感知し得、これはまた、次いで、深度キューとしての役割を果たすであろう。同様に、光をある量だけ発散させることによって、眼は、遠近調節し、オブジェクトがより近い距離にあると知覚するであろう。故に、外部結合光学要素800、810、820は、光が、遠距離または近距離、深度、または深度平面から発出されたかのように、光をコリメートまたは発散させるように構成されることができる。そのために、外部結合光学要素800、810、820は、屈折力を含んでもよい。例えば、外部結合光学要素800、810、820は、光を導波管から外に偏向または再指向することに加え、これらのホログラフィック、回折、および/または反射光学要素がさらに、光をコリメートまたは発散させる屈折力を含み得る、ホログラフィック、回折、および/または反射光学要素を含んでもよい。外部結合光学要素800、810、820は、代替として、または加えて、光をコリメートまたは発散させる屈折力を含む、屈折表面を含んでもよい。外部結合光学要素800、810、820は、したがって、例えば、回折またはホログラフィック方向転換特徴に加え、屈折力を提供する屈折表面を含んでもよい。そのような屈折表面はまた、外部結合光学要素800、810、820に加え、例えば、外部結合光学要素800、810、820の上部に含まれてもよい。ある実施形態では、例えば、回折光学要素、ホログラフィック光学要素、屈折レンズ表面、または他の構造等の光学要素は、外部結合光学要素800、810、820に対して配置され、光のコリメーションまたは発散を生じさせる屈折力を提供してもよい。屈折表面を伴う層等の屈折力を伴う層または回折および/またはホログラフィック特徴を伴う層は、例えば、外部結合光学要素800、810、820に対して配置され、加えて、屈折力を提供し得る。屈折力を有する外部結合光学要素800、810、820と、屈折表面を伴う層等の屈折力を伴う付加的層または回折および/またはホログラフィック特徴を伴う層の両方からの寄与の組み合わせもまた、可能性として考えられる。
【0080】
図9Dに図示されるように、特殊照明システム900は、複数の入力光線770、780、790を1つ以上の内部結合光学要素700、710、および720に提供してもよい。本照明システム900は、空間光変調器902を照明し、光線770、780、790を内部結合光学要素700、710、および720の場所に対応する別個の空間場所に指向する。
【0081】
照明システム900は、導波管ベースであってもよく、光を放出するように構成される、1つ以上の光エミッタ904と、1つ以上の光エミッタ904に対して配置され、1つ以上の光エミッタ904からの光を受光する、導波管906を備える、1つ以上の光方向転換光学要素とを含む。受光された光は、光方向転換光学要素内で伝搬され、例えば、その側面からのTIRによって、1つ以上の導波管906内で誘導される。
【0082】
1つ以上の導波管906はまた、光を、導波管906を備える、1つ以上の光方向転換光学要素から外に射出するように構成される。例えば、導波管906を備える、1つ以上の光方向転換光学要素は、導波管906から外への光を空間光変調器902上に指向するように構成される、回折光学要素、回折格子、ホログラフィック光学要素、および/またはメタ表面を含んでもよい。空間光変調器902は、1つ以上の導波管906に対して配置され(例えば、1つ以上の導波管906の正面または背後)、1つ以上の導波管906から射出された光を受光し、受光された光を変調させる。
図9Dに示される実施例では、導波管906は、光を、導波管906の後方にある、空間光変調器902に向かって外に後方に方向転換させるように構成される、正面光設計である。導波管906から外に射出された本光は、空間光変調器902が反射性空間光変調器である場合、空間光変調器902上に入射し、そこから反射する。空間光変調器902は、例えば、反射液晶変調器(例えば、シリコン上液晶(LCOS))、デジタル光処理(DLP)マイクロミラーシステム、または他のタイプの空間光変調器を含んでもよい。空間光変調器902は、独立して変調され、例えば、強度パターンを作成し得る、1つ以上のピクセルを含む。あるタイプの空間光変調器902に関して、空間光変調器902は、光の偏光状態を変調させ、いくつかの実施形態では、偏光器または他の偏光選択的光学要素は、偏光変調を強度変調に変換する。空間光変調器902は、画像を形成するように、空間光変調器902を駆動し、空間光変調器902を制御する、電子機器と電気通信してもよい。電子機器はまた、所与の色の光が、空間光変調器906を照明する(導波管906を介して)と、空間光変調器902が、駆動され、その色のための適切なパターンを提供するように、1つ以上の光エミッタ904を制御し、1つ以上の光エミッタ904によって提供される放出のタイミングを協調させてもよい。結像光学908は、空間光変調器902に対して配置され、そこからの光を受光し、空間光変調器902によって形成される強度パターン(または画像)を結像してもよい。単一の正の屈折力両凸レンズが、結像光学908を表すために示されるが、結像光学908は、1つを上回るレンズを含んでもよく、両凸レンズに限定される必要はなく、他の形状、屈折力、構成、および光学特性を有してもよい。
【0083】
図9Dは、空間光変調器902と、1つ以上の光エミッタ904と、1つ以上の導波管906と、照明を提供するように構成される、結像光学908とを含む、導波管ベースの画像源910を示す。空間光変調器902は、照明システム900からの光を変調させ、強度画像をもたらすように構成され、結像光学908は、空間光変調器902によって形成される画像を投影するように構成される。本導波管ベースの画像源910は、1つ以上の導波管906を利用して、空間光変調器902を照明するため、導波管ベースの画像源910は、より薄く、したがって、より軽量かつよりコンパクトである。加えて、導波管906が薄い結果、結像光学908は、空間光変調器902のより近くに配置されることができる。これは、結像光学908もまたより小さくなることを可能にする。
【0084】
1つ以上の光エミッタ904は、赤色、緑色、および青色等の異なる色に対応するスペクトル成分を含む、スペクトル分布を有する、光を放出するように構成されることができる。1つ以上の光エミッタ904は、赤色、緑色、および青色のLEDのような色のLED等の発光ダイオード(LED)を含んでもよい。導波管ベースの画像源910は、異なる色の光(例えば、赤色、緑色、および青色)が、空間光変調器902によって変調された後、個別の経路(例えば、光線770、780、および790に対応する経路)に沿って指向され、1つ以上の導波管906および空間光変調器902からのある距離における、個別の空間場所(例えば、内部結合光学要素700、710、および720に対応する場所)上に入射するように構成されることができる。
【0085】
結像光学908は、例えば、空間光変調器902によって変調された光をコリメートまたは結像する、レンズまたはレンズシステム(例えば、凸面レンズ)であってもよい。
【0086】
図9Dに図示されるように、スタックされた導波管のセット660は、光線770、780、790を導波管ベースの画像源910から受光するように配置される。特に、
図9Dは、第1の導波管670および内部結合光学要素700(例えば、画像源910からの赤色の光を受光するため)と、第2の導波管680および内部結合光学要素710(例えば、画像源910からの緑色の光を受光するため)と、第3の導波管690および内部結合光学要素720(例えば、画像源910からの青色の光を受光するため)とを示す。これらの内部結合光学要素700、710、720はそれぞれ、光線770、710、720(例えば、赤色、緑色、および青色の光線)のための個別の経路に対して、好適な空間場所に配置され、個別の赤色、緑色、および青色画像を形成する、空間光変調器902によって変調された光を受光する。
【0087】
赤色、緑色、および青色の光が、実施例として使用されるが、他の色の光も、採用されてもよい。故に、1つ以上の光エミッタ904は、異なる色の光を放出してもよく、1つ以上の導波管906は、異なる色の光を伝搬してもよい。加えて、3つの色、赤色、緑色、および青色が、実施例として上記に説明されるが、より多いまたはより少ない色が、使用されてもよい。例えば、2つのみの色が、使用される場合、可能性として、より少ない光エミッタ904およびより少ない導波管906が、採用されてもよい。
【0088】
種々の設計では、これらのシステムおよびコンポーネントは、頭部搭載型ディスプレイのためのディスプレイデバイス内に配置されるように、比較的にコンパクトである。スタックされた導波管のセット660は、上記に説明されるような瞳エクスパンダを含んでもよい。加えて、導波管670、680、690は、視認者に、例えば、頭部搭載型ディスプレイ内の導波管670、680、690を通して見え得るように、光学的に透明であってもよい。
【0089】
導波管ベースの画像源910の種々の設計は、異なる色の光(例えば、赤色、緑色、および青色)を、個別の内部結合光学要素700、710、720が据え付けられる、別個の空間場所に送達するために使用されてもよい。例えば、単一導波管、例えば、導波管906は、白色の光を受光し、分散度を有し、異なる色の光(赤色、緑色、青色)を異なる方向に指向する、外部結合光学要素を含んでもよい。これは、異なる色の透過のための別個の導波管を提供する必要性を低減させ得る。いくつかの実施形態では、それぞれ、異なる色のLED(赤色、緑色、青色)に光学的に結合される、1つ以上の導波管は、個別の導波管内の光を異なる方向に指向する、外部結合光学要素を有してもよい。いくつかの実施形態では、単一導波管が、白色のLEDに結合され、光を対応する色のフィルタを伴う1つ以上のシャッタに外部結合し、異なる色の光を異なる時間に選択的に通過させる。シャッタおよびフィルタは、異なる側方位置にある色ビームを作成するように、異なる側方位置にある。代替として、単一導波管は、白色のLEDに結合され、光を、異なる色を分割し、異なる側方位置にある異なる色ビームを生産する、1つ以上のダイクロイックビームスプリッタに外部結合してもよい。他の設計もまた、可能性として考えられる。
【0090】
図10Aは、例えば、白色の光源(またはエミッタ)1002に対して配置され、白色の光を受光し、分散度を有する、外部結合光学要素1014を含む、単一導波管1010を含む、ディスプレイデバイス1000を図示する。外部結合光学要素1014は、分散度を有する、格子または回折光学要素を含んでもよい。分散度は、外部結合光学要素1014に、異なる波長光に対して異なるように作用させ得る。分散度は、外部結合光学要素1014に、異なる色の光を異なる角度で再指向させ得る。故に、分散度は、外部結合光学要素1014に、異なる色の光が空間場所上に入射するように、異なる色の光(赤色、緑色、青色)を、異なる方向に、異なる光学経路に沿って指向させ得る。
【0091】
本実施例では、導波管1010は、空間光変調器1018を正面から照明するように構成される。光源1002が、導波管1010の縁に対して配置され、光をその縁を通して導波管1010の中に結合する。結合レンズ1009が、光源1002と導波管1010の縁との間に含まれ、光源1002からの光を導波管1010の中に結合することを補助する。いくつかの実施形態では、結合レンズ1009は、除外されてもよく、光源1002は、導波管1010の縁のより近くに位置付けられ、光をその中に結合してもよい。
【0092】
本光源1002は、1つ以上の異なる色に対応するスペクトル成分を含む、スペクトル分布を有してもよい。スペクトル分布は、例えば、赤色、緑色、または青色の光等の有色の光に別個に対応する、複数のスペクトルピークを含んでもよい、または別様に、異なる色に個々に対応する、複数のスペクトル成分を含んでもよい。故に、光源1002から放出される光は、白色の光の場合等、多色性であり、かつ、可能性として広帯域であり得る。外部結合要素1014内の分散度は、これらの異なる色スペクトル成分を分離するために使用されてもよい。
図10Aに図示される実施形態では、白色の光源1002は、白色のLEDであってもよい。
【0093】
導波管1010は、可視光であり得る、光源1002によって出力される光の波長に対して光学的に透過性の材料である、材料のシートまたはフィルムを含んでもよい。種々の設計では、導波管1010は、可視光に対して透明である。故に、導波管1010は、それを通して視認者が世界を視認する、拡張現実頭部搭載型ディスプレイの接眼レンズ内で採用されてもよい。光源1002によって導波管1010の縁の中に投入される光は、TIRによって、導波管内で誘導されてもよい。
【0094】
外部結合光学要素1014は、導波管1010内または上、例えば、導波管1010の1つ以上の主要表面上に含まれてもよい。
