IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ウェイモ エルエルシーの特許一覧

<>
  • 特開-緊急車両の検出 図1
  • 特開-緊急車両の検出 図2
  • 特開-緊急車両の検出 図3A
  • 特開-緊急車両の検出 図3B
  • 特開-緊急車両の検出 図3C
  • 特開-緊急車両の検出 図4A
  • 特開-緊急車両の検出 図4B
  • 特開-緊急車両の検出 図4C
  • 特開-緊急車両の検出 図5
  • 特開-緊急車両の検出 図6A
  • 特開-緊急車両の検出 図6B
  • 特開-緊急車両の検出 図7
  • 特開-緊急車両の検出 図8
  • 特開-緊急車両の検出 図9
  • 特開-緊急車両の検出 図10
  • 特開-緊急車両の検出 図11
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024023319
(43)【公開日】2024-02-21
(54)【発明の名称】緊急車両の検出
(51)【国際特許分類】
   G08G 1/16 20060101AFI20240214BHJP
   G06T 7/00 20170101ALI20240214BHJP
   G08G 1/04 20060101ALI20240214BHJP
   H04N 7/18 20060101ALI20240214BHJP
【FI】
G08G1/16 C
G06T7/00 650B
G08G1/04 C
H04N7/18 K
【審査請求】有
【請求項の数】20
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2023195078
(22)【出願日】2023-11-16
(62)【分割の表示】P 2022504106の分割
【原出願日】2020-07-20
(31)【優先権主張番号】16/682,747
(32)【優先日】2019-11-13
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/879,636
(32)【優先日】2019-07-29
(33)【優先権主張国・地域又は機関】US
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.ブルートゥース
(71)【出願人】
【識別番号】317015065
【氏名又は名称】ウェイモ エルエルシー
(74)【代理人】
【識別番号】100079108
【弁理士】
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100126480
【弁理士】
【氏名又は名称】佐藤 睦
(72)【発明者】
【氏名】バンサール,マヤンク
(57)【要約】      (修正有)
【課題】緊急車両を検出することに関する。
【解決手段】例えば、自律型車両の視点から、複数の画像を撮影し得る。車両からそれぞれの距離にある関心領域を表す1つ以上のゲートを、画像について生成し得る。複数の光が、1つ以上のゲート内で検出され得る。第1の候補緊急車両は、画像のうちの1つの画像の1つ以上のゲートにおける、検出された複数の光から識別され得、第2の候補緊急車両は、画像のうちの別の画像の1つ以上のゲートにおける検出された複数の光から識別され得る。第1および第2の候補緊急車両は、同じ緊急車両であり、かつアクティブであると判定される。自律型車両の運用システムは、所与の緊急車両がアクティブであるという判定に基づいて制御される。
【選択図】図11
【特許請求の範囲】
【請求項1】
緊急車両を検出するためのシステムであって、
車両の運用システムと、
前記運用システムと通信している1つ以上のコンピューティングデバイスであって、
前記車両の視点からの環境の複数の画像を受信することであって、前記複数の画像が、第1の画像および追加の画像を含む、受信することと、
前記複数の画像において1つ以上のゲートを生成することであって、前記1つ以上のゲートの各々が、前記車両からそれぞれの距離にある関心領域を表す、生成することと、
前記1つ以上のゲート内の複数の光を検出することと、
前記第1の画像の前記1つ以上のゲートのうちの所与のゲートにおける前記検出された複数の光のグループと対応する第1の候補緊急車両を識別することと、
前記追加の画像の前記1つ以上のゲートのうちのゲートにおける前記検出された複数の光のグループと対応する第2の候補緊急車両を識別することと、
前記第1の候補緊急車両および前記第2の候補緊急車両が同じ所与の緊急車両であると判定することと、
前記所与の緊急車両がアクティブであると判定することと、
前記所与の緊急車両がアクティブであるという前記判定に基づいて、前記車両の前記運用システムを動作させることと、を行うように構成されている、1つ以上のコンピューティングデバイスと、を含む、システム。
【請求項2】
前記1つ以上のコンピューティングデバイスは、前記1つ以上のゲートを生成するための1つ以上の領域を選択するようにさらに構成されている、請求項1に記載のシステム。
【請求項3】
前記1つ以上のコンピューティングデバイスは、緊急車両に関連しない、前記環境内の区域と関連付けられた、前記第1の画像におけるピクセルをマスクするようにさらに構成されている、請求項1に記載のシステム。
【請求項4】
前記1つ以上のコンピューティングデバイスは、前記第1の画像における前記所与のゲート内の、前記検出された複数の光の前記グループを包含するように生成された第1の候補車両ポリゴンに基づいて、前記第1の候補緊急車両を識別するように構成されている、請求項1に記載のシステム。
【請求項5】
前記1つ以上のコンピューティングデバイスは、
前記追加の画像における、前記検出された複数の光の前記グループおよび前記所与のゲートを包含するように生成された第2の候補車両ポリゴン、および
前記第1の候補車両ポリゴンと前記第2の候補車両ポリゴンとの間の類似性の尺度に基づいて、前記第1の候補緊急車両および前記第2の候補緊急車両が、同じ所与の緊急車両であると判定するように構成されている、請求項4に記載のシステム。
【請求項6】
前記1つ以上のコンピューティングデバイスは、前記第1の候補車両ポリゴンに基づいて、アクティブな緊急車両の特性を識別するようにさらに構成されている、請求項4に記載のシステム。
【請求項7】
前記1つ以上のコンピューティングデバイスは、前記第1の候補緊急車両または前記第2の候補緊急車両の検証に基づいて、前記所与の緊急車両がアクティブであると判定するように構成されている、請求項1に記載のシステム。
【請求項8】
前記検証は、前記アクティブな候補緊急車両の特性を、他の検出された物体と照合することを含む、請求項6に記載のシステム。
【請求項9】
前記検証は、前記1つ以上のゲート内の、検出された物体の誤検知をフィルタリングすることを含む、請求項6に記載のシステム。
【請求項10】
前記1つ以上のコンピューティングデバイスは、前記第1の画像の前記1つ以上のゲート、または前記追加の画像の前記1つ以上のゲートに基づいて、アクティブな緊急車両の特性を識別するようにさらに構成されている、請求項1に記載のシステム。
【請求項11】
前記車両の前記運用システムは、前記車両の軌道をプランニングするためのナビゲーションシステムである、請求項1に記載のシステム。
【請求項12】
前記車両の前記運用システムは、前記車両を減速させて停止させるための減速システムである、請求項1に記載のシステム。
【請求項13】
前記車両の前記運用システムは、車輪の角度を制御して、前記車両の向きを変えるためのステアリングシステムである、請求項1に記載のシステム。
【請求項14】
前記1つ以上のプロセッサは、特定の周波数範囲内の光を識別することによって、前記複数の光を検出するように構成されている、請求項1に記載のシステム。
【請求項15】
前記1つ以上のプロセッサは、特定の周波数範囲外の光をフィルタリングすることによって、前記複数の光を検出するように構成されている、請求項1に記載のシステム。
【請求項16】
緊急車両を検出するための方法であって、
1つ以上のコンピューティングデバイスによって、自律型車両の視点から撮影された複数の画像を受信することであって、前記複数の画像が、第1の画像および追加の画像を含む、受信することと、
前記1つ以上のコンピューティングデバイスによって、前記複数の画像において1つ以上のゲートを生成することであって、前記1つ以上のゲートの各々が、前記車両からそれぞれの距離にある関心領域を表す、生成することと、
前記1つ以上のコンピューティングデバイスによって、前記1つ以上のゲート内の複数の光を検出することと、
前記1つ以上のコンピューティングデバイスによって、前記第1の画像の前記1つ以上のゲートのうちのゲートにおける前記検出された複数の光のグループと対応する第1の候補緊急車両を識別することと、
前記1つ以上のコンピューティングデバイスによって、前記追加の画像の前記1つ以上のゲートのうちの所与のゲートにおける前記検出された複数の光のグループと対応する第2の候補緊急車両を識別することと、
前記1つ以上のコンピューティングデバイスによって、前記第1の候補緊急車両および前記第2の候補緊急車両が同じ所与の緊急車両であると判定することと、
前記1つ以上のコンピューティングデバイスによって、前記所与の緊急車両がアクティブであると判定することと、
前記1つ以上のコンピューティングデバイスによって、前記所与の緊急車両がアクティブであるという前記判定に基づいて、前記車両の運用システムを動作させることと、を含む、方法。
【請求項17】
前記1つ以上のコンピューティングデバイスによって、前記1つ以上のゲートを生成するための1つ以上の領域を選択することをさらに含む、請求項16に記載の方法。
【請求項18】
前記1つ以上のコンピューティングデバイスによって、緊急車両に関連しない物体と関連付けられた、前記第1の画像におけるピクセルをマスクすることをさらに含む、請求項16に記載の方法。
【請求項19】
前記第1の候補緊急車両を識別することは、前記第1の画像における、前記検出された複数の光の前記グループおよび前記所与のゲートを包含するように、第1の候補車両ポリゴンを生成することを含む、請求項16に記載の方法。
【請求項20】
前記第1の候補緊急車両および前記第2の候補緊急車両が同じ所与の緊急車両であると判定することは、
