(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024023371
(43)【公開日】2024-02-21
(54)【発明の名称】超音速回転可能羽根なし気体衝突面を有する非密閉型真空ポンプ
(51)【国際特許分類】
F04D 19/04 20060101AFI20240214BHJP
【FI】
F04D19/04 C
【審査請求】有
【請求項の数】16
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2023198009
(22)【出願日】2023-11-22
(62)【分割の表示】P 2022563005の分割
【原出願日】2021-04-07
(31)【優先権主張番号】16/849,467
(32)【優先日】2020-04-15
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】522404236
【氏名又は名称】チウ,キン-チュン・レイ
【氏名又は名称原語表記】CHIU, KIN-CHUNG RAY
(74)【代理人】
【識別番号】110001195
【氏名又は名称】弁理士法人深見特許事務所
(72)【発明者】
【氏名】チウ,キン-チュン・レイ
(57)【要約】 (修正有)
【課題】超音速回転可能羽根なし気体衝突面を有する非密閉型真空ポンプを提供する。
【解決手段】真空ポンプ10は、一般に、気体不透過性隔壁によって分離された低圧部及び高圧部を備える。気体分子は、隔壁内の開口部を通って低圧部から出て、高圧部内の特徴のない回転可能面15に受動的に衝突する。駆動装置16は、衝突する気体分子の最も可能性の高い速度の複数倍で超音速範囲の接線速度で回転可能面を回転させる。衝突する気体分子は、回転可能面の周縁から外向きに放出され、気体の実質的な正味の外向きの流れを生成し、低圧部の圧力を低下させる。
【選択図】
図4
【特許請求の範囲】
【請求項1】
低圧部及び高圧部と、
前記低圧部を前記高圧部から分離する隔壁であって、前記隔壁は、実質的に気体不透過性であり、静止している、隔壁と、
前記低圧部から前記隔壁を通じて前記高圧部に気体が流れる気体流路であって、前記高圧部から前記気体流路を通じて前記低圧部に前記気体が逆漏れすることを防止するシールがない、気体流路と、
前記気体流路を介して前記高圧部に入る前記気体の分子の衝突を受けるように適合された前記高圧部内の回転可能面であって、前記回転可能面は、ブレード又はベーンとして機能する突出部を有しない、回転可能面と、
前記回転可能面に結合されており、前記回転可能面に衝突する前記気体の前記分子の最も可能性の高い速度の約1~6倍の範囲内の接線速度で前記回転可能面の少なくとも一部を回転させて、前記高圧部から前記低圧部に逆漏れする前記気体の前記分子が前記低圧部の圧力のさらなる低下を制限する前に、前記低圧部内の圧力を少なくとも約0.5atmまで低下させるように適合された駆動装置と
を備える、真空ポンプ。
【請求項2】
前記駆動装置が、前記回転可能面の前記少なくとも一部を、前記回転可能面に衝突する前記気体の前記分子の最も可能性の高い速度の約1~6倍の範囲内の接線速度で回転させて、前記高圧部から前記低圧部に逆漏れする前記気体の前記分子が、前記低圧部内の圧力のさらなる低下を制限する前に、前記低圧部内の圧力を少なくとも約10-6atmまで低下させるように適合されている、請求項1に記載の真空ポンプ。
【請求項3】
前記低圧部と気体連通する入口と、前記高圧部と気体連通する出口とを備える、請求項1に記載の真空ポンプ。
【請求項4】
前記隔壁は、前記高圧部に露出される実質的に平面状の第1の表面を有し、前記回転可能面は、前記第1の表面に対向する第2の表面を備え、前記第1の表面及び前記第2の表面は、約0.5mm~約100mmの範囲内の寸法を有する間隙によって分離されている、請求項1に記載の真空ポンプ。
【請求項5】
前記回転可能面は、回転軸、周縁、前記周縁の周りの周面部分、及び、前記回転軸と前記周縁との間の第1の幅を有し、
前記周面部分は、前記第1の幅の約0.05倍~約1.0倍の範囲内の第2の幅を有する、請求項1に記載の真空ポンプ。
【請求項6】
前記回転可能面が、内部開放部分及び周面部分を有する実質的に円形のリングを備える、請求項1に記載の真空ポンプ。
【請求項7】
積層構成で配置構成されている複数の実質的に平行な回転可能面を備える、請求項1に記載の真空ポンプ。
【請求項8】
前記複数の実質的に平行な回転可能面が円錐形である、請求項7に記載の真空ポンプ。
【請求項9】
実質的に気体不透過性であり、部分開放内部空間を画定する壁を有する外側エンクロージャと、
前記内部空間内にあり、前記内部空間内の気体の分子の衝突を受けるように適合されている回転可能面であって、前記回転可能面は、前記内部空間を低圧部と高圧部とに分離するように構成されており、前記回転可能面は、ブレード又はベーンとして機能する突出部
を有しない、回転可能面と、
ここで、前記低圧部と前記高圧部とは気体連通しており、前記気体が前記高圧部から前記低圧部に逆漏れするのを防止するためのシールはなく、
前記回転可能面に結合されており、前記回転可能面に衝突する前記気体の前記分子の最も可能性の高い速度の約1~6倍の範囲内の接線速度で前記回転可能面の少なくとも一部を回転させて、前記高圧部から前記低圧部に逆漏れする前記気体の前記分子が前記低圧部の圧力のさらなる低下を制限する前に、前記低圧部内の圧力を少なくとも約0.5 パーセントまで低下させるように適合された駆動装置と
を備える、真空ポンプ。
【請求項10】
前記駆動装置が、前記回転可能面の前記少なくとも一部を、前記回転可能面に衝突する前記気体の前記分子の最も可能性の高い速度の約1~6倍の範囲内の接線速度で回転させて、前記高圧部から前記低圧部に逆漏れする前記気体の前記分子が、前記低圧部内の圧力のさらなる低下を制限する前に、前記低圧部内の圧力を少なくとも約10-6atmまで低下させるように適合されている、請求項9に記載の真空ポンプ。
【請求項11】
前記外側エンクロージャが、前記低圧部と気体連通する入口と、前記高圧部と気体連通する出口とを備える、請求項9に記載の真空ポンプ。
【請求項12】
前記高圧部において実質的に気体不透過性である壁を有する第2のエンクロージャであって、前記第2のエンクロージャは、開口部を有する内部空間を画定し、前記内部空間は低圧領域を含む、第2のエンクロージャをさらに備え、
前記回転面は、第1の表面と、前記第1の表面の反対側の第2の表面とを含み、
前記第1の表面は、低圧部に露出され、前記第2の表面は、前記開口部を通じて前記内側エンクロージャの前記内部空間内の前記低圧領域に露出される、請求項9に記載の真空ポンプ。
【請求項13】
前記回転可能面の前記第2の表面は周縁を有し、前記第2のエンクロージャは、前記開口部まで外向きに延在する傾斜壁と、前記開口部の周りに延在する縁部とを備え、前記縁部は、前記第2の表面の前記周縁に隣接し、前記周縁の周りに延在する、請求項12に記載の真空ポンプ。
【請求項14】
前記回転可能面は、前記低圧部に露出し、周縁端部を有する第1の表面を備え、前記外側エンクロージャの前記壁は、内面を備え、前記壁は、前記回転可能面の周りに延在し、前記内面は前記周縁端部に隣接し、前記低圧部と前記高圧部とを分離する間隙によって前記周縁端部から分離されている、請求項9に記載の真空ポンプ。
【請求項15】
前記内面は、前記第1の表面に対して前記周縁端部から離れるように傾斜している、請求項14に記載の真空ポンプ。
【請求項16】
前記外側エンクロージャの前記壁は内面を有し、前記回転可能面は周縁端部を備え、前記周縁端部及び前記内面は、約0.5mm~約100mmの範囲内の寸法を有する間隙によって分離されている、請求項9に記載の真空ポンプ。
【請求項17】
前記回転可能面は、回転軸、周縁、前記周縁の周りの周面部分、及び、前記回転軸と前記周縁との間の第1の幅を有し、
前記周面部分は、前記第1の幅の約0.05倍~約1.0倍の範囲内の第2の幅を有する、請求項9に記載の真空ポンプ。
【請求項18】
前記回転可能面が、内部開放部分及び周面部分を有する実質的に円形のリングを備える
、請求項9に記載の真空ポンプ。
【請求項19】
積層構成で配置構成されている複数の実質的に平行な平面上の回転可能面を備える、請求項9に記載の真空ポンプ。
【請求項20】
前記複数の実質的に平行な回転可能面が円錐形である、請求項19に記載の真空ポンプ。
【請求項21】
気体をポンピングするための真空ポンプであって、
実質的に気体不透過性である外側エンクロージャであって、前記外側エンクロージャは、内面を有する内部空間を画定する、外側エンクロージャと、
前記内部空間内の回転可能面であって、前記回転可能面は、第1の表面、前記第1の表面の反対側の第2の表面、及び、前記第1の表面と前記第2の表面との間の周縁端部を有し、前記第1の表面及び前記第2の表面が実質的に平面状である、回転可能面と、
ここで、前記回転可能面は、前記内部空間を低圧部と高圧部とに分離するように構成されており、前記第1の表面は前記低圧部に対向し、前記第2の表面は前記高圧部に対向し、
前記内面は、前記内部空間の前記低圧部内で前記回転可能面の前記周縁端部の周りで外向きに傾斜しており、前記回転可能面の前記周縁端部及び前記外側エンクロージャの前記内面は第1の間隙を画定し、前記真空ポンプが前記気体をポンピングしている間に前記気体は前記低圧部から前記第1の間隙を通って前記高圧部に流れることができ、前記第1の間隙を通って前記高圧部から前記低圧部に前記気体が逆漏れするのを防止するためのシールがなく、前記第1の間隙は第1の寸法を有し、前記第1の寸法は、前記第1の間隙を通って前記高圧部から前記低圧部に逆漏れする前記気体が、前記低圧部の圧力が所定の目標最小圧力に達するまで前記真空ポンプが前記気体をポンピングしている間に、前記低圧部から前記高圧部への前記気体の正味の流出を妨げないように、前記低圧部内の前記目標最小圧力における前記気体の平均自由行程の長さに関して選択され、
前記回転可能面に結合された駆動装置であって、前記駆動装置は、前記回転可能面の少なくとも一部が、約1atmの開始圧力から前記目標最小圧力までの前記低圧部内の圧力範囲にわたって前記気体の前記分子の最も可能性の高い速度の約1~6倍の範囲内の接線速度を有する状態で前記回転可能面を回転させて、前記気体の前記分子を前記回転可能面の前記周縁端部から前記間隙を通じて外向きに流して、前記低圧部内の圧力を単一のポンピングステージにおいて前記所定の目標最小圧力まで低下させるように動作可能であり、前記目標最小圧力は、少なくとも約10-4atm程度の低さである、駆動装置と、
前記高圧部内の第2のエンクロージャであって、前記第2のエンクロージャは、実質的に気体不透過性であり、前記回転可能面の前記第2の表面に隣接する開口部を有する第2の内部空間を画定し、前記高圧部内の前記回転可能面の前記周縁端部に向かって外向きに傾斜する表面を有する、第2のエンクロージャと
を備え、
前記回転可能面の前記周縁端部及び前記第2のエンクロージャの前記表面は、第2の寸法を有する第2の間隙を画定し、前記第2の内部空間及び前記高圧部が前記第2の間隙を介して気体連通し、
前記ポンプが前記気体をポンピングしている間に前記回転可能面の前記第1の表面と前記回転可能面の前記第2の表面との間の圧力差を低減するために、前記第2の間隙の前記第2の寸法が前記第1の間隙の前記第1の寸法よりも小さくなるように選択される、真空ポンプ。
【請求項22】
前記目標最小圧力は、約10-4~10-6atmの範囲内である、請求項21に記載の真空ポンプ。
【請求項23】
前記外側エンクロージャが、前記低圧部と気体連通する入口と、前記高圧部と気体連通する出口とを備える、請求項21に記載の真空ポンプ。
【請求項24】
前記第1の間隙の前記第1の寸法は、約0.5mm~約100mmの範囲内である、請求項21に記載の真空ポンプ。
【請求項25】
前記回転可能面は、中央開口部、前記中央開口部と前記周縁端部との間の半径寸法、前記半径寸法の約0.05~0.5倍未満の範囲の寸法を有する内部開放部分及び周面部分を有する実質的に円形のリングを含む、請求項21に記載の真空ポンプ。
【請求項26】
積層構成で配置構成されている複数の実質的に平行な平面上の回転可能面を備える、請求項21に記載の真空ポンプ。
【請求項27】
前記駆動装置は、前記回転可能面の少なくとも一部が、前記低圧部内の圧力がほぼ前記開始圧力であるときに第1の速度値を有する接線速度を有し、前記低圧部内の圧力が前記目標最小圧力に向かって減少するにつれて前記第1の速度値よりも漸進的に大きくなる1つ以上の第2の速度値を有する状態で、前記回転可能面を回転させるように動作可能である、請求項21に記載の真空ポンプ。
【請求項28】
気体をポンピングするための真空ポンプであって、
実質的に気体不透過性である外側エンクロージャであって、前記外側エンクロージャは、内面を有する内部空間を画定する、外側エンクロージャと、
前記内部空間内の回転可能面であって、前記回転可能面は、第1の表面、前記第1の表面の反対側の第2の表面、及び、前記第1の表面と前記第2の表面との間の周縁端部を有し、前記第1の表面及び前記第2の表面が実質的に平面状である、回転可能面と、
ここで、前記回転可能面は、前記内部空間を低圧部と高圧部とに分離するように構成されており、前記第1の表面は前記低圧部に対向し、前記第2の表面は前記高圧部に対向し、
前記内面は、前記内部空間の前記低圧部内で前記回転可能面の前記周縁端部の周りで外向きに傾斜しており、
前記回転可能面の前記周縁端部及び前記外側エンクロージャの前記内面は第1の間隙を画定し、前記真空ポンプが前記気体をポンピングしている間に前記気体は前記低圧部から前記第1の間隙を通って前記高圧部に流れることができ、前記第1の間隙を通って前記高圧部から前記低圧部に前記気体が逆漏れするのを防止するためのシールがなく、前記第1の間隙は第1の寸法を有し、前記第1の寸法は、前記第1の間隙を通って前記高圧部から前記低圧部に逆漏れする前記気体が、前記低圧部の圧力が所定の目標最小圧力に達するまで前記真空ポンプが前記気体をポンピングしている間に、前記低圧部から前記高圧部への前記気体の正味の流出を妨げないように、前記低圧部内の前記目標最小圧力における前記気体の平均自由行程の長さに関して選択され、
前記回転可能面に結合された駆動装置であって、前記駆動装置は、前記回転可能面の少なくとも一部が、約1atmの開始圧力から前記目標最小圧力までの前記低圧部内の圧力範囲にわたって前記気体の前記分子の最も可能性の高い速度の約1~6倍の範囲内の接線速度を有する状態で前記回転可能面を回転させて、前記気体の前記分子を前記回転可能面の前記周縁端部から前記間隙を通じて外向きに流して、前記低圧部内の圧力を前記所定の目標最小圧力まで低下させるように動作可能であり、前記目標最小圧力は、少なくとも約10-4atm程度の低さである、駆動装置と
を備える、真空ポンプ。
【請求項29】
前記目標最小圧力は、約10-4~10-6atmの範囲内である、請求項28に記載の真空ポンプ。
【請求項30】
前記第1の間隙の前記第1の寸法は、約0.5mm~約100mmの範囲内である、請求項28に記載の真空ポンプ。
【請求項31】
前記回転可能面は、中央開口部、前記中央開口部と前記周縁端部との間の半径寸法、前記半径寸法の約0.05~0.5倍未満の範囲の寸法を有する内部開放部分及び周面部分を有する実質的に円形のリングを含む、請求項28に記載の真空ポンプ。
【請求項32】
積層構成で配置構成されている複数の実質的に平行な平面上の回転可能面を備える、請求項28に記載の真空ポンプ。
【請求項33】
前記駆動装置は、前記回転可能面の少なくとも一部が、前記低圧部内の圧力がほぼ前記開始圧力であるときに第1の速度値を有する接線速度を有し、前記低圧部内の圧力が前記目標最小圧力に向かって減少するにつれて前記第1の速度値よりも漸進的に大きくなる1つ以上の第2の速度値を有する状態で、前記回転可能面を回転させるように動作可能である、請求項28に記載の真空ポンプ。
【請求項34】
気体をポンピングするための真空ポンプであって、
実質的に気体不透過性である外側エンクロージャであって、前記外側エンクロージャは、内面を有する内部空間を画定する、外側エンクロージャと、
前記内部空間内でスタックに構成されている複数の回転可能リングであって、前記スタックは、上部リング及び底部リングを有し、前記複数のリングの各リングは、実質的に円形であり、内部開放部分、回転軸、周縁端部、前記周縁端部の周りの第1の周面、及び、前記第1の周面の反対の前記周縁端部の周りの第2の周面を有し、前記第1の周面及び前記第2の周面は実質的に平面状である、複数の回転可能リングと、
ここで、前記回転可能リングのスタックは、前記内部空間を低圧部と高圧部とに分離し、前記上部リングの前記第1の周面は前記低圧部に対向し、前記底部リングの前記第2の周面は前記高圧部に対向し、
前記内面は、前記内部空間の前記低圧部内で前記回転可能リングのスタックの前記周縁端部の周りで外向きに傾斜しており、
前記上部リングの前記周縁端部及び前記外側エンクロージャの前記内面は第1の間隙を画定し、前記真空ポンプが前記気体をポンピングしている間に前記気体は前記低圧部から前記第1の間隙を通って前記高圧部に流れることができ、前記第1の間隙を通って前記高圧部から前記低圧部に前記気体が逆漏れするのを防止するためのシールがなく、前記第1の間隙は第1の寸法を有し、前記第1の寸法は、前記高圧部から前記低圧部に逆漏れする前記気体が、前記低圧部の圧力が所定の目標最小圧力に達するまで前記真空ポンプが前記気体をポンピングしている間に、前記低圧部から前記高圧部への前記気体の正味の流出を制限するのを防止するように、前記低圧部内の前記目標最小圧力における前記気体の平均自由行程の長さによって決定され、
前記回転可能リングのスタックに結合された駆動装置であって、前記駆動装置は、前記真空ポンプが前記気体をポンピングして前記回転可能リングのスタックを回転させているときに動作可能であり、各リングの前記第1の周面及び前記第2の周面が、前記低圧部内の前記気体の前記分子が前記間隙を通じて外向きに流れるようにして、前記低圧部内の圧力を低減するために、前記気体の前記分子の最も可能性の高い速度の約1~6倍の範囲内の接線速度を有する、駆動装置と
を備える、真空ポンプ。
【請求項35】
前記目標最小圧力は、少なくとも約10-4atm程度の低さである、請求項34に記載の真空ポンプ。
【請求項36】