図10Aに図示されるように、外部結合光学要素1014は、空間光変調器1018からより遠い導波管1010の側上に配置されるが、外部結合光学要素1014は、空間光変調器1018に最も近い側上に位置してもよい。外部結合光学要素1014は、回折またはホログラフィック特徴を含む、1つ以上の回折および/またはホログラフィック光学要素を含んでもよい。外部結合光学要素1014は、1つ以上の格子またはホログラムを含んでもよい。故に、外部結合光学要素1014は、導波管1010内で誘導される光を導波管1010から外に方向転換させるように構成される、回折特徴またはマイクロ構造等の方向転換特徴を含んでもよい。方向転換特徴、マイクロ構造、および/または外部結合光学要素1014は、反射性であってもよい(但し、方向転換特徴および/または外部結合光学要素1014は、ある場合には、透過性で動作し、外部結合光学要素1014を通して透過される光を方向転換してもよい)。いくつかの実施形態では、外部結合光学要素1014は、光源1002によって導波管1010の中に入力される波長光のサイズより小さいまたはまたそれに類似する、表面特徴を含んでもよい。上記に議論されるように、外部結合光学要素1014は、異なる色の光に異なるように作用する、分散度を有してもよい。ある場合には、外部結合光学要素1014は、波長選択的光学要素であって、有利には、特定の波長または色の光の優先的外部結合を可能にし、したがって、波長または色に基づいて、外部結合される光の位置および/または角度の制御を可能にし得る。1つ以上のそのような外部結合光学要素1014は、導波管1010内に含まれてもよい。
【0095】
偏向は、導波管1010内で誘導される光を方向転換または再指向するように構成される、外部結合光学要素1014内の方向転換特徴によって生じ得る。光1006の光線によって図示されるように、外部結合光学要素1014は、導波管1010から外に空間光変調器1018に向かって伝搬するように、導波管1010内で誘導される光源1002からの光線1006を反射、偏向、および/または回折するように構成されてもよい。
【0096】
空間光変調器1018は、シリコン上液晶(LCOS)、デジタル光処理(DLP)デバイス(例えば、マイクロミラーアレイ)、または電子ペーパーデバイス等の種々のタイプの空間光変調器を含んでもよい。他のタイプの空間光変調器もまた、使用されてもよい。必要に応じて、空間光変調器1018は、反射モードまたは透過モードで動作されてもよく、必要に応じて、導波管1010から外に射出される光の経路に位置してもよい。あるディスプレイデバイスでは、LCOSを含む、空間光変調器1018は、反射モードで動作される。LCOSおよびある液晶ベースの空間変調器等の種々の他の空間光変調器は、光の偏光状態を変調させる。例えば、空間光変調器1018内のピクセルは、ピクセルの状態に応じて、線形偏光状態等の偏光状態を回転させる場合とそうではない場合がある。故に、1つの状態(例えば、s状態)を有する、線形偏光は、ピクセルの状態(例えば、オンまたはオフまたはその逆)に応じて、選択的に回転されてもよい(例えば、p状態またはその逆に)。分析器または偏光器1022が、偏光状態のうちの1つの光をフィルタリング除去し、偏光変調を画像を形成する強度変調に変換するために使用されてもよい。
【0097】
故に、ディスプレイデバイス1000は、偏光器1008を含み、導波管1010の中に投入される光源1002からの光を偏光させてもよい(例えば、s状態に)。ある場合には、偏光器1008は、例えば、光源1002が偏光を出力する場合、除外されてもよい。
【0098】
上記に議論されるように、分析器1022は、空間光変調器1018と画像源(例えば、光1006の光線)の出力との間の光学経路内に含まれてもよい。分析器1022は、特に、空間光変調器1018が、その上に入射する光の偏光状態を変調させる場合、有用であり得る。分析器1022は、別の偏光状態と比較して、1つの偏光状態の光を減衰させるように構成されてもよい。故に、分析器1022は、空間光変調器1018によって生産された偏光変調に依存し得る、光の偏光状態に基づいて、光の強度を変動させてもよい。
図10Aでは、分析器1022は、外部結合される光1016a、1016b、1016cが、反射モードで動作する
図10Aに示される構成における、空間光変調器1018上に分析器1022を通して通過し、空間光変調器1018から反射後、再び、分析器1022を通して通過するように、空間光変調器1018と導波管1010および外部結合光学要素1014との間に配置されるように示される。外部結合される強度変調された光1016a、1016b1016cは、次いで、
図9Bを参照して本明細書に議論されるように、内部結合要素700、710、720等の接眼レンズ(図示せず)のために、内部結合要素に向かって伝搬してもよい。
【0099】
図10Aは、実施例として、偏光器1008を通して通過し、s偏光(または水平偏光)等の線形偏光状態等の定義された偏光状態を提供する、光源1002によって出力された光1006の光線を示す。光1006の光線は、次いで、内部結合光学要素1009を介して、導波管1010の中に内部結合されてもよい。光1006の光線は、次いで、TIRによって、導波管1010の主要表面(例えば、上部および底部または正面および背面表面)から導波管1010内を伝搬し、1回以上の回数、外部結合光学要素1014上に入射する。外部結合光学要素1014は、光が、導波管1010内で誘導されないが、代わりに、そこから出射するように、TIRの効果を低減させるように、導波管1010の主要表面に対してより垂直な角度で、導波管1010内で誘導される光1006の光線を偏向するおよび再指向するように構成されてもよい。さらに、外部結合光学要素1014は、本光を空間光変調器1018に向かって偏向するおよび再指向するように構成されてもよい。
【0100】
光1006の光線は、導波管1010内で誘導される、光源1002からの光1006の光線の代表的実施例である。例えば、そのような光線の円錐が、光源1002によって放出され、導波管1010内で伝搬されてもよい。同様に、外部結合される光1016a、1016b、1016cの光線もそれぞれ、外部結合光学要素1014の長さにわたって、導波管1010および外部結合光学要素1014上の種々の場所において、その上に入射する光線の角度に応じて種々の角度で、外部結合され得る、多数の光線のうちの1つの光線の代表的実施例である。外部結合光学要素1014は、光1006の光線を導波管1010の長さにわたって複数の場所において外部結合し、したがって、外部結合される光1016a、1016b、1016cの光線等の外部結合される光の多くの光線を作成するように構成されてもよい。
【0101】
導波管1010から外部結合される光線の角度は、部分的に、外部結合光学要素1014の設計に依存し得る。
図10Aでは、光1016の外部結合される光線と導波管1010の面法線との間の角度は、角度βとして指定される。種々の場合、本角度βはまた、光の光線が、空間光変調器1018から反射し、再び、導波管1010を通して、画像源910から離れるように伝搬する、角度に対応する。ディスプレイデバイス1000と、例えば、外部結合光学要素1014との設計に基づいて、本角度βは、光1016の光線の波長(および回折格子のための回折格子間隔等の外部結合光学要素1014の特性)によって影響され得る。例えば、回折特徴を含む、外部結合光学要素に関して、外部結合光学要素1014は、分散度を呈し得、角度βは、波長に伴って変動し得る。
図10Aでは、本効果は、光線1016a、1016b、1016cによって示され、これは、赤色、緑色、および青色または青色、緑色、および赤色等の異なる色に対応するように意図され、異なる角度βで回折される。
【0102】
故に、異なる波長のための角度βを適切に制御することによって、異なる波長の外部結合される光は、空間的に分離され得る。複数の波長または色(例えば、赤色、緑色、および青色)の光は、したがって、導波管1010の中に導入され、異なる経路に沿って(例えば、異なる角度で)、導波管1010および空間光変調器1018からのある距離における、異なる空間場所に指向され得る。内部結合光学要素700、710、720は、これらの個別の空間場所に位置してもよく、異なる波長または色(例えば、赤色、緑色、および青色の光)は、異なる色が、異なる内部結合光学要素および接眼レンズにおけるスタックされた導波管のセット660内の異なる導波管670、680、690の中に結合されるように位置する。
【0103】
上記に議論されるように、外部結合される光1016は、単に、光源1002から放出される光の単一光線に対応するが、しかしながら、類似光線の円錐が、エミッタによって出力されてもよい。同様に、色毎の光線の円錐は、外部結合光学要素1014を使用して、導波管1010から外部結合され、空間光変調器1018に指向されてもよい。これらの光線は、空間光変調器1018によって変調されてもよく、結像源910から離れるように伝搬してもよい。
【0104】
図10Bは、結像源910から離れるように伝搬する、異なる色の光の1つ以上の円錐を示す。種々の実装では、光源1002によって放出される光は、発散し、発散角度を有するであろう。本光は、導波管1010内を伝搬し、外部結合光学要素1014によって方向転換され、空間光変調器1018と相互作用し、そこから、導波管1010および外部結合光学要素1014を通して伝搬し、依然として、発散するであろう。その結果、
図10Bは、発散する光、例えば、光線の円錐1016a、1016b、および1016cを示す。光源1002は、異なる色と関連付けられた複数のスペクトル成分(例えば、スペクトルピーク)を含む、光を出力してもよい。光源1002は、例えば、赤色、緑色および青色スペクトルピークを含む、白色のLED(WLED)等の広帯域光源であってもよい。照明システム900、例えば、外部結合光学要素1014内の分散度の結果、光源1002によって放出される異なる色の光は、導波管1010から離れるように異なる方向に指向される、光の外部結合される円錐1016a、1016bおよび1016cとして、システムから出射する。例えば、外部結合される光1016a(例えば、赤色)は、導波管1010から離れるように、第1の角度で指向される(例えば、法線に対して正の角度を中心として集中させられる)第1の経路に沿って伝搬し得る一方、外部結合される光1016b(例えば、緑色)は、導波管1010から離れるように、第2の角度で指向される(例えば、導波管に対して法線の角度を中心として集中させられる)第2の経路に沿って伝搬し得、外部結合される光1016cは、導波管1010から離れるように、第3の角度で指向される(例えば、法線に対して負の角度を中心として集中させられる)第3の経路に沿って伝搬し得る。例えば、適切に設計される外部結合要素1014を使用することによって導入される、照明システム900の本分散効果は、外部結合される光1016a、1016b、1016cの種々の色または波長の空間分離を促進し得る。色および出力角度の本特定の配列は、実施例にすぎず、色、順序、および相対的または特定の角度は、異なり得る。
【0105】
別のアプローチは、それぞれ、異なる色エミッタ(例えば、赤色のLED、緑色のLED、および青色のLED)に光学的に結合され、個別の導波管内で誘導される光を異なる方向に指向する、外部結合光学要素1014を含む、1つ以上の導波管1010を採用する。
図11A-11Cは、例えば、個別の第1、第2、および第3の内部結合要素1109a、1109b、1109cを介して、個別の第1、第2、および第3の導波管1110a、1110b、1110cに光学的に結合される、第1、第2、および第3の光源1102a、1102b、1102cを図示する。偏光器1108a、1108b、1108cが、個別の光源1102a、1102b、1102cと個別の導波管1110a、1110b、1110cとの間のビーム経路内に配置され、s-偏光状態等の特定の偏光を提供してもよく、分析器1122が、第1、第2、および第3の導波管1110a、1110b、1110cと空間光変調器1118との間に配置されてもよい。複数の光源1102a、1102b、1102cは、異なるスペクトルプロファイルを有し、赤色、緑色、および青色の光等の異なる色の光を出力してもよい。例えば、第1の光エミッタ1102aは、青色の光を第1の導波管1110aの中に結合してもよく、第2の光エミッタ1102bは、緑色の光を第2の導波管1110bの中に結合してもよく、第3の光エミッタ1102cは、赤色の光を第3の導波管1110cの中に結合してもよい。第1、第2、および第3の導波管1110a、1110b、1110cは、光を、個別の第1、第2、および第3の光学経路に沿って、個別の第1、第2、および第3の空間場所に指向するように構成される、個別の第1、第2、および第3の外部結合要素1114a、1114b、1114cを含む。第1、第2、および第3の外部結合光学要素1114a、114b、114cは、光を異なる方向に指向するように、異なる角度で異なる導波管1110a、1110b、1110c内を伝搬する光に作用する、異なる回折格子、ホログラム、回折光学要素、マイクロ構造、または他の構造または特徴を含んでもよい。外部結合光学要素1114a、1114b、1114cは、光線が、導波管1110a、1110b、1110cから外に空間光変調器1118に向かって伝搬するように、光線の偏光状態に基づいて、個別の導波管1110a、1110b、1110c内で誘導される個別の光源1102a、1102b、1102cからの光線を反射、偏向、および/または回折するように構成されてもよい。外部結合光学要素1114a、1114b、および1114cはさらに、画像源910から外への光線の偏光状態に基づいて、空間光変調器1118からの光線を通過または別様に透過させるように構成されてもよい。