追加画像における、前記検出された複数の光の前記グループおよび前記所与のゲートを包含するように、第2の候補車両ポリゴンを生成することと、
前記第2の候補車両ポリゴンを前記第1の画像に投影することと、
前記第1の候補車両ポリゴンと前記第2の候補車両ポリゴンとの間の類似性の尺度を判定することと、
前記類似性の量が閾値量よりも大きい場合に、前記第1の候補緊急車両および前記第2の候補緊急車両が前記同じ所与の緊急車両であると判定することと、を含む、請求項19に記載の方法。
【請求項21】
前記所与の緊急車両がアクティブであると判定することは、前記第1の候補緊急車両または前記第2の候補緊急車両を検証することを含む、請求項16に記載の方法。
【請求項22】
前記第1の画像の前記1つ以上のゲート、または前記追加の画像の前記1つ以上のゲートに基づいて、アクティブな緊急車両の特性を識別すること、請求項16に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、2019年7月29日に出願された米国仮特許出願第62/879,636の出願日の利益を主張する、2019年11月13日に出願された米国特許出願第16/682,747に対する優先権を主張し、これらの開示全体が参照により本明細書に組み込まれる。
【背景技術】
【0002】
人間の運転手を必要としない車両などの自律型車両が、ある場所から別の場所への搭乗者または物品の輸送を支援するために使用される場合がある。このような車両は、搭乗者が目的地などの何らかの初期入力を提供し、車両がその目的地に車両自体を操縦する、完全な自律運転モードで動作され得る。したがって、このような車両は、常時自律型車両の場所を判定し、かつ、他の車両、停止信号、歩行者などの車両の外部にある物体を検出し、識別することができるシステムに大きく依存することがある。
【発明の概要】
【0003】
本開示の態様は、緊急車両を検出するためのシステムを提供する。本システムは、車両の運用システムと、運用システムと通信している1つ以上のコンピューティングデバイスとを含む。1つ以上のコンピューティングデバイスは、車両の視点からの環境の複数の画像を受信することであって、複数の画像が、第1の画像および追加の画像を含む、受信することと、複数の画像において1つ以上のゲートを生成することであって、1つ以上のゲートの各々が、車両からそれぞれの距離にある関心領域を表す、生成することと、1つ以上のゲート内の複数の光を検出することと、第1の画像の1つ以上のゲートのうちの所与のゲートにおける検出された複数の光のグループと対応する第1の候補緊急車両を識別することと、追加の画像の1つ以上のゲートのうちのゲートにおける検出された複数の光のグループと対応する第2の候補緊急車両を識別することと、第1の候補緊急車両および第2の候補緊急車両が同じ所与の緊急車両であると判定することと、所与の緊急車両がアクティブであると判定することと、所与の緊急車両がアクティブであるという判定に基づいて、車両の運用システムを動作させることと、を行うように構成されている。
【0004】
一例では、1つ以上のコンピューティングデバイスは、1つ以上のゲートを生成するための1つ以上の領域を選択するようにさらに構成されている。別の例では、1つ以上のコンピューティングデバイスは、緊急車両に関連しない、環境内の区域と関連付けられた、第1の画像内のピクセルをマスクするようにさらに構成されている。別の例では、1つ以上のコンピューティングデバイスは、第1の画像における所与のゲート内の、検出された複数の光のグループを包含するように生成された第1の候補車両ポリゴンに基づいて、第1の候補緊急車両を識別するように構成されている。この例では、1つ以上のコンピューティングデバイスは、追加の画像における、検出された複数の光のグループおよび所与のゲートを包含するように生成された第2の候補車両ポリゴン、および第1の候補車両ポリゴンと第2の候補車両ポリゴンとの間の類似性の尺度に基づいて、第1の候補緊急車両および第2の候補緊急車両が、同じ所与の緊急車両であると判定するように構成されている。加えて、または代替的に、1つ以上のコンピューティングデバイスは、第1の候補車両ポリゴンに基づいて、アクティブな緊急車両の特性を識別するようにさらに構成されている。別の例では、1つ以上のコンピューティングデバイスは、第1の候補緊急車両または第2の候補緊急車両の検証に基づいて、所与の緊急車両がアクティブであると判定するように構成されている。この例では、検証は、アクティブな候補緊急車両の特性を、他の検出された物体と照合することを含む。加えて、または代替的に、検証は、1つ以上のゲート内の、検出された物体の誤検知をフィルタリングすることを含む。別の例では、1つ以上のコンピューティングデバイスは、第1の画像の1つ以上のゲート、または追加の画像の1つ以上のゲートに基づいて、アクティブな緊急車両の特性を識別するようにさらに構成されている。別の例では、車両の運用システムは、車両の軌道をプランニングするためのナビゲーションシステムである。別の例では、車両の運用システムは、車両を減速させて停止させるための減速システムである。別の例では、車両の運用システムは、車輪の角度を制御して、車両の向きを変えるためのステアリングシステムである。別の例では、1つ以上のプロセッサは、特定の周波数範囲内の光を識別することによって、複数の光を検出するように構成されている。別の例では、1つ以上のプロセッサは、特定の周波数範囲外の光をフィルタリングすることによって、複数の光を検出するように構成されている。
【0005】
本開示の別の態様は、緊急車両を検出するための方法を提供する。本方法は、1つ以上のコンピューティングデバイスによって、自律型車両の視点から撮影された複数の画像を受信することであって、複数の画像が、第1の画像および追加の画像を含む、受信することと、1つ以上のコンピューティングデバイスによって、複数の画像において1つ以上のゲートを生成することであって、1つ以上のゲートの各々が、車両からそれぞれの距離にある関心領域を表す、生成することと、1つ以上のコンピューティングデバイスによって、1つ以上のゲート内の複数の光を検出することと、1つ以上のコンピューティングデバイスによって、第1の画像の1つ以上のゲートのうちのゲートにおける検出された複数の光のグループと対応する第1の候補緊急車両を識別することと、1つ以上のコンピューティングデバイスによって、追加の画像の1つ以上のゲートのうちの所与のゲートにおける検出された複数の光のグループと対応する第2の候補緊急車両を識別することと、1つ以上のコンピューティングデバイスによって、第1の候補緊急車両および第2の候補緊急車両が同じ所与の緊急車両であると判定することと、1つ以上のコンピューティングデバイスによって、所与の緊急車両がアクティブであると判定することと、1つ以上のコンピューティングデバイスによって、所与の緊急車両がアクティブであるという判定に基づいて、車両の運用システムを動作させることと、を含む。
【0006】
一例では、本方法は、1つ以上のコンピューティングデバイスによって、1つ以上のゲートを生成するための1つ以上の領域を選択することも含む。別の例では、本方法は、1つ以上のコンピューティングデバイスによって、緊急車両に関連しない物体と関連付けられた、第1の画像内のピクセルをマスクすることをさらに含む。別の例では、第1の候補緊急車両を識別することは、第1の画像における、検出された複数の光のグループおよび所与のゲートを包含するように、第1の候補車両ポリゴンを生成することを含む。この例では、第1の候補緊急車両および第2の候補緊急車両が同じ所与の緊急車両であると判定することは、追加画像における、検出された複数の光のグループおよび所与のゲートを包含するように、第2の候補車両ポリゴンを生成することと、第2の候補車両ポリゴンを第1の画像に投影することと、第1の候補車両ポリゴンと第2の候補車両ポリゴンとの間の類似性の尺度を判定することと、類似性の量が閾値量よりも大きい場合に、第1の候補緊急車両および第2の候補緊急車両が同じ所与の緊急車両であると判定することと、を含む。別の例では、所与の緊急車両がアクティブであると判定することは、第1の候補緊急車両または第2の候補緊急車両を検証することを含む。別の例では、第1の画像の1つ以上のゲート、または追加の画像の1つ以上のゲートに基づいて、アクティブな緊急車両の特性を識別すること。
【図面の簡単な説明】
【0007】
図1】本開示の態様による、例示的な車両の機能図である。
図2】本開示の態様による、車両の例示的な描写図である。
図3A】本開示の態様による、例示的な画像300を示す。
図3B】本開示の態様による、例示的な画像300を示す。
図3C】本開示の態様による、例示的な画像300を示す。
図4A】本開示の態様による、例示的な画像400を示す。
図4B】本開示の態様による、例示的な画像400を示す。
図4C】本開示の態様による、例示的な画像400を示す。
図5】本開示の態様による、例示的な出力画像500を示す。
図6A】本開示の態様による、トリミングされた画像部分600を示す。
図6B】本開示の態様による、トリミングされた画像部分600を示す。
図7】本開示の他の態様による、例示的な画像400を示す。
図8】本開示の態様による、一連の画像を示す。
図9】本開示のさらなる態様による、例示的な画像400を示す。
図10】本開示の態様による、別の一連の画像を示す。
図11】本開示の態様による、例示的な方法のフロー図1100である。
【発明を実施するための形態】
【0008】
概要
本技術は、自律型車両のための、緊急車両の長距離検出に関する。緊急車両が遠方にある間、緊急車両を早期に検出することができることは、自律型車両が、その経路または挙動をより早く、またはより正確かつ効率な様式で調整することを可能にする。緊急車両には、とりわけ、例えば、パトカー、救急車、消防車を含む。本アプローチは、画像検索スペースを、対向車が存在する、または存在する可能性が高い場所に制限するために、道路の幾何学形状に基づいて、第1の画像における1つ以上の領域を選択することを含み得る。点滅する赤色光および青色光が、アクティブな緊急車両と関連付けられていることが多いため、候補ボックスは、選択された領域内で、点滅する赤色光および青色光が領域において検出される場所に応じて判定され得る。
【0009】