前記駆動装置は、前記真空ポンプが前記気体をポンピングして前記回転可能リングのスタックを回転させるときに動作可能であり、各リングの前記第1の周面及び前記第2の周面は、約1atmの開始圧力から前記目標最小圧力までの前記低圧部の圧力範囲にわたって前記気体の前記分子の最も可能性の高い速度の約1~6倍の範囲内の接線速度を有する、請求項35に記載の真空ポンプ。
【請求項37】
前記目標最小圧力は、約10-4~10-6atmの範囲内である、請求項34に記載の真空ポンプ。
【請求項38】
前記駆動装置は、前記真空ポンプが前記気体をポンピングして前記回転可能リングのスタックを回転させるときに動作可能であり、各リングの前記第1の周面及び前記第2の周面は、約1atmの開始圧力から前記目標最小圧力までの前記低圧部の圧力範囲にわたって前記気体の前記分子の最も可能性の高い速度の約1~6倍の範囲内の接線速度を有する、請求項35に記載の真空ポンプ。
【請求項39】
前記駆動装置は、前記真空ポンプが前記気体をポンピングして前記回転可能リングのスタックを回転させているときに動作可能であり、各リングの前記第1の周面及び前記第2の周面は、前記低圧部内の圧力が所定の開始値を有するときに第1の速度値を有し、前記低圧部内の圧力が前記目標最小圧力に向かって減少するにつれて前記第1の速度値よりも漸進的に大きくなる1つ以上の第2の速度値を有する接線速度を有する、請求項34に記載の真空ポンプ。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、2020年4月15日に出願された米国特許出願第16/849,467号の利益を主張する。
【背景技術】
【0002】
背景
1.発明の分野
本発明は、一般にポンプの分野に関し、より詳細には、様々な気体をより低い圧力にポンピングするための機械式真空ポンプに関する。より詳細には、本発明は、シール又は突出若しくは傾斜したブレード若しくはベーンを使用せずに衝突気体分子をポンピングするために超音速接線速度で回転可能な気体衝突面を有する機械式真空ポンプに関する。
【0003】
2.関連技術の説明
本明細書全体を通じた関連技術のいかなる議論も、そのような関連技術が実際に先行技術であるか、又は広く知られているか、又は当技術分野における共通の一般知識の任意の部分を形成することを承認するものとして意図されておらず、決してそのように考えられるべきではない。
【0004】
水蒸気、窒素、水素、酸素、塩素、二酸化炭素、メタンなどの気体、及び空気、水素化物ガス、ハロゲンガス、オイル、水、酸化剤ガス又は不活性気体と混合されたペルフルオロカーボンガスなどの気体混合物を含む、様々な気体及び気体混合物をポンピングするように適合されたいくつかの異なるタイプの機械式ポンプがある。そのようなポンプは、とりわけ、ある空間又は場所から別の空間又は場所に気体を移送すること、及び、空間から気体を排出して空間内の圧力を低下させることを含む様々な目的のために使用される。このようなポンプは、家庭用電気掃除機、石油及びガスの生産、流通、及び貯蔵、低圧乾燥用途、半導体製造、コーティング用途、化学製造プロセス、低圧が必要な科学研究を含む多様な用途に使用されている。
【0005】
空間から気体分子を排出して空間内の圧力を低下させるために使用されるポンプは、周囲環境に対して空間内の圧力を低下させるように動作することによってポンプが部分真空を生成することができるため、真空ポンプと呼ばれることがある。これらのタイプのポンプが生成することができる最高レベルの真空、すなわち最低圧力は、典型的には、それらの特定の設計及び動作に依存する。様々な用途は、異なる値及び範囲の減圧を必要とする。例えば、いくつかの用途は、大気圧(atm)の約20~50%の範囲、すなわち約0.5atmまでの圧力で動作することができる。多くの半導体製造用途を含む他の用途では、中~高真空範囲内、例えば10-4~10-6atmのはるかに低い圧力が必要になる場合がある。いくつかの用途では、粒子加速器及び表面物理学研究などのために、超高真空範囲に入るさらに低い圧力が必要とされることがある。このようなレベルの低圧を生成するために、様々なタイプの真空ポンプが使用される。そのようなポンプは、ロータリーベーンポンプ、ピストンポンプ、ダイアフラムポンプ、スクリューポンプ、ドライポンプ、及びルーツブロワなどの容積型ポンプ、並びに、ターボ分子ポンプ及び分子ドラッグポンプを含む運動量伝達ポンプを含む。上述のポンプはすべて、本出願に記載された例示的な実施形態とは対照的に、機械式ポンプである。
【0006】
容積型真空ポンプは、一般に、典型的な運動量伝達ポンプと比較して実質的に一定の容積で各ポンピングサイクル中に一定の変位量の気体を移動させるように設計され動作する
。したがって、ポンピングされる気体の圧力が大気圧を実質的に下回ると、そのようなポンプは一般に、追加の気体分子を排出する効率がますます低くなり、最終的に圧力をさらに下げることができなくなる。容積型真空ポンプは、一般に、追加のポンプ又はポンピングステージを組み合わせて使用しなければ、約1atmから10-4atmの範囲まで圧力を低下させることしかできない。ポンピングステージは、他の真空構成要素又はポンピング構成要素の同様のユニットセットにつながる気体流路を有するポンピング構成要素のユニットセットを指す。
【0007】
対照的に、ターボ分子及び分子ドラッグポンプは、典型的には、回転平面に対して上方及び/又は下方に突出するか又は傾斜したブレード構造を利用する。これにより、遮断断面積及び分子と接触する表面積が増加し、能動的に遮断され、衝突する分子の数が増加し、ブレードの回転運動量がそれらに伝達される。これらのタイプのポンプはまた、典型的な容積型ポンプよりもはるかに高い回転速度で動作し、したがって、約10-4atm未満の圧力を含む典型的な容積型ポンプよりも低い圧力で気体をより効率的にポンピングすることができる。しかしながら、ターボ分子ポンプ及び分子ドラッグポンプは、少なくとも部分的に、高速回転ブレード及び他の回転構成要素上の衝突した気体分子の運動量及び運動エネルギー負荷の伝達による抗力の実質的な影響のために、周囲の大気圧に近い比較的高い圧力で気体をポンピングするのに効果的又は効率的ではない。実際の使用では、ターボ分子ポンプ及び分子ドラッグポンプは、ポンピングされる気体がすでに約10-3~10-4atm未満の減圧範囲に入るまでは実際的に有効ではない。さらに、そのようなポンプは、非常に小さい背圧勾配にも敏感であり、それによって、より高い圧力を有する排気空間へと気体をポンピングしようとするときに失速する可能性がある。したがって、そのようなポンプは、それ自体では、大気圧により近い高圧から気体をポンピングするために、又は気体を周囲大気に直接ポンピングするのに有効又は効率的ではない。したがって、ターボ分子ポンプ及び分子ドラッグポンプは、典型的には、排気空間の圧力を、ターボ分子ポンプ又は分子ドラッグポンプが失速することなく気体を効果的にポンピングすることができる比較的低い圧力まで最初に低下させる1つ以上の出口側(フォアライン)ポンプと組み合わせて利用される。
【0008】
したがって、従来の機械式真空ポンプの1つの欠点は、一般に、単一の従来のポンプでは、約1atm~約10-4atm、10-6atm、又はそれより低い比較的広い範囲にわたって圧力を有効且つ効率的にポンピングすることができないことである。代わりに、複数のポンプ及びポンピングステージが必要とされ、これは、相当の追加コスト、メンテナンスの増加、貴重な空間の使用の増加、並びに複数の構成要素の障害及び機能停止のリスクの増加を伴う。
【0009】
別の欠点は、多くの従来の機械式真空ポンプが、ブレード、ベーン、ピッチ、ギア、爪、インペラ、又は同様の突出面を有するロータなど、様々な形状の何らかの形態の相互接続又は噛み合ったロータ及びステータを利用して、別のポンピングステージ又は出口に向かってポンピングされる気体の分子に能動的に物理的に接触して押すことである。さらに、そのようなポンプは、一般に、様々なシール、シーラント、潤滑剤などを必要とする。気体分子に能動的に物理的に接触して押すためのそのような構造の使用は、回転部品の重い質量と共に、シール、シーラント及び潤滑剤の機械的摩擦及び摩耗、並びに物理的及び化学的劣化をもたらす実質的な抗力を生成する。これは、回転構成要素の回転速度の範囲、したがってそのようなポンプが効果的且つ効率的に動作することができる圧力の範囲を制限する。さらに、ポンピングされる気体又は気体混合物が苛性、腐食性であるか、又は研磨粒子若しくは粉末を含む限りにおいて、そのような化学粒子及び研磨粒子との反復能動的高速衝突は、ポンプの可動及び非可動構成要素の摩耗及び損傷を加速し、増加させる可能性がある。なおさらに、気体分子及び他の粒子との急速に繰り返される高速衝突は、相当量の断熱圧縮熱を生成する可能性があり、これはポンプ構成要素の摩耗及び損傷をさ
らに悪化させる可能性があり、ポンプの効率及び有効圧力範囲に悪影響を及ぼす可能性がある。
【0010】
従来の機械式真空ポンプのさらに他の問題及び欠点は、それらが一般に、多数の相互接続された又は噛み合った可動及び非可動構成要素を有する複雑な設計を有し、気体流路のコンダクタンスを低減し、気体漏れ逆流抵抗を増加させるためにそのような可動及び非可動構成要素間に長い非常に細かい寸法公差を必要とし、典型的には、気体漏れ逆流及びポンピング効率の損失を防止するために、高圧側と低圧側との間及び/又はポンピングステージ間に1つ以上の段及びシールを使用する必要があることである。低圧側又は入口が高圧側又は出口から密閉されていない特定の真空ポンプであっても、最終的に気体が逆漏れするのを防ぐために、同じポンプハウジング内の後続のポンピングステージの低圧側間又は連続するポンプ間のいずれかで密閉が依然として典型的に必要である。
【0011】
1世紀ほど前に、テスラ及びゲーデは、羽根なしディスク又はシリンダを使用する真空ポンプ設計を実験した。しかしながら、テスラポンプでは、ディスク又はシリンダの回転面は、比較的低い亜音速でのみ回転するように設計されている。テスラ実験は特に成功せず、追加のポンプ又は複数のポンピングステージを使用せずに、約1atmから中程度~高真空範囲、例えば約10-6atm又はそれ以下の広範囲の圧力にわたってポンプの低圧側から気体を有効且つ効率的にポンピングすることができる真空ポンプを生成しなかった。さらに、テスラ実験は、ポンプの低圧側又はポンピングステージ間への気体逆漏れを防止するために1つ以上のシールを使用する必要なしに、そのような広範囲の圧力にわたって気体をポンピングすることができるポンプをもたらさなかった。さらに、テスラポンプ設計は、広範囲の圧力にわたって降下圧力によってポンプ効率を維持する方法に対処しておらず、その結果、ポンプ設計は、かなり限られた圧力範囲及び比較的高い圧力範囲でのみ効率的な運転が実質的にできた。したがって、テスラポンプは、前世紀にわたって実際の使用に広く採用されてきたわけではないが、技術的な関心は大いに残っている。対照的に、ゲーデポンプは、突出した傾斜したブレードを有し、上述のようなそのようなポンプのすべての制限を伴う今日のターボ分子ポンプ及び分子ドラッグポンプに進化している。
【発明の概要】
【発明が解決しようとする課題】
【0012】
上述した従来の機械式真空ポンプ及び他のものの様々な欠陥、問題、及び欠点に対処する真空ポンプが依然として必要とされている。本明細書に詳細に示され説明された、超音速回転可能羽根なし気体衝突面を有する非密閉型真空ポンプのいくつかの例示的な実施形態は、そのようなポンプを提供する。
【課題を解決するための手段】
【0013】
発明の簡潔な概要
超音速回転可能羽根なし気体衝突面を有する非密閉型真空ポンプは、静止した実質的に気体不透過性の隔壁によって分離された低圧部及び高圧部を備える。低圧部から高圧部に気体が流れるための気体流路は、隔壁を貫通している。気体流路を通じて高圧部から低圧部に気体が逆漏れするのを防止するためのシール及び差圧ポンピングステージは存在しない。ブレード、ベーン、インペラ、又は他の実質的な突出部のない、実質的に平面状、テーパ状、又は別の形状であり得る回転可能面が、高圧部の空間内に位置付けられる。回転可能面は、回転時の気体分子との衝突による抗力を最小限に抑えるために特徴がない。回転可能面は、空間に入る気体の分子によって受動的に衝突されるように適合されている。駆動装置が、回転可能面に結合され、回転可能面の少なくとも一部が、回転可能面に衝突する気体の分子の最も可能性の高い速度の約1~6倍の超音速範囲内の接線速度で回転するように、回転可能面を回転駆動するように適合される。その接線速度範囲では、ランダ
ムに移動する低速気体分子が、低圧部の気体の圧力のさらなる低下を制限する速度及び容積において高圧部から低圧部に逆漏れし得る前に、出回転可能面は、衝突する気体分子をその周縁から実質的に直接外側に向けて高速且つあるレート及び容積において方向転換して放出し、低圧部の気体の圧力を選択された目標最小圧力まで低下させる。1つの目標最小圧力は、約0.5atmであってもよい。別の目標最小圧力は、約10-6atmであってもよい。
【0014】
一態様によれば、隔壁は、高圧部に露出する静止面を有し、回転可能面は、隔壁の静止面に対向する回転可能面を有する。対向する表面は、約0.5mm~約100mmの間の寸法を有する間隙、空間、又は距離によって分離されており、これは、回転可能面の実質的に周縁端部全体の周りに連続していてもよく、好ましくは連続する。
【0015】
別の態様によれば、回転可能面は、薄い平面状又はテーパ状ディスクを備えてもよく、別の態様によれば、回転可能面は、開いた内部部分を有する薄い平面状又はテーパ状リングを備えてもよい。回転可能面はまた、円錐形又は冠状のディスク又はリングなどの別の形状を含むことができるが、選択された形状にかかわらず、回転可能面は、表面から外向きに突出する特徴を含まないことが好ましい。回転可能面は周縁を有し、周縁は、周縁の周りに延在する周面部分と、回転軸と、回転軸と周縁との間の第1の幅寸法とを有する。周面部分は、好ましくは、本発明の一態様による第1の幅寸法の約0.05から0.5倍であり、本発明の別の態様による第1の幅寸法の最大1倍である第2の幅寸法を有する。
【0016】
別の態様によれば、複数の実質的に平行な回転可能面は、積層構成に構成され、一体構造としてともに又は別個に且つ互いに独立して回転することができる。
【0017】
さらに別の態様によれば、回転可能面は、静止しており、実質的に気体不透過性である壁を有する開いた外側ハウジング、チャンバ、又はエンクロージャによって画定された内部空間内に配置される。回転可能面は、内部空間を低圧部と高圧部とに分割するように内部空間内に位置付けられる。低圧部と高圧部とは気体連通しており、高圧部から低圧部への気体の漏れを防止するためのシールは存在しない。回転可能面は、低圧部と高圧部の両方において気体の分子が衝突するように適合されている。駆動装置は、少なくとも一部が、回転可能面に衝突する気体の分子の最も可能性の高い速度の約1~6倍の超音速範囲内の接線速度で回転するように、回転可能面を回転駆動するように適合される。その接線速度範囲では、ランダムに移動する低速気体分子が、低圧部の気体の圧力のさらなる低下を制限する速度及び容積において高圧部から低圧部に逆漏れし得る前に、出回転可能面は、衝突する気体分子をその周縁から外側に向けて高速且つあるレート及び容積において方向転換して放出し、低圧部の気体の圧力を選択された目標最小圧力まで低下させる。1つの目標最小圧力は、約0.5atmであってもよい。別の目標最小圧力は、約10-6atmであってもよい。
【0018】
別の態様によれば、ハウジング、チャンバ、又はエンクロージャの壁は、回転可能面の周りに延在し、回転可能面と共に低圧部を画定する内面を有する。内面は、回転可能面から外向きに放出された気体分子を周面から離れるように導くために、回転可能面の周縁端部の近傍で外向きに傾斜している。回転可能面の周縁端部は、約0.5mm~約100mmの間の寸法を有する間隙、空間、又は距離によって内面から分離されており、これは、回転可能面の実質的に周縁端部全体の周りに連続していてもよく、好ましくは連続する。
【0019】
さらに別の態様によれば、回転可能面は、低圧部に露出した第1の回転可能面と、低圧部に露出した第2の回転可能面とを有する。高圧部内の実質的に気体不透過性のエンクロージャは、回転可能面の周りの空間の領域を封止し、第2の回転可能面に隣接する低圧の領域を作成するために、第2の表面に隣接し、第2の表面から小さい間隙によって分離さ
れた開口部を有する。
【図面の簡単な説明】
【0020】
【
図1】例示的な実施形態による、超音速において回転可能な羽根なし気体衝突面を有する非密閉型単段真空ポンプの部分断面及び部分透過上面斜視図である。
【
図2】
図1の超音速において回転可能な羽根なし気体衝突面を有する非密閉型真空ポンプの断面図である。
【
図3】別の例示的な実施形態による、超音速において回転可能な羽根なし気体衝突面を有する非密閉型真空ポンプの部分断面及び部分透過上面斜視図である。
【
図4】
図3の超音速において回転可能な羽根なし気体衝突面を有する非密閉型真空ポンプの断面図である。
【
図5】さらに別の例示的な実施形態による、超音速において回転可能な羽根なし気体衝突面を有する非密閉型真空ポンプの部分断面及び部分透過上面斜視図である。
【
図6】ポンプの低圧部内に任意選択の構成要素を有する、
図5の超音速において回転可能な羽根なし気体衝突面を有する非密閉型真空ポンプの断面図である。
【
図7】
図5の例示的な実施形態の変形例による、超音速において回転可能な羽根なし気体衝突面を有する非密閉型真空ポンプの部分断面及び部分透過上面斜視図である。
【
図8】
図7の超音速において回転可能な羽根なし気体衝突面を有する非密閉型真空ポンプの断面図である。
【
図9】なお別の例示的な実施形態による、超音速において回転可能な羽根なし気体衝突面及び開放フレームを有する非密閉型真空ポンプの部分断面及び部分透過上面斜視図である。
【
図10】
図9の超音速において回転可能な羽根なし気体衝突面及び開放フレームを有する非密閉型真空ポンプの断面図である。
【
図11】開放フレームを省いた、
図9の超音速において回転可能な羽根なし気体衝突面を有する非密閉型真空ポンプの部分透過上面図である。
【
図12A】例示的な実施形態による、超音速において回転可能な羽根なし気体衝突面を有する非密閉型単段真空ポンプの回転可能ディスクの1つの変形例の上面図である。
【
図12C】例示的な実施形態による、超音速において回転可能な羽根なし気体衝突面を有する非密閉型真空ポンプの回転可能ディスクの別の変形例の側面図である。
【