図11Aは、第1の方向/光学経路に沿って指向される、第1の導波管1110aからの第1の色1106a(例えば、青色)に対応する外部結合される光1116aを示す。
図11Bは、第2の方向/光学経路に沿って指向される、第2の導波管1110bからの第2の色1106b(例えば、緑色)に対応する外部結合される光1116bを示し、
図11Cは、第3の方向/光学経路に沿って指向される、第3の導波管1110cからの第3の色1106c(例えば、赤色)に対応する外部結合される光1116cを示す。本構成は、複数の導波管1110a、1110b、および1110cが、スタックされ、外部結合される光の異なる波長を空間的に分離することを可能にする。外部結合される光1116a、1116b、および1116cの円錐の個別の角度は、負、ゼロ、または正であってもよい。しかしながら、角度、順序、および色は、異なり得る。
【0106】
図11Dは、
図11A-11Cに示されるディスプレイデバイスに類似するが、しかしながら、色のうちの2つが、単一導波管の中に組み合わせられる、別の構成を示す。
図11Dでは、例えば、第1、第2、および第3の光源1102a、1102b、1102cは、第1および第2の導波管1110a、1110bの中に光学的に結合されるように示される。特に、第1の色の光を出力する第1の光源1102aは、第1の導波管1110aの中に結合され、それぞれ、第2および第3の色の光を出力する、第2および第3の光源1102bおよび1102cは、第2の導波管1110bに結合される。第1および第2の導波管1110a、1110bは、それぞれ、光を、個別の第1および第2の光学経路に沿って、個別の第1および第2の空間場所に指向するように構成される、第1および第2の外部結合要素1114a、1114bを含む。第1および第2の外部結合要素1114a、1114bは、光を異なる方向に指向するように、異なる角度で異なる導波管内を伝搬する光に作用する、異なる回折格子、ホログラム、回折光学要素、マイクロ構造、または他の構造を含んでもよい。外部結合光学要素1114a、1114bは、光線が、導波管1110a、1110bから外に空間光変調器1118に向かって伝搬するように、光線の偏光状態に基づいて、個別の導波管1110a、1110b内で誘導される光源1102a、1102b、1102cからの光線を反射、偏向、および/または回折するように構成されてもよい。外部結合光学要素1114a、1114bはさらに、画像源910から外への光線の偏光状態に基づいて、空間光変調器1118からの光線を通過または別様に透過させるように構成されてもよい。
【0107】
図11Dは、例えば、第2の導波管から射出された第2および第3の光源1102b、1102cからの光の組み合わせ(例えば、赤色および青色エミッタからの赤色および青色の光の組み合わせ)から生じる異なるスペクトル分布を有する、光に対応する、外部結合される光1116bが、第2の方向/光学経路に沿って指向される様子を示す。第1の導波管1110aからの第1の色(例えば、緑色)に対応する外部結合される光1116aは、第1の空間場所に位置する内部結合光学要素710に指向されることができる。第2の導波管1110bから射出された第2および第3の光源1102b、1102cからの異なる色の光の組み合わせ(例えば、赤色および青色の光源からの赤色および青色の光の組み合わせ)から生じる異なるスペクトル分布を有する光に対応する、外部結合される光1116bは、第1の場所および内部結合光学要素710に対して側方に変位された第2の空間場所に位置する個別の内部結合光学要素700および720に指向されることができる。第2および第3の光源1102b、1102cからの光の組み合わせ(例えば、赤色および青色の光源からの赤色および青色の光の組み合わせ)から生じる異なるスペクトル分布を有する光を受光する、内部結合光学要素720は、1つのスペクトルプロファイルを有する光を1つの方向に指向し、別のスペクトルプロファイルを有する光を異なる方向に指向する、ダイクロイック要素を含んでもよい。同様に、第2の光源1102bからの光は、第3の光源1102cからの光から分離されてもよい。ダイクロイック要素は、第2および第3の色の光(例えば、赤色および青色エミッタからの赤色および青色の光)を異なる導波管の中に指向してもよい。別の構成では、内部結合光学要素700および720は、波長に基づいて、光を1つの導波管(例えば、導波管670)または別の導波管(例えば、導波管670、690のうちの1つ)の中に結合する、信号ダイクロイック入射光学要素の中に組み合わせられてもよい。
【0108】
空間光変調器1018を照明する他のアプローチも、可能性として考えられる。
図12Aは、
図10Aおよび10Bにおけるディスプレイデバイスのような別のディスプレイデバイスを図示し、単一導波管1010が、1つ以上の色成分を放出する、光源(例えば、白色のLED)1002に結合される。光源1002からの光は、外部結合光学要素1014によって、導波管1010から空間光変調器1018上に外部結合される。変調後、光は、対応する色のフィルタを伴い、異なる色の光を異なる時間に選択的に通過させる、1つ以上のシャッタに指向される。
【0109】
図12Aは、1つ以上の電子的に制御されるシャッタ1216a、1216b、および1216cと、関連付けられた色のフィルタ1215a、1215b、1215cとを含む、シャッタユニット1212を示す。
図12Aは、例えば、対応する第1、第2、および第3の色のフィルタ1215a、1215b、1215cと整合され、個別の第1、第2、および第3のチャネルを形成する、第1、第2、および第3のシャッタ1216a、1216b、および1216cを示し、これは、それぞれ、第1、第2、および第3の色を選択的に透過させ得る。シャッタユニット1212は、例えば、色選択的液晶(LC)シャッタユニットを含んでもよい。フィルタは、吸収フィルタおよび/または干渉フィルタを含む、種々のフィルタを含んでもよい。3つのチャネルが、
図12Aに示されるが、ディスプレイデバイス1000は、より多いチャネルまたはより少ないチャネルを含んでもよい。
【0110】
シャッタ1216a、1216b、1216cおよびフィルタ1215a、1215b、1215cは、導波管から出力され、空間光変調器1018によって変調された光1016を受光するように、導波管1010および空間光変調器1018に対して配置される。
図12Aはまた、空間光変調器1018からの光をシャッタユニット1212上に投影する、結像光学1244を示す。
【0111】
シャッタユニット1212および空間光変調器1018は、制御電子機器1240と電気通信してもよく、これは、シャッタ1216a、1216b、および1216cの開閉を制御し得る。クロック回路を含み得る、制御電子機器1240は、シャッタ1216a、1216b、および1216cの開閉を空間光変調器1018の動作(例えば、リフレッシュ)と同期させ得る。
【0112】
シャッタユニット1212は、任意の所与の時間において、シャッタユニット1212上の1つを上回るチャネルが開放されないように、空間光変調器1018と同期して動作されてもよい。シャッタ1212上のチャネルが開放したままである時間は、滞留時間と称され得る。種々の実施例では、シャッタユニット1212は、三色刺激に対応する3つのチャネル(例えば、赤色カラーフィルタ1215a、緑色カラーフィルタ1215b、および青色カラーフィルタ1215c)を含んでもよい。例えば、空間光変調器1018は、画像の赤色成分に対応する出力パターンに設定されてもよい一方、シャッタユニット1212は、赤色チャネルを開放し、緑色チャネルおよび青色チャネルを閉鎖されたままにし、したがって、赤色の光のみが通過することを可能にしてもよい。空間光変調器1018は、対応して、画像の緑色成分に対応する出力パターンに設定されてもよい一方、同時に、シャッタユニット1212は、赤色チャネルおよび青色チャネルを閉鎖したままにし、緑色チャネルを開放し、したがって、緑色の光のみが通過することを可能にする。空間光変調器1018は、次いで、画像の青色成分に対応する出力パターンに設定されてもよい一方、シャッタ1212は、緑色チャネルおよび赤色チャネルを閉鎖したままにし、青色チャネルを開放し、したがって、青色の光のみが通過することを可能にする。
【0113】
図12Bは、シャッタユニットを含む、ディスプレイデバイスのシステムの例示的リフレッシュサイクルを図示する、ブロック図である。ブロック1250では、システムは、全てのシャッタチャネルを閉鎖することによって、リフレッシュを開始する。全てのシャッタチャネルが閉鎖された後、空間光変調器1018は、ブロック1254において、第1の色成分、例えば、赤色のための変調パターンを表示することに遷移する。空間光変調器1018が、切替プロセスを終了し、したがって、第1の色成分のための適切な変調パターンが確立されると、赤色シャッタチャネルは、ブロック1258において、開放され、したがって、赤色の光が接眼レンズに向かって通過することを可能にするが、しかしながら、緑色および青色の光を遮断する。ブロック1262では、システムは、赤色色成分に対応する滞留時間にわたって、本状態のままである。滞留時間が経過後、システムは、ブロック1266に進み、赤色シャッタチャネルを閉鎖する。赤色シャッタチャネルが閉鎖されると、空間光変調器1018は、ブロック1270において、第2の色成分、例えば、緑色に対応するパターンを出力することに遷移する。空間光変調器1018が、その切替プロセスを終了すると、緑色シャッタチャネルは、ブロック1274において、開放され、したがって、緑色の光が接眼レンズに向かって通過することを可能にするが、しかしながら、赤色および青色の光を遮断する。システムは、次いで、本状態のままであって、ブロック1278において、緑色色成分のための滞留時間が経過するまで、待機する。システムは、次いで、ブロック1282において、緑色シャッタチャネルの閉鎖に進む。緑色シャッタチャネルが閉鎖されると、空間光変調器1018は、ブロック1286において、第3の色成分、例えば、青色に対応する変調パターンに遷移する。空間光変調器1018が、その切替プロセスを終了後、青色シャッタチャネル1290は、ブロック1290において、開放される。青色の光は、通過されるが、赤色および緑色の光は、遮断される。ブロック1294では、システムは、次いで、青色滞留時間が経過するまで、本状態のままである。システムは、次いで、ブロック1250に戻り、次のリフレッシュサイクルを開始してもよい。他のシステム構成およびプロセスフローも、可能性として考えられる。
【0114】
図13は、
図12Aに示されるディスプレイデバイス1000のように、複数の色に対応する1つ以上のスペクトル成分を含む光を出力する、光源1002に結合され得る、単一導波管1010を含む、ディスプレイデバイス1000のための別の設計を描写する。導波管1010からの光を空間光変調器1018上に、次いで、シャッタユニット1212に外部結合する代わりに、1つ以上のダイクロイックビームスプリッタが異なる色を分割し、異なる側方位置における異なる色ビームを生産するために使用される。
【0115】
光源1002は、例えば、白色のLEDを含んでもよい。源1002は、導波管1010に対して配置され、光をその中に結合する。導波管1010は、光を抽出し、抽出された光を空間光変調器1018上に入射させる、外部結合要素1414を含む。
【0116】
ディスプレイデバイス1000はさらに、導波管1010および空間光変調器1018に対して配置され、光をそこから受光する、ビームスプリッタアセンブリを含む。ビームスプリッタアセンブリは、第1のダイクロイックビームスプリッタ1412と、第2のダイクロイックビームスプリッタ1408と、第3の反射表面1404とを含む。ビームスプリッタアセンブリ1402は、個々の色成分を分離するように構成される。例えば、入射ビームが、第1、第2、および第3の色、例えば、赤色、緑色、および青色を含む場合、第1のビームスプリッタ1412は、第1の色を透過させ、第2および第3の色を反射させる、ダイクロイック反射体を含んでもよい。第2のビームスプリッタ1408はまた、第2の色を反射させ、第3の色を透過させる、ダイクロイック反射体を含んでもよい。反射表面1404は、第1、第2、および第3の色ビーム770、780、790が、それぞれ、内部結合光学要素700、710、および720に向かって指向されるように、第3の残りの色を再指向してもよい。
【0117】
例えば、
図13に示されるように、白色のLEDを含み得る、広帯域光源1002からの光1006の光線は、導波管1010の中に結合され、外部結合要素1414によって空間光変調器1018に向かって外部結合されてもよい。外部結合要素1414は、外部結合されるビーム1402内の分散度を低減させるように構成されてもよい。空間光変調器1018から反射された後、変調されたビームは、具体的色の光(例えば、青色の光)を具体的光学経路に向かって選択的に通過または指向させる一方、具体的色ではない光(例えば、外部結合されるビーム1402内の残りの赤色および緑色成分)を別の光学経路に沿って反射または指向させる、第1のビームスプリッタ1412に向かって指向される。第1のビームスプリッタ1412を通して透過される、ビームは、光線770を形成してもよく、