自律型車両は、第1の画像を含む、自律型車両に対して前向きの方向において1つ以上の画像を捕捉するように構成された画像捕捉システムを含み得る。車両のコンピューティングデバイスは、道路グラフの幾何学形状に従って、第1の画像における1つ以上の領域を選択するように構成することができる。選択された1つ以上の領域は、対向車線が存在する、または存在する可能性が高い区域であり得る。道路グラフの幾何学形状は、第1の画像において車線特徴を検出することによって判定され得る。車線特徴を使用して、自律型車両の走行車線と同じ方向の車線、および自律型車両の走行車線とは反対の方向の車線を識別し得る。
【0010】
次いで、車両のコンピューティングデバイスは、選択された1つ以上の領域において1つ以上のゲートを生成し得る。各ゲートは、自律型車両から特定の距離にある関心領域を表し得る。自律型車両の短距離センサの範囲が終了する場所から開始して、1つ以上のゲートを生成し得る。1つ以上のゲートは、反対方向の車線が知覚できなくなる距離、または名目上の緊急車両が、第1の画像におけるピクセルの第1の閾値量よりも小さくなる距離で終了し得る。1つ以上のゲートが生成された後、車両のコンピューティングデバイスは、任意の赤色光または青色光が1つ以上のゲート内にあるかどうかを判定し得る。
【0011】
次いで、車両のコンピューティングデバイスは、1つ以上のゲートのうちの所与のゲートにおける赤色光および/または青色光のグループと対応する候補緊急車両を識別し得る。赤色光または青色光のグループは、互いに近接している所与のゲート内の複数の赤色光または青色光であり得る。候補緊急車両を識別することは、赤色光または青色光のグループおよび所与のゲートに従って、第1の候補車両ポリゴンを生成することを含み得る。候補緊急車両を識別することはまた、赤色光または青色光が、第1の画像の前および/または後に撮影された1つ以上の追加の画像にあるかどうかを判定することも含み得る。点滅する光を捕捉するために、1つ以上の追加の画像を使用することが含まれ得る。追加の候補車両ポリゴンは、1つ以上の追加の画像の各々についての赤色光および/または青色光に従って生成され得る。
【0012】
第1の画像における第1の候補車両ポリゴンは、1つ以上の追加の画像のうちの少なくとも1つにおける少なくとも1つの追加候補車両ポリゴンと関連付けられ得る。候補車両ポリゴン間の関連付けは、自律型車両が、関連付けられた候補車両ポリゴンが、同じ候補緊急車両に対応することを判定することを可能にし、また、自律型車両が、候補緊急車両の挙動を経時的に追跡することを可能にする。加えて、関連付けは、経時的に候補緊急車両の点滅する光を捕捉し得る。関連付けは、少なくとも1つの追加の候補車両ポリゴンを、第1の画像に投影することによって生成され得る。
【0013】
少なくとも1つの追加の候補車両ポリゴンを、第1の画像に投影することは、(i)少なくとも1つの追加の候補車両ポリゴンのサイズおよび位置、および(ii)第1の画像と、対応する少なくとも1つの追加の画像との間の自律型車両の相対運動に基づいて、第1の画像において、少なくとも1つの追加の候補車両ポリゴンを位置合わせすることを含み得る。類似性の尺度が第2の閾値量を超える場合、少なくとも1つの追加の画像のうちの所与の追加の画像が、第1の画像と関連付けられ得る。類似性の尺度は、第1の候補車両ポリゴンと、第1の画像に投影される少なくとも1つの追加の候補車両ポリゴンのうちの所与の追加の候補車両ポリゴンとの間の物理的交差の量に基づいて判定され得る。
【0014】
第1の候補車両ポリゴンを、少なくとも1つの追加の候補車両ポリゴンと関連付けた後、車両のコンピューティングデバイスは、候補緊急車両がアクティブな緊急車両であると判定し得る。この判定は、第1の候補車両ポリゴンにおける赤色光または青色光を、少なくとも1つの追加の候補車両ポリゴンにおける赤色光または青色光と比較することを含み得る。光の数、光の強度、または光の位置の相違は、候補緊急車両が、点滅する光を有することの表示であり得る。
【0015】
いくつかの実施態様では、候補緊急車両がアクティブな緊急車両であると判定することは、可能性のある誤検知を除去することによって、またはアクティブ候補緊急車両の特性を他の検出された物体と照合することによって、アクティブ緊急車両を検証することを含む。誤検知を除去するために、車両のコンピューティングデバイスは、アクティブな緊急車両の特徴ではない特徴、またはアクティブな緊急車両の信頼性の低い指標に基づいて、所与の画像において検出された物体を除外し得る。誤検知を除去する別の例には、所与の画像における候補緊急車両を、自律型車両の知覚システムによって検出された物体と比較することが含まれる。
【0016】
候補緊急車両がアクティブな緊急車両であると判定した後、車両のコンピューティングデバイスは、アクティブな緊急車両の特性に従って自律型車両を動作させ得る。特性には、アクティブな緊急車両の場所、動き、速度、または予測ルートが含まれ得る。自律型車両を動作させることには、自律型車両がアクティブな緊急車両に道を譲るためのルートを判定すること、自律型車両のシステムを制御して、将来の停止まで減速させること、またはアクティブな緊急車両に適切に対応するための他の動作が含まれ得る。
【0017】
上記の特徴は、外観が大きく異なり得る緊急車両を、より早い時点で、より遠い距離で、他の機械学習手法よりも少ないデータを使用して、識別することが可能である自律型車両を提供し得る。そのため、自律型車両は、より早い時点で緊急車両に対応する準備を開始し得る。加えて、説明されている特徴は、自律型車両が、その環境内の物体に正確に応答することを可能にする誤検知を識別する方法も提供する。
【0018】
例示的なシステム
図1に示されるように、本開示の一態様による車両100は、様々な構成要素を含む。本開示のいくつかの態様は、特定のタイプの車両に関連して特に有用であるが、車両は、自動車、トラック、オートバイ、バス、レクリエーション車両などを含むがこれらに限定されない任意のタイプの車両であってもよい。車両は、1つ以上のプロセッサ120、メモリ130、および汎用コンピューティングデバイスに典型的に存在する他の構成要素を含むコンピューティングデバイス110などの1つ以上のコンピューティングデバイスを有し得る。
【0019】
1つ以上のプロセッサ120は、市販されているCPUなどの任意の従来のプロセッサであってもよい。代替的に、1つ以上のプロセッサは、ASICまたは他のハードウェアベースプロセッサなどの専用デバイスであってもよい。
【0020】
メモリ130は、1つ以上のプロセッサ120によってアクセス可能な情報を記憶し、その情報には、プロセッサ120によって実行または別様に使用され得る命令132およびデータ134が含まれる。メモリ130は、プロセッサによってアクセス可能な情報を記憶することができる任意のタイプのメモリであってもよく、それらには、コンピューティングデバイス可読媒体、またはハードドライブ、メモリカード、ROM、RAM、DVD、もしくは他の光ディスク、ならびに他の書き込み可能および読み取り専用メモリなどの電子デバイスを用いて読み取ることができるデータを記憶する他の媒体が含まれる。システムおよび方法は、上記の異なる組み合わせを含んでもよく、それによって、命令およびデータの様々な部分が、様々なタイプの媒体に記憶される。
【0021】
命令132は、プロセッサによって直接的に(マシンコードなど)または間接的に(スクリプトなど)実行される任意の命令セットであってもよい。例えば、命令は、コンピューティングデバイス可読媒体上にコンピューティングデバイスコードとして記憶されてもよい。その点について、「命令」および「プログラム」という用語は、本明細書では、互換的に使用され得る。命令は、プロセッサによる直接処理のための物体コード形式で、または要求に応じて解釈されるか、もしくは予めコンパイルされるスクリプトもしくは独立したソースコードモジュールの集合を含む、任意の他のコンピューティングデバイス言語で記憶されてもよい。命令の機能、方法、およびルーチンについては、以下でさらに詳細に説明される。
【0022】
データ134は、命令132に従って、プロセッサ120によって検索、記憶、または修正され得る。例えば、特許請求される主題は、いかなる特定のデータ構造にも限定されないが、データは、コンピューティングデバイスレジスタ内に、すなわち、複数の異なるフィールドおよびレコードを有する表、XMLドキュメント、またはフラットファイルとしてリレーショナルデータベース内に記憶されてもよい。データはまた、任意のコンピューティングデバイス可読形式でフォーマットされてもよい。
【0023】
図1は、プロセッサ、メモリ、およびコンピューティングデバイス110の他の要素を同じブロック内にあるものとして機能的に示しているが、プロセッサ、コンピューティングデバイス、またはメモリは、実際には、同じ物理的な筐体内に記憶されてもされなくてもよい、複数のプロセッサ、コンピューティングデバイス、またはメモリを含むことができることは、当業者により、理解されるであろう。例えば、メモリは、ハードドライブ、またはコンピューティングデバイス110の筐体とは異なる筐体内に位置する他の記憶媒体であってもよい。したがって、プロセッサまたはコンピューティングデバイスへの言及は、並行に動作してもしなくてもよいプロセッサまたはコンピューティングデバイスまたはメモリの集合体への言及を含むことを理解されたい。
【0024】
コンピューティングデバイス110は、上述したプロセッサおよびメモリ、ならびにユーザ入力装置150(例えば、マウス、キーボード、タッチスクリーン、および/またはマイクロフォン)および様々な電子ディスプレイ(例えば、スクリーンを有するモニタ、または情報を表示するように動作可能である任意の他の電気デバイス)などの、コンピューティングデバイスと接続して通常使用されるすべての構成要素を含み得る。この例では、車両は、情報または視聴覚体験を提供するために、内部電子ディスプレイ152、ならびに1つ以上のスピーカ154を含む。この点について、内部電子ディスプレイ152は、車両100の車内に位置していてもよく、コンピューティングデバイス110によって使用されて、車両100内の乗客に情報を提供してもよい。
【0025】