図12D】例示的な実施形態による、超音速において回転可能な羽根なし気体衝突面を有する非密閉型真空ポンプの回転可能リングの1つの変形例の上面図である。
【
図12E】例示的な実施形態による、超音速において回転可能な羽根なし気体衝突面を有する非密閉型真空ポンプの回転可能リングの別の変形例の上面斜視図である。
【
図12G】例示的な実施形態による、超音速において回転可能な羽根なし気体衝突面を有する非密閉型真空ポンプの回転可能ディスクのさらに別の変形例の上面図である。
【
図12I】例示的な実施形態による、超音速において回転可能な羽根なし気体衝突面を有する非密閉型真空ポンプの回転可能ディスクのなお別の変形例の上面図である。
【
図12K】例示的な実施形態による、積層構成にある、超音速において回転可能な羽根なし気体衝突面を有する非密閉型真空ポンプの複数の回転可能リングの1つの変形例の上面斜視図である。
【
図12M】例示的な実施形態による、積層構成にある、超音速において回転可能な羽根なし気体衝突面を有する非密閉型真空ポンプの複数の回転可能リングの別の変形例の上面斜視図である。
【
図12O】例示的な実施形態による、超音速において回転可能な羽根なし気体衝突面を有する非密閉型真空ポンプの回転可能リングのなお別の変形例の上面斜視図である。
【発明を実施するための形態】
【0021】
好ましい実施形態の詳細な説明
例示的な実施形態の詳細な説明が、添付の図面の
図1~
図12を参照して以下に与えられ、特に明記しない限り、様々な図全体を通して同様の参照符号は同様の部分を指す。詳細な説明は、例示としてのみ与えられており、添付の特許請求の範囲によって定義される本発明の範囲を限定することを意図するものではない。さらに、詳細な説明は、本発明に従って可能であり得る例示的な実施形態に関して限定的又は網羅的であることを意図するものではない。むしろ、説明した例示的な実施形態に対する様々な修正が、本発明に従って当業者によって理解されると考えられる。また、記載された例示的な実施形態の様々な特徴及び要素が、他の例示的な実施形態の様々な特徴及び要素と組み合わされてもよく、したがって、同じく本発明による追加の例示的な実施形態をもたらすことが当業者には理解されることも企図される。
【0022】
特定の定義及び慣習が採用されており、本明細書の詳細な説明に関連して使用される。別段の指定がない限り、「真空」ポンプの例示的な実施形態を参照するために本明細書で使用される「真空」という用語は、ポンプが使用されることが意図されているか、又は完全な真空にポンピングすることができなければならないことを必ずしも意味するものではない。むしろ、「真空」は、ポンプの低圧部の気体圧力を始動圧力又は周囲圧力よりも十分に低い圧力まで低下させて部分真空を生成するために使用されることが意図され、そのような能力を有するポンプの省略表現として使用されるにすぎない。例えば、開始圧力又は周囲圧力は大気圧(atm)であってもよいが、そうである必要はなく、ポンプはatm未満、例えば0.5atm、10-4atm、10-6atm以下の圧力までポンピングすることが可能であってもよい。「真空」ポンプが意図され、生成することができる最低圧力値は、本明細書の詳細な説明による特定のポンプの構成及び動作の詳細に依存することを理解されたい。別段の指定がない限り、本明細書における圧力、温度、及び他の物理的パラメータ、例えば最も可能性の高い速度、平均自由行程、衝突速度などへのすべての言及は、気体が空気である20℃の温度及び1atm(760Torr、101,325Pa、1013.25mbar)の圧力に関連し、且つ/又はそれを参照する。また、以下の説明では、例として、ポンピングされる気体として空気を使用する。しかしながら、真空ポンプ10の例示的な実施形態は、空気と共にだけでなく、限定ではなく例として、水蒸気、窒素、水素、酸素、塩素、二酸化炭素、メタンなど、並びに空気、水素化物ガス、ハロゲンガス、オイル、水、酸化剤ガス又は不活性気体と混合されたペルフルオロカーボンガスなどの様々な気体混合物を含む他の気体及び気体の混合物と共に使用するように意図されており、それに適していることが理解されよう。本発明は、家庭用電気掃除機、石油及びガスの生産、流通、及び貯蔵、低圧乾燥用途、半導体製造、コーティング用途、化学製造プロセス、及び低圧が必要な科学研究を含む多様な用途に使用されている。
【0023】
本発明による真空ポンプ10の1つの例示的な実施形態を
図1~
図2に示す。一般に、真空ポンプ10は、低圧部11と、高圧部12と、低圧部11を高圧部12から分離する隔壁13と、隔壁13を通る気体流路14と、実質的に平面状の回転可能面15と、以下でさらに詳細に説明するように、回転可能面15の少なくとも一部を非常に高い接線速度で回転させるように適合された駆動装置16とを備える。真空ポンプ10は、可搬式であってもよく、又は永久的又は半永久的な位置で、例えば構造17の静止固定された基部又は表面に取り付けられてもよい。
【0024】
図1~
図2に破線の輪郭で示すように、低圧部11は、封止された、部分封止/部分開放又は開放領域又は空間18を含むことができる。低圧部11は、任意の所望の幾何学的形状を有することができる。例えば、低圧部11および領域または空間18は、部分的または完全にドーム形状であってもよく、円筒parti形、長方形、円錐形、円錐台形、または任意の他の適切な幾何学的形状であってもよい。
【0025】
低圧部11は、閉じたハウジング、チャンバ、又は他のエンクロージャの封止された内部空間18を含むことができる。上述したように、ハウジング又はチャンバ及び内部空間は、任意の所望の幾何学的形状及び構成を有することができる。低圧部11はまた、任意の所望の幾何学的形状の部分封止/部分開放空間18、又はさらには開放領域若しくは空間も含むことができる。部分封止/部分開放空間18の場合、低圧部11は、部分封止/部分開放空間18の封止された部分と、封止空間18の外部にあり、1つ以上の開口部20に密接に近接する領域又は空間19とを含むことができる。例えば、低圧部11は、1つ以上の開口部20を有するハウジング又はチャンバ内に封止された内部空間18と、開口部20の外部にあり密接に近接している空間19の比較的狭い部分又は領域とを含むことができる。1つ以上の開口部20は、低圧部11と気体連通し、別のハウジング若しくはチャンバ、気体導管、又はさらには外部周囲環境に結合又は気体連通することができる気体入口21を含むことができる。
【0026】
開放空間18の場合、低圧部11は、低圧部11と高圧部12とを分離する隔壁13を介して気体流路14の開口部22の外側に密接に近接した開放空間18の比較的狭い部分又は領域を含むことができる。結果として、本明細書の説明から明らかになるように、低圧領域は、回転可能面15に引張力を及ぼす。したがって、回転可能面15、中央開口部24、駆動シャフト25、カプラ40、駆動モータ37、及びベース17は、好ましくは、引張力に対して構造的に耐性があり、真空ポンプ10の動作中に隔壁13に対する回転可能面15の実質的に固定された一定の位置を維持するように設計され、組み立てられる。
【0027】
隔壁13は、実質的に気体不透過性であり、回転可能面15に対して静止している。隔壁は、一方側が高圧部12に露出する面13aを有し、他方側が低圧部11に露出する面13bを有する。隔壁13は、
図1~
図2に示すような実質的に平面状の構造を含んでもよく、又は湾曲していてもよく、若しくは他の幾何学的形状に形成されていてもよい。隔壁13は、少なくとも回転可能面15の近傍において、低圧部11と高圧部12とを実効的に分離するように機能する。隔壁13は、低圧部11、高圧部12、又はその両方を封止するハウジング、チャンバ、又は他のエンクロージャの一部として組み込まれ得るが、そうである必要はない。いくつかの実施形態では、低圧部11及び高圧部12のいずれか又は両方は、それらの間の隔壁13を除いて、外部環境に対して部分的又は完全に開くことができる。隔壁13は、低圧部11と高圧部12との間の好ましくは実質的に平面状の回転可能面15に隣接して、回転可能面15の周囲寸法に対して、少なくとも回転可能面15の近傍で高圧部12を低圧部11から有効に分離するのに十分な距離だけ延在するべきである。例示を目的として、
図1及び
図2は、回転可能面26の周縁15aを十分に越えて延在する隔壁13を示しているが、最も実用的な用途では、隔壁13は、好ましくは、隔壁13が回転可能面15の周縁端部26aまで、又はそれをわずかに越えて延在するように、回転可能面15の直径の寸法とほぼ同じ、又はそれよりわずかに大きい寸法を有する。さらに、隔壁13を通る気体流路14の近傍では、回転可能面15は、実質的な変形又は損傷なしに高圧部12を低圧部11から有効に分離するのに十分な構造剛性及び完全性を有することが好ましい。
【0028】
気体流路14は、隔壁13を通じて延在し、低圧部11と高圧部12との間で気体が流
れる経路を提供する。気体流路14は、隔壁13内の1つ以上の開口部22、1つ以上の管若しくは導管、及び/又はある点から別の点への限定された経路において気体が流れることを可能にする任意の他の構造若しくは組み合わせ、又はこれらの任意の組み合わせを含むことができる。気体流路14は、好ましくは、気体の分子が低圧部11から気体流路14を通って高圧部12に流れ、回転可能面15に衝突するように配置され構成される。気体流路14は、
図1~
図2に示す例示的な実施形態のように、回転可能面15の中央部分23に隣接する高圧部12への開口部22を含むことができる。中央部分23は、以下でさらに詳細に説明する駆動装置16の駆動シャフト25と共に回転可能面15の回転軸を画定する中央開口部24を含む。隔壁13の開口部22は、回転可能面15の回転軸と同軸の中心点又は軸を有することができるが、そうである必要はない。隔壁13の開口部22はまた、中央開口部24、中央部分23、及び/又は回転可能面15の回転軸から、回転可能面15の外周26に向かって選択された半径方向距離だけオフセットして配置されてもよい。気体流路14はまた、隔壁13内に散在又は分布する複数の離間した開口部22を含むことができる。複数の開口部22は、中央部分23、中央開口部24、及び/若しくは回転可能面15の回転軸に隣接して配置された開口部、並びに/又は回転可能面15の回転軸から回転可能面15の外周26に向かって同じ半径方向距離又は複数の異なる半径方向距離に配置された1つ以上の開口部を含むことができる。
【0029】
隔壁13を通じて高圧部12に入る気体流路14及び/又は1つ以上の開口部22は、以下でさらに説明する回転可能面15の回転平面に対して実質的に垂直な軸を有することができるが、そうである必要はない。気体流路14及び/又は1つ以上の開口部22はまた、回転可能面15の回転平面に対して1つ以上の角度で同じ又は異なる軸を有することができる。1つ以上の角度は、回転可能面15の回転平面に対する1つ以上の鋭角であってもよく、回転可能面15の外周26に向かって外向きに傾斜又は延在してもよい。
【0030】
上記の説明から、気体流路14及び開口部22は、高圧部12に入る気体分子の少なくともある程度の部分に少なくともある程度の方向バイアスを付与するように回転可能面15の回転平面に対して配置することができ、その結果、それらは回転軸と周縁26との間の1つ以上の選択された位置、例えばより高い接線速度で回転する位置で回転可能面15に衝突する可能性が少なくともいくらか高く、回転可能面15の周縁26に向かって傾斜している回転可能面に対する角度で回転可能面15に衝突する可能性が少なくともいくらか高いことが理解されよう。したがって、このような構成は、真空ポンプ10の効率に肯定的に寄与することができる。
【0031】
低圧部11と同様に、高圧部12は、部分封止/部分開放又は開放領域又は空間27を含むことができる。高圧部12は、任意の所望の幾何学的形状を有することができる。例えば、高圧部12は、円筒形、立方体、長方形、円錐形、円錐台形、又は任意の他の所望の幾何学的形状とすることができる。
【0032】
また、例えば、高圧部12は、1つ以上の開口部28を有するハウジング、チャンバ、又は他のエンクロージャの封止された内部空間27を含むことができる。上述したように、ハウジング又はチャンバ及び内部空間27は、任意の所望の幾何学的形状及び構成を有することができる。開口部28のうちの1つ以上は、高圧部12と気体連通する気体出口を含むことができる。気体出口はまた、別のチャンバ、気体導管、又は外部周囲環境に結合されてもよく、又はそれらと気体連通してもよい。高圧部12はまた、高圧部12を低圧部11から分離する上述の隔壁13を除くハウジング、チャンバ、又は他の構造によって境界付けられていない開放領域又は空間27を含むことができる。開放領域又は空間27は、外部周囲環境であってもよい。その場合、
図2の矢印によって示されるような、回転可能面15の外周26から衝突する気体分子の接線方向外側への流れは、気体出口を含むと考えることができる。
【0033】
本明細書に記載の例示的な実施形態の固有の特徴は、気体分子が気体流路14を通って高圧部12から低圧部11に逆漏れするのを防ぐための1つ以上のシールが必要ないことであり、その目的のためにシールが使用されないことが好ましい。この理由は、以下の追加の説明から明らかになるであろう。逆漏れ防止シールが利用されないため、本明細書に記載の真空ポンプ10の例示的な実施形態は、より少ない可動部品、より少ない検査、保守、修理又は交換を必要とする部品、及びより少ない要求公差で構成することができる。したがって、真空ポンプ10の例示的な実施形態は、従来の真空ポンプよりも構築、組み立て、及び動作するのに費用がかからず、信頼性がより高い。
【0034】
回転可能面15は、回転可能な第1の表面15aを有する第1の側面と、第1の表面15aに対向する回転可能な第2の表面15bを有する第2の側面と、回転可能面15の周縁26の周りで第1の表面15aと第2の表面15bとの間に延在する周縁端部26aとを有する。回転可能面15は、好ましくは、隔壁13及び気体流路14並びに隔壁13を通る1つ以上の開口部22に隣接して比較的密接に近接した高圧部12の領域又は空間27内に位置付けられる。より具体的には、回転可能面15は、好ましくは、第1の表面15aが、高圧部12及び気体流路14に露出する隔壁13の表面13a及び隔壁13の開口部22に面し、隣接し、比較的密接に近接した状態で位置付けられる。好ましくは、すべての実施形態において必須ではないが、回転可能面15は、第1の表面15aが、高圧部12に露出される隔壁13の表面13aと実質的に平行であり、隔壁13内の気体流路14及び/又は開口部22の軸に対して実質的に垂直又は選択された角度にあるように配置される。回転可能面15の第1の表面15a、及び、高圧部12に露出する隔壁13の表面13aは、小さい空間又は間隙29によって分離されており、結果、開口部22を通じて高圧部12に進入する気体分子の非常に大きい部分が、第1の表面15aに衝突する可能性が高い。以下のさらなる説明から明らかになる理由から、空間又は間隙29は、多種多様な気体及び最小目標圧力値での真空ポンプ10の動作を容易にするために、好ましくは約0.5mm~約100mmの範囲内にある。
【0035】
図1~
図8に示される実施形態などのいくつかの例示的な実施形態では、回転可能面15は実質的に平面状であり、第1の表面15aは実質的に平面状であり、第2の表面15bは実質的に平面状であり、第1の表面15a及び第2の表面15bは実質的に平行で同一の広がりを有し、回転可能面15の周縁26の周りに延在する周縁端部26aにおいて終端する。周縁端部26aは、第1の実質的に平面状の表面15a及び第2の実質的に平面状の表面15bに対して実質的に垂直であってもよいが、そうである必要はない。第1の表面15a及び第2の表面15bは、好ましくは、必ずしも顕微鏡レベルではなく、少なくとも目及び触覚に対して比較的平滑である。第1の表面15a及び第2の表面15bの平滑性は、回転可能面15が回転するときに回転可能面に対する抗力を制限するのに役立ち、したがって真空ポンプの効率的な動作に積極的に寄与する。
【0036】
回転可能面15の中央開口部24は、第1の実質的に平面状の表面15a及び第2の実質的に平面状の表面15bの間を通って延在する。中央開口部24は、駆動装置16に回転可能面15を回転可能に結合するために駆動装置16の駆動シャフト25を受け入れるように適合され、これは以下でさらに説明する。中央開口部24は、駆動シャフト25と共に、回転面15の回転軸を規定する。
【0037】
実質的に平面状の回転可能面15の例示的な一実施形態では、回転可能面15は、
図1~
図8、
図12A~
図12C、及び
図12G~
図12Jに最もよく示されている実質的に円形のディスク15を含む。ディスク15は、中実、部分中実/部分中空、又は中空であってもよい。この例示的な実施形態では、第1の実質的に平面状の表面15a及び第2の実質的に平面状の表面15bは各々、ディスク15の中央開口部24から周縁端部26a
まで実質的に連続的に延在することができる。ディスク15は、好ましくは、その重量を最小限に抑えるために、動作中にその構造的完全性を損なうことなく可能な限り薄くなる。同じ理由で、
図12G~
図12Jに最もよく見られるように、様々なスロット30又は他の開口部が、第1の実質的に平面状の表面15aと第2の実質的に平面状の表面15bとの間でディスク15の本体を通って延在することができる。実質的に連続した表面を有する回転可能面15の実質的に円形のディスクの実施形態は、
図1~
図4に示される真空ポンプ10の例示的な実施形態、及び、回転可能面15の構造が全体的又は部分的に真空ポンプ10の高圧部12と低圧部11との間の分離を提供する同様の実施形態における使用に特に適している。
【0038】
上述の実質的に平面状の回転可能面15の別の例示的な実施形態では、回転可能面15は、
図12D~
図12F及び
図12K~
図12Nに最もよく示されている実質的に円形の平面状リングを含む。リングは、中実、部分中実/部分中空、又は中空であってもよく、好ましくは、その重量を最小限に抑えるために、動作中にその構造的完全性を損なうことなく可能な限り薄くなる。
【0039】