図7を参照して議論されるように、接眼レンズ要素内の別の導波管670のための内部結合要素700等の内部結合光学要素に向かって指向されてもよい。反射されたビーム1410は、別の具体的波長または色の光(例えば、緑色の光)を具体的光学経路に沿って選択的に指向または反射させる一方、具体的波長ではない光(例えば、残りの青色成分)を透過または指向させる、第2のビームスプリッタ1408に向かって進行する。第2のビームスプリッタ1408から反射されたビームは、光線780を形成してもよく、
図7を参照して議論されるように、接眼レンズ要素内の別の導波管680のための内部結合要素710等の内部結合光学要素に向かって指向されてもよい。ビームスプリッタ1408を通して透過される、ビーム1406は、反射表面1404に向かって伝搬し、そこで、反射されてもよい。反射されたビーム790は、次いで、
図7を参照して議論されるように、内部結合光学要素720等の接眼レンズ要素内の別の導波管690のための内部結合光学要素720に向かって進行してもよい。他の構成も、可能性として考えられる。例えば、より多いまたはより少ないビームスプリッタが、ビームスプリッタアセンブリ内に含まれてもよく、配列は、異なってもよい。
【0118】
照明システムは、導波管ベースであって、1つ以上の導波管を備えるように上記に説明され得るが、他のタイプの光方向転換光学要素も、導波管の代わりに採用されてもよい。そのような光方向転換光学要素は、方向転換特徴を含み、光を、光方向転換光学要素から外に、例えば、空間光変調器上に射出してもよい。故に、本明細書に説明される実施例のいずれかおよび下記の請求項のいずれかでは、導波管の任意の言及は、導波管の代わりに、光方向転換光学要素と置換されてもよい。そのような光方向転換光学要素は、例えば、偏光ビーム分割プリズム等の偏光ビームスプリッタを備えてもよい。
(付加的変形例)
【0119】
上記の種々のデバイス、システム、構成、方法、およびアプローチは、様々な方法で実装されることができる。例えば、異なるタイプの外部結合光学要素が、採用されてもよい。種々の実装では、例えば、外部結合光学要素は、体積位相格子またはホログラムを含んでもよい。反射体積格子は、例えば、強指向性回折および高結合効率(例えば、最大約100%効率)を呈する。また、光を導波管の中に導入するための異なるスキームも、可能性として考えられる。
【0120】
図14Aおよび14Bは、空間光変調器を正面から照明するために、光源1002からの光を導波管1010に提供するための異なる構成を図示する。
図14Aでは、光源1002は、略「点」光源(例えば、LED)であって、少なくとも、本願のための合理的近似として、全ての光線は、実質的に、単一点から発散する。
図14Bでは、光源1002は、少なくとも1つの空間寸法に沿って、例えば、図示されるように、導波管1010の側面の長さに沿って実質的に延在する、「延在」光源である。光源1002は、ライン光源またはエリア光源またはその一部であってもよい。例えば、光源1002は、LED、例えば、マイクロLEDの線形配列を含んでもよく、これは、ビーム成形のためのマイクロレンズアレイを有してもよい。いくつかの実施形態では、光源1002は、導波管1010と周囲媒体との間の界面の断面全体にわたって延在してもよい、または光源1002は、光源1002からの光が投入される、導波管1010の側面の断面積の90%、80%、70%、60%、50%、40%、30%、または30%未満にわたって延在してもよい。
【0121】
いくつかの実施形態では、光結合光学1011が、光源1002と導波管1010との間に配置されてもよく、光源1002からの光を導波管1010の中に結合することを促進するために採用されてもよい。導波管1010は、例えば、0.1mm~5mmに及ぶ厚さを有する、薄い光学的透明スラブ(例えば、ガラスまたはプラスチック)を含んでもよい。
【0122】
図14C-14Eは、いくつかの実施形態による、光源1022からの光を導波管1010の中に結合するための配列を図示する。特に、
図14C-14Eは、光源1002からの光を導波管1010の中に結合するための側面配光器を有する、空間光変調器(SLM)1018を正面から照明するための導波管1010を描写する。
図14Cは、光導波路1099aを含む、別個の側面配光器が、光を導波管1010の中に指向する、配列を図示する。格子等の外部結合光学要素が、光導波路1099a内または上に配置され、光が光導波路1099aから出射するように、光導波路1099a内を伝搬する光を再指向するように構成される。随意の反射要素1099bが、光導波路1099aおよび格子に対して配置され、光を導波管1010に向かって反射させてもよい。故に、光源1002から放出される光は、光導波路1099aの中に投入され、SLM1018を正面から照明するために、光導波路から外に導波管1010の中に指向される。
【0123】
図14Dは、側面配光器を有する、導波管1010を図示する。導波管1010の一端に、方向転換要素を含む、側面配光器が、提供される。本方向転換要素は、導波管1010の縁の中に結合される、光源1002からの光のビームの伝搬を回転させる。図示されるように、光源1002からの光は、その縁または側面に沿って、導波管1010内を伝搬する。方向転換要素は、本ビームを、いくつかの実装では、導波管1010の側面から90°離れるように、さらに導波管1010の中に回転させる。方向転換要素は、例えば、回折格子を含んでもよい。いくつかの実装では、回折格子は、導波管1010の側面に沿ったビーム伝搬方向に対して45°の格子ベクトルを有してもよい。
図14Eは、側面配光器の側面断面図を示す。例えば、全内部反射を介して導波管1010内を伝搬する、光源1002からの光は、導波管1010の上部表面および底部表面を形成する。例えば、回折格子を含む、方向転換要素上に入射する光は、可能性として、ビーム伝搬方向から約90°方向転換される。光の本再指向は、紙面から外に出て来る光として、
図14Eに図示される。他の構成も、可能性として考えられる。
【0124】
外部結合光学要素1014は、導波管1010内を伝搬する光を導波管1010から外にSLM1018に向かって結合するために使用されてもよい。光は、全内部反射を介して、導波管1010内を伝搬してもよい。光が、例えば、導波管1010の表面上の回折格子を含み得る、外部結合光学要素1014と相互作用すると、光は、導波管1010から外にSLM1018に向かって結合される。本格子は、体積位相格子を含んでもよい。同様に、体積位相ホログラムまたは他の体積回折光学要素も、種々の実装では、採用されてもよい。
【0125】
図15Aは、いくつかの実施形態による、体積位相格子をその上に含む、外部結合光学要素1014を有する、導波管1010の断面を示す。本体積位相格子は、反射体積位相格子を含む。故に、反射体積位相格子によって回折される光は、照明をそこに提供するために、SLM1018に向かって回折および反射される。
【0126】
種々の実装では、外部結合光学要素1014は、光源1002から離れる距離に伴って増加する、結合効率(例えば、格子効率または回折効率)における勾配を有してもよい。本勾配は、
図15Aでは、矢印1075によって表される。光が、導波管1010から外に結合されるにつれて、導波管1010内の光は、枯渇される。光源からより遠く離れた場所における結合効率を増加させることによって、導波管1010内の光の本枯渇は、相殺されることができる。故に、より比較的に低い結合効率が、光源1002のより近くに提供される一方、より高い結合効率が、光源1002からより遠くに提供される。光のより均一な分布が、したがって、SLM1018を横断して提供されることができる。故に、外部結合光学要素1014を横断して異なる場所における結合効率は、SLM1018を横断して配光における均一性を増加させるように最適化または修正されることができる。
【0127】
いくつかの実装では、外部結合光学要素1014は、格子を含み、格子は、変動、例えば、ピッチにおける勾配を有する。例えば、格子ピッチは、光源1002から離れる距離に伴って増加してもよい。ピッチにおける本変動は、光が外部結合される、導波管1010および格子上の場所に基づく、光が外部結合される、角度を改変するであろう。光源1002により近い、外部結合光学要素1014の格子のエリアは、より低い角度において、光を外部結合し得る一方、光源1002からより遠いエリア(例えば、導波管1010の他端)は、高角度において、光を外部結合する。ピッチは、したがって、矢印1075によって示される方向に沿って減少し得る。高結合効率を伴う、そのような勾配ピッチを使用すると、照明ビームは、導波管1010内を伝搬する間に成形されることができる。
【0128】
体積位相格子は、狭スペクトルおよび角度性質を呈し得るため、1つ以上の体積位相格子または体積位相格子のスタックが、種々の実施形態では、使用されてもよい。
図15Bは、導波管1010から外に光を結合するために、導波管1010と、体積位相格子(VPG)回折要素のスタック1087とを伴う、導波管ベースの配光デバイスを図示する。スタック1087は、異なる波長を有する光を回折するように構成される、種々の体積位相格子回折要素を含んでもよい。さらに、スタック1087は、異なる色を有する光を回折するように構成される、種々のVPG回折要素を含んでもよい。例えば、スタック1087は、複数の(例えば、3つの)体積位相格子を含んでもよく、異なる格子は、それぞれ、異なる色(例えば、赤色、緑色、および青色)に対応する波長と関連付けられる。光は、スタック1087内の異なる場所から生じる第1の外部結合される円錐1088aおよび第2の外部結合される円錐1088bによって図面に例示されるように、スタック1087における異なる場所で外部結合され得る。
【0129】
代替として、または加えて、
図15Cに図示されるように、スタック1087は、同一色のためのものであるが、光を異なる角度で回折する、複数の体積位相格子を含んでもよい。例えば、スタック1087は、赤色に対応する波長と関連付けられた第1の体積位相格子と、緑色に対応する同一または別の波長と関連付けられた第2の体積位相格子と、青色に対応する同一またはさらに別の波長と関連付けられた第3の体積位相格子とを含んでもよい。しかしながら、スタック1087内の異なる格子は、光が異なる角度で外部結合されるように、光を回折してもよい。体積位相格子は、狭角度性質を呈し得るため、スタック内の異なる格子は、異なる角度のために使用されてもよい。光は、スタック1087内の異なる場所から生じる第1の外部結合される円錐1088aおよび第2の外部結合される円錐1088bによって図面に例示されるように、スタック1087における異なる場所で外部結合されてもよい。
【0130】
図16は、導波管1010の側面図を図示し、コレステリック液晶格子(CLCG)1070は、光を導波管1010から外に外部結合するために使用される。CLCG1070は、偏光を回折するコレステリック液晶を使用して、形成されることができる。
【0131】
いくつかの実装では、CLCG1070は、円偏光を回折し、SLM1018(例えば、液晶空間光変調器アレイ)は、線形偏光に作用する。そのような実装では、リターダが、円偏光を線形偏光におよびその逆に変換するために採用されてもよい。第1の4分の1波リターダ1072が、例えば、導波管1010とSLM1018との間に配置されてもよく、第2の4分の1波リターダ1074が、導波管1010の反対側上に配置されてもよい。いくつかの実施形態では、光は、CLCG1070によって、導波管1010から、円形(例えば、右円)偏光を伴って、SLM1018の方向に外部結合されてもよい。第1の4分の1波リターダ1072は、偏光を線形(例えば、線形垂直)偏光に回転させてもよい。故に、SLM1018が、線形偏光(液晶空間光変調器等)上で動作するいくつかの実施形態では、CLCG1070および第1の4分の1波リターダ1072の使用は、線形偏光が第1の4分の1波リターダ1072から出力されるため、線形偏光器の必要性を低減させ得る。SLM1018によって、反射され、変調を付与されることに応じて、線形偏光は、再び、第1の4分の1波リターダ1072を通して通過し、再び、円形(例えば、左円)偏光をとる。第2の4分の1波リターダ1074を通して通過することに応じて、円偏光は、線形(例えば、線形水平)偏光に逆変換され得る。他の構成も、可能性として考えられる。
【0132】
図15Aおよび体積位相格子を含む外部結合光学要素1014に関して上記に議論されるように、CLCG1070は、結合効率および/またはピッチにおける勾配を有してもよい。CLCG1070は、例えば、光源1002からより遠くに離れるにつれて高回折効率を、光源1002により近づくにつれてより低い回折効率を有するように構成されてもよい。議論されるように、導波管1010内の光の量は、光源1002からの距離の増加に伴って減少し得る。その長さに沿ってCLCG1070の結合効率プロファイルを適切に選定することによって、導波管1010内で減少する光の影響は、少なくとも部分的に、CLCG1070の外部結合効率の増加によって補償され得る。これは、導波管1010の長さを横断して外部結合される光のより均質な強度を可能にし得る。同様に、ピッチも、