コンピューティングデバイス110はまた、以下に詳細に説明するクライアントコンピューティングデバイスおよびサーバコンピューティングデバイスなど他のコンピューティングデバイスとの通信を容易にするために、1つ以上の無線ネットワーク接続156を含んでもよい。無線ネットワーク接続には、ブルートゥース、ブルートゥースローエネルギー(LE)、携帯電話接続などの短距離通信プロトコル、ならびにインターネット、World Wide Web、イントラネット、仮想プライベートネットワーク、ワイドエリアネットワーク、ローカルネットワーク、1つ以上の企業専有の通信プロトコルを使用するプライベートネットワーク、イーサネット、Wi-Fi、およびHTTPを含む様々な構成およびプロトコル、ならびにそれらの様々な組み合わせが含まれてもよい。
【0026】
一例では、コンピューティングデバイス110は、車両100に組み込まれた自律運転コンピューティングシステムであってもよい。自律運転コンピューティングシステムは、完全自律運転モードおよび/または半自律運転モードで車両100を操縦するために、車両の様々な構成要素と通信することができ得る。例えば、図1に戻ると、コンピューティングデバイス110は、メモリ130の命令132に従って、車両100の動き、速度などを制御するために、減速システム160、加速システム162、ステアリングシステム164、シグナリングシステム166、ナビゲーションシステム168、測位システム170、および知覚システム172、電源システム174(例えば、ガソリンまたはディーゼルモータまたは電気エンジン)など、車両100の様々な運用システムと通信し得る。この場合も、これらのシステムは、コンピューティングデバイス110の外部にあるものとして示されているが、実際には、これらのシステムもまた、車両100を制御するための自立運転コンピューティングシステムとしてここでも、コンピューティングデバイス110の中に組み込まれてもよい。
【0027】
一例として、コンピューティングデバイス110は、車両の速度を制御するために、減速システム160および加速システム162と相互作用してもよい。同様に、ステアリングシステム164は、車両100の方向を制御するために、コンピューティングデバイス110によって使用されてもよい。例えば、車両100が自動車またはトラックのように道路で使用するように構成されている場合、ステアリングシステムは、車輪の角度を制御して、車両の向きを変えるため構成要素を含んでもよい。シグナリングシステム166は、例えば、必要に応じて方向指示器またはブレーキ光を点灯させることによって、車両の意図を他の運転手または車両に知らせるために、コンピューティングデバイス110によって使用され得る。
【0028】
ナビゲーションシステム168は、ある場所までのルートを判定し、かつ追従するために、コンピューティングデバイス110によって使用され得る。例えば、ナビゲーションシステムは、このルートをたどるために、場所間のルートを生成し、車両の軌道をプランニングするように機能し得る。単一のシステムとして描かれているが、ナビゲーションシステムは、実際には、前述のルーティングおよびプランニング機能を達成するために複数のシステムを含み得る。この点について、ナビゲーションシステム168および/またはデータ134は、詳細な地図情報、例えば、車道の形状および標高、車線境界線、交差点、横断歩道、速度制限、交通信号、建物、標識、リアルタイム交通情報、植生、または他のかかる物体および情報を識別する高精密地図、を記憶し得る。換言すると、この詳細な地図情報は、車道、ならびにそれらの車道の速度制限(法定速度制限)を含む、車両の予想される環境の幾何学形状を画定し得る。具体的には、地図情報には、車線、中央分離帯、縁石、横断歩道などの車道の特徴の幾何学形状を画定する道路グラフが含まれ得る。例として、道路グラフには、前述の車道の特徴の幾何学形状(例えば、サイズ、形状、寸法、および場所)を画定する、相互に接続された複数の点および/または線分が含まれ得る。このような特徴の座標は、地球上のある点を基準にした各車道特徴の横方向、縦方向、および標高情報である幾何学形状にx、y、zの寸法が含まれるように、ユークリッド座標系で定義し得る。当然のことながら、これらの寸法はGPS座標または他の座標系で定義され得る。道路グラフにはまた、方向(つまり、各車線の合法的な交通方向)、車線位置、速度などを含む所与の車道を車両がどのように走行すると予想されるかを識別する情報も含まれ得る。例えば、この地図情報には、交通信号機、一時停止標識、譲れの標識などの交通規制に関する情報が含まれ得る。この情報は、知覚システム172から受信したリアルタイム情報と併せて、コンピューティングデバイス110によって使用されて、どの方向の交通が対向車線であるか、および/または所与の場所で優先権を有するかを判定することができる。
【0029】
知覚システム172はまた、他の車両、車道内の障害物、交通信号、標識、樹木などの車両の外部にある物体を検出するための1つ以上の構成要素を含む。例えば、知覚システム172は、可視光カメラ、熱画像システム、レーザおよび無線周波数検出システム(例えば、LIDAR、RADARなど)、ソーナーデバイス、マイク、および/またはコンピューティングデバイス110によって処理され得るデータを記録する任意の他の検出デバイスを含む1つ以上の画像センサを含んでもよい。可視光カメラまたは別のタイプの画像捕捉システムは、車両に対して前向きの方向に1つ以上の画像を捕捉するように構成され得る。レーザ検出センサまたは他のタイプのセンサは、範囲制約を有し得る直接距離測定を提供し得る。異なる範囲の制約を有する1つ以上の撮像センサに、短距離センサと長距離センサが存在し得る。例えば、短距離センサの範囲制約は、60メートル以上またはそれ以下であり得る。長距離センサの範囲制約は、150メートルなど、短距離センサの範囲制約よりも大きくなり得る。短距離センサのうちの1つ以上の範囲制約を超える点では、知覚システム172は、データを収集するための能力が低下している場合がある。
【0030】
知覚システム172の1つ以上の撮像センサは、物体と、場所、配向、サイズ、形状、タイプ、移動の方向および速度などの物体の特性を検出し得る。センサからの生データおよび/または前述の特性は、定量化されるか、または記述関数もしくはベクトルに配置され、さらなる処理のためにコンピューティングデバイス110に送信され得る。例として、コンピューティングデバイス110は、車両の位置を判定するために測位システム170を使用し、その場所に安全に到着する必要があるときに、物体を検出し、かつ物体に応答するために知覚システム172を使用してもよい。
【0031】
図2は、知覚システム172の態様を含む車両100の例示的な外観図である。例えば、ルーフ上にある筐体210およびドーム状筐体212は、LIDARセンサまたはシステム、および様々なカメラおよびレーダーユニットを含んでもよい。加えて、車両100の前端に位置する筐体220、ならびに車両の運転手側および助手席側の筐体230、232は、各々、LIDARセンサを記憶してもよい。例えば、筐体230は、運転手側のドア260の前部に位置している。車両100はまた、車両100のルーフ上にさらに位置付けられたレーダーユニットおよび/またはカメラのための筐体240、242も含む。追加のレーダーユニットおよびカメラ(図示せず)は、車両100の前端および後端に、ならびに/またはルーフもしくはルーフ上にある筐体210に沿った他の位置に位置付けることができる。
【0032】
例示的な方法
上述し、図に示した動作に加えて、様々な動作を、ここで説明する。以下の動作は、以下に説明する正確な順序で実施される必要がないことを理解されたい。むしろ、様々なステップが、異なる順序で、または同時に処理されてもよく、ステップもまた、追加または省略されてもよい。
【0033】
知覚システム172内の画像捕捉システムを使用して、車両のコンピューティングデバイス110は、車両100の進行方向に対して前向きの方向に画像を捕捉し得る。車両100の進行方向、または車両100の姿勢は、捕捉された画像に関連して記憶され得る。例示的な第1の画像300が図3Aに示されている。第1の画像300において捕捉されているのは、車線302、304、306、312、314、316、車線境界線308、310、318、320、および中央分離帯322を含む複数の車道特徴である。車両100が走行している第1の車線302。第2の車線304および第3の車線306は、第1の車線302と同じ走行方向について第1の画像300に示されている。破線の車線境界線308および310は、車線302、304、および306の各々を互いに画定するように示されている。第4の車線312、第5の車線314、および第6の車線316は、第1の車線302とは反対の走行方向について示されている。破線の車線境界線318および320は、車線312、314、および316の各々を互いに画定するように示されている。車線312、314、および316は、中央分離帯322によって車線302、304、および306から分離されたものとして、第1の画像300に示されている。実線の車線、二重車線、道路標識、信号機などのような、上で考察されたもの以外の他の車道特徴も第1の画像において捕捉され得る。
【0034】
知覚システム172の画像捕捉システムによって捕捉された例示的な第2の画像400が図4Aに示されている。第2の画像400で捕捉された複数の車道特徴は、とりわけ、車線402、404、406、412、414、車線境界線408、410、416、二重車線境界線420、交差道路424、および信号機430、432、434、436などの車道特徴を含む。信号機430、432、434および436の停止信号は、図の陰影で示されているように、赤色の光周波数で点灯している。第2の画像400で捕捉された他の物体には、車両440、442、444、446、448、450、452、454、456、460、および462も含まれる。車両440および442のテールライトは、図の陰影で示されているように、赤色の周波数光で点灯している。車両454の上部および車両454の本体上の光は、図の陰影で示されているように、赤い周波数光で点灯している。車両100の走行車線は、車線402である。車線404および406は、車線402と同じ走行方向のものである。車線412および414は、車線402とは反対の走行方向のものである。交差道路424は、車線402として走行方向に少なくともほぼ垂直に走っている。車両440は、車線402にあり、車両442は、車線404にある。車両444、446、450、452、および456は、車線412にあり、車両448および454は、車線414にある。車両460および462は、交差道路424にある。