この例示的な実施形態では、リングの外周26は実質的に円形である。第1の実質的に平面状の表面15aは、第1の実質的に平面状の周面部分31を備え、第2の実質的に平面状の表面15bは、第2の実質的に平面状の周面部分32を備える。第1の周面部分31及び第2の周面部分32は、実質的に平行であり、同一の広がりを有する。第1の周面部分31及び第2の周面部分32は各々、リングの外周26の周りに実質的に連続的に延在し、リングの外周縁端部26aにおいて終端する。外周縁端部26aは、第1の周面部分31及び第2の周面部分32に対して実質的に垂直であってもよいが、そうである必要はない。第1の周面部分31及び第2の周面部分32は各々、外周縁端部26aから半径方向内向きに、選択された距離だけ延在し、内周縁端部33において終端する。
【0040】
リングは、中央開口部24を収容する中央ハブ部分34を有する。中央開口部24は、中央ハブ部分34を通って延在し、前述のように駆動装置16の駆動シャフト25を受け入れるように適合される。中央開口部24は、駆動シャフト25と共に、リングの回転軸を規定する。半径方向に離間した複数のスポーク35が、中央ハブ部分34と第1の周面部分31及び第2の周面部分32の内周縁端部33との間で半径方向外向きに延在し、第1の周面部分31及び第2の周面部分32を中央ハブ部分34に堅固に接続する。スポーク35は、直線的に延在し、正方形の縁部を有するものとして示されているが、当業者であれば、スポーク35は、湾曲した形状、傾斜した形状、蛇行した形状、及び剛性接続を提供することと一致する他の形状を含む様々な形状を有することができ、空気力学的な合理化のために、丸みを帯びた形状又は勾配形状などの様々な縁部形状を有することができることを理解するであろう。
【0041】
外周縁端部26aと内周縁端部33との間の距離は、第1の周面部分31及び第2の周面部分32の幅を含む。中央開口部24と外周縁端部26aとの間の距離は、リングの幅(半径)を含む。当業者は、リング幅の選択がトレードオフを呈することを理解するであろう。より小さいリング幅は、より高い圧力値においてより少ない抗力を有する。しかしながら、より大きいリング幅は、より低い圧力値において比較的長い平均自由行程を有する分子の衝突のためのより大きい表面積を提供する。同様の考慮事項が、平均自由行程及び圧力に関して回転可能面15と隔壁13との間の間隙29の寸法に適用され、すなわち、より大きい間隙は、比較的高い圧力レジームでの使用に適し得、一方、より低い圧力レジームでは、比較的高い値の平均自由行程及び高い速度を有する気体分子の逆漏れを制限するために、比較的小さい間隙が必要とされ得る。以下の追加の説明からより明らかになり、気体分子による衝突のために存在する表面積に関する理由から、第1の周面部分31及び第2の周面部分32の幅は、好ましくはリング15の半径の幅の約0.05~0.5
倍の範囲内にある。この範囲は、多種多様な異なる気体及び最小目標圧力値を有する真空ポンプ10の使用に対応する。約0.5atmの目標最小圧力の場合、幅は半径の幅の約0.05~約0.2倍であり得る。約10-4atmの目標最小圧力の場合、幅は半径の幅の約0.1~約0.3倍であり得る。約10-6atmの目標最小圧力の場合、幅は半径の幅の約0.3倍超であり得る。
【0042】
回転可能面15の例示的なディスクの実施形態と同様に、
図12D~
図12Fの回転可能面15の例示的なリングの実施形態の要素は、好ましくは、重量を最小限に抑えるために、動作中のリング15の構造的完全性を損なうことなく、可能な限り薄くなる。加えて、リングは、中央ハブ部分34、第1の周面部分31及び第2の周面部分32の内周縁端部33、及び隣接するスポーク35によって封止又は境界された内部部分36を備える。内部部分36は、材料を有せず、開放空間を備え、リング15の重量をさらに低減する。開放空間のために、回転可能面15のリングの実施形態は、
図5~
図10に示される真空ポンプ10の例示的な実施形態、及び、対向する第1の周面部分31及び第2の周面部分32(回転可能面15の第1の表面15a及び第2の表面15bに対応する)への圧力がほぼ等しくなり得る同様の実施形態における使用に特に適している。言い換えれば、リングの実施形態は、リングを備える構造が真空ポンプ10の高圧部12と低圧部11との間の分離を提供するために使用されないか又は必要とされない実施形態における使用に最も適している。
【0043】
回転可能面15の形態にかかわらず、真空ポンプ10の動作効率を改善するために、可能な限り重量を最小限に抑えることが好ましい。以下の説明から、気体分子が衝突することができる回転可能面15の表面積の量と、衝突する気体分子の最も可能性の高い速度に対するその表面積の接線速度との組み合わせが、真空ポンプ10が低圧部11内の気体圧力を開始値又は周囲値から目標最小圧力値まで低下させることができる速度及び効率を実質的に決定することが理解されよう。衝突のために存在する表面積を実質的に減少させることなく回転可能面15の重量を最小化することにより、駆動装置16は、特により高い気体圧で回転可能面15をより容易且つ効率的に回転させることができ、より大きい接線速度で回転可能面15を回転させることができ、それらの両方によって、真空ポンプ10が目標最小圧力値をより効率的且つ迅速に達成することが可能になる。
【0044】
図9~
図10に最もよく見られる回転可能面15のさらに別の例示的な実施形態では、回転可能面15は、中央開口部24と外周縁端部26aとの間に不均一な厚さ寸法勾配を有することができる。厚さ寸法は、連続的又は離散的に変化してもよい。1つの変形例では、厚さ寸法は、第1の表面15a、第1の周面部分31、第2の表面15b、第2の周面部分32、又はこれらの任意の組み合わせが、中央部分23、中央開口部24、及び/又は中央ハブ部分34から外方に外周26に向かって延在するにつれてテーパを有するように、実質的に連続的に変化してもよい。テーパは、必ずしもそうである必要はないが、好ましくは実質的に連続的且つ線形的である。不均一な厚さ勾配は、回転可能面が超音速範囲内の非常に高い接線速度で回転するように意図されている外周26付近の重量及び潜在的な抗力を低減しながら、回転可能面15のその回転軸及びその付近の強度及び剛性を維持するのを助けることができる。
【0045】
回転可能面15は、中央開口部24又はその付近で最大厚さ寸法を有することができ、これは周縁端部26a又はその付近の最小厚さ寸法まで減少する。この構成では、第1の表面15a及び第2の表面15bは、中央開口部24から周縁端部26aまである角度で外向きに傾斜するため、互いにほぼ平行のままであるが、まったく平行ではない。この構成でも、上述したように、回転可能面15が隔壁13、気体流路14及び開口部22に対して高圧部12内に位置付けられている場合、第1の表面15aは、高圧部12に露出している隔壁13の表面13aとほぼ平行に延在しているが、まったく平行ではない。
【0046】
回転可能面15を中空又は部分中空に構成することにより、追加の重量を除去することができる。回転可能面15のいずれかの実施形態、例えば、円形ディスク及びリングは、このように構成されてもよい。回転可能面15を構築するために使用される材料は、回転可能面15の構造的完全性、強度、及び剛性を維持するように選択することができる。構造的完全性、強度、及び剛性を確保するために、追加の方策をとることもできる。内部支持体が、第1の表面15aと第2の表面15bとの間及び/又は第1の周面部分31と第2の周面部分32との間の中空空間に設けられてもよく、支持体を提供して回転可能面15の剛性を維持するのを助けるために、第1の表面15aと第2の表面15bとの間及び/又は第1の周面部分31と第2の周面部分32との間で内部に延在してもよい。スポーク35も中空又は部分中空である場合、スポーク35の内部に内部支持体を設けることもできる。内部支持体は、例えば、ピラー又はポストなどの1つ以上の個別の構造、及び/或いは、短い周方向に延在するシリンダ、又は短い半径方向に延在するフィン若しくは壁などの1つ以上の連続構造を含むことができる。中空又は部分中空の回転可能面15の厚さ寸法が、回転可能面15が上述のように実質的に平面状であるときのように実質的に均一である場合、内部支持体も実質的に均一な寸法を有することができる。回転可能面15の厚さ寸法が変化する場合、上述したように回転可能面15がテーパ状である場合と同様に、内部支持体はそれに応じて変化するか又はテーパ状の寸法を有する。
【0047】
上述した回転可能面15のいくつかの例示的な実施形態はすべて、実質的に円形の外周26を有するが、所望に応じて他の外周形状を使用してもよいことに留意されたい。
【0048】
回転可能面15は、単一のモノリシック構造として、又は構成要素の複合体若しくはアセンブリとして構成されてもよい。回転可能面15は、適切な機械加工、成形、ベタ印刷、又は他の技法を使用して構築されてもよい。回転可能面15は、軽量であり、剛性であり、比較的高い引張強度及び破断強度を有し、高い熱応力耐性を有する材料から構築されることが好ましい。これらの特性は、回転可能面15が、回転可能面15が損傷を受けることなく本明細書に記載の非常に高い回転速度及び接線速度で回転するときに発生し得る実質的な力及び熱に耐えるために好ましい。非常に高速の回転機械にすでに使用されている様々な材料及び構造が適している。例えば、非常に高い回転速度のタービン及びターボ分子ポンプなどの特定の既存の真空ポンプに現在使用されている様々な材料が適している。適切な材料は、限定はしないが、様々なチタン合金、マグネシウム合金、アルミニウム合金、炭素繊維及び炭素繊維複合材、ガラス繊維及びガラス繊維複合材、カーボングラファイト、Kevlar(登録商標)、並びに前述の様々な複合材及び組み合わせを含むことができる。
【0049】
加えて、振動を引き起こすか又は受ける可能性がある回転可能面15(及び真空ポンプ10の任意の他の構成要素)が、精密に平衡され、本明細書に記載の非常に高い回転速度で回転可能面が回転するときに起こり得る振動及びそのような振動の影響を最小限に抑えるために適切に減衰されることが好ましい。高回転速度タービン、ハードディスク、コンピュータ数値制御(CNC)切断機、及びターボ分子ポンプなどの特定の既存の真空ポンプなどの既存の超高回転速度機械に関連してすでに使用されている精密平衡及び振動減衰要素及び技法は、その目的に適している。
【0050】
回転可能面15は、回転平面内で回転軸を中心として回転可能であるように適合されている。したがって、回転可能面15の第1の表面15a及び第2の表面15bは、回転軸を中心として回転平面内で回転可能であるように適合されている。必須ではないが、好ましくは、回転平面は、回転軸に対して実質的に垂直である。
図1~
図2に示され、上述された例示的な実施形態では、回転可能面15、より具体的には回転可能面15の第1の表面15aは、好ましくは、高圧部12に露出した隔壁の表面13a及び隔壁13の開口部
22に隣接し、密接に近接し、対向して高圧部12内に位置付けられる。この位置では、回転可能面15、より具体的には第1の表面15aの回転平面は、隔壁13の表面13aに実質的に平行であり、気体流路14及び/又は開口部22の軸に対して実質的に垂直である(又は、選択された一つ以上の角度にある)。
【0051】
一般的に言えば、回転可能面15の第1の表面15aが回転平面内で回転すると、第1の表面15a上の各点又は位置は、それに関連する接線速度及び関連する遠心力を有する。隔壁13内の開口部22を通って高圧部12に入る気体分子が様々な点又は位置において第1の表面15aに衝突すると、それらの点又は位置に関連する接線速度及び遠心力が衝突する気体分子に伝達される。接線速度及び遠心力が十分に大きい場合、それらは衝突分子の指向力に打ち勝ち、衝突分子を第1の表面15aの周縁26に向け直し、最終的に、反射された入来速度と回転可能面15の方向及び速度の接線速度とのベクトルの組み合わせで衝突分子を周縁26から外向きに高圧部12へと放出することができ、そこでそれらは最終的に気体出口に向けられ得る。十分な数の衝突分子が十分な速度で周縁26から外向きに放出される場合、低圧部11から高圧部12への気体分子の正味の外向きの流れが、
図2、
図4~
図8などの矢印によって示されるように生成される。気体分子の外向きの流れは、回転可能面15の第1の表面15aに隣接する隔壁13の表面13aによって少なくとも部分的に案内される。
【0052】
広範囲の圧力条件にわたって気体の実質的な正味流出を生成するのに十分な速度で十分な体積の衝突分子を方向転換するために、本発明者は、当業者によってこれまで想定されていなかった非常に高い回転速度及び接線速度で回転可能面15、より具体的には第1の表面15aを回転させることを発見した。より具体的には、本発明者は、回転可能面15、より具体的には第1の表面15aを、回転可能面15、より具体的には第1の表面15aの少なくとも一部に、回転可能面15、より具体的には第1の表面15aに衝突する気体分子の最も可能性の高い速度の倍数である関連する接線速度を付与するのに十分な回転速度で回転させることを発見した。さらにより具体的には、本発明者は、回転可能面15、より具体的には第1の表面15aの少なくとも一部が、衝突気体分子のマクスウェル-ボルツマン速度分布による衝突気体分子の最も可能性の高い速度の約1~6倍の範囲内であることが好ましい接線速度で回転するような回転速度で回転可能面15、より具体的には第1の表面15aを回転させることを発見した。真空ポンプ10が使用されることが意図される代表的な気体の例として1気圧、20℃の空気分子を使用すると、最も可能性の高い速度は約410m/secであり、1atm及び20℃の乾燥空気中の音速は約343m/secである。これは、一般に超音速であり、音速の約1.2から7.2倍(約マッハ1.2~マッハ7.2)の範囲内の接線速度の範囲に等しい。回転可能面15の少なくとも一部が好ましい接線速度の範囲内で回転する状態で動作すると、真空ポンプ10の例示的な実施形態は、複数のポンプ又はポンピングステージを利用する必要なしに、広範囲の異なる気体で、広範囲の圧力及び温度にわたって優れたポンピング結果を提供することができる。
【0053】
本発明者はさらに、記載された好ましい範囲内の接線速度値を生成するのに十分な回転速度で回転されると、回転可能面15、より具体的には第1の表面15aは、回転可能面15、より具体的には第1の表面15aの周縁26からの、低圧部11から高圧部12への気体の実質的な速度及び体積の正味の外向きの流れを確立するのに十分な速度で十分な数の衝突気体分子に十分な外向きの接線モーメントを付与し、低圧部11に気体が逆漏れするのを防ぐためにシールを使用する必要なくそれを行うことを発見した。さらに、低圧部11から高圧部12に出て第1の表面15aに衝突する衝突気体分子は、より遅い速度の分子を戻すことによって低圧部11内の気体分子を補充することができる速度を実質的に超える速度及び体積で第1の表面15aから外向きに放出される。したがって、説明したように構築及び動作されると、真空ポンプ10の例示的な実施形態は、低圧部11内の
圧力を開始圧力又は周囲圧力から目標最小圧力値まで迅速且つ効率的に低下又は低減することができる。
【0054】
本発明者はまた、記載されたように構築され動作されると、真空ポンプ10の例示的な実施形態が、従来の真空ポンプで典型的に必要とされるように複数の異なるポンプ及び/又は複数のポンピングステージを使用する必要なく、単一のポンプを使用して単一のポンピングステージ内で低圧部11内の圧力を開始圧力又は周囲圧力から目標最小圧力まで広範囲にわたって迅速且つ効率的に低下させることができることを発見した。例えば、本発明者は、説明したように構築及び動作された真空ポンプ10の例示的な実施形態が、低圧部11内の圧力を、一般的な荒削り真空用途のために、約1atmの開始圧力又は周囲圧力から0.5atmの目標最小圧力まで、さらには同じポンプを使用して単一のステージにおいて中~高真空範囲、例えば10-4~10-6atmまで迅速且つ効率的に低下させることができることを発見した。さらに、上述したように、本発明者は、真空ポンプ10の例示的な実施形態が、説明したように構築及び動作されると、気体流路14を通って高圧部12から低圧部11に気体が逆漏れするのを防止するためにシールを使用する必要なく、低圧部11内の圧力を示された目標最小圧力値範囲まで低下させることができることを発見した。
【0055】
理解されるように、回転可能面15、より具体的には回転可能面の第1の表面15a及び第2の表面15bが、実質的に平滑であり、好ましくは外向きに延在するブレード、ベーン、インペラ、又は他の突出部又は特徴を有しない平面状の表面であることが、本明細書に記載の例示的な実施形態の固有の特徴である。さらに、回転可能面15は、それ自体、従来のターボ分子ポンプ及び他の従来の真空ポンプに見られる角度付き又は湾曲したブレードセットのようなブレード又はインペラとして配置又は構成されない。そのようなブレード及び/又はベーンは、特により高い気体圧での主な抗力源であり、異なるタイプのポンプを使用する複数のポンプ段が、一般に、ほぼ大気圧の周囲圧力又は開始圧力から、高~中真空の範囲、すなわち10-4~10-6atm以下の目標最小圧力値までポンプダウンする必要がある実質的な理由である。
【0056】
本明細書に記載の真空ポンプ10の例示的な実施形態と従来のターボ分子ポンプとの間の基本的な違いは、後者のブレード又はベーンのセットが、気体分子に能動的に接触し、それらをブレード又はベーンの前に物理的に押すために気体を介して意図的に回転され、より多くの分子に能動的に衝突するために接触断面積を増加させる角度に実際に配置されることである。気体分子は、あるレベル/階のブレード又はベーンの1つのセットから別のレベル/階のブレード又はベーンの別のセットへと連続的に押され、ブレード又はベーンの各連続セットは、より高速で回転し、複数のレベル/階で気体をより高い圧力にさらに圧縮するために異なる角度に配置される。分子を一方向に押す角度付きのブレードによる作用はまた、反対方向の反力を生成し、反力は、特により高い圧力動作においてブレード又はベーンの回転に対して負荷を及ぼす。そのような構成はまた、特により高い開始圧力又は周囲圧力において実質的な抗力効果を受ける。したがって、そのようなポンプは、大気圧などの比較的高い圧力から真空に近い圧力レベル、例えば10-4~10-6atmまで単独で、複数のポンプ段、例えばフォアラインポンプ及びバッキングポンプを使用せずにポンプダウンするのに適していないか、又は可能でさえない。対照的に、例示的な実施形態の回転可能面15は、回転時に気体分子に能動的に接触するように傾斜していないか、又は他の様態で構成されていない。むしろ、例示的な実施形態の回転可能面15は、気体分子が衝突する受動的な意味で動作する。それは、角度付きブレードが生成する作用及び反力又は回転に対する負荷を生成しない。さらに、回転可能面15に気体分子が衝突するか否かは、気体分子に対する回転可能面15の回転の方向又は角度ではなく、気体分子速度分布の自然な(ランダムな)方向に依存する。またさらに、例示的な実施形態の回転可能面15は、抗力を最大にするのではなく、抗力を最小にするように配置構成され