図15Aに関して議論されるように、変動され得る。ピッチは、例えば、光源1002により近づくほど小さくなり、光源1002からより遠くなるほどより大きくなってもよい。他の構成は、可能性として考えられる。
【0133】
加えて、CLCG1070は、狭スペクトルおよび角度性質を呈し得るため、1つ以上の体積位相格子または体積位相格子のスタックが、種々の実施形態では、使用されてもよい。例えば、
図15Bに図示されるように、導波管ベースの配光デバイスは、光を導波管1010から外に結合するために、コレステリック液晶回折要素のスタック1087を含むことができる。スタック1087は、異なる波長と関連付けられた種々のコレステリック液体回折要素を含んでもよい。さらに、スタック1087は、異なる色を有する光を回折するように構成される、種々のコレステリック液晶回折要素を含んでもよい。例えば、スタック1087は、複数の(例えば、3つの)体積位相格子を含んでもよく、異なる格子は、それぞれ、異なる色(例えば、赤色、緑色、および青色)に対応する波長と関連付けられる。狭または中程度の帯域幅は、個々の色層が色毎に設計されることができるため、異なる色のために同一角度を用いて、光が外部結合されることを可能にする。
【0134】
上記に説明される異なる変形例は、上記に議論される他のデバイス、システム、構成、方法、およびアプローチのいずれかと併用されることができる。さらに他の変形例も、可能性として考えられる。
【0135】
例えば、狭角度の放出円錐を伴うLEDのような源の効率的結合は、ビーム成形のための光学にフィットさせるためのある程度の体積を伴い得る。
図17Aは、結合光学が、狭角度円錐ではなく、SLMアレイエリアを被覆するようにビームを成形する必要があるため、結合光学がより効率的およびコンパクトであり得るように、SLMアレイを横断して分散される源照明を伴う、設計を図示する。いくつかの実施形態では、
図17Bに図示されるように、光は、全内部反射を介して導波管1010内を伝搬するのではなく、外部結合光学要素1014と相互作用すると、導波管1010から外に結合される。体積位相格子またはコレステリック液晶格子のいずれかが、使用されることができる。いくつかの実施形態では、体積位相格子およびコレステリック液晶格子は両方とも、100%効率を呈することができる。
【0136】
いくつかの実施形態では、
図18に図示されるように、楔形状の導波管1010が、採用されてもよい。導波管1010は、導波管1010のテーパ状を生産する、傾角または湾曲表面を有する。その結果、導波管1010の一端は、別の端部より厚い。
図18に示される実装では、光源1002は、より厚い端部にあって、光をこのより厚い端部の中に結合する。導波管1010が、楔形状(または湾曲形状)を有するとき、ビーム伝搬角度は、光が導波管内を伝搬するにつれて、変化することができる。伝搬角度の本変化は、傾角表面からの反射によって生じる。故に、伝搬角度は、調整されることができる。
【0137】
上記に議論されるように、体積位相格子およびコレステリック液晶格子は両方とも、狭(または中程度)角度応答(例えば、それぞれ、±2°または±10°以内の高効率)を有することができるため、これらの範囲内の光は、外部結合光学要素1014によって抽出される。平面導波管内を本角度範囲内で伝搬する光は、光が平面導波管から外部結合されるにつれて枯渇され得る。しかしながら、光が楔形状またはテーパ状(例えば、湾曲)導波管を通して伝搬するにつれて、光ビームの伝搬角度は、徐々に変化する。その結果、光の角度は、角度が外部結合光学要素1014によって外部結合するための好適な角度に到達するまで、伝搬するにつれて変化することができる。楔成形またはテーパ状導波管1010から外部結合される光は、より均一に分散されることができる。本アプローチは、出力のための大角度円錐を有する光源のために作用する。
【実施例0138】
実施例
1.ディスプレイデバイスであって、
光を放出するように構成される、1つ以上の光エミッタと、
該1つ以上の光エミッタに対して配置され、該1つ以上の光エミッタからの光を受光する、第1の導波管であって、(i)第1の経路に沿って、第1の色を有する光を該導波管から外に射出し、(ii)第2の経路に沿って、第2の色を有する光を該第1の導波管から外に射出するように構成される、第1の導波管と、
該第1の導波管に対して配置され、該導波管から射出された該光を受光し、該光を変調させる、空間光変調器と、
を備え、
該1つ以上の光エミッタは、該第1および第2の色に対応するスペクトル成分を含む、スペクトル分布を有する、光を放出するように構成され、
該ディスプレイデバイスは、該第1の色および該第2の色の該第1の導波管からの該光が、該空間光変調器によって変調された後、該個別の第1および第2の経路に沿って、異なる角度で指向され、該第1の導波管および空間光変調器からある距離における、個別の第1および第2の空間場所上に入射するように構成される、ディスプレイデバイス。
2.1つ以上の光エミッタは、1つ以上の発光ダイオード(LED)を備える、実施例1に記載のディスプレイデバイス。
3.1つ以上の光エミッタは、1つ以上の白色の発光ダイオード(WLED)を備える、実施例2に記載のディスプレイデバイス。
4.該第1の導波管は、(iii)第3の経路に沿って、第3の色を有する、光を該第1の導波管から外に射出するように構成される、実施例1-3のいずれかに記載のディスプレイデバイス。
5.該空間光変調器は、該第1の導波管に対して配置され、該第1の導波管から射出された該第3の色の該光を受光し、該光を変調させ、該第1の導波管は、該空間光変調器によって変調された後、該第1の導波管および空間光変調器からある距離における、該第1および第2の空間場所と異なる第3の空間場所上に入射するように、該第3の経路に沿って、該光を指向するように構成される、実施例4に記載のディスプレイデバイス。
6.
該第1の導波管および該第1の経路に対して配置され、該空間光変調器によって変調された後、該第1の導波管からの光を受光する、それと関連付けられた内部結合光学要素を有する、第2の導波管と、
該第1の導波管および該第2の経路に対して配置され、該空間光変調器によって変調された後、該第1の導波管からの光を受光する、それと関連付けられた内部結合光学要素を有する、第3の導波管と、
をさらに備え、それぞれ、該第2および第3の導波管と関連付けられた該内部結合光学要素は、それぞれ、該第1および第2の経路に沿って、該第1および第2の空間場所に位置し、それぞれ、該第1および第2の色の該光を受光する、実施例1-5のいずれかに記載のディスプレイデバイス。
7.該第2および第3の導波管と関連付けられた該内部結合光学要素は、光が、全内部反射によって、該導波管内で誘導されるように、該光を、それぞれ、該第2および第3の導波管の中に方向転換させるように構成される、実施例6に記載のディスプレイデバイス。8.該第2および第3の導波管のための該内部結合光学要素は、全内部反射によって、その中で誘導されるように、光を、それぞれ、該第2および第3の導波管の中に再指向するように構成される、方向転換特徴を備える、実施例6または7に記載のディスプレイデバイス。
9.該内部結合光学要素は、1つ以上の回折光学要素、回折格子、ホログラフィック光学要素、またはメタ表面を備える、実施例6-8のいずれかに記載のディスプレイデバイス。
10.該内部結合光学要素のうちの1つ以上のものは、波長選択的光学要素を備える、実施例6-9のいずれか1項に記載のディスプレイデバイス。
11.該第1の導波管に対して配置される、それと関連付けられた内部結合光学要素を有する、第4の導波管をさらに備え、
該第1の導波管は、(iii)第3の経路に沿って、第3の色を有する、光を該第1の導波管から外に射出するように構成され、
該空間光変調器は、該第1の導波管に対して配置され、該第1の導波管から射出された該第3の色の該光を受光し、該光を変調させ、該第1の導波管は、該第1の導波管および空間光変調器からある距離における、該第1および第2の空間場所と異なる第3の空間場所上に入射するように、該空間光変調器によって変調された後、第3の経路に沿って、該第3の色の該光を指向するように構成され、
該第4の導波管と関連付けられた該内部結合光学要素は、それぞれ、該第3の経路に沿って、該第3の空間場所に位置し、該第3の色の該光を受光する、
実施例6-10のいずれかに記載のディスプレイデバイス。
12.該第4の導波管と関連付けられた該内部結合光学要素は、光が、全内部反射によって、該導波管内で誘導されるように、該光を該第4の導波管の中に方向転換させるように構成される、実施例11に記載のディスプレイデバイス。
13.該第4の導波管のための該内部結合光学要素は、全内部反射によって、その中で誘導されるように、光を、該第4の導波管の中に再指向するように構成される、方向転換特徴を備える、実施例11または12に記載のディスプレイデバイス。
14.該内部結合光学要素は、1つ以上の回折光学要素、回折格子、ホログラフィック光学要素、またはメタ表面を備える、実施例11-13のいずれかに記載のディスプレイデバイス。
15.該第4の導波管と関連付けられた該内部結合光学要素は、波長選択的光学要素を備える、実施例11-14のいずれか1項に記載のディスプレイデバイス。
16.該導波管は、該導波管内で誘導される光を、全内部反射によって、該導波管から外に方向転換させるように構成される、1つ以上の方向転換要素を含む、上記の実施例のいずれかに記載のディスプレイデバイス。
17.該1つ以上の方向転換要素は、該導波管内で誘導される光を、全内部反射によって、該導波管から外に再指向するように構成される、方向転換特徴を備える、実施例16に記載のディスプレイデバイス。
18.該1つ以上の方向転換要素は、1つ以上の回折光学要素、回折格子、ホログラフィック光学要素、またはメタ表面を備える、実施例16または17に記載のディスプレイデバイス。
19.該1つ以上の方向転換要素は、波長分散度を有する、実施例16-18のいずれか1項に記載のディスプレイデバイス。
20.該1つ以上の方向転換要素は、波長選択的光学要素を備える、実施例16-19のいずれか1項に記載のディスプレイデバイス。
21.ディスプレイデバイスであって、
光を放出するように構成される、1つ以上の光エミッタと、
該1つ以上の光エミッタに対して配置され、光が、全内部反射によって、その中で誘導されるように、該1つ以上の光エミッタからの光を受光する、第1の導波管であって、該第1の導波管内で誘導される光を該導波管から外に射出するように構成される、第1の導波管と、
第1のシャッタおよび第2のシャッタと、それぞれ、第1および第2の色の光を選択的に透過させるように構成される、対応する第1および第2の色のフィルタとを備える、シャッタシステムであって、該シャッタシステムは、該第1の導波管に対して配置され、該第1の導波管からの該第1および第2の色の光が、それぞれ、該個別の第1および第2の色のフィルタを通して、および該個別の第1のシャッタおよび第2のシャッタを通して、個別の第1および第2の光学経路に沿って、該第1の導波管からある距離における、個別の第1および第2の空間場所に通過するように、該導波管から射出された該光を受光する、シャッタシステムと、
該第1の導波管に対して配置され、該導波管から射出された該光を受光し、該光を変調させる、空間光変調器であって、該シャッタシステムは、該変調された光が、該第1および第2の光学経路に沿って、該空間光変調器からある距離における、該個別の第1および第2の空間場所に指向されるように、該空間光変調器に対して配置される、空間光変調器と、
該シャッタシステムおよび該空間光変調器と通信し、(i)該空間光変調器が、該第1の色に対応する画像を提示するように構成されると、該第1の色と関連付けられた該シャッタを第1の時間に開放し、該第2の色と関連付けられた該シャッタを閉鎖し、(ii)該空間光変調器が、該第2の色に対応する画像を提示するように構成されると、該第2の色と関連付けられた該シャッタを開放し、該第1の色と関連付けられた該シャッタを第2の時間に閉鎖する、電子機器と、
を備え、該1つ以上の光エミッタは、該第1および第2の色に対応するスペクトル成分を含む、スペクトル分布を有する、光を放出するように構成される、ディスプレイデバイス。
22.1つ以上の光エミッタは、1つ以上の発光ダイオード(LED)を備える、実施例21に記載のディスプレイデバイス。
23.1つ以上の光エミッタは、1つ以上の白色の発光ダイオード(WLED)を備える、実施例22に記載のディスプレイデバイス。
24.該シャッタシステムは、第3のシャッタと、第3の色の光を選択的に透過させるように構成される、対応する第3の色のフィルタとを含み、該シャッタシステムは、該第1の導波管に対して配置され、該第1の導波管からの該第3の色の光が、該第3の色のフィルタを通して、および該第3のシャッタを通して、個別の第3の光学経路に沿って、該第1の導波管からある距離における、該第1および第2の空間場所と別個の異なる第3の空間場所に選択的に透過されるように、該導波管から射出された該光を受光する、実施例21-23のいずれかに記載のディスプレイデバイス。
25.