【0035】
車両のコンピューティングデバイス110は、地図情報に記憶された車道の幾何学形状に従って、捕捉された画像において1つ以上の領域を選択するように構成され得る。選択された1つ以上の領域は、対向車がいる区域であり得る。捕捉された画像に描かれる車道の幾何学形状は、画像が捕捉されたときの車両100の姿勢に応じて、道路グラフの車線、縁石中央分離帯などの様々な車道特徴の幾何学形状を、捕捉された画像に投影することによって判定され得る。代替的に、捕捉された画像に描かれている車道の幾何学形状は、捕捉された画像にある車道特徴を検出し、それらを道路グラフに定義されている車道特徴の幾何学形状と比較することによって判定され得る。
【0036】
図4Aに戻ると、第2の画像が捕捉されたときの車両の姿勢が与えられると、車両のコンピューティングデバイス110は、道路グラフの様々な特徴の幾何学形状を画像に投影することによって、および/または第1の画像において車道特徴を検出し(例えば、様々な画像処理技術を使用して)、それらの特徴を道路グラフの車道特徴の幾何学形状と比較することによって、第1の画像400に描かれる道路の幾何学形状を判定し得る。これに関して、コンピューティングデバイス110は、車線402、404、406、412、414、車線境界線408、410、416、二重車線境界線420、および他の車道特徴を検出し得る得る。
【0037】
車道特徴は、道路グラフに記憶されたそのような情報に基づいて、車両100の走行車線と同じ方向の車線および車両の走行車線とは反対の方向の車線を識別するために使用され得る。反対方向の車線は、同じ道路の一部である場合もあれば、異なる道路の一部である場合もある。選択された1つ以上の領域は、反対方向の車線がある画像の区域であり得る。
【0038】
図3Aに戻ると、車両のコンピューティングデバイス110は、中央分離帯322の車道特徴の物理的場所およびタイプ、ならびに/または道路グラフで特定された車線312、314、316の方向と比較した、車線302(車両100が現在走行している)の交通の方向に基づいて、車線312、314、および316が、車両100が現在走行している車線302とは反対方向のものであるか、またはむしろ、対向車線のものであることを判定し得る。したがって、図3Bに示されるように、例示的な第1の画像300の領域330は、第1の画像300の車両のコンピューティングデバイス110によって選択され得る。次いで、車両のコンピューティングデバイス110は、第1の画像300において可視である、車線312、314、および316、車線境界線318および320、ならびに中央分離帯322、および/または道路グラフで識別された情報に含む車道特徴に基づいて、領域330を画定し得る。結果として、領域330は、車線312、314、および316が存在する場所含む、第1の画像300の区域として選択される。
【0039】
第2の画像400の図4Bの例に目を向けると、領域470は、車両のコンピューティングデバイス110によって選択され得る。車両のコンピューティングデバイス110は、少なくとも二重車線境界線420の車道特徴の場所およびタイプに基づいて、車線412および414が車両の走行車線402反対方向のものまたは対向車線であると判定し得る。次いで、車両のコンピューティングデバイス110は、車線412、414および車線境界線416、420を含む車道特徴に基づいて、領域470を画定し得る。結果として、領域470は、車線412および414が第2の画像において可視である区域を含む第2の画像400の区域として選択される。
【0040】
次いで、車両のコンピューティングデバイス110は、選択された1つ以上の領域に、1つ以上のゲートまたは関心領域を生成し得る。各ゲートは、車両から特定の距離にある関心領域を表し得る。各ゲートは、車両とは反対方向の車線または対向車線を含む少なくとも1つ以上の道路の幅にまたがっている場合がある。各ゲートの高さは、最も高い緊急車両の平均高さなど、推定される緊急車両サイズに基づき得る。例えば、各ゲートの高さは、3.5メートル、またはそれ以上、またはそれ以下であり得る。各ゲートの高さは、区域における緊急車両の予想される最大高さに基づき得る。1つ以上のゲートは、15メートルごとなどの一定の距離で生成され得るか、または特定の距離での関心の度合に応じて可変であり得る。これらの距離は、検出された3D幾何学形状情報を使用して判定されるか、または捕捉された画像の視点に基づいて推定され得る。
【0041】
1つ以上のゲートは、60メートル以上または以下など車両の短距離センサの範囲が終了する場所から開始して生成され得る。1つ以上のゲートは、車両とは反対方向の車線が画像において知覚できなくなる距離、または名目上の緊急車両が、捕捉された画像におけるピクセルの第1の閾値量よりも小さくなる距離で終了し得る。代替的に、1つ以上のゲートは、150メートルなどの車両の長距離センサの範囲が終了する場所で終了し得る。別の代替例では、1つ以上のゲートは、既知の地図情報を使用して、車両のコンピューティングデバイス110またはリモートコンピューティングデバイスによって生成され得る。次いで、1つ以上のゲートは、地図情報の特定の場所における所与の道路に対して生成され得る。各ゲート間の距離は、所与の道路上の設定された道路の長さであり得る。
【0042】
例えば、図3Cに示されるように、例示的な第1の画像300において最も近い第1のゲート340は、車両100から60メートルの距離を離れて、選択された領域330内に包含される3つの車線312、314、316の幅または横方向の距離にまたがっている場合がある。ゲート342、344、346、348、350、および352などの後続の各ゲートは、前のゲートから15メートルさらに離れた距離について判定され得る。図3Cの第1の画像300のゲートの各々は、高さが約3メートルであり得る。第1の画像300における視点から、各後続のゲートは、車両100からの距離の増加のために、前のゲートよりも短く見え得る。第1の画像300のゲートは、長距離センサの範囲が終了する150メートルまで続いている。
【0043】
例示的な第2の画像400について図4Cに目を向けると、第1のゲート480は、最も近いゲートとして生成され得、車両100から60メートル離れて、選択された領域470内に包含される2つの車線412、414の幅または横方向距離にまたがっている場合がある。ゲート482、484、486、488、490、および492などの後続の各ゲートは、前のゲートから15メートルさらに離れた距離について判定され得る。図4Cの第2の画像400のゲートの各々は、高さが約3メートルであり得る。第2の画像400における視点から、各後続のゲートは、車両100からの距離の増加のために、前のゲートよりも短く見え得る。第2の画像400のゲートは、長距離センサの範囲が終了する150メートルまで続いている。
【0044】
いくつかの実施態様では、車両のコンピューティングデバイス110は、緊急車両の検出に関連しない物体と関連付けられたピクセルをマスクすることもできる。例えば、関連しない物体には、信号機、車両100と同じ方向に走行する車両、または緊急車両と通常関連付けられているが、緊急車両ではない、青色光および/または赤色光または他の光の周波数を備える他の物体が含まれ得る。この画像マスキングは、検出された物体を、関連しない物体として分類し、検出された物体と関連付けられた3D幾何学形状情報を使用して、検出された物体を捕捉された画像に投影し、検出された物体の投影によってカバーされるピクセルを関連しないとして識別する、またはピクセルを「マスク」することにより、実行され得る。図5に示されるように、第2の画像400は、信号機、車両と同じ方向に走行するための車線、および同じ方向に走行する車両などの、物体と関連付けられたピクセルをマスクするようにフィルタリングされ得る。具体的に、信号機430、432、434、436、車両100と同じ走行方向のための車線402、404、406、および第2の画像400のこれらの車線を走行する車両440、442は、出力画像500の白い部分502、504、506、508、および510によって示されるようにマスクされ得る。
【0045】
1つ以上のゲートが生成された後、車両のコンピューティングデバイス110は、任意の赤色光または青色光が1つ以上のゲート内にあるかどうかを判定し得る。赤色光には、約405~480THzの範囲の周波数を有する光が含まれ得る。青色光には、約620~680THzの範囲の周波数を有する光が含まれ得る。任意の赤色光または青色光が1つ以上のゲート内にあるかどうかを判定することは、赤色光周波数または青色光周波数について捕捉された画像をフィルタリングすることを含み得る。本明細書に記載の例示的な方法は、赤色光および/または青色光について考察するが、方法は、緊急車両または車両100からの特定の応答を必要とし得る他のタイプの車両と関連付けられ得る他の周波数の光に対しても実行され得る。
【0046】
例えば、図6Aには、知覚システム172の画像捕捉デバイスによって捕捉された第2の画像400のトリミングされた画像部分600が示されている。トリミングされた画像部分600に描かれる物体は、とりわけ、車線402、404、412、414、車線境界線408、416、420、交差道路424、および信号機436などの道路特徴を含む。トリミングされた画像部分600に描かれる物体はまた、車両440、448および車両450、452、454、456の一部分を含む。
【0047】
図6Bに示されるように、トリミングされた画像部分600は、出力画像602に示されるように、赤色光周波数に基づいてフィルタリングされて、赤色光を識別し得る。出力画像602では、車両454上またはその周囲にある複数の赤色光604が、トリミングされた画像部分600の残りの部分とは対照的に示されている。複数の赤色光604は、光A、B、C、D、およびEを含み、光A~Dは、車両454の上部を横切って現れ、光Eは、車両454の本体上に現れる。図4Bに示されるように、信号機436がマスクされたので、信号機436の赤い光は、出力画像602には示されていない。トリミングされた画像部分600のみが示されているが、フィルタリングプロセスは、画像400の全体に対して実行され得る。同じフィルタリングプロセスを、青色光周波数に基づいて画像400に適用して、画像において青色光を識別し得る。