る。
【0057】
すべて分子を能動的に押し引きする構成要素を用いて設計されている、分子ドラッグポンプ、ターボ分子ポンプ、ベーンポンプ、ドライポンプ、スクリューポンプ、ルーツブロワ、ピストン及びダイアフラムポンプなどの従来の機械式ポンプ設計とは対照的に、本発明は、空気力学的に合理化されたプロファイルを有し、抗力を最小限に抑えるために、すべての回転構成要素、例えば回転可能面15(回転可能ディスク又はスポーク付きリング)を構築しようとすることによってその逆を行う。本発明の基本的な違いは、移動表面、例えば回転可能面15が、ランダムに自由に移動する分子による衝突を受動的に待ち、衝突時にそれらを放出することである。衝突する衝撃ごとに、分子は、回転可能面15の表面15a又は15bの少数の近密に離間した表面結合固体原子と衝突し、原子単層レベルで反跳反応を受ける。表面原子は、衝突時にそれらの回転速度を出射分子に伝達する。所与の圧力において、回転可能面15に衝突する分子の総数は、物理的表面15a、15bの投影表面積との表面衝突率の倍数であり、表面が移動しているか又は静止しているかに依存しない。別の態様は、例えば、大気圧(atm)であっても、空気分子の平均自由行程が6.58×10-6cmであることであり、これは、約0.2nmである回転可能面15の表面15a、15b上の原子間の固体格子間隔よりも二桁大きい。したがって、表面15a、15bのトポロジが巨視的に粗いか又は微視的に平滑であるかに関係なく、衝突分子が本質的に「見る」投影表面積は同じである。各衝突分子は、分子の最も可能性の高い速度の1~6倍である(表面15a又は15bとの衝突点からの)接線移動速度を受け、これは元の速度に対して加算又は減算され、衝突分子の方向を変更する。衝突分子の結果として生じる出射角は、実質的に回転可能面15の回転平面に対するグレージング角であり、衝突分子の方向は、表面の回転速度に対して接線方向である。したがって、回転可能面15の表面15a、15bのような、突出部又は他の外向きに延在する特徴を有しない実質的に平面状の表面が、回転軸に対して実質的に垂直な回転平面内で回転するとき、衝突分子は、分子自体のランダムな方向に応じて、表面の投影された物理的領域にのみ衝突する。しかしながら、回転面が回転平面及び回転軸に対して垂直ではない角度を有する場合、又はタービンの角度付きブレードなどの回転平面から外向きに延在する突出部又は他の特徴を有する場合、いくつかの分子は、分子のランダムな運動方向に基づいてブレードの投影物理表面領域に自然に衝突するが、加えて、投影領域に自然に衝突する方向に移動していない多くの分子もまた、回転し、それ以外の衝突しない分子の運動経路を遮断するときに、掃引角度付きブレードによって能動的に衝撃を受ける。したがって、回転表面15の表面15a、15bの角度のない実質的に平面状の物理的表面積の同じ全物理的面積と比較して、より多くの分子が角度付きタービンブレードによって影響を受ける。その結果、任意の回転する突出面又は傾斜面、ブレード、インペラ及びベーンは、回転軸に実質的に垂直な平面内で回転する実質的に平面状で、傾斜せず、特徴のない表面と比較して、より多くの衝撃、分子へのより多くの運動量伝達、したがってより多くの抗力及びより多くの動力消費を被ることになる。したがって、回転可能面15の表面15a、15bなどの実質的に平面状で特徴のない回転表面は、本質的に抗力をあまり被らない。したがって、本発明は、部分的には、回転表面領域に衝突することから外側に放出される分子の数を最適化しながら、駆動装置が提供することができる動力及びトルク内で、所望のポンピング速度の衝突のために存在する表面領域が被る抗力を最小化することを特徴とする。
【0058】
駆動装置16は、駆動モータ37及び駆動シャフト25を備えることができる。駆動モータ37は、駆動シャフト25を回転駆動するように動作する。駆動モータ37及び駆動シャフト25は、駆動モータ37が駆動シャフト25を直接的又は間接的に回転駆動するように配置されてもよい。駆動モータ37は、真空ポンプ10の高圧部12の領域又は空間27内に、又は高圧部12の外部に位置付けられてもよい。駆動モータ37は、適切なマウント及びコネクタを使用して、ベース17、又は真空ポンプ10とは別個の、その外部の表面又は構造などの真空ポンプ10の構成要素に取り外し可能に又は永久的に取り付
けることができる。適切な電線、冷却供給ライン及び戻りライン及び導管など38が、直接的又は間接的に駆動装置16に接続されてもよい。駆動装置16が、後述する内側エンクロージャ51によって高圧部11の領域又は空間27内に部分的又は完全に封止されている場合、電気又は他の供給ライン38は、1つ以上の適切に真空封止されたフィードスルー又は通路を介して内側エンクロージャ51の1つ以上の壁52を通じて供給することができる。同様に、駆動部が高圧部12の外部に配置されているが、駆動シャフト25が高圧部12内の内側エンクロージャ51内へと延在する場合、駆動シャフト25は、適切に密閉されたベアリングなどを介して内側エンクロージャ51の壁52を通過することができる。
【0059】
駆動モータ37が駆動シャフト25を直接駆動する構成では、駆動シャフト25は、駆動モータ37のロータを含んでもよく、又はロータに直接結合されてもよい。この構成では、駆動シャフト25は、駆動モータ37から外向きに延在し、駆動モータ37に対して回転可能である。駆動モータ37が駆動シャフト25を間接的に駆動する構成では、駆動モータ37のロータの回転運動を駆動シャフト25に伝達するために、駆動モータ37と駆動シャフト25との間に1セット又は一連のギア、ベルト、プーリ又は他の装置を使用することができる。駆動シャフト25は、真空ポンプ10に結合され、適切なベアリングなどによって真空ポンプ10に対して回転可能に支持されてもよい。
【0060】
駆動装置16、より具体的には駆動モータ37は、回転可能駆動シャフト25及びカプラ40を介して回転可能面15に回転可能に結合される。駆動シャフト25は、回転可能面15の中央開口部24に受け入れられる。上述したように、中央開口部24は、駆動シャフト25と共に、回転可能面15の回転軸を規定する。また、上述したように、駆動シャフト25は、回転可能面15の回転平面が回転軸に対して実質的に垂直であるように、回転可能面15に結合されることが好ましいが、必ずしもそうである必要はない。駆動シャフト25は、好ましくは、駆動シャフト25の回転が回転可能面15に伝達され、回転可能面15が駆動シャフト25と共に回転するように、カプラ40によって中央開口部24において回転可能面15に取り外し可能であるが固定的に結合されることが好ましい。カプラ40は、任意の適切な高回転速度カプラであってもよい。カプラ40は、可撓性又は剛性のカプラを含んでもよく、振動減衰要素を備えてもよい。カプラ40は、別個の構成要素であってもよく、又は、回転可能面15の一部若しくは駆動シャフト25の一部であってもよい。好ましくは、カプラ40は、駆動シャフト25が少なくとも回転速度値の範囲及び本明細書に記載の圧力値の範囲にわたって、滑り又は損傷なしに回転運動を回転可能面15に付与するときに生じ得るトルクの値に耐えるのに十分に強い。例示的な実施形態では、カプラ40は、1つ以上のねじ付きナットを含むことができ、駆動シャフト25は、カプラと駆動シャフトとが螺合することができるようにねじ山を付けることができる。カプラ40はまた、好ましくは、気体が高圧部12から低圧部11に通過又は逆漏れしないように、実質的に気体不透過性のバリアとして機能する。
【0061】
駆動モータ37は、回転可能面15に衝突する気体分子の最も可能性の高い速度の約1~6倍の範囲内の接線速度で回転可能面15の少なくとも一部を回転させるのに十分な回転速度の範囲にわたって回転可能面15を回転させることができる任意のタイプの駆動モータであってもよい。上記で簡潔に説明し、以下でより詳細に説明するように、ポンピングされる気体に応じて、これは一般に、音速の約1.2~約7.2倍(約マッハ1.2~マッハ7.2)の超音速範囲の接線速度に等しい。駆動モータ37は、AC、DC、若しくは誘導モータなどの適切な電気モータ駆動装置、又は適切な磁気駆動装置を含むことができる。例えば、駆動モータ37は、コンピュータ数値制御(CNC)機械のスピンドルモータとして使用される高回転速度モータ及び高トルクモータと同じタイプの駆動モータ、又は従来の高回転速度ターボ分子真空ポンプに関連して使用される同じタイプの駆動モータを適切に備えることができる。様々なCNCスピンドル駆動モータが、2.2kW、
24000rpm;9.5kW、24000rpm;13.5kW、18000rpm;20kW、24000rpm;及び37kW,20000rpmを含む様々な定格で市販されており、本明細書に記載の回転速度及び接線速度の範囲内で12、24、36、47インチ、さらにはそれより大きい直径を有する、アルミニウム、炭素繊維、及び他の材料の回転可能ディスクを駆動するのに適している。
【0062】
上述したように、駆動モータ37は、説明した好ましい範囲内の接線速度を生成するのに十分な回転速度で駆動シャフト25を直接駆動することが可能であり得るが、必ずしもそうである必要はない。駆動モータ37と駆動シャフト25との間には、従来のギア、プーリなどを用いて、必要に応じて駆動シャフト25の回転速度を増加させ、好ましい範囲内の接線速度を実現することができる。また、駆動モータ37が、軸外とされ得、中心駆動シャフト25によってではなく、適切な回転伝達機構結合を介して内周縁端部26a若しくは外周縁端部33の近く、隣、若しくは内にあるか、又は、回転可能面15の第1の表面15a及び第2の表面15b若しくは第1の周面部分31及び第2の周面部分32の上若しくは下にある駆動部材によって回転可能面15を駆動することができることが企図される。回転可能面15が、磁気浮揚リング及び駆動モータ37の構成要素の一部として構築され得ることも考えられる。
【0063】
さらに進む前に、真空ポンプ10の例示的な実施形態は、本質的に向きに関係なく構築、設置、及び操作することができ、これは本明細書に記載のすべての例示的な実施形態に適用されることが留意され、理解されよう。したがって、例えば、
図1~
図10に示す実施形態は、低圧部11が高圧部12の垂直上方にあり、隔壁13及び回転可能面15が低圧部11の下方で横方向に延在する「直立」又は「垂直」の向きで示されている。しかしながら、真空ポンプ10は、低圧部11及び高圧部12が、低圧部11に隣接して垂直に延在する隔壁13及び回転可能面15と並んでいる「側方」若しくは「横」の向きに、又は高圧部12が低圧部11の垂直上方にあり、隔壁13及び回転可能面15が高圧部12の下で横方向に延在する「反転した垂直」の向きに、又はその間の任意の他の向きに配向されてもよい。気体入口及び気体出口が含まれる場合、それらは様々な位置に様々な向きで位置付けることもできることがさらに理解される。
【0064】
上述したように、回転可能面15は、回転平面内で回転軸を中心として回転可能であるように適合され、回転可能面15の少なくとも一部は、好ましくは、回転可能面15に衝突する気体分子の最も可能性の高い速度の約1~6倍の範囲内の非常に高い接線速度で回転可能である。この根拠は、以下でさらに詳細に説明される。
【0065】
気体分子の最も可能性の高い速度は、マクスウェル-ボルツマン分布関数から導き出すことができ、以下のように表すことができる。
【0066】
【0067】
ここで、mは分子量であり、m=M/NAVであり、NAVはアボガドロ数であり、Mはモル当たりの分子量のモル質量であり、kはボルツマン定数であり、Tは温度である。
【0068】
最も可能性の高い速度は、マクスウェル-ボルツマン分布曲線のピークを表し、所与の体積中の気体分子の総数のうち、最大数の分子が速度vmを有する可能性が最も高いことを示す。例えば、1atm及び20℃では、乾燥空気中のvmは410m/secであり
、窒素(N2)中のvmは417m/secである。一方、1atm、20℃の乾燥空気中の音速は、約343m/secである。したがって、1atm及び20℃の乾燥空気中のvmは、音速の約1.2倍又はマッハ1.2である。換言すれば、これらの条件下での乾燥空気又は窒素中の最も可能性の高い速度vmは超音速である。
【0069】
最も可能性の高い速度vmはT/mのみに依存することに留意されたい。したがって、異なる気体分子又は異なる質量mの分子の混合物は、同じ温度で異なる最も可能性の高い速度vmを有する。また、統計的に十分な分子が存在する場合、速度は、分子数N、体積サイズV、及び分子体積密度n、n=N/V、に依存しない。
【0070】
所与の圧力(P)における所与の体積の空間内の気体分子はまた、平均自由行程(λ)又は衝突間の平均距離を呈する。圧力P及び平均自由行程λは反比例し、Pλ=C*であり、C*は分子断面及び質量を特徴付ける気体分子特性パラメータであり、温度依存性である。様々な異なる気体のC*の値は、「the Fundamentals of Vacuum Technology」(出版:Leybold Vacuum)を含む様々な情報源から得ることができる。真空ポンプ10の例示的な実施形態を使用することができる様々な気体に関する前述の文献の表IIIに報告されている20℃でのC*の値は、以下の通りである。
【0071】
【0072】
周知の理想気体方程式は以下の通りである。
【0073】
【0074】
式中、nは、体積V内の総数分子Nの粒子密度である。
体積内の表面の場合、気体分子はまた、1秒当たりの表面の単位面積(cm2)に衝突する分子の数を示す表面衝突率(ZA)を呈する。衝突率ZAはまた、式の以前の参照によって与えられる。
【0075】
【0076】
同様に、1秒あたりの単位体積(cm3)における気体分子と他の気体分子との衝突頻度である体積衝突率(ZV)は、圧力P2とともに、以下の関係に従って変化する。
【0077】
【0078】
式3及び式4の前述の解、すなわちZA=2.85×1020P及びZV=8.6×1022P2は、20℃の空気分子に特異的であり、Pはmbarの単位で測定され、他の気体分子及び他の条件は異なる解を生成することに留意されたい。
【0079】
以上から、所与の体積の空間内の気体分子、例えば空気分子の数が減少し、それに応じて圧力Pが減少するにつれて、残りの空気分子の平均自由行程λが増加し、表面衝突率ZA及び体積衝突率ZVの両方が減少することが明らかである。平均自由行程λ、表面衝突率ZA、及び体積衝突率ZVの値は空気とは異なり、同じ圧力値でより大きくなるか又はより小さくなる場合があるが、同じ関係が他の気体分子にも同様に当てはまる。表1に示すように、一般に、より大きい気体分子、例えば塩素(Cl2)は、同じ圧力値の範囲にわたって同じ温度で平均自由行程λの比例的により低い値を呈し、例えば、10-3mbarの空気の6.67cmに対して、10-3mbarのClでは約3.05cmを呈し、一方、より小さい気体分子、例えばヘリウム(He)は、10-3mbarで例えば約18cmの平均自由行程の比例的により高い値を呈する。
【0080】
温度及び圧力の所与の条件下での所与の体積の空間内の気体分子は、すべての方向に異なる速度(v)でランダムに移動する。マクスウェル-ボルツマン分布関数を使用して、そのような条件下での気体分子の速度(v)の分布を決定することができる。マクスウェル-ボルツマン分布関数を表すことができる1つの方法は、大学教科書「Statistical Thermodynamics」(著:John F Lee;Francis Weston Sears:Donald L Turcotte,Addison-Wesley,1963)から見出すことができ、以下のとおりである。
【0081】
【0082】
ここで、x=v/vmは速度比であり、vmは最も可能性の高い速度であり、Nは所与の体積中の分子の総数であり、N0→xは0~vの速度を有する分子の数である。erf(x)は、xの誤差関数である。また、式(5)の相補式は、以下のとおりである。
【0083】
【0084】
ここで、Nx→∞は、v~∞の速度を有する分子の数である。
上記から、所与の体積内の分子が速度(v)で体積から連続的に放出されている場合、速度v→∞を有する体積外の分子のみが体積内に戻る機会を有することが明らかである。したがって、最終的に体積内に留まることができる分子の数は、式(6)によって述べられるように速度v→∞の戻り分子の数である。
【0085】
所与の体積において、体積中の分子の総数よりも少ない所与の数の分子Nに起因する圧力の部分は、所与の数の分子Nが分子の総数に対して表す割合に正比例する。したがって、所与の体積中の分子の数Nに対する圧力は、体積内の全分子数に対する所与の数の分子の割合に正比例する。例えば、1atmで所与の体積中にN個の分子があると仮定すると、体積中のすべての分子に起因する圧力は分率N/N=1によって表され、したがって、すべての分子によって加えられる圧力の割合は1、すなわち初期圧力1atmである。同様に、速度0→vを有する分子の割合に起因する圧力は、以下のとおりであり、
【0086】
【0087】
速度v→∞を有する分子の割合に起因する圧力は、以下のとおりである。
【0088】
【0089】
分子の数Nに起因する所与の体積内の圧力は、その分子数が体積中の分子の総数に対して表す割合に正比例するため、式7及び式8はまた、それぞれ速度0→v及びv→∞を有する分子に起因する所与の体積内の分圧を表す。v=0、したがってx=0の場合は、体積中のすべての速度を有するすべての分子を計上する。この特定の場合において、すべての分子に対する分子の割合は1であり、体積中の圧力は1atmの初期圧力である。同様に、式5~8は、x=v/vmの比のみに依存する数値を表し、vは分子速度を表し、vmは最も可能性の高い速度を表す。さらに、比xは、vmを介して比xに含まれる気体分子量及び温度のみに依存する。任意の気体について、任意の常温範囲において、且つ同じ速度比xによって、式5~8の結果は、理想気体及びマクスウェル-ボルツマン分布関数の仮定内で普遍的である。式5~8に基づいて、表2は、x及び分子速度v=xvmの様々な比について所与の体積内で理論的に達成することができる最小残留圧力を示す。
【0090】
【0091】