該1つ以上の光エミッタは、該第3の色に対応するスペクトル成分を含む、スペクトル分布を有する、光を放出するように構成され、
該シャッタシステムは、該空間光変調器からの該変調された光が、該第3の光学経路に沿って、該空間光変調器からある距離における、該第3の空間場所に指向されるように、該空間光変調器に対して配置され、
該電子機器は、該空間光変調器が、該第3の色に対応する画像を提示するように構成されると、(iii)該第3の色と関連付けられた該シャッタを第3の時間に開放し、該第1および第2の色と関連付けられた該シャッタを閉鎖するように構成される、
実施例24に記載のディスプレイデバイス。
26.該シャッタは、該色のフィルタと該空間場所との間の該光学経路に沿って配置される、実施例21-25のいずれかに記載のディスプレイデバイス。
27.該色のフィルタは、該シャッタと該空間場所との間の該光学経路に沿って配置される、実施例21-26のいずれかに記載のディスプレイデバイス。
28.
該第1の導波管および該第1の経路に対して配置され、該空間光変調器によって変調された後、第1の導波管からの光を受光する、それと関連付けられた内部結合光学要素を有する、第2の導波管と、
該第1の導波管および該第2の経路に対して配置され、該空間光変調器によって変調された後、第1の導波管からの光を受光する、それと関連付けられた内部結合光学要素を有する、第3の導波管と、
をさらに備え、それぞれ、該第2および第3の導波管と関連付けられた該内部結合光学要素は、それぞれ、該第1および第2の経路に沿って、該第1および第2の空間場所に位置し、それぞれ、該第1および第2の色の該光を受光する、実施例21-25のいずれかに記載のディスプレイデバイス。
29.該第2および第3の導波管と関連付けられた該内部結合光学要素は、光が、全内部反射によって、該導波管内で誘導されるように、該光を、それぞれ、該第2および第3の導波管の中に方向転換させるように構成される、実施例26に記載のディスプレイデバイス。
30.該第2および第3の導波管のための該内部結合光学要素は、全内部反射によって、その中で誘導されるように、光を、それぞれ、該第2および第3の導波管の中に再指向するように構成される、方向転換特徴を備える、実施例26または27に記載のディスプレイデバイス。
31.該内部結合光学要素は、1つ以上の回折光学要素、回折格子、ホログラフィック光学要素、またはメタ表面を備える、実施例26-28のいずれかに記載のディスプレイデバイス。
32.該内部結合光学要素のうちの1つ以上のものは、波長選択的光学要素を備える、実施例26-29のいずれか1項に記載のディスプレイデバイス。
33.
該第1の導波管および該第1の経路に対して配置され、該空間光変調器によって変調された後、第1の導波管からの光を受光する、それと関連付けられた内部結合光学要素を有する、第2の導波管と、
該第1の導波管および該第2の経路に対して配置され、該空間光変調器によって変調された後、第1の導波管からの光を受光する、それと関連付けられた内部結合光学要素を有する、第3の導波管と、
該第1の導波管および該第3の経路に対して配置され、該空間光変調器によって変調された後、第1の導波管からの光を受光する、それと関連付けられた内部結合光学要素を有する、第4の導波管と、
をさらに備える、実施例25に記載のディスプレイデバイス。
34.該第2、第3、および第4の導波管と関連付けられた該内部結合光学要素は、光が、全内部反射によって、該導波管内で誘導されるように、該光を、それぞれ、該第2、第3、および第4の導波管の中に方向転換させるように構成される、実施例33に記載のディスプレイデバイス。
35.該第2、第3、および第4の導波管のための該内部結合光学要素は、全内部反射によって、その中で誘導されるように、光を、それぞれ、該第2、第3、および第4の導波管の中に再指向するように構成される、方向転換特徴を備える、実施例34または35に記載のディスプレイデバイス。
36.該内部結合光学要素は、1つ以上の回折光学要素、回折格子、ホログラフィック光学要素、またはメタ表面を備える、実施例33-35のいずれかに記載のディスプレイデバイス。
37.該内部結合光学要素のうちの1つ以上のものは、波長選択的光学要素を備える、実施例33-36のいずれか1項に記載のディスプレイデバイス。
38.該導波管は、該導波管内で誘導される光を、全内部反射によって、該導波管から外に方向転換させるように構成される、1つ以上の方向転換要素を含む、上記の実施例のいずれかに記載のディスプレイデバイス。
39.該1つ以上の方向転換要素は、該導波管内で誘導される光を、全内部反射によって、該導波管から外に再指向するように構成される、方向転換特徴を備える、実施例38に記載のディスプレイデバイス。
40.該1つ以上の方向転換要素は、1つ以上の回折光学要素、回折格子、ホログラフィック光学要素、またはメタ表面を備える、実施例38または39に記載のディスプレイデバイス。
41.該1つ以上の方向転換要素は、波長選択的光学要素を備える、実施例38-40のいずれか1項に記載のディスプレイデバイス。
42.ディスプレイデバイスであって、
光を放出するように構成される、1つ以上の光エミッタと、
該1つ以上の光エミッタに対して配置され、光が、全内部反射によって、その中で誘導されるように、該1つ以上の光エミッタからの光を受光する、第1の導波管であって、該第1の導波管内で誘導される光を該導波管から外に射出するように構成される、第1の導波管と、
第1のスペクトル分布の光および第1の色の光を第1の方向に沿って、第2のスペクトル分布の光を第2の方向に沿って選択的に指向するように構成される、第1のビームスプリッタであって、該第1のビームスプリッタは、該第1の導波管に対して配置され、該導波管から射出された該光を受光し、該第1の導波管からの該第1および第2のスペクトル分布の光が、該第1のビームスプリッタ上に入射し、該第1および第2のスペクトル分布を有する該光が、個別の第1および第2の光学経路に沿って指向されるように、該第1のスペクトル分布および第1の色の該光は、該第1の導波管からある距離における、個別の第1の空間場所に指向される、第1のビームスプリッタと、
該第1の導波管に対して配置され、該導波管から射出された該光を受光し、該光を変調させる、空間光変調器であって、該第1のビームスプリッタは、該変調された光が、該第1および第2の光学経路に沿って指向され、該第1の色の光が、該空間光変調器からある距離における、該第1の空間場所に指向されるように、該空間光変調器に対して配置される、空間光変調器と、
を備え、該1つ以上の光エミッタは、該個別の第1および第2の光学経路に沿って指向される該第1および第2のスペクトル分布に対応するスペクトル成分を含む、スペクトル分布を有する、光を放出するように構成される、ディスプレイデバイス。
43.1つ以上の光エミッタは、1つ以上の発光ダイオード(LED)を備える、実施例42に記載のディスプレイデバイス。
44.1つ以上の光エミッタは、1つ以上の白色の発光ダイオード(WLED)を備える、実施例43に記載のディスプレイデバイス。
45.該第1のビームスプリッタによって出力された該第2のスペクトル分布の該光を、該空間光変調器からある距離における、第2の空間場所に指向するための反射体をさらに備える、実施例42-44のいずれかに記載のディスプレイデバイス。
46.該第1のビームスプリッタによって出力された該第2のスペクトル分布の該光を受光し、第2の色の光を第2の方向に沿って、第3の色の光を第3の方向に沿って選択的に指向するように構成される、第2のビームスプリッタをさらに備え、該第2のビームスプリッタは、該第1の導波管からの該第2および第3の色の光が、該第2のビームスプリッタ上に入射し、該個別の第2および第3の色の光が、個別の第2および第3の光学経路に沿って、該第1の導波管からある距離における、個別の第2および第3の空間場所に指向されるように、該第1の導波管に対して配置され、該導波管から射出された該光を受光する、実施例42-45のいずれかに記載のディスプレイデバイス。
47.該1つ以上の光エミッタは、該第2および第3の色に対応するスペクトル成分を含む、スペクトル分布を有する、光を放出するように構成され、
該第2のビームスプリッタは、第2および第3の色を有する、該空間光変調器からの該変調された光が、該個別の第2および第3の光学経路に沿って、該空間光変調器からある距離における、該個別の第2および第3の空間場所に指向されるように、該空間光変調器に対して配置される、
実施例46に記載のディスプレイデバイス。
48.該第1のビームスプリッタは、該空間光変調器と該第1の空間場所との間の該光学経路に沿って配置される、実施例42-47のいずれかに記載のディスプレイデバイス。49.該第1および第2のビームスプリッタは、該空間光変調器と該第1、第2、および第3の空間場所との間の該光学経路に沿って配置される、実施例46または47に記載のディスプレイデバイス。
50.該第1のビームスプリッタは、該第2のビームスプリッタと該空間光変調器との間の該光学経路に沿って配置される、実施例46、47、または49のいずれかに記載のディスプレイデバイス。
51.該第2のビームスプリッタは、該第1のビームスプリッタと該第2および第3の空間場所との間の該光学経路に沿って配置される、実施例46、47、49、または50のいずれかに記載のディスプレイデバイス。
52.該第1の導波管および該第1の経路に対して配置され、該空間光変調器によって変調された後、該第1の導波管からの光を受光する、それと関連付けられた内部結合光学要素を有する、第2の導波管と、
該第1の導波管および該第2の経路に対して配置され、該空間光変調器によって変調された後、該第1の導波管からの光を受光する、それと関連付けられた内部結合光学要素を有する、第3の導波管と、
をさらに備え、それぞれ、該第2および第3の導波管と関連付けられた該内部結合光学要素は、それぞれ、該第1および第2の経路に沿って、該第1および第2の空間場所に位置し、それぞれ、第1および第2の色の該光を受光する、実施例42-51のいずれかに記載のディスプレイデバイス。
53.該第2および第3の導波管と関連付けられた該内部結合光学要素は、光が、全内部反射によって、該導波管内で誘導されるように、該光を、それぞれ、該第2および第3の導波管の中に方向転換させるように構成される、実施例52に記載のディスプレイデバイス。
54.該第2および第3の導波管のための該内部結合光学要素は、全内部反射によって、その中で誘導されるように、光を、それぞれ、該第2および第3の導波管の中に再指向するように構成される、方向転換特徴を備える、実施例52または53に記載のディスプレイデバイス。
55.該内部結合光学要素は、1つ以上の回折光学要素、回折格子、ホログラフィック光学要素、またはメタ表面を備える、実施例52-53のいずれかに記載のディスプレイデバイス。
56.該内部結合光学要素のうちの1つ以上のものは、波長選択的光学要素を備える、実施例52-55のいずれか1項に記載のディスプレイデバイス。
57.該第1の導波管および該第1の経路に対して配置され、該空間光変調器によって変調された後、該第1の導波管からの光を受光する、それと関連付けられた内部結合光学要素を有する、第2の導波管と、
該第1の導波管および該第2の経路に対して配置され、該空間光変調器によって変調された後、該第1の導波管からの光を受光する、それと関連付けられた内部結合光学要素を有する、第3の導波管と、