【0048】
いくつかの例では、捕捉された画像は、中央周囲フィルタを使用して車両のコンピューティングデバイス110によってフィルタリングされ、周波数によるフィルタリングの前またはその代わりに、1つ以上のゲートのどこに際立った色のコントラストが存在するかを検出して、着色光が存在し得る場所を識別し得る。加えて、捕捉された画像は、周波数によるフィルタリングの前またはその代わりに、光エネルギーに基づいてフィルタリングされて、明るい光が存在し得る場所を識別し得る。さらに、赤色光または青色光が1つ以上のゲート内にあるかどうかを判定することは、追加的または代替的に、1つ以上のゲート内の赤色光または青色光を識別することまたはラベル付けすることを含み得る。識別することまたはラベル付けすることは、ディープネットワークまたは他のタイプの機械学習方法を使用して実行され得る。
【0049】
次いで、車両のコンピューティングデバイス110は、1つ以上のゲートのうちの所与のゲートにおける赤色光および/または青色光のグループと対応する候補緊急車両を識別し得る。赤色光および/または青色光のグループは、互いに1メートル以上かまたはそれ以下内など、互いに閾値距離にまたは閾値距離内に極めて接近している所与のゲート内の複数の赤色光および/または青色光であり得る。候補緊急車両を識別することは、赤色光および/または青色光のグループおよび所与のゲートに従って、第1の候補車両ポリゴンを生成することを含み得る。第1の候補車両ポリゴンにおいて捕捉された、または50%を超えて捕捉された車両は、候補緊急車両として識別され得る。第1の候補車両ポリゴンのサイズは、緊急車両の推定された、または平均の幅および高さであり得る。代替的に、幅は、赤色光および/または青色光のグループの幅と同じまたは類似し得、または高さは、所与のゲートの高さと同じまたは類似し得る。加えて、捕捉された画像で生成される第1の候補車両ポリゴンのサイズは、車両からの同じもしくは同様の距離、または所与のゲートと同じもしくは同様の高さを有するなど、所与のゲートの距離または寸法に対応し得る。第1の候補車両ポリゴンの位置はまた、赤色光または青色光のグループの位置にも対応し得る。すなわち、第1の候補車両ポリゴンは、第1の候補車両ポリゴンが赤色光および/または青色光のグループを包含するように位置決めされ得る。追加の候補緊急車両は、同じまたは同様の様式で、捕捉された画像において識別され得る。
【0050】
図7に示されるように、第1の候補車両ポリゴン702(本明細書ではボックスまたは長方形として描かれているが、多かれ少なかれ頂点を備える他のポリゴンが使用され得る)は、出力画像602で識別される赤色光のグループに基づいて生成され得る。図6Bに示される赤色光A、B、C、およびDは、車両のコンピューティングデバイス110によるグループとして、各光が複数の赤色光604のうちの少なくとも1つの他の光から1メートル以内にあることに基づいて、グループとして識別され得る。赤色光Eは、光A、B、C、およびDの各々から1メートルを超えるため、グループの一部として識別され得ない。第1の候補車両ポリゴン702は、赤信号A~Dのグループの幅を包含する幅を有し、ゲート486の高さと同じである高さを有する。車両454は、第1の候補車両ポリゴン702において完全に捕捉され、したがって、候補緊急車両として識別される。
【0051】
候補緊急車両を識別することは、追加の赤色光および/または青色光が、捕捉された画像の前および/または後に撮影された1つ以上の追加の画像にあるかどうかを判定することを追加的に含み得る。点滅する光を捕捉するために、1つ以上の追加の画像を使用することが含まれ得る。1つ以上の追加の画像は、捕捉された画像の1秒以内に撮影され得る。追加の赤色光および/または青色光は、1つ以上の領域を選択し、1つ以上のゲートを生成することを含む、上記と同じまたは同様の方式で1つ以上の追加の画像において判定され得る。1つ以上の追加の画像における追加の赤色光および/または青色光は、車両のコンピューティングデバイス110によって使用されて、(i)1つ以上の集約された出力画像を生成して、より正確な候補車両ポリゴンを生成し得、および/または(ii)第1の候補車両ポリゴンを検証し得る。
【0052】
いくつかの実施態様では、1つ以上の集約された出力画像は、捕捉された画像および1つ以上の追加の画像を使用して生成されて、検出目的のための光エネルギーの量を増加させるか、または候補車両ポリゴンの場所精度を増加させる。検出可能な光エネルギーの量を増加させると、緊急車両の車両検出スコアがより高くなり得る。例えば、捕捉された画像からの赤色光および/または青色光、ならびに1つ以上の追加の画像のうちの少なくとも1つからの光は、集約された出力画像において組み合わせ得る。第1の期間内に撮影された画像の第1のグループから生成された第1の集約された出力画像、および第1の期間の後の(またはその直後の、またはそれと部分的に重複して)第2の期間で撮影された画像の第2のグループから生成された第2の集約された出力画像などの複数の集約された出力画像が生成され得る。これらの期間の各々は、比較的短い場合があり、例えば、0.5秒以上またはそれ以下程度である場合がある。赤色光および/または青色光のグループは、各集約された出力画像において検出され得、候補緊急車両ボックスは、第1の候補車両ポリゴンに加えて、またはその代わりに、このグループと対応して生成され得る。候補車両ポリゴンは、上記の捕捉された画像の第1の候補車両ポリゴンと同じまたは同様の方式で、各集約された出力画像の候補緊急車両に対して生成され得る。
【0053】
図8に示されるように、列1は、例示的な第2の画像400の画像部分600の透視図を示し、列2は、画像400の後に撮影された第1の追加の画像の画像部分802の透視図を示し、列3は、第1の追加の画像の後に撮影された第2の追加の画像の画像部分804の斜視図を示す。例示的な第2の画像400および第1の追加の画像の捕捉時間は、10分の1秒以内であり得、第1の追加の画像および第2の追加の画像の捕捉時間は、10分の1秒以内であり得る。第1および第2の追加の画像の画像部分802、804は、例示的な第2の画像400の画像部分600とほぼ同じ地理的領域を示し得る。特に、画像部分600、802、および804の各々は、車両454を示し得る。画像部分において捕捉されているように、車両454の上部および車両454の本体上の光は、異なるパターンで点灯され得る。
【0054】
図8の行1は、各画像部分の生の入力を示し、行2は、図6Aおよび6Bに関して説明したように取得された各画像のフィルタリングされた赤色光出力を示す。行3は、フィルタリングされた赤色光出力が加算されたときの累積光出力を示す。行3の列1の出力画像は、行2の列1の出力画像と同じである。行3の列2の出力画像は、行2の列1および2の出力画像からの光出力の合計を示す集約された出力画像である。行3の列3の出力画像は、行2の列1、2、および3の出力画像からの光出力の合計を示す集約された出力画像である。行3の列3の集約された出力画像からの赤色光出力を使用して、出力画像602の代わりに、上記のように第1の候補車両ポリゴン702を生成することができる。
【0055】
場合によっては、候補車両ポリゴンがアクティブな緊急車両であることを確認するために、各候補車両ポリゴンを検証するか、またはむしろ別の候補車両ポリゴンと比較し得る。第1の候補車両ポリゴンを検証するために、追加の候補車両ポリゴンが、1つ以上の追加の画像の各々についての追加の赤色光および/または青色光に従って生成され得る。捕捉された画像の第1の候補車両ポリゴンは、1つ以上の追加の画像のうちの少なくとも1つにおける少なくとも1つの追加候補車両ポリゴンが、第1の候補車両ポリゴンと同じ候補緊急車両に対応する場合に検証され得る。第1の候補車両ポリゴンおよび追加の候補車両ポリゴンが、同じ候補緊急車両に対応する場合、候補車両ポリゴン間の関連付けは、車両のコンピューティングデバイス110によって作成され得る。次いで、車両のコンピューティングデバイス110は、関連付けられた候補車両ポリゴンを使用して、候補緊急車両の挙動を経時的に追跡し得る。追跡される挙動には、例えば、点滅する光、進行方向の変化、移動などが含まれ得る。
【0056】
検証は、少なくとも1つの追加の候補車両ポリゴンを、捕捉された画像に投影することによって実行され得る。少なくとも1つの追加の候補車両ポリゴンを、捕捉された画像に投影することは、(i)少なくとも1つの追加の候補車両ポリゴンのサイズおよび位置、および(ii)捕捉された画像と、対応する少なくとも1つの追加の画像との間の車両の相対運動に基づいて、捕捉された画像において、少なくとも1つの追加の候補車両ポリゴンを位置合わせすることを含み得る。類似性の尺度が第2の閾値量を超える場合、少なくとも1つの追加の画像のうちの所与の追加の画像が、捕捉された画像と関連付けられ得る。類似性の尺度は、第1の候補車両ポリゴンと、捕捉された画像に投影される少なくとも1つの追加の候補車両ポリゴンのうちの所与の追加の候補車両ポリゴンとの間の物理的交差の量に基づいて判定され得る。例えば、類似性の尺度は、第1の候補車両ポリゴンおよび所与の追加の候補車両ポリゴンについて、ジャッカード係数または交差オーバーユニオンを使用して判定され得る。
【0057】
図9に示されるように、例示的な第2の画像400は、図7に関して生成された候補車両ポリゴン702に加えて、第2の画像に投影された追加の候補車両ポリゴン902を有する。追加の候補車両ポリゴン902は、知覚システム172の画像捕捉システムによって以前に捕捉された画像に対して生成されている場合がある。以前に捕捉された画像は、第2の画像400の10分の1秒以内に捕捉されている場合がある。代替的に、第2の画像400の1秒前または後のいずれかで捕捉された画像からの他の候補車両ポリゴンを使用し得る。車両のコンピューティングデバイス110は、ジャッカード係数を使用して、候補車両ポリゴン702と902との間の類似性の尺度を判定し得る。候補車両ポリゴン902の大部分が候補車両ポリゴン702と重なることを考えると、候補車両ポリゴン702と902との間の類似性の尺度は高い。車両のコンピューティングデバイス110は、類似性の尺度が第2の閾値量よりも大きいと判定し、候補車両ポリゴン702を検証し得る。車両のコンピューティングデバイス110はまた、追跡の目的で、候補車両ポリゴン702と候補車両ポリゴン902との間に関連付けを作成し得る。