式1~8は、多数のサンプリングされた分子に依存する統計的モデルであるマクスウェル-ボルツマン分布モデルから導出される。したがって、式1~8は、真空ポンプ10の例示的な実施形態が使用を意図する分子及び圧力の全実用範囲を含む、非常に広い範囲の分子及び圧力に対して有効である。
【0092】
特に真空ポンプ10の例示的な実施形態の回転可能面15を参照し、回転可能面15の周縁形状が円形であると仮定すると、回転可能面15の第1の表面15a上の各点又は領域の接線速度vtは、以下の式によって表される。
【0093】
【0094】
ここで、rは回転可能面の回転軸からの距離であり、ωは回転軸における回転可能面の回転速度である。関連して、各点において、接線力又は遠心力(F)は以下の式によって表される。
【0095】
【0096】
式中、mは点における質量であり、r及びvtは上記の通りである。
以上から、第1の表面15aの周縁26において、距離rが円の半径に等しく、接線速度vtが所与の回転速度ωに対してその最大値にあることが明らかである。逆に、回転軸において、接線速度vtはその最小値にある。これらの両極端の間で、第1の表面15a
上の各点の接線速度vtは、距離rの増分変化と共に線形的に増加する。
【0097】
所与の回転速度ωについて、第1の表面15a上の各点が、接線速度vt及び回転軸からの距離rに関連する遠心力Fを有することも明らかである。接線速度vtと同様に、遠心力Fも回転軸からの距離rと共に増加し、周縁26において最大値にあり、回転軸において最小値にある。回転可能面15によって達成され得る接線速度vt及び遠心力Fの範囲及び最大値は、回転軸からの距離rの値、すなわち回転可能面15の半径、又は回転可能面15が回転する回転速度ω、又はその両方の組み合わせを調整することによって調整することができることがさらに明らかである。
【0098】
説明のために例として空気を用いて続け、次に真空ポンプ10の例示的な実施形態の動作に移ると、約1atmの開始圧力又は周囲圧力において、気体流路14及び開口部22を通って低圧部11を出る空気の分子は、ランダムな角度及びある速度分布で回転可能面15の第1の表面15aに衝突する。衝突空気分子の最も可能性の高い速度は、約マッハ1.2、すなわち音速の1.2倍である。
【0099】
例示的な実施形態の回転可能面15は、半径rを有し、好ましくは、回転速度ωで回転し、結果、回転可能面15の第1の表面15aの少なくとも一部が、衝突空気分子の最も可能性の高い速度の約1~6倍の範囲内にある接線速度vtを有する。この例では、これは約マッハ1.2~マッハ7.2、すなわち音速の約1.2~7.2倍(約412~2,470m/s)のvtの範囲に対応する。
【0100】
しかしながら、回転可能面15は、真空ポンプ10の例示的な実施形態を使用してポンピングされるすべての単一の気体に対して最も可能性の高い速度の約1~6倍の好ましい範囲全体にわたって接線速度vtで回転する必要はなく、回転することが可能である必要さえないことを理解されたい。むしろ、最も可能性の高い速度の1~6倍の好ましい範囲は、真空ポンプ10の例示的な実施形態が、約0.5atmから中~高真空範囲まで、例えば10-4~10-6atm又はさらにはそれよりも低い圧力に及ぶ目標最小圧力値を、広範囲の分子質量及び最も可能性の高い速度を有する多種多様な気体で達成することができる接線速度vtの範囲を表す。
【0101】
例えば、空気の特定の場合では、約1atmの開始圧力又は周囲圧力、及び到達すべき約0.5atmの目標最小圧力が与えられると、最も可能性の高い速度の約1.1倍、すなわち約451m/secの低いvtによって優れたポンピング性能を得ることができる。中~高真空範囲、例えば10-4~10-6atmにおけるより低い目標最小圧力は、同様に、最も可能性の高い速度の約3.3~4倍の範囲、すなわち約1,353~1,640m/secのvtによって迅速且つ効率的に得ることができる。当然ながら、より高いvtは、特に分子の平均自由行程がより大きく、多くの分子が回転可能面15の周縁端部26に衝突し得ないより低い圧力において、回転可能面15の内側部分のより低い接線速度を外周端部26の内側に且つ回転軸により近く補償するために好ましい。
【0102】
前述のように、好ましい範囲内の接線速度vtは、回転可能面15の半径r(又は直径d)と回転速度ωとの様々な組み合わせによって達成することができる。一般に、より小さい値の直径dを有する回転可能面15は、好ましい範囲の接線速度vtを達成するために、より高い値の回転速度ωで回転することができ、より大きい値の直径dを有する回転可能面15は、好ましい範囲の接線速度vtを達成するために、より低い回転速度ωで回転することができる。より大きい直径dを有する回転可能面15は、接線速度vtの好ましい範囲を達成するためにより高い値の回転速度ωを生成するために駆動装置16にあまり要求を課さないことが考えられる。したがって、真空ポンプ10の例示的な実施形態は、より大きい直径の回転可能面15を使用して拡大して、従来の真空ポンプを拡大して達
成することができるよりも大きいポンピング速度を提供することができる。以下の表3は、20℃の温度条件において空気、窒素、塩素、及びヘリウムを含む様々な気体に対して好ましい範囲内の接線速度vtを生成することができる回転可能面15の直径d及び回転速度ωの多くの可能な組み合わせのいくつかを示す。
【0103】
【0104】
表3の最後の列及び表1から、不活性気体のヘリウム及びネオンの分子並びに水素の分子などの軽量の分子は、窒素よりも2~3倍長い平均自由行程λを有することが明らかであろう。加えて、ネオン及び水素の最も可能性の高い速度vmは、窒素のvmよりもそれぞれ1.2倍及び3.7倍高く、他のより重い気体の最も可能性の高い速度vmはさらに大きい。より長いλ及びより高いvmの両方は、ポンピング速度の有効性の低下及び従来の機械式ポンプによって達成され得る到達圧力を悪化させる。これは、従来の機械式ポンプが、それらのポンプダウン機構の圧力差を維持するために逆漏れ経路を制限することに依存しているためである。それらは長い平均自由行程λ及び高いvm速度を有するため、軽質気体分子は本質的に逆漏れして真空の損失を引き起こす可能性が高い。従来、軽質量分子はクライオポンプ及び反応性スパッタポンプを使用してポンピングされており、そうでなければ、オイルシールされたポンプが使用される場合、真空システムはオイル蒸気汚染の結果に対処しなければならない。従来の機械式ポンプのスケールアップされた変形例であっても、軽質量気体の特性の固有の性質を克服することはできない。対照的に、現在の例示的な実施形態の拡大された変形例を使用して、長い平均自由行程及び高い速度を有する分子を有する気体を機械的にポンプダウンすることができる。例示的な実施形態は、より大きい直径d、より高い回転速度ω、及び/若しくは後述する回転可能面15のリング/ディスクの半径のより広い幅、並びに/又はより小さい間隙29の組み合わせによってスケールアップされて、最も可能性の高い速度vmの範囲の好ましい1~6倍の要件を満たし、したがって複数の衝突回数を増加させ、分子が間隙を通って逆漏れする可能性を判別することができる。
【0105】
真空ポンプ10の例示的な実施形態の特定の用途の特定の必要性に応じて、回転可能面15の直径を、従来の真空ポンプの回転ブレード又はベーンのセットの直径と比較して非
常に大きくすることができることが企図される。しかしながら、従来の真空ポンプと比較した本明細書に記載の回転可能面15の固有の配置構成により、真空ポンプ10の例示的な実施形態は、従来の真空ポンプよりも著しく低いプロファイルによって構成することができることが理解されよう。さらに、本明細書に記載の真空ポンプ10の例示的な実施形態は、従来の真空ポンプよりもはるかに広い範囲の圧力にわたって動作することができ、したがって、本明細書に記載の単一のポンピングステージを含む単一の真空ポンプ10を、複数の従来の真空ポンプ及びポンピングステージの代わりに使用して、同等又はより良好なポンピング結果を達成することができる。
【0106】
回転可能面15は、開始圧力又は周囲圧力から目標最小圧力までの全圧力範囲にわたって同じ回転速度ωで回転する必要はないことがさらに理解されよう。例えば、回転可能面15が、第1の表面15aの少なくとも一部が本明細書に記載の好ましい範囲内の接線速度vtを有するのに十分な回転速度ωを維持する限り、回転可能面15は、圧力が開始圧力又は周囲圧力にあるときに1つの回転速度ωで、及び圧力が目標最小圧力に向かって低下するときに別のより高い回転速度Δωで回転することができる。したがって、回転可能面は、圧力が比較的高く、気体分子が回転可能面15により多くの抗力を及ぼす場合、好ましいvt範囲の下端により近い第1の接線速度vtを生成するために、1つの回転速度ωによって回転することができ、及び、圧力が比較的低く、残りの気体分子が回転可能面15により少ない抗力を及ぼす場合、好ましい範囲の上端により近い第2の接線速度vtを生成するために、第2の回転速度Δωで回転することができる。そのような動作は、単一の回転速度値において回転可能面15を連続的に回転させるよりも効率的であり得る。回転可能面15はまた、気体が送り出されるときにある圧力値範囲にわたって複数の異なる回転速度vtで回転することができ、回転速度は離散的なステップで、又はさらには所望に応じて連続的に変更することができる。
【0107】
また、回転可能面15の第1の表面15aの全表面領域が、最も可能性の高い速度範囲の1~6倍の接線速度vtで回転する必要はないことも理解されたい。むしろ、表面の一部のみが好ましい接線速度vt範囲内で回転することによって、優れたポンピング性能を達成することができる。例えば、回転可能面15の例示的なディスクの実施形態の場合、その部分は、外周26のみ、又は、外周26、及び、外周縁端部26aから内向きに延在する第1の表面15aの第1の周面部分31の表面領域の全部若しくは一部、又は、外周26、及び、周縁端部26aから第1の表面15aの表面領域全体まで内向きに延在し、それを含む第1の表面15aの表面領域の任意の部分を含んでもよい。回転可能面15の例示的なリングの実施形態の場合、その部分は、外周26のみ、又は、外周26、及び、外周縁端部26aから第1の周面部分31の全表面領域まで内側に延在し、それを含む、第1の表面15aの第1の周面部分31の表面領域の部分を含んでもよい。好ましい範囲内の接線速度vtで回転する表面積が大きいほど、単位時間当たりに送り出すことができる衝突気体分子の数及び体積が大きくなり、したがって真空ポンプ10の例示的な実施形態は、低圧部11内の圧力を開始圧力又は周囲圧力から選択された目標最小圧力までより迅速且つ効率的に低下させることができることが理解されよう。
【0108】
具体的には、回転可能面15の例示的なリングの実施形態に関して、第1の周面部分31の幅の好ましい範囲は、回転可能面15の幅に関して表現することができ、
図11及び
図12Dに最もよく見られるように、回転可能面15の幅は、回転軸から外周縁端部26aまでの距離に対応し、第1の周面部分31の幅は、外周縁端部26aと内周縁端部33との間の距離に対応する。回転可能面15が実質的に円形である場合、回転可能面15の幅はその半径rに対応する。第1の周面部分31の幅は、好ましくは、回転可能面15の半径の約0.05倍~0.5倍の範囲内であるが、半径全体に及んでもよい。別の言い方をすれば、第1の周面部分31の幅は、好ましくは、回転可能面15の半径の幅の約5~50%から約100%までの間の範囲内にある。
【0109】
第1の表面15aが接線速度vtの記載された好ましい範囲内で回転することによって、ある入射角及び速度vで第1の表面15aに衝突する分子は、入射角と同じ前方方向の鏡面反射角変化成分を最初に受け取り、例えば、法線に対して307=270+37度の時計回りの入射角は、それ自体で53=90-37度の反射角を有する。速度ベクトルvは、鏡面全反射によってその方向の角度を反転し、ここでは速度ベクトルv’と指定される。次に、速度ベクトルv’は、(vt+v’)のベクトル加算三角形の組み合わせを使用して接線速度vtにベクトル的に加算される。回転可能面15のvmよりも大きいvtの場合、vの初期の大きさ及び方向とは無関係に、任意の入射速度vを有するすべての衝突分子は、最終的に方向転換され、回転可能面15へのこれらの分子の一回又は複数回の衝突の後に、vtの大きさよりも大きい速度で回転可能面15の外周26から高圧部12へと外向きに放出される。したがって、低圧部11に残り、送り出されない分子は、vtよりも大きい速度vを有する分子であり、これは逆漏れし、高圧部12から低圧部11に戻る。表1は、例えばvmの4倍以上のvを有するそのような高速分子の割合が5×10-7未満であることを示し、これは低圧部11において達成することができる理論的な最低圧力に対応する。
【0110】
したがって、回転可能面15が記載された好ましい範囲内の接線速度vtで回転すると、低圧部11から出て回転可能面15の第1の表面15aに衝突する気体分子は、高速気体分子よりも実質的に大きい速度及び体積で回転可能面15の周縁26から外向きに放出され、逆漏れして低圧部11の結果として生じる空隙を満たし得る。これにより、低圧部11内の圧力が迅速且つ効率的に低下する。接線速度vtが衝突分子の最も可能性の高い速度vmを超える倍数が大きいほど、及び、そのような接線速度vtで回転する回転可能面15の第1の表面15aの表面積が大きいほど、衝突分子が外向きに方向転換される数及び体積が大きくなり、低圧部11内の圧力が目標最小値までより迅速に低下する。
【0111】
回転可能面15の第1の表面15aが衝突分子に付与る外向きの運動量は非常に大きく、衝突気体分子の外向きの流れの正味の速度は、気体分子が逆漏れして気体流路14を通って低圧部11に再進入して結果として生じる空隙を満たすことができる速度を実質的に超えるため、気体分子が気体流路14を通って高圧部12から低圧部11に逆漏れするのを防止するためのシールの必要はない。いくらかの気体分子が逆漏れし得る場合でも、その割合は、外側に流れる気体分子の数及び体積と比較して非常に小さいため、真空ポンプ10のシール継続動作がなくても、目標最小圧力、例えば10-6atmに達するまで、低圧部11の分子数を漸進的に減少させる。
【0112】
低圧部11内の圧力が低下し続けると、空気分子の平均自由行程は増加し続け、回転可能面15の第1の表面15aへの空気分子の衝突速度は減少し続ける。上記のように、20℃での空気分子の平均自由行程は、1atmでの約6.58×10-6cmから0.5atmでの約13.2×10-6cm、10-4atmでの約6.58×10-2cm、及び10-6atmでの約6.58cmに増加する。他の気体の分子の平均自由行程も同様に圧力の減少と共に増加し、一部は空気より大きく、一部は空気より小さい。
【0113】
回転可能面15の第1の表面15aと高圧部12に露出される隔壁13の表面13aとの間の間隙又は空間29は、回転可能面15の周縁26から外向きへの気体分子の流れのための一種の導管として作用する。間隙29の寸法が、高圧部12から間隙29を通って及びその近くを逆流して低圧領域11に入る可能性がある高速分子を物理的に最小化及び判別するために小さいことが好ましい。同時に、間隙29の寸法を小さくしすぎると、気体分子の正味の外向きの流れが阻害され、したがってポンピング効率が低下する傾向がある。
【0114】
さらに、間隙29の寸法は、真空ポンプ10の例示的な実施形態が実際に達成することができる最低目標最小圧力に影響を及ぼす。低圧部11の気体の圧力が低下すると、気体分子の平均自由行程λが増加し、回転可能面15の第1の表面15aへの分子の衝突率が低下し、ポンピング効率が低下する。しかしながら、周縁端部26aの近くの高圧部12から逆漏れするより短い平均自由行程を有する任意のより遅い速度の分子は、分子が低圧部11のより深くに侵入することができる前に、第1の表面15aへの複数の衝突によって再び放出されやすい。より遅い戻り分子の再放出は、低圧部を低圧に維持/保護する。駆動装置16が、圧力が低下するにつれて回転可能面15の回転速度をさらに増加させる能力を有する場合、圧力が低下し続けてもポンピング効率をある程度維持することができる。しかしながら、ある点で、駆動装置16が生成することができる最大回転速度に到達し、圧力は、第1の表面15a上の気体分子の長い平均自由行程と低い衝突速度との組み合わせに起因して、回転可能面15がもはや、間隙29及び気体流路14を通って高圧部12から低圧部11への気体分子の逆漏れを実質的に克服するのに十分な速度及び体積で衝突気体分子を外向きに放出することができない点まで低下する。言い換えれば、真空ポンプ10は、気体の逆漏れを実質的に防止するために、高圧部12と低圧部11との間に十分な圧力差を生成することができなくなる。この点は、真空ポンプ10が実際に達成することができる最低目標最小圧力値に対応する。上述のトレードオフを考慮して、且つ上記に示したように、空間又は間隙29は、好ましくは、約0.5mm~約100mmの範囲内の寸法を有し、これにより、真空ポンプ10の例示的な実施形態は、様々な気体によって動作し、使用される特定の構造、寸法、及び動作パラメータに応じて、例えば10-4~10-6atmなどの中~高真空範囲までの最小目標圧力値、及びさらには高真空~超高真空範囲のより低い圧力を達成することが可能になる。
【0115】
別の考慮事項は、間隙29について企図される小さい寸法では、隔壁13の表面13aに沿った気体分子の粘度が、回転可能面15の回転に対する抗力を生成し得ることである。これは、隔壁13の表面13aが静止していることに起因する。その結果、静止面13aに隣接する気体分子は、流動抵抗、すなわち粘性に遭遇する。結果として生じる抗力は、速度の勾配に比例し、回転可能面15の第1の表面15aと隔壁13の表面13aとの間の最小距離において最大である。この抵抗は、静止面15aと回転する第1の表面13aとの間の気体分子を介して回転可能面15に伝達され、回転可能面15の回転に対する抗力として現れる。この効果に対抗するために、回転可能面15には、任意選択的に、
図12O~
図12Pに示すように、周縁端部26aの周りに延在する薄いシリンダ41を設けることができる。
【0116】