該第1の導波管および該第3の経路に対して配置され、該空間光変調器によって変調された後、該第1の導波管からの光を受光する、それと関連付けられた内部結合光学要素を有する、第4の導波管と、
をさらに備える、実施例46に記載のディスプレイデバイス。
58.該第2、第3、および第4の導波管と関連付けられた該内部結合光学要素は、光が、全内部反射によって、該導波管内で誘導されるように、該光を、それぞれ、該第2、第3、および第4の導波管の中に方向転換させるように構成される、実施例57に記載のディスプレイデバイス。
59.該第2、第3、および第4の導波管のための該内部結合光学要素は、全内部反射によって、その中で誘導されるように、光を、それぞれ、該第2、第3、および第4の導波管の中に再指向するように構成される、方向転換特徴を備える、実施例57または58に記載のディスプレイデバイス。
60.該内部結合光学要素は、1つ以上の回折光学要素、回折格子、ホログラフィック光学要素、またはメタ表面を備える、実施例57-59のいずれかに記載のディスプレイデバイス。
61.該内部結合光学要素のうちの1つ以上のものは、波長選択的光学要素を備える、実施例57-60のいずれか1項に記載のディスプレイデバイス。
62.該導波管は、該導波管内で誘導される光を、全内部反射によって、該導波管から外に方向転換させるように構成される、1つ以上の方向転換要素を含む、上記の実施例のいずれかに記載のディスプレイデバイス。
63.該1つ以上の方向転換要素は、該導波管内で誘導される光を、全内部反射によって、該導波管から外に再指向するように構成される、方向転換特徴を備える、実施例62に記載のディスプレイデバイス。
64.該1つ以上の方向転換要素は、1つ以上の回折光学要素、回折格子、ホログラフィック光学要素、またはメタ表面を備える、実施例62または63に記載のディスプレイデバイス。
65.該1つ以上の方向転換要素は、波長選択的光学要素を備える、実施例62-64のいずれか1項に記載のディスプレイデバイス。
【0139】
さらなる実施例
1.頭部搭載型ディスプレイのためのディスプレイデバイスであって、
導波管ベースの画像源であって、
光を放出するように構成される、1つ以上の光エミッタと、
該1つ以上の光エミッタに対して配置され、光が、全内部反射を介して、該1つ以上の光導波路内で誘導されるように、該1つ以上の光エミッタからの光を受光する、1つ以上の導波管であって、光を該導波管から外に射出するように構成される、1つ以上の導波管と、
1つ以上の導波管に対して配置され、該1つ以上の導波管から射出された該光を受光し、該光を変調させる、空間光変調器と、
を備え、該1つ以上の光エミッタは、第1および第2の色に対応するスペクトル成分を含む、スペクトル分布を有する、光を放出するように構成され、
該導波管ベースの画像源は、該第1および第2の色の該光が、該空間光変調器によって変調された後、該個別の第1および第2の経路に沿って指向され、該1つ以上の導波管および該空間光変調器からある距離における、個別の第1および第2の空間場所上に入射するように構成される、
導波管ベースの画像源と、
導波管ベースの配光システムを備える接眼レンズ要素であって、
1つ以上の第1の導波管および該第1の経路に対して配置され、該空間光変調器によって変調された後、該1つ以上の導波管からの光を受光する、それと関連付けられた内部結合光学要素を有する、第1の導波管と、
該1つ以上の導波管および該第2の経路に対して配置され、該空間光変調器によって変調された後、該1つ以上の導波管からの光を受光する、それと関連付けられた内部結合光学要素を有する、第2の導波管と、
を備え、それぞれ、該第1および第2の導波管と関連付けられた該内部結合光学要素は、それぞれ、該第1および第2の経路に沿って、該第1および第2の空間場所に位置し、それぞれ、該第1および第2の色の該光を受光する、導波管ベースの配光システムを備える接眼レンズ要素と、
を備える、ディスプレイシステム。
42.1つ以上の光エミッタは、1つ以上の発光ダイオード(LED)を備える、実施例1に記載のディスプレイシステム。
43.1つ以上の光エミッタは、1つ以上の白色の発光ダイオード(WLED)を備える、実施例2に記載のディスプレイシステム。
44.該導波管ベースの画像源は、第3の経路に沿って、第3の色の光を出力するように構成される、実施例1-3のいずれかに記載のディスプレイシステム。
45.該1つ以上の光エミッタは、第3の色に対応するスペクトル成分を含む、スペクトル分布を有する、光を放出するように構成される、実施例1-3のいずれかに記載のディスプレイシステム。
46.該導波管ベースの画像源は、該第1、第2、および第3の色の光が、該1つ以上の導波管および空間光変調器からある距離における、個別の第1の第2、および第3の空間場所上に入射するように、該第3の色の該光が、該空間光変調器によって変調された後、該第1および第2の経路と異なる個別の第3の経路に沿って指向されるように構成される、実施例5に記載のディスプレイシステム。
47.該導波管ベースの配光システムは、該導波管ベースの画像源内の該1つ以上の導波管および該第3の経路に対して配置され、該空間光変調器によって変調された後、該1つ以上の導波管からの光を受光する、それと関連付けられた1つ以上の内部結合光学要素を有する、第3の導波管を備え、該第3の導波管と関連付けられた該内部結合光学要素は、該第3の経路に沿って、該第3の空間場所に位置し、該第3の色の該光を受光する、実施例6のいずれかに記載のディスプレイシステム。
48.該第3の導波管と関連付けられた該内部結合光学要素は、光が、全内部反射によって、該第3の導波管内で誘導されるように、該光を該第3の導波管の中に方向転換させるように構成される、実施例7に記載のディスプレイシステム。
49.該第3の導波管のための該内部結合光学要素は、全内部反射によって、その中で誘導されるように、光を、該第3の導波管の中に再指向するように構成される、方向転換特徴を備える、実施例7または8に記載のディスプレイシステム。
50.該第1および第2の導波管と関連付けられた該内部結合光学要素は、光が、全内部反射によって、該第1および第2の導波管内で誘導されるように、該光を、それぞれ、該第1および第2の導波管の中に方向転換させるように構成される、上記の実施例のいずれかに記載のディスプレイシステム。
51.該第1および第2の導波管のための該内部結合光学要素は、全内部反射によって、その中で誘導されるように、光を、それぞれ、該第1および第2の導波管の中に再指向するように構成される、方向転換特徴を備える、上記の実施例のいずれかに記載のディスプレイシステム。
52.該内部結合光学要素は、1つ以上の回折光学要素、回折格子、ホログラフィック光学要素、またはメタ表面を備える、上記の実施例のいずれかに記載のディスプレイシステム。
53.該内部結合光学要素のうちの1つ以上のものは、波長選択的光学要素を備える、上記の実施例のいずれかに記載のディスプレイシステム。
54.該1つ以上の導波管は、該導波管内で誘導される光を、全内部反射によって、該導波管から外に方向転換させるように構成される、1つ以上の方向転換要素を含む、上記の実施例のいずれかに記載のディスプレイシステム。
55.該1つ以上の方向転換要素は、該導波管内で誘導される光を、全内部反射によって、該導波管から外に再指向するように構成される、方向転換特徴を備える、実施例14に記載のディスプレイシステム。
56.該1つ以上の方向転換要素は、1つ以上の回折光学要素、回折格子、ホログラフィック光学要素、またはメタ表面を備える、実施例14または15に記載のディスプレイシステム。
57.該1つ以上の方向転換要素は、波長選択的光学要素を備える、実施例14-16のいずれか1項に記載のディスプレイシステム。
58.該導波管ベースの配光システムは、射出瞳エクスパンダを備える、上記の実施例のいずれかに記載のディスプレイシステム。
59.該頭部搭載型ディスプレイは、拡張現実頭部搭載型ディスプレイシステムを備え、該接眼レンズ要素内の該第1および第2の導波管は、透明である、上記の実施例のいずれかに記載のディスプレイシステム。
【0140】
付加的実施例
1ディスプレイデバイスであって、
光源と、
該光源に対して配置され、該光源からの光を受光する、導波管であって、光を該導波管から外に射出するように構成される、外部結合光学要素を含む、導波管と、
該導波管に対して配置され、該導波管から射出された該光を受光し、該光を変調させる、空間光変調器と、
を備え、該外部結合光学要素は、体積位相格子を備える、ディスプレイデバイス。
2.ディスプレイデバイスであって、
第1のスペクトル分布を有する、光源と、
該光源に対して配置され、該光源からの光を受光する、導波管であって、光を該導波管から外に射出するように構成される、外部結合光学要素を含む、導波管と、
該導波管に対して配置され、該導波管から射出された該光を受光し、該光を変調させる、空間光変調器と、
を備え、該外部結合光学要素は、液晶を備える、ディスプレイデバイス。
3.該外部結合光学要素は、コレステリック液晶を備える、実施例2に記載のディスプレイデバイス。
4.該外部結合光学要素は、液晶格子を備える、実施例2に記載のディスプレイデバイス。
5.該外部結合光学要素は、コレステリック液晶格子を備える、実施例2に記載のディスプレイデバイス。
6.ディスプレイデバイスは、拡張現実頭部搭載型ディスプレイ内に含まれ、画像コンテンツを提供する、上記の実施例のいずれかに記載のディスプレイデバイス。
7.該変調器からの該光は、拡張現実頭部搭載型ディスプレイの接眼レンズに指向される、上記の実施例のいずれかに記載のディスプレイデバイス。
【0141】
実施例に関するさらなる付加的変形例
以下の実施例は、節(例えば、第1節、第2節、第3節)のそれぞれにおける上記の実施例のいずれかに従属し得る。
1.1つ以上の光エミッタは、点光源を備える、上記の実施例のいずれかに記載のディスプレイデバイス。
2.1つ以上の光エミッタは、ライン光源を備える、上記の実施例のいずれかに記載のディスプレイデバイス。
3.1つ以上の光エミッタは、略線形配列のLEDを備える、実施例3に記載のディスプレイデバイス。
4.略線形配列のLEDは、マイクロレンズアレイと関連付けられる、実施例3に記載のディスプレイデバイス。
5.光を第1の導波管の中に指向する、光導波路を備える、上記の実施例のいずれかに記載のディスプレイデバイス。
6.光導波路は、第1の導波管の境界上に配置され、反射要素が、光導波路の1つの境界に沿って配置される、実施例5に記載のディスプレイデバイス。
7.光は、第1の外部結合要素を介して、第1の導波管から外部結合される、上記の実施例のいずれかに記載のディスプレイデバイス。
8.第1の外部結合要素は、体積位相格子を備える、実施例7に記載のディスプレイデバイス。
9.第1の外部結合要素は、コレステリック液晶格子を備える、実施例7に記載のディスプレイデバイス。
10.第1の外部結合要素の回折効率は、1つ以上の光エミッタまでの第1の外部結合要素の距離に沿って変動する、実施例7-9のいずれかに記載のディスプレイデバイス。
11.回折効率は、1つ以上の光エミッタからの距離の増加に伴って、単調に減少する、実施例10に記載のディスプレイデバイス。
12.第1の外部結合要素のピッチは、1つ以上の光エミッタまでの第1の外部結合要素の距離に沿って変動する、実施例7-11のいずれかに記載のディスプレイデバイス。