【0058】
少なくとも1つの追加の候補車両ポリゴンを用いて第1の候補車両ポリゴンを検証した後、車両のコンピューティングデバイス110は、候補緊急車両がアクティブな緊急車両であると判定し得る。いくつかの例では、候補緊急車両が、点滅する光を有する場合、候補緊急車両はアクティブであると判定され得る。この判定は、第1の候補車両ポリゴンにおける赤色光および/または青色光を、少なくとも1つの追加の候補車両ポリゴンにおける赤色光および/または青色光と比較することを含み得る。光の数、光の強度、または光の位置の相違は、候補緊急車両が、点滅する光を有することの表示であり得る。
【0059】
例えば、第1の候補車両ポリゴンおよび少なくとも1つの追加の候補車両ポリゴンは、候補緊急車両のアンカーライトまたは他の部分の位置など、第1の候補車両ポリゴンおよび少なくとも1つの追加の候補車両ポリゴンの特徴に基づいて位置合わせされ得る。候補車両ポリゴン間の絶対差の合計をとるか、または各候補車両ポリゴンの合計光エネルギーの最大値を比較することによってなど、第1の候補車両ポリゴンおよび少なくとも1つの追加の候補車両ポリゴンの光エネルギー間の類似性の尺度を判定し得る。類似性の尺度が第3の閾値量未満である場合、候補緊急車両は、点滅する光を有し、したがってアクティブであると判定され得る。
【0060】
図10には、本開示の態様による候補緊急車両を描く一連の画像が示されている。行1の列1は、第1の候補車両ポリゴン702内の候補緊急車両454を示す例示的な第2の画像400の部分を示す。行1の列2は、追加の候補車両ポリゴン902内の候補緊急車両454を示す以前に捕捉された画像の部分を示す。追加の候補車両ポリゴン902内の候補緊急車両454の上部および本体上の光は、陰影によって示されるように、列1とは異なるパターンで点灯され得る。例示的な第2の画像の部分のフィルタリングされた出力1002および以前に捕捉された画像のフィルタリングされた出力1012は、それぞれ、行2の列1および2に示されている。フィルタリングされた出力は、フィルタリングされた出力画像から取得し得る。例えば、フィルタリングされた出力1002は、出力画像602から取得され得る。車両のコンピューティングデバイス110は、フィルタリングされた出力1002および1012を比較し、フィルタリングされた出力1002の総光エネルギーとフィルタリングされた出力1012の総光エネルギーとの間の類似性の尺度が、第3の閾値量を下回ると判定し得る。したがって、車両のコンピューティングデバイス110は、候補緊急車両454がアクティブな候補緊急車両であると判定し得る。
【0061】
いくつかの実施態様では、候補緊急車両がアクティブな緊急車両であると判定することはまた、候補緊急車両を検証することもできる。検証には、アクティブな候補緊急車両の特性を他の検出された物体の特性と照合する、および/またはカメラ以外のセンサからのデータを使用して候補緊急車両の場所にある物体の検出を確認するなど、可能性のある誤検知を除去することが含まれ得る。誤検知を除去するために、車両のコンピューティングデバイス110は、アクティブな緊急車両の特徴ではない、車両の他のシステム(例えば、知覚システムの異なるセンサおよび/または処理システム)によって検出されるそれらの検出された物体の特徴、またはアクティブな緊急車両の信頼できない指標に基づいて、所与の画像において検出された物体を除去し得る。特徴には、別の検出された物体が、(i)静止している場合、(ii)車両以外の場合、(iii)1メートル/秒未満で移動している識別できない物体である場合、(iv)車両から最小距離内にある場合、(v)画像の端で切り取られている場合、または(vi)車両に対して直接対向する進行方向から60度を超える進行方向を有する場合が含まれ得る。
【0062】
次いで、車両のコンピューティングデバイス110は、アクティブな緊急車両の特徴ではない候補緊急車両を検証するために使用される検出された物体がある場合、候補緊急車両を誤検知として破棄し得る。例えば、候補緊急車両を検証するために使用される検出された物体が、車両に対して対向していない進行方向を有する場合、候補緊急車両は、誤検知として破棄され得る。例えば、直接対向する進行方向から60度を超える場合、進行方向は、対向していないと判定され得る。進行方向を使用して、非対向車、特に非対向車両のテールライトが1つ以上のゲート内の検出システムによって捕捉され得る、カーブした道路上の非対向車両を除外する。検出された物体を除外することはまた、以前に撮影された画像で除外される検出された物体の場所を、より最近撮影された画像に投影し、投影された場所にある、より最近撮影された画像における物体を除外することを含み得る。
【0063】
別の例示的な検証として、候補緊急車両の場所での物体の検出は、カメラ以外のセンサなどからのデータを使用して確認し得る。例えば、レーダーセンサからのデータは、ノイズが多い場合でも使用して、物体までの距離および場所を確認することができる。これにより、LIDARセンサなど他のセンサの知覚範囲を超えた物体の確認を提供し得る。
【0064】
他の例では、候補緊急車両を検証することには、検出された物体の検証スコアを判定することが含まれ得る。上記の例のいずれかなど、候補緊急車両がアクティブな緊急車両であることを示す各追加の情報または信号について、その候補緊急車両の検証スコアを増加させ得る。同様に、候補緊急車両がアクティブな緊急車両ではないことを示す各追加の情報または信号について(例えば、上記の例の誤検知特徴のいずれか)、その候補緊急車両の検証スコアを減少させ得る。この例として、場合によっては、風になびくオレンジ色の旗が点滅する光、散発的に遮られているために点滅しているように見える他の車両のテールライトなどのように見えることがある。
【0065】
候補緊急車両のこの検証スコアは、1つ以上の閾値と比較され得る。例えば、検証スコアが特定の最小値に達した場合にのみ、候補緊急車両が「公開」されるか、または車両を制御する方法を判定するために、ナビゲーションシステム168などの車両100の様々なシステムによって使用される。加えて、または代替的に、スコアは、候補緊急車両を単に無視するかどうかを判定するために、ナビゲーションシステム168によって使用され得る。例えば、いくつかの地図特徴に対する場所、車両100からの距離、速度、予測される将来の軌道によっては、比較的高い検証スコアでさえ無視される場合がある。同時に、これらの同じ考慮事項を考えると、比較的低い検証スコアも、車両100が応答すべきものとして扱われる場合がある。例えば、候補緊急車両の検証スコアが比較的高い場合でも、第1の画像300の例のように中央分離帯の場所を考慮すると、候補緊急車両に応答することはそれほど重要ではない場合がある(例えば、候補緊急車両は車線302に入る、またはそうでなければ車両100と直接相互作用する可能性は低い)が、第2の画像400の例のように、車両100が候補緊急車両454と相互作用する必要がある可能性を考慮すると、候補緊急車両454の検証スコアが比較的低くても、交差点に近接する候補緊急車両に対応することがより重要な場合がある。
【0066】
場合によっては、知覚システムによって検出された物体の特徴は、車両のコンピューティングデバイス110によって推定され、候補緊急車両に割り当てられるか、またはそれを特徴付けるために使用され得る。具体的に、物体の場所は、横方向の寸法よりも縦方向の寸法でより信頼できるレーダーセンサなどの知覚システムのノイズの多いセンサを使用して検出され得る。場所は、三次元の誤差楕円などの誤差を計算することによって推定され得る。所与の検出された物体の誤差楕円は、所与の検出された物体の滑らかな座標および対応する共分散推定に基づいて判定され得る。推定された場所は、所与の画像に投影されて、境界ボックスを生成し得る。次いで、車両のコンピューティングデバイス110は、候補緊急車両の中心が、所与の検出された物体の境界ボックス内にあるかどうかを判定し得る。中心が境界ボックス内にある場合、所与の検出された物体のスコアを増加させ得る。いくつかの実施態様では、スコアは、中心がバウンディングボックス内にある場合、1つずつ増加する数であり得る。加えて、候補緊急車両が、検出された物体の境界ボックス内にない場合、数は、減少するか、リセットされ得る。他の例では、測定値を生成するために使用される代替センサのノイズ特性を考慮に入れるような、中心が、境界ボックス内に故障するかどうかのより一般的な試験を使用し得る。候補緊急車両に対して最大のスコアを有する検出された物体を使用して、候補緊急車両を特徴付け得る。例えば、最大の検証スコアを有する検出された物体の距離、速度、進行方向、または他の判定または検出された特徴を、候補緊急車両に割り当てることができる。
【0067】
候補緊急車両がアクティブな緊急車両であると判定した後、車両のコンピューティングデバイス110は、アクティブな緊急車両の特性に従って車両を動作させ得る。特性には、アクティブな緊急車両の場所、動き、速度、または予測ルートが含まれ得る。車両のコンピューティングデバイス110は、アクティブな緊急車両であると判定された車両に対応する1つ以上の候補車両ポリゴンまたは1つ以上のゲートの特性に基づいて、アクティブな緊急車両の特性を識別し得る。例えば、アクティブな緊急車両454の距離および場所は、候補車両ポリゴン702または別の最新の候補車両ポリゴンの距離および位置と同じ、車両100に対する距離および位置であり得る。車両を動作させることには、これらの特性をナビゲーションシステムに提供して、ナビゲーションシステムが、アクティブな緊急車両に道を譲るか、またはそれを回避する軌道を生成することを可能にすること、ステアリングシステムを制御して、アクティブな緊急車両から遠ざけるか、またはそれを避けて通らせること、減速システムを制御して、将来の停止まで減速させること、および/またはアクティブな緊急車両に適切に対応するための他の動作が含まれ得る。
【0068】