シリンダ41は、シリンダリム43を有するシリンダ壁42を備える。シリンダ壁42は、回転可能面15の周縁端部26aの周りに、回転可能面15から第1の表面15a及び第2の表面15bに対して実質的に垂直な方向に外向きに延在している。シリンダ壁42は、静止面が隔壁13、ハウジング、チャンバ、若しくは他のエンクロージャの内面、又はその両方を含むか否かにかかわらず、静止面に密接に近接し、粘度誘起抗力を受ける第1の表面15a及び反対側の第2の表面15bのいずれか又は両方から外向きに延在することができる。上記のように回転可能面15が隔壁13に隣接して密接に近接して位置付けられる場合、シリンダリム43は、回転可能な第1の表面15aよりも隔壁13の静止面13aに密接に近接する。静止面13aに面して密接に近接するシリンダリム43の表面積は、第1の表面15aの表面積のごくわずかな割合であり、したがって、第1の表面15aと比較して、静止面13aに隣接する気体分子からの抗力のごくわずかな割合に遭遇する。回転可能面15が、第1の表面15a及び/又は第2の表面15bが後述する
図3~
図10に示される例示的な実施形態のようなハウジング、チャンバ、又は他のエンクロージャ45の静止した内面に密接に近接するように位置付けられた場合も同様である。
【0117】
回転可能面15の周縁26からの気体分子の外向きの放出がシリンダ壁42によって阻止されるのを防止するために、スロープ、斜面、又は傾斜部44が設けられ得、シリンダ壁42から回転可能面15の回転軸に向かって内向きに延在することができる。スロープ、斜面、又は傾斜部44は、シリンダリム43から内側に延在していてもよいが、必ずしもそうである必要はない。加えて、スロープ、斜面、又は傾斜部44は、真空ポンプ10の内部静止面に対する回転可能面15の向き及び位置付けに応じて、シリンダ壁42から回転可能面15の第1の表面15a及び第2の表面15bのいずれか又は両方まで延在することができる。衝突気体分子は、回転可能面15によって周縁26に向かって外向きに方向転換されると、傾斜部44と衝突し、スロープ、斜面又は傾斜部44の角度にほぼ対応する角度で、周縁26から外向きに、第1の表面15a及び/又は第2の表面15bから離れて、シリンダリム43を越えて偏向される。
【0118】
真空ポンプ10の代替の例示的な実施形態及びいくつかの変形例を
図3~
図10に示す。以下に特に記載され図示されている場合を除き、代替的な実施形態は、
図1~
図2の例示的な実施形態と実質的に同じ回転可能面15及び駆動装置16を備える。真空ポンプ10の代替の例示的な実施形態は、実質的に気体不透過性であり、内部空間47を画定する壁46を有する外側ハウジング、チャンバ、又は他のエンクロージャ45(「外側エンクロージャ」)を備える。内部空間47は、外側エンクロージャ45によって部分的に封止されてもよい。いくつかの構成では、外側エンクロージャ45の壁46は、切頭状であり、内部空間47が低圧11部のみを含むように、回転可能面15aの周縁端部26aにおいて又はそれをわずかに通過して終端してもよい。他の構成では、壁46は、ある程度の距離にわたって周縁端部26aを越えて延在することができ、内部空間47は、高圧部12の少なくとも一部を含むことができる。その場合、内部空間47は、周囲環境に対して部分的に開いており、外側エンクロージャ45によって部分的に封止されていてもよい。外側エンクロージャ45及び壁46は、金属又は炭素複合材などの適切に強い材料から構築することができる。代替的な実施形態では、
図1~
図2の例示的な実施形態のように、内部空間47に隔壁13はない。代わりに、回転可能面15は、内部空間47を低圧部11と高圧部12とに分割するように内部空間47内に配置され、位置付けられる。壁46は、内面46aを有し、回転可能面15の周縁26の周りに延在し、内面46aの少なくとも一部は、回転可能面15の周縁端部26aに隣接して密接に近接している。周縁端部26a及び内面46aは、小さい間隙又は空間29によって分離されている。
【0119】
壁46及び回転可能面15の第1の表面15aによって境界される内部空間47の部分(小さい間隙又は空間29を除く)は低圧部11を含む。回転可能面15の反対側の内部空間47の部分は、高圧部12を含む。これにより、回転可能面15の第1の表面15aが低圧部11に対向して露出し、回転可能面15の第2の表面15bが高圧部12に対向して露出する。
【0120】
高圧部12は、
図1~
図2の例示的な実施形態に関して上述したのと同じ方法で、周囲環境に対して開放又は部分的に開放することができる。高圧部12はまた、外側エンクロージャ45によって画定された内部空間47内に少なくとも部分的に封止されてもよく、及び/又は高圧部12と気体連通する1つ以上の気体出口を除いて周囲環境に対して実質的に閉じられてもよい。
【0121】
回転可能面15の周縁端部26aと壁46の内面46aとの間の小さい間隙又は空間29は、
図1~
図2の例示的な実施形態に関して上述したのと同じ方法で、低圧部11から高圧部12への気体分子の外向きの流れのための一種の導管を含む。したがって、回転可能面15の周縁26からの気体分子の外向きの流れは、壁46の静止した内面46aによって少なくとも部分的に方向付けられる。低圧部11及び高圧部12は、間隙又は空間29を介して直接気体連通している。しかしながら、
図1~
図2の例示的な実施形態に関し
て上述したのと同じ理由で、気体が高圧部12から低圧部11に逆漏れするのを防ぐために低圧部11と高圧部12との間にシールを必要とせず、その目的のためにそのようなシールが使用されないことが好ましい。
【0122】
外側エンクロージャ45は、
図3~
図10に示す円錐形状を含む任意の所望の幾何学的形状を有することができる。例としては、ドーム形状、円筒形状、長方形若しくは正方形、又は任意の他の適切な形状が挙げられる。外側エンクロージャ45及び内部空間47の内部又は外部の形状にかかわらず、回転可能面15の周縁端部26aに隣接する壁46の内面46aの少なくとも一部が、
図4~
図8などに示す矢印の方向に、周縁26から外向きに回転可能面15から離れて高圧部12内に放出される気体分子を偏向させて案内するために、周縁26回転可能面15から外向きに離れて角度をなして延在することが好ましい。この目的のために、回転可能面15の周縁端部26aに隣接する内面46aの部分が、回転可能面15の第1の表面15a及び第2の表面15bに対して約10~80度の範囲内の角度を有することが好ましい。壁46の静止内面46aと回転可能面15の第1の表面15a及び第2の表面15aとの間の角度関係はまた、回転可能面15の回転周縁端部26aと壁46の静止内面46aとの間の小さい間隙又は空間29から離れて、回転可能面15の周縁26から外向きに放出される衝突気体分子を方向付けることによって、大気圧であっても速度の勾配を減少させ、したがって静止内面46aに隣接する気体分子の粘度に起因する回転可能面15上の抗力を減少させるように機能する。
【0123】
図6に示す一変形例では、様々な物品48を内部空間47の低圧部11に位置付けることができる。物品48は、計器、ゲージ、反応器又は他の真空構成要素、及び減圧されるべき物品を含むことができるが、これらに限定されない。そのような物品48は、低圧部11内に永久的又は一時的に配置することができ、例えば、壁46の内面46aに搭載、固定、又は付着することができる。電線49などが物品48に必要とされる限り、それらは適切にシールされたフィードスルー又は通路を介して壁46を通過することができる。
【0124】
図7~
図10に示す別の変形例では、外側エンクロージャ45は、低圧部11と気体連通する1つ以上の気体入口21及び開口部20を有することができる。気体入口21のうちの1つ以上は、低圧部11を別のハウジング若しくはチャンバ又はさらには外部周囲環境と気体連通するように気体ライン又は導管50と結合するためのフランジ49などのコネクタを有することができる。
【0125】
図3~
図10に示す代替的な実施形態は、本質的に同じ方法で動作し、
図1~
図2の例示的な実施形態に関して上述したのと実質的に同じ結果を達成する。さらに、上述した寸法及び動作値の好ましい範囲のすべてを含む、例示的な実施形態間で共通する様々な要素に関する特性のすべては同じである。
【0126】
説明した代替の例示的な実施形態の構成により、回転可能面15の第1の表面15aは、低圧部11内の気体の分子の衝突を受け、
図1~
図2に示す例示的な実施形態に関して前述したのと同じ方法で、回転可能面15の外周26から外向きに放出され、高圧部12に導かれる。また、回転可能面15の第2の表面15bは、高圧部12の気体の分子の衝突を受ける。
【0127】
低圧部11の圧力が低下すると、固定隔壁又は他の構造ではなく回転可能面15が低圧部11と高圧部12とを分割又は分離する(
図3~
図4に示す小さい間隙29を除く)ため、高圧部12に露出される回転可能面15の第2の側面及び表面15bと、低圧部11に露出される回転可能面15の第1の側面及び表面15aとの間の圧力差が増加する。真空ポンプ10の代替の例示的な実施形態が、例えば10
-4~10
-6atmの中~高真空範囲内の目標最小圧力を達成するために使用される場合、第1の側面と第2の側面との
間の最大圧力差は、何桁もの大きさに達する可能性がある。
【0128】
そのような大きい圧力差は、特に回転可能面15が好ましいように非常に薄く軽量に構成されている場合に、回転可能面15の反り若しくは曲げなどの一時的若しくは永久的な変形、又はさらには永久的な損傷若しくは破壊を潜在的にもたらす可能性がある。加えて、回転可能面15が回転すると、高圧部12に露出する第2の表面15bは、高圧部12内の気体分子の衝突を受ける。この衝突の結果は、回転可能面15の回転に対する余分な抗力の望ましくない原因であり、ポンピング効率を低下させる可能性がある。
【0129】
これらの影響を緩和するために、別の変形例によれば、
図5~
図10に示すように、回転可能面15の第2の表面15bの周りで高圧部12内に追加のエンクロージャ51を設けることができる。追加のエンクロージャ51は、内面52a及び外面52bを有する壁52を含む。壁52は、気体不透過性材料から構成され、開口部54を有する内部空間53を画定するように成形される。追加のエンクロージャ51は、内面52aと外面52bとの間の開口部54の周りに延在する縁部55を有する。追加のエンクロージャ51は、追加のエンクロージャ51の内部空間53が、回転可能面15の第2の表面15bに隣接し、第2の表面15bが露出している高圧部12内の空間又は領域を封止するように、高圧部12内に位置付けられる。追加のエンクロージャ51はまた、開口部54が第2の表面15bに隣接して配置され、開口部54の周りの縁部55が小さい間隙又は空間56によって第2の表面15bから分離されるように位置付けられる。間隙又は空間56は、好ましくは、回転可能面15の周縁端部26aと外側エンクロージャ45の壁46の内面46aとの間の間隙29よりもわずかに小さい寸法を有する。開口部54は、好ましくは、第2の表面15bと実質的に同じ周縁形状、例えば円形、及び第2の表面15bの外周寸法よりもごくわずかに小さい外周寸法、例えば直径を有し、それにより、回転可能面15の周縁端部26a及び周縁26aからすぐ内側の第2の表面15bの小さい部分が、追加のエンクロージャ51の外側の高圧部12に露出したままになる。
【0130】
上述のように回転可能面15の第2の表面15bに対して配置された追加のエンクロージャ51により、内側エンクロージャ51の内部空間53は、第2の表面15bに隣接する低圧の空間又は領域を画定する。これは、回転可能面15が、少なくとも外周26が記載された好ましい範囲内の接線速度v
tを有する状態で回転すると、第2の表面15bに衝突する気体分子が、第2の表面15bと追加のエンクロージャ51の縁部55との間の小さい間隙56を通って、
図5~
図10に示す矢印の方向に第2の表面15bの周縁26から外向きに急速に放出されるためである。分子は、間隙56を通って逆漏れする分子によって置き換えられることができる速度及び体積よりも実質的に大きい速度及び体積で外向きに放出され、したがって、内側エンクロージャ51の内部空間53の圧力は、低圧部11の圧力と同様に低下する。第2の表面15bに隣接し且つ第2の表面15bが露出している空間又は領域内の圧力の減少は、開始圧力又は周囲圧力から意図される目標最小圧力までの実質的に全圧力範囲にわたって、回転可能面15の第1の側面及び表面15aと第2の側面及び表面15bとの間の圧力差を実質的に減少させる。第2の表面15bに隣接する空間又は領域内の圧力の減少はまた、第2の表面15bに衝突する気体分子からの回転可能面15の回転に対する抗力を実質的に減少させる。
【0131】
外側エンクロージャ45に関して上述したように、追加のエンクロージャ51はまた、様々な形状で構築されてもよい。好ましい実施形態では、
図6~
図10に示すように、外側エンクロージャは円錐形状に構成され、追加のエンクロージャ51は逆円錐として構成される。この構成によって、外側エンクロージャ45の壁46の内面46aは、回転可能面15の周縁端部46aの周りでこれを過ぎたスロープにおいて中央頂点又は切頭頂点57から外向きに延在し、追加のエンクロージャ51の壁52は、外側エンクロージャ45の傾斜した内面46aに向かうスロープにおいて中央頂点又は切頭頂点58から外向きに
延在し、回転可能面15の第2の表面15bに隣接する追加のエンクロージャ51の開口部54の縁部55において終端する。好ましい構成では、外側エンクロージャ45の内面46a及び追加のエンクロージャ51の壁52の角度又はスロープは、回転可能面15の第1の表面15a及び第2の表面15bに対して対称ではない。好ましい構成では、追加のエンクロージャ51の縁部55と回転可能面15の第2の表面15bとの間の間隙56は、回転可能面15の第1の表面15aの周縁端部26aと外側エンクロージャ45の壁46の内面46aとの間の間隙29よりもわずかに小さい。
【0132】
好ましい構成では、回転可能面15の第1の表面15a及び第2の表面15bからの気体分子の外向きの流れは、それらが干渉しないように流れを少なくともある程度分離することによって促進され、それによって気体の正味の外向きの流れが輻輳し、ポンピング効率を低下させる可能性がある。間隙寸法の差の結果として、意図された目標最小圧力に向かって圧力が低下するにつれて、回転可能面15の第1の側面及び表面15aと第2の側面及び表面15bとの間に小さい圧力差が残る可能性がある。しかしながら、差は、回転可能面15の変形の危険性がないほど十分に小さい。
【0133】
図9~
図10に示す別の変形例では、追加のエンクロージャ51及び外側エンクロージャ45は、フレーム59内でともに接続することができる。フレーム59は、周囲環境に対して開いていてもよく、又は部分的に開いていてもよい。フレーム59は、単一の連続した周縁部材60又は複数の離散的な離間した周縁部材60及び複数の交差部材61を含むことができる。周縁部材60及び交差部材61は、実質的に円形、正方形、長方形、多角形、不規則な幾何学的形状、又は所望の任意の他の形状である周縁フットプリントを有するフレーム59を形成するように配置構成することができる。周縁部材60及び交差部材61は、金属などの剛性材料から構築することができ、実質的に剛性であるフレーム59を形成するために相互接続することができる。交差部材61は、単一のユニットを製造するために、駆動装置16及び回転可能面15を含む外側エンクロージャ45及び内側エンクロージャ51を複数の位置において周縁部材60と相互接続するように配置することができる。単一のユニットは、可搬式であってもよく、或いは、取り付けベース17又は施設の床若しくは壁などのより大きい構造の表面に永久的又は一時的に定位置に固定されてもよい。
【0134】
駆動モータ37が内側エンクロージャ51内に封止されている場合、電線並びに冷却供給及び戻り部38は、適切に密閉された真空フィードスルー又は通路を介して内側エンクロージャ51の壁52を通じて駆動モータ37に供給することができる。駆動モータ37が内側エンクロージャ51の外部に配置されている場合、駆動シャフト25は、適切にシールされたベアリングなどを通じて内側エンクロージャ51の壁52を通過することができる。
【0135】
別の変形例を
図12K~
図12Nに示す。この変形例では、複数の回転可能面15は、実質的に積層された構成で離間して実質的に平行に配置される。複数の回転可能面15をスタック内に配置することは、ポンピングされている気体の分子による衝突のための追加の表面積を提供するための1つの手法である。
【0136】
複数の回転可能面15は、
図12K~
図12Nに示すように単一の一体構造を形成するように相互接続することができ、又は別個の構造とすることができる。一体構造として構成されるとき、複数の回転可能面15は、1つ以上の相互接続ブリッジ62によって相互接続することができる。1つ以上の相互接続ブリッジ62は、スタック内の回転可能面15の隣接する表面の間に延在し、それらを相互接続することができる。隣接する表面は、気体分子が衝突することが意図されたスタック内の隣接する回転可能面15の第1の表面15a及び第2の表面15bを含むことができ、隣接する回転可能面15の隣接する第1
の周面部分31及び第2の周面部分32を含むことができる。隣接する表面はまた、回転可能面15の例示的なリングの実施形態では、中央ハブ部分34と第1の周面部分31及び第2の周面部分32との間に延在するスポーク35の隣接する表面を含むことができる。1つ以上の相互接続ブリッジ62は、隣接する表面の間で隣接する表面の平面に対して実質的に垂直に延在することができるが、必ずしもそうである必要はない。
【0137】
図12K~
図12Lに示す一変形例では、複数の柱又はピラーの形態の複数の別個の離散的な相互接続ブリッジ62が、積層された回転可能面15の隣接する表面の間に延在することができる。相互接続ブリッジ62は、回転可能面15の例示的なリングの実施形態の場合、スポーク35の隣接する表面の間を含む、複数の位置で、且つ中央開口部24と積層された回転可能面15の周縁端部26aとの間で半径方向外向きに様々な距離で、積層された回転可能面15の中央開口部24の周りに離間されてもよい。
【0138】
図12M~