13.第1の外部結合要素は、複数の層のスタックを備える、実施例8-12に記載のディスプレイデバイス。
14.スタック内の第1の層は、第1の色の光を第1の導波管から外部結合するように構成され、スタック内の第2の層は、第2の色の光を第1の導波管から外部結合するように構成される、実施例13に記載のディスプレイデバイス。
15.スタック内の第1の層は、第1の色を外部結合するように構成され、スタック内の第2の層は、第1の色を外部結合するように構成される、実施例13に記載のディスプレイデバイス。
16.スタック内の第1の層は、第1の角度で第1の導波管の境界に遭遇する光を外部結合するように構成され、スタック内の第2の層は、第2の角度で第1の導波管の境界に遭遇する光を外部結合するように構成される、実施例13に記載のディスプレイデバイス。17.第1の4分の1波リターダが、空間光変調器と第1の導波管との間に配置される、実施例9に記載のディスプレイデバイス。
18.第2の4分の1波リターダが、空間光変調器と反対の導波管の境界上に配置される、実施例17に記載のディスプレイデバイス。
19.1つ以上の光エミッタからの光は、第1の導波管の実質的軸外に指向される、上記実施例のいずれかに記載のディスプレイデバイス。
20.ディスプレイデバイスは、集束光学を1つ以上の光エミッタと第1の導波管との間に備えない、実施例19に記載のディスプレイデバイス。
21.第1の導波管は、略楔形状である、上記の実施例のいずれかに記載のディスプレイデバイス。
22.楔形状の第1の導波管は、第1の導波管の境界から反射する光の角度を変化させるように構成される、実施例21に記載のディスプレイデバイス。
【0142】
革新的側面が、種々の用途において実装される、またはそれと関連付けられてもよく、したがって、広範囲の変形例を含むことが検討される。例えば、EPEの形状、数、および/または屈折力における変形例が、検討される。本明細書に説明される構造、デバイス、および方法は、特に、拡張現実および/または仮想現実のために使用され得る、ウェアラブルディスプレイ(例えば、頭部搭載型ディスプレイ)等のディスプレイにおいて使用を見出し得る。より一般的には、説明される実施形態は、運動(ビデオ等)または定常(静止画像等)下にあるかどうかにかかわらず、かつテキスト、グラフィック、または写真であるかどうかにかかわらず、画像を表示するように構成され得る、任意のデバイス、装置、またはシステム内に実装されてもよい。しかしながら、説明される実施形態は、限定ではないが、携帯電話、マルチメディアインターネット対応セルラー電話、モバイルテレビ受信機、無線デバイス、スマートフォン、Bluetooth(登録商標)デバイス、携帯情報端末(PDA)、無線電子メール受信機、ハンドヘルドまたはポータブルコンピュータ、ネットブック、ノートブック、スマートブック、タブレット、プリンタ、コピー機、スキャナ、ファックスデバイス、全地球測位システム(GPS)受信機/ナビゲータ、カメラ、デジタルメディアプレーヤ(MP3プレーヤ等)、カムコーダ、ゲームコンソール、腕時計、置時計、計算機、テレビモニタ、フラットパネルディスプレイ、電子読取値デバイス(例えば、電子読取機)、コンピュータモニタ、自動ディスプレイ(オドメータおよび速度計ディスプレイ等を含む)、コックピット制御および/またはディスプレイ、カメラビューディスプレイ(車両内のリアカメラのディスプレイ等)、電子写真、電子広告板または標識、プロジェクタ、アーキテクチャ構造、電子レンジ、冷蔵庫、ステレオシステム、カセットレコーダまたはプレーヤ、DVDプレーヤ、CDプレーヤ、VCR、無線、ポータブルメモリチップ、洗濯機、乾燥機、洗濯乾燥機、パーキングメータ、頭部搭載型ディスプレイ、および種々の結像システム等の種々の電子デバイス内に含まれる、またはそれと関連付けられてもよいことが検討される。したがって、本教示は、図に描写される実施形態のみに限定されず、代わりに、当業者に容易に明白となるであろう広い可用性を有することを意図する。
【0143】
本開示に説明される実施形態の種々の修正は、当業者に容易に明白となり得、本明細書に定義される一般的原理は、本開示の精神または範囲から逸脱することなく、他の実施形態に適用されてもよい。したがって、請求項は、本明細書に示される実施形態に限定されることを意図するものではなく、本明細書に開示される本開示、論理、および新規特徴と整合する最も広い範囲と見なされるべきである。単語「例示的」は、本明細書では、もっぱら「実施例、事例、または例証としての役割を果たす」ことを意味するように使用される。「例示的」として本明細書に説明される任意の実施形態は、必ずしも、他の実施形態より好ましいまたは有利であるものとして解釈されない。加えて、当業者は、用語「上側」および「下側」、「上方」および「下方」等が、時として、図を説明する容易性のために使用され、適切に配向されたページ上の図の配向に対応する相対的位置を示し、本明細書に説明される構造の適切な配向をそれらの構造が実装される通りに反映しない場合があることを容易に理解するであろう。
【0144】
別個の実施形態のコンテキストにおいて本明細書に説明されるある特徴はまた、単一実施形態において組み合わせて実装されることができる。逆に言えば、単一実施形態のコンテキストに説明される種々の特徴はまた、複数の実施形態において別個に、または任意の好適な副次的組み合わせにおいて実装されることもできる。さらに、特徴は、ある組み合わせにおいて作用するように上記に説明され、さらに、最初に、そのように請求され得るが、請求される組み合わせからの1つ以上の特徴は、ある場合には、組み合わせから外れることができ、請求される組み合わせは、副次的組み合わせまたは副次的組み合わせの変形例を対象とし得る。
【0145】
同様に、動作は、特定の順序で図面に描写されるが、これは、望ましい結果を達成するために、そのような動作が示される特定の順序で、または連続的順序で実施されること、または全ての図示される動作が実施されることを要求するものと理解されるべきではない。さらに、図面は、フローチャートの形態で1つ以上の例示的プロセスを図式的に描写し得る。しかしながら、描写されない他の動作も、図式的に図示される例示的プロセス内に組み込まれることができる。例えば、1つ以上の付加的動作が、図示される動作のいずれかの前に、その後に、それと同時に、またはその間に実施されることができる。ある状況では、マルチタスクおよび並列処理が、有利であり得る。さらに、上記に説明される実施形態における種々のシステムコンポーネントの分離は、全ての実施形態におけるそのような分離を要求するものとして理解されるべきではなく、説明されるプログラムコンポーネントおよびシステムは、概して、単一のソフトウェア製品においてともに統合される、または複数のソフトウェア製品にパッケージ化されることができることを理解されたい。加えて、他の実施形態も、以下の請求項の範囲内である。ある場合には、請求項に列挙されるアクションは、異なる順序で実施され、依然として、望ましい結果を達成することができる。
【0146】
本発明の種々の例示的実施形態が、本明細書で説明される。非限定的意味で、これらの実施例を参照する。それらは、本発明のより広く適用可能な側面を例証するように提供される。種々の変更が、説明される本発明に行われてもよく、本発明の真の精神および範囲から逸脱することなく、均等物が置換されてもよい。加えて、特定の状況、材料、組成物、プロセス、プロセスの行為またはステップを、本発明の目的、精神、または範囲に適合させるように、多くの修正が行われてもよい。さらに、当業者によって理解されるように、本明細書で説明および図示される個々の変形例のそれぞれは、本発明の範囲または精神から逸脱することなく、他のいくつかの実施形態のうちのいずれかの特徴から容易に分離され得るか、またはそれらと組み合わせられ得る、離散コンポーネントおよび特徴を有する。全てのそのような修正は、本開示と関連付けられる請求項の範囲内であることを目的としている。
【0147】
本発明は、本デバイスを使用して行われ得る方法を含む。方法は、そのような好適なデバイスを提供するという行為を含んでもよい。そのような提供は、エンドユーザによって行われてもよい。換言すれば、「提供する」行為は、単に、エンドユーザが、対象方法において必須デバイスを提供するように、取得し、アクセスし、接近し、位置付けし、設定し、起動し、電源を入れ、または別様に作用することを要求する。本明細書で記載される方法は、論理的に可能である記載された事象の任意の順序で、および事象の記載された順序で実行されてもよい。
【0148】
本発明の例示的側面が、材料選択および製造に関する詳細とともに、上記で記載されている。本発明の他の詳細に関して、これらは、上記の参照された特許および公開に関連して理解されるとともに、概して、当業者によって把握または理解され得る。同じことが、一般的または理論的に採用されるような付加的な行為の観点から、本発明の方法ベースの側面に関して当てはまり得る。
【0149】
加えて、本発明は、種々の特徴を随意に組み込む、いくつかの実施例を参照して説明されているが、本発明は、本発明の各変形例に関して考慮されるように説明または指示されるものに限定されるものではない。種々の変更が、説明される本発明に行われてもよく、本発明の真の精神および範囲から逸脱することなく、(本明細書に記載されるか、またはいくらか簡潔にするために含まれないかどうかにかかわらず)均等物が置換されてもよい。加えて、値の範囲が提供される場合、その範囲の上限と下限との間の全ての介在値、およびその規定範囲内の任意の他の規定または介在値が、本発明内に包含されることが理解される。
【0150】
また、本明細書で説明される発明の変形例の任意の随意的な特徴が、独立して、または本明細書で説明される特徴のうちのいずれか1つ以上の特徴と組み合わせて、記載および請求され得ることが考慮される。単数形の項目の言及は、複数の同一項目が存在する可能性を含む。より具体的には、本明細書で、およびそれに関連付けられる請求項で使用されるように、「1つの(a、an)」、「該(said)」、および「前記(the)」という単数形は、特に別様に記述されない限り、複数の指示対象を含む。換言すると、冠詞の使用は、上記の説明および本開示と関連付けられる請求項で、対象項目の「少なくとも1つ」を可能にする。さらに、そのような請求項は、任意の随意的な要素を除外するように起草され得ることに留意されたい。したがって、この記述は、請求項要素の記載に関連する「だけ」、「のみ」、および同等物等のそのような排他的用語の使用、または「否定的」制限の使用のための先行詞としての機能を果たすことを目的としている。
【0151】
そのような排他的用語を使用することなく、本開示と関連付けられる請求項での「備える」という用語は、所与の数の要素がそのような請求項で列挙されるか、または特徴の追加をそのような請求項に記載される要素の性質を変換するものと見なすことができるかどうかにかかわらず、任意の付加的な要素の包含を可能にするものとする。本明細書で特に定義される場合を除いて、本明細書で使用される全ての技術および科学用語は、請求項の有効性を維持しながら、可能な限り広義の一般的に理解されている意味を与えられるものである。
【0152】
本発明の範疇は、提供される実施例および/または本明細書に限定されるものではなく、むしろ、本開示と関連付けられる請求項の範囲のみによって限定されるものとする。