本明細書での例は、対向車線での緊急車両の検出に関するが、緊急車両が同じ走行車線であるが、反対方向に走行する場合がある。例えば、第2の画像400に描かれる交差点において、候補緊急車両454と交差点との間にある車両があった場合、緊急車両の運転者は、他の車両を迂回するために、車線402に入ることを決定し得る。これに関して、同様の特徴を使用して、対向していない車線の候補緊急車両(例えば、車両100が現在走行している車線と同じ一般的な方向に走行しているものを検出することができる。ただし、このような状況では、他の車両のテールライトを区別することが難しい場合があるため、誤検知が大幅に増える可能性がある。
【0069】
図11は、本開示の態様による、例示的なフロー図を示す。より具体的には、図11は、車両のコンピューティングデバイス110によって実行される緊急車両を検出するための例示的な方法の流れを示す。代替的に、例示的な方法における1つ以上のステップは、車両100から離れた1つ以上のコンピューティングデバイスによって実行され得る。
【0070】
ブロック1102で、車両の視点からの環境の複数の画像が受信される。複数の画像は、図4Aに示される画像400などの第1の画像、および追加の画像を含み得る。自律型車両の画像捕捉システムを使用して、第1の画像および追加の画像を捕捉し得る。ブロック1104で、1つ以上のゲートが複数の画像において生成される。1つ以上のゲートの各々は、車両からそれぞれの距離にある関心領域を表す。例えば、画像400の場合、図4Cに示すように、ゲート480、482、484、486、488、490、および492を生成し得る。1つ以上のゲートの各々は、複数の画像の各画像の視点から所与の距離にある関心領域を表す。ブロック1106で、1つ以上のゲート内で複数の光が検出される。例えば、赤色光および/または青色光は、1つ以上のゲート内で検出され得る。例えば、図6A~6Bに示されるように、赤色光A~Eが画像400において検出され得る。
【0071】
ブロック1108で、検出された複数の光のグループと対応する第1の候補緊急車両は、第1の画像の1つ以上のゲートのうちの所与のゲートにおいて識別される。画像400において、車両454は、候補緊急車両として識別され得る。ブロック1110で、検出された複数の光のグループと対応する第2の候補緊急車両は、追加の画像の1つ以上のゲートのうちのゲートにおいて識別される。第2の候補緊急車両は、第1の候補緊急車両と同じ方法を使用して識別され得る。ブロック1112で、第1の候補緊急車両および第2の候補車両は、同じ所与の緊急車両であると判定され得る。例えば、画像400内の車両454は、画像400ならびに以前に捕捉された画像において識別された候補緊急車両であると判定され得る。ブロック1114で、所与の緊急車両がアクティブであると判定され得る。ブロック1116で、自律型車両の運用システムは、所与の緊急車両がアクティブであるという判定に基づいて運用され得る。例えば、運用システムは、道路交通法および運転のための他のベストプラクティスに従って、アクティブな緊急車両に道を譲るか、またはそうでなければアクティブな緊急車両の移動に適切に応答するように動作され得る。
【0072】
上記の特徴は、外観が大きく異なり得る緊急車両を、より早い時点で、より遠い距離で、他の機械学習手法よりも少ないデータを使用して、識別することが可能である自律型車両を提供し得る。そのため、自律型車両は、より早い時点で緊急車両に対応する準備を開始し得る。加えて、説明されている特徴は、自律型車両が、その環境内の物体に正確に応答することを可能にする誤検知を識別する方法も提供する。
【0073】
特段の記述がない限り、前述の代替的な例は、相互に排他的ではないが、独自の有益点を達成するために様々な組み合わせで実施され得る。上で考察された特徴のこれらおよび他の変形および組み合わせは、特許請求の範囲によって定義される主題から逸脱することなく利用することができるので、実施形態の前述の説明は、特許請求の範囲によって定義される主題を限定するものとしてではなく、例示としてみなされるべきである。加えて、本明細書に記載の例、ならびに「など」、「含む」などと表現された語句の提示は、特許請求の範囲の主題を特定の例に限定するものと解釈されるべきではなく、むしろ、例は、多くの可能な実施形態のうちの1つだけを例示することが意図される。さらに、異なる図面の同じ参照符号は、同じまたは類似の要素を特定することができる。
図1
図2
図3A
図3B
図3C
図4A
図4B
図4C
図5
図6A
図6B
図7
図8
図9
図10
図11
【手続補正書】
【提出日】2023-12-11
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
緊急車両を検出するためのシステムであって、
車両の運用システムと通信している1つ以上のコンピューティングデバイスを含み、前記1つ以上のコンピューティングデバイスは、
前記車両の視点からの環境の画像を受信することと、
前記画像において複数のゲートを生成することであって、前記複数のゲートの各々が、前記車両からそれぞれの距離にある関心領域を表す、生成することと、
前記複数のゲートの少なくとも1つのゲート内の複数の光を検出することと、
前記検出された複数の光と、前記複数のゲートの前記少なくとも1つのゲートとに基づいて、前記受信された画像内の緊急車両を識別することと、
前記識別された緊急車両に基づいて、前記車両の前記運用システムを動作させることと、を行うように構成されている、システム。
【請求項2】
前記1つ以上のコンピューティングデバイスは、前記受信された画像の1つ以上のマスクされたピクセルにさらに基づいて、前記受信された画像内の前記緊急車両を識別するように構成されている、請求項1に記載のシステム。
【請求項3】
前記1つ以上のコンピューティングデバイスは、前記環境の3D幾何学形状情報に基づいて、前記受信された画像内のマスクすべき1つ以上のピクセルを識別するようにさらに構成されている、請求項2に記載のシステム。
【請求項4】
前記3D幾何学形状情報は、前記環境内の検出された物体と関連付けられており、
前記1つ以上のコンピューティングデバイスは、
前記受信された画像に前記3D幾何学形状情報を投影することと、
前記受信された画像内の、前記投影によってカバーされるピクセルを識別することと、
前記カバーされるピクセルをマスクすることと、を行うようにさらに構成されている、請求項3に記載のシステム。
【請求項5】
前記1つ以上のコンピューティングデバイスは、前記緊急車両を識別する前に、前記画像内の1つ以上の物体を除去するようにさらに構成されている、請求項1に記載のシステム。
【請求項6】
前記1つ以上のコンピューティングデバイスは、アクティブな緊急車両の特徴ではない前記1つ以上の物体の特徴に基づいて、前記1つ以上の物体を除去するように構成されている、請求項5に記載のシステム。
【請求項7】
前記1つ以上のコンピューティングデバイスは、前記1つ以上の物体の進行方向に基づいて、前記1つ以上の物体を除去するように構成されている、請求項5に記載のシステム。
【請求項8】
前記1つ以上のコンピューティングデバイスは、前記複数のゲートを生成するための、前記画像内の1つ以上の領域を選択するようにさらに構成されている、請求項1に記載のシステム。
【請求項9】
前記1つ以上のコンピューティングデバイスは、前記識別された緊急車両がアクティブであることを検証するようにさらに構成されている、請求項1に記載のシステム。
【請求項10】
前記1つ以上のコンピューティングデバイスは、前記環境の追加の画像に基づいて、前記緊急車両がアクティブであることを検証するように構成されている、請求項9に記載のシステム。
【請求項11】
前記1つ以上のコンピューティングデバイスは、前記識別された緊急車両の特徴と、前記環境内の他の検出された物体の特徴とに基づいて、前記緊急車両がアクティブであることを検証するように構成されている、請求項9に記載のシステム。
【請求項12】
前記1つ以上のコンピューティングデバイスは、前記画像の前記複数のゲートに基づいて前記緊急車両の特徴を識別するようにさらに構成されている、請求項11に記載のシステム。
【請求項13】
前記複数のゲートの各ゲートは、区域における緊急車両の予想される最大高さに基づく高さを有する、請求項1に記載のシステム。
【請求項14】
前記複数のゲートの各ゲートは、前記関心領域内に包含される1つ以上の車線に対応する幅にまたがっている、請求項1に記載のシステム。
【請求項15】
前記複数のゲートの各ゲートは、所定距離の分、前記複数のゲートの後続のゲートから離れている、請求項1に記載のシステム。
【請求項16】
前記車両をさらに含む、請求項1に記載のシステム。
【請求項17】
緊急車両を検出するための方法であって、
1つ以上のコンピューティングデバイスによって、自律型車両の視点から撮影された環境の画像を受信することと、
前記1つ以上のコンピューティングデバイスによって、前記画像において複数のゲートを生成することであって、前記複数のゲートの各々が、前記自律型車両からそれぞれの距離にある関心領域を表す、生成することと、
前記1つ以上のコンピューティングデバイスによって、前記複数のゲートの少なくとも1つのゲート内の複数の光を検出することと、
前記1つ以上のコンピューティングデバイスによって、前記複数のゲートの前記少なくとも1つのゲート内で検出された前記複数の光に基づいて、前記受信された画像内の緊急車両を識別することと、
前記1つ以上のコンピューティングデバイスによって、前記識別された緊急車両に基づいて、前記自律型車両の運用システムを動作させることと、を含む、方法。
【請求項18】
前記受信された画像内の前記緊急車両を前記識別することは、前記受信された画像の1つ以上のマスクされたピクセルを識別することを含む、請求項17に記載の方法。
【請求項19】
前記受信された画像の前記1つ以上のマスクされたピクセルを前記識別することは、前記環境の3D幾何学形状情報に基づく、請求項18に記載の方法。
【請求項20】
前記3D幾何学形状情報は、前記環境内の検出された物体と関連付けられており、
前記1つ以上のマスクされたピクセルを前記識別することは、
前記受信された画像に前記3D幾何学形状情報を投影することと、
前記受信された画像内の、前記投影によってカバーされるピクセルを識別することと、
前記カバーされるピクセルをマスクすることと、を含む、請求項19に記載の方法。
【外国語明細書】