図12Nに示す別の変形例では、相互接続ブリッジ62は、積層された回転可能面15の隣接する表面の間に延在する壁を有するシリンダなどのモノリシック構造を含むことができる。シリンダ壁は、中央部分23及び/又は中央ハブ部分34の周りに周方向に延在することができ、中央開口部24と回転可能面15の外周縁端部26aとの間で回転可能面15の中央開口部24から半径方向外向きに離間した位置に位置付けることができる。支持のために要求又は所望される場合、隣接する回転可能面15の外周縁端部26aに又はその近くに配置されることを含め、追加のシリンダも利用することができる。シリンダは、互いに及び/又は積層された回転可能面15と同心又は同じサイズであってもよいが、そうである必要はない。相互接続ブリッジ62のモノリシック形態は、シリンダの形状である必要はなく、他の幾何学的形状を有することができる。離散形態とモノリシック形態の両方の相互接続ブリッジ62の場合、好ましくは、相互接続ブリッジ62は、一体構造が本明細書に記載の好ましい超音速範囲内の回転速度及び接線速度で回転するときに、積層された回転可能面15の一体構造のバランスを維持するように番号付けされ配置される。
【0139】
スタック内の各回転可能面15は、同じ構成を有することができ、又は異なる構成を有することができる。例えば、スタック内のある回転可能面15は、上述の例示的なディスクの実施形態に従って構成することができ、スタック内の別の回転可能面15は、上述の例示的なリングの実施形態に従って構成することができる。回転可能面15の異なる構成は、任意の所望の構成及び順序でスタック内で混合することができる。1つの例示的な構成では、リングとして構成された回転可能面15が、ディスクとして構成された回転可能面15と交互になる。さらに、スタック内の各回転可能面15は同じ形状及び寸法を有することができ、又は様々な回転可能面15が、異なる形状及び/又は異なる寸法を有することができる。
【0140】
スタック内の各回転可能面15は、上述のようにカプラ40によって駆動装置16の駆動シャフト25に接続される。スタック内の複数の回転可能面15は、
図12K~
図12Nに示すように、1つ以上の共通カプラ40と共に駆動シャフト25に接続することができる。あるいは、スタック内の1つ以上の回転可能面15は、1つ以上の別個の個別カプラ40を介して駆動シャフト25に個別に接続することができる。
【0141】
さらに、スタック内の複数の回転可能面15のすべてを駆動シャフト25と共に回転させることができ、スタック内の1つ以上の個別の回転可能面15を所望に応じて個別に選択的に回転させることができる。例えば、1つ以上の回転可能面15は各々、遠隔制御されるように適合されたカプラ40によって駆動シャフトに個別に接続することができる。例えば、カプラ40は、各回転可能面15を駆動シャフト25に選択的且つ個別に接続するために、リンク機構又は他の機構によって遠隔制御されるように適合されたクラッチを
含むことができる。この構成により、スタック内の回転可能面15のうちの1つ以上は、所望のポンピング特性を達成するために、例えば効率を高めるために、又は流量及び体積を増加させるために、様々な時点で選択的に回転することができる。別の例として、真空ポンプ10の例示的な実施形態は、低圧部11内の圧力が開始圧力又は周囲圧力にあるとき及びその付近にあるとき、並びにポンピング特性を変更するために好ましい範囲内の同じ又は異なる接線速度vtで回転するための1つ以上の追加の又は異なる回転可能面15を選択するために圧力が低下するときに、本明細書に記載の好ましい範囲内の接線速度vtで回転するように1つ以上の回転可能面15を選択するように制御することができる。例えば、圧力が低下すると、追加の又は異なる回転可能面15を選択的に回転させて、気体分子の衝突のための表面積を増加させて、実質的に均一な流量及び体積を維持しようとすることができる。
【0142】
一実施形態では、気体をポンピングするための真空ポンプは、気体不透過性又は実質的に気体不透過性である外側エンクロージャであって、外側エンクロージャは、内面を有する内部空間を画定する、外側エンクロージャと、内部空間内の回転可能面であって、回転可能面は、第1の表面、第1の表面の反対側の第2の表面、及び、第1の表面と第2の表面との間の周縁端部を有し、第1の表面及び第2の表面が実質的に平面状である、回転可能面と、ここで、回転可能面は、内部空間を低圧部と高圧部とに分離するように構成されており、第1の表面は低圧部に対向し、第2の表面は高圧部に対向し、内面は、内部空間の低圧部内で回転可能面の周縁端部の周りで外向きに傾斜しており、回転可能面の周縁端部及び外側エンクロージャの内面は第1の間隙を画定し、真空ポンプが気体をポンピングしている間に気体は低圧部から第1の間隙を通って高圧部に流れることができ、第1の間隙を通って高圧部から低圧部に気体が逆漏れするのを防止するためのシールがなく、第1の間隙は第1の寸法を有し、第1の寸法は、第1の間隙を通って高圧部から低圧部に逆漏れする気体が、低圧部の圧力が目標最小圧力に達するまで真空ポンプが気体をポンピングしている間に、低圧部から高圧部への気体の正味の流出を妨げないように、低圧部内の所定の目標最小圧力における気体の平均自由行程の長さに関して選択され、回転可能面に接続又は結合された駆動装置であって、駆動装置は、回転可能面の少なくとも一部が、約1atmの開始圧力から目標最小圧力までの低圧部内の圧力範囲にわたって気体の分子の最も可能性の高い速度の約1~6倍の範囲内の接線速度を有する状態で回転可能面を回転させて、気体の分子を回転可能面の周縁端部から間隙を通じて外向きに流して、低圧部内の圧力を単一のポンピングステージにおいて所定の目標最小圧力まで低下させるように動作可能であり、目標最小圧力は、少なくとも約10-4atm程度の低さである、駆動装置と、高圧部内の第2のエンクロージャであって、第2のエンクロージャは、実質的に気体不透過性であり、回転可能面の第2の表面に隣接する開口部を有する第2の内部空間を画定し、高圧部内の回転可能面の周縁端部に向かって外向きに傾斜する表面を有する、第2のエンクロージャとを含み、ここで、回転可能面の周縁端部及び第2のエンクロージャの表面は、第2の内部空間及び高圧部が第2の間隙を介して気体連通する第2の寸法を有する第2の間隙を画定し、ポンプが気体をポンピングしている間に回転可能面の第1の表面と回転可能面の第2の表面との間の圧力差を低減するために、第2の間隙の第2の寸法が第1の間隙の第1の寸法よりも小さくなるように選択される。
【0143】
様々な実施形態において、真空ポンプについて、目標最小圧力は、約10-4~10-6atmの範囲内である。外側エンクロージャは、低圧部と気体連通する入口と、高圧部と気体連通する出口とを含む。第1の間隙の第1の寸法は、約0.5mm~約100mmの範囲内である。回転可能面は、中央開口部、中央開口部と周縁端部との間の半径寸法、半径寸法の約0.05~0.5倍未満の範囲の寸法を有する内部開放部分及び周面部分を有する円形リング又は実質的に円形のリングを含む。複数の実質的に平行な平面状の回転可能面が積層構成で配置構成されている。駆動装置は、回転可能面の少なくとも一部が、低圧部内の圧力がほぼ開始圧力であるときに第1の速度値を有する接線速度を有し、低圧
部内の圧力が目標最小圧力に向かって減少するにつれて第1の速度値よりも漸進的に大きくなる1つ以上の第2の速度値を有する状態で、回転可能面を回転させるように動作可能である。
【0144】
一実施形態では、気体をポンピングするための真空ポンプは、実質的に気体不透過性である外側エンクロージャであって、外側エンクロージャは、内面を有する内部空間を画定する、外側エンクロージャと、内部空間内の回転可能面であって、回転可能面は、第1の表面、第1の表面の反対側の第2の表面、及び、第1の表面と第2の表面との間の周縁端部を有し、第1の表面及び第2の表面が実質的に平面状である、回転可能面と、ここで、回転可能面は、内部空間を低圧部と高圧部とに分離するように構成されており、第1の表面は低圧部に対向し、第2の表面は高圧部に対向し、内面は、内部空間の低圧部内で回転可能面の周縁端部の周りで外向きに傾斜しており、回転可能面の周縁端部及び外側エンクロージャの内面は第1の間隙を画定し、真空ポンプが気体をポンピングしている間に気体は低圧部から第1の間隙を通って高圧部に流れることができ、第1の間隙を通って高圧部から低圧部に気体が逆漏れするのを防止するためのシールがなく、第1の間隙は第1の寸法を有し、第1の寸法は、第1の間隙を通って高圧部から低圧部に逆漏れする気体が、低圧部の圧力が目標最小圧力に達するまで真空ポンプが気体をポンピングしている間に、低圧部から高圧部への気体の正味の流出を妨げないように、低圧部内の所定の目標最小圧力における気体の平均自由行程の長さに関して選択され、回転可能面に接続された駆動装置であって、駆動装置は、回転可能面の少なくとも一部が、約1atmの開始圧力から目標最小圧力までの低圧部内の圧力範囲にわたって気体の分子の最も可能性の高い速度の約1~6倍の範囲内の接線速度を有する状態で回転可能面を回転させて、気体の分子を回転可能面の周縁端部から間隙を通じて外向きに流して、低圧部内の圧力を所定の目標最小圧力まで低下させるように動作可能であり、目標最小圧力は、少なくとも約10-4atm程度の低さである、駆動装置とを含む。
【0145】
様々な実施形態において、真空ポンプについて、目標最小圧力は、約10-4~10-6atmの範囲内である。第1の間隙の第1の寸法は、約0.5mm~約100mmの範囲内である。回転可能面は、中央開口部、中央開口部と周縁端部との間の半径寸法、半径寸法の約0.05~0.5倍未満の範囲の寸法を有する内部開放部分及び周面部分を有する円形リングを含む。真空ポンプは、積層構成で配置構成されている複数の実質的に平行な平面状の回転可能面を含むことができる。駆動装置は、回転可能面の少なくとも一部が、低圧部内の圧力がほぼ開始圧力であるときに第1の速度値を有する接線速度を有し、低圧部内の圧力が目標最小圧力に向かって減少するにつれて第1の速度値よりも漸進的に大きくなる1つ以上の第2の速度値を有する状態で、回転可能面を回転させるように動作可能である。
【0146】
一実施形態では、気体をポンピングするための真空ポンプは、実質的に気体不透過性である外側エンクロージャであって、外側エンクロージャは、内面を有する内部空間を画定する、外側エンクロージャと、内部空間内でスタックに構成されている複数の回転可能リングであって、スタックは、上部リング及び底部リングを有し、複数のリングの各リングは、実質的に円形であり、内部開放部分、回転軸、周縁端部、周縁端部の周りの第1の周面、及び、第1の周面の反対の周縁端部の周りの第2の周面を有し、第1の周面及び第2の周面は実質的に平面状である、複数の回転可能リングと、ここで、回転可能リングのスタックは、内部空間を低圧部と高圧部とに分離し、上部リングの第1の周面は低圧部に対向し、底部リングの第2の周面は高圧部に対向し、内面は、内部空間の低圧部内で回転可能面の周縁端部の周りで外向きに傾斜しており、回転可能面の周縁端部及び外側エンクロージャの内面は第1の間隙を画定し、真空ポンプが気体をポンピングしている間に気体は低圧部から第1の間隙を通って高圧部に流れることができ、第1の間隙を通って高圧部から低圧部に気体が逆漏れするのを防止するためのシールがなく、第1の間隙は第1の寸法
を有し、第1の寸法は、高圧部から低圧部に逆漏れする気体が、低圧部の圧力が目標最小圧力に達するまで真空ポンプが気体をポンピングしている間に、低圧部から高圧部への気体の正味の流出を制限するのを防止するように、低圧部内の所定の目標最小圧力における気体の平均自由行程の長さによって決定され、回転可能リングのスタックに接続された駆動装置であって、駆動装置は、真空ポンプが気体をポンピングして回転可能リングのスタックを回転させているときに動作可能であり、各リングの第1の周面及び第2の周面が、低圧部内の気体の分子が間隙を通じて外向きに流れるようにして、低圧部内の圧力を低減するために、気体の分子の最も可能性の高い速度の約1~6倍の範囲内の接線速度を有する、駆動装置とを含む。
【0147】
様々な実施形態において、真空ポンプについて、目標最小圧力は、少なくとも約10-4atm程度の低さである。駆動装置は、真空ポンプが気体をポンピングして回転可能リングのスタックを回転させるときに動作可能であり、各リングの第1の周面及び第2の周面は、約1atmの開始圧力から目標最小圧力までの低圧部の圧力範囲にわたって気体の分子の最も可能性の高い速度の約1~6倍の範囲内の接線速度を有する。目標最小圧力は、約10-4~10-6atmの範囲内である。
【0148】
駆動装置は、真空ポンプが気体をポンピングして回転可能リングのスタックを回転させるときに動作可能であり、各リングの第1の周面及び第2の周面は、約1atmの開始圧力から目標最小圧力までの低圧部の圧力範囲にわたって気体の分子の最も可能性の高い速度の約1~6倍の範囲内の接線速度を有する。駆動装置は、真空ポンプが気体をポンピングして回転可能リングのスタックを回転させているときに動作可能であり、各リングの第1の周面及び第2の周面は、低圧部内の圧力が所定の開始値を有するときに第1の速度値を有し、低圧部内の圧力が目標最小圧力に向かって減少するにつれて第1の速度値よりも漸進的に大きくなる1つ以上の第2の速度値を有する接線速度を有する。
【0149】
超音速回転可能羽根なし気体衝突面並びにその様々な構成要素及び要素を有する非密閉型真空ポンプのいくつかの特定の例示的な実施形態の前述の説明は、例示目的のためにのみ与えられており、可能であり得る他の実施形態を限定又は排除するものとして意図されておらず、解釈されるべきではない。当業者であれば、本開示又は本発明の思想又は範囲から逸脱することなく、本明細書に示され説明された特定の例示的な実施形態、構成要素、及び要素に対して多種多様な修正及び変更を行うことができ、及び/又はそれらに置き換えることができ、示され説明された特定の例示的な実施形態の様々な態様を様々な方法で組み合わせて、またさらなる実施形態を達成することができることを理解するであろう。したがって、本明細書で具体的に説明されているか否かにかかわらず、実施形態の任意の適応又は変形を含む、本出願の主題である本発明の範囲は、添付の特許請求の範囲によって規定されることが意図されている。
【手続補正書】
【提出日】2023-12-11
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
ハウジングを備え、前記ハウジングは内部空間を有し、前記内部空間は低圧部と高圧部とを有し、
前記低圧部を前記高圧部から分離する隔壁を備え、前記隔壁は実質的に気体不透過性で静止しており、
気体が前記低圧部から前記高圧部へ流れるための気体流路を備え、前記気体流路を経由しての前記高圧部から前記低圧部への前記気体の逆漏れを防止するためのシールが設けられておらず、
前記高圧部の回転可能面を備え、前記回転可能面は実質的に平面状で前記隔壁に隣接する第1の表面を有し、前記第1の表面は前記気体流路を経由して前記高圧部に入る前記気体の分子によって衝突されるように適合され、
前記回転可能面に結合された駆動装置を備え、前記駆動装置は、開始圧力から前記目標最小圧力までの前記低圧部内の圧力範囲にわたって前記回転可能面に衝突する前記気体の前記分子の最も可能性の高い速度の約1から6倍の範囲内の接線速度を有する前記回転可能面の少なくとも一部を有する前記回転可能面を前記回転するように動作可能であり、前記高圧部から前記低圧部へ逆漏れする前記気体の分子が前記低圧部内の圧力のさらなる低下を制限する前に前記開始圧力から前記目標最小圧力まで圧力を低下させる、真空ポンプ。
【請求項2】
前記開始圧力は1atmであり、前記最小目標圧力は少なくとも10-4から10-6atmの範囲である、請求項1に記載の真空ポンプ。
【請求項3】
前記開始圧力は1atmであり、前記最小目標圧力は少なくとも0.5atm程度の低さである、請求項1に記載の真空ポンプ。
【請求項4】
前記ハウジングは、前記ハウジングの外の空間および前記低圧部と気体連通する入口と、前記高圧部と気体連通する出口とを備える、請求項1に記載の真空ポンプ。
【請求項5】
前記ハウジングの外の前記空間は前記周囲環境である、請求項4に記載の真空ポンプ。
【請求項6】
前記低圧部は前記入口を少なくとも部分的に経由して前記ハウジングの外の前記空間へ延在している、請求項4に記載の真空ポンプ。
【請求項7】
前記入口は前記ハウジングの中に複数の離間した第1の開口を有する、請求項4に記載の真空ポンプ。
【請求項8】
前記隔壁は第2の表面を有し、前記第2の表面は前記高圧部に露出され、前記回転可能面の前記第1の表面は前記第2の表面に面しており、前記第1の表面および前記第2の表面は第1の間隙によって分離されており、前記第1の間隙は前記目標最小圧力における前記気体の平均自由行程の長さに関して選択される第1の寸法を有して前記低圧部の圧力が前記目標最小圧力に達するまで前記真空ポンプが前記気体をポンピングしている間に前記第1の間隙は前記低圧部から前記高圧部への前記気体の正味の流出を行うことが可能である、請求項1に記載の真空ポンプ。
【請求項9】
前記第2の表面は実質的に平面状である、請求項8に記載の真空ポンプ。
【請求項10】
前記第1の寸法は0.5mmから100mmの範囲内である、請求項8に記載の真空ポンプ。
【請求項11】
前記隔壁は第2の表面を有し、前記第2の表面は前記高圧部に露出し、前記回転可能面は周縁端部を有する周縁を備え、前記周縁端部は前記第1の表面に関して外に延在するシリンダ壁を有するシリンダを備え、前記シリンダ壁および前記隔壁の前記第2の表面は第1の間隙によって分離されている、請求項1に記載の真空ポンプ。
【請求項12】
前記第1の間隙は前記目標最小圧力における前記気体の平均自由行程の長さに関して選択される第1の寸法を有して前記低圧部の圧力が前記目標最小圧力に達するまで前記真空ポンプが前記気体をポンピングしている間に前記第1の間隙は前記低圧部から前記高圧部への前記気体の正味の流出を行うことが可能である、請求項11に記載の真空ポンプ。
【請求項13】
前記回転可能面は中央部分、前記中央部分内の回転軸および前記回転軸から距離を隔てた周縁を有し、
前記回転軸と前記周縁との間の距離は第1の幅を有し、
前記回転可能面の前記第1の表面は前記回転軸と前記周縁との間で前記周縁の周りに延在する周面部分を有し、
前記周面部分は前記第1の幅の0.05から1.0倍の範囲の第2の幅を有する、請求項1に記載の真空ポンプ。
【請求項14】
前記気体流路は前記隔壁に第2の開口を有し、前記第2の開口は前記回転面の中央部に隣接して配置される、請求項13に記載の真空ポンプ。
【請求項15】
前記気体流路は前記隔壁に複数の第2の開口を有し、前記複数の第2の開口は前記回転軸および前記回転可能面の前記周縁の間に前記回転軸からの一つまたは複数の半径方向距離を隔てて点在する、請求項13に記載の真空ポンプ。
【請求項16】
積層構成に構成され配置される複数の実質的に平行な回転可能面を備える、請求項1に記載の真空ポンプ。
【外国語明細書】