(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024024183
(43)【公開日】2024-02-22
(54)【発明の名称】アクロレインとタウリン並びに年齢による認知機能障害の検査方法
(51)【国際特許分類】
G01N 33/50 20060101AFI20240215BHJP
G01N 33/70 20060101ALI20240215BHJP
【FI】
G01N33/50 Z
G01N33/70
【審査請求】未請求
【請求項の数】9
【出願形態】OL
(21)【出願番号】P 2022126831
(22)【出願日】2022-08-09
(71)【出願人】
【識別番号】507292151
【氏名又は名称】株式会社アミンファーマ研究所
(74)【代理人】
【識別番号】100088904
【弁理士】
【氏名又は名称】庄司 隆
(74)【代理人】
【識別番号】100124453
【弁理士】
【氏名又は名称】資延 由利子
(74)【代理人】
【識別番号】100135208
【弁理士】
【氏名又は名称】大杉 卓也
(72)【発明者】
【氏名】五十嵐 一衛
(72)【発明者】
【氏名】吉田 円
【テーマコード(参考)】
2G045
【Fターム(参考)】
2G045AA25
2G045DA29
2G045DA42
(57)【要約】
【課題】認知症患者、軽度認知症患者及び健常者を高感度かつ高特異度で判別可能な検査方法を提供することである。
【解決手段】被験者サンプル中のアクロレイン、タウリン及び被験者の年齢を数学的に統計解析することで得られる値が認知症患者、軽度認知症患者及び健常者を統計的に判別可能であることを見出し、本発明を完成するに至った。
【特許請求の範囲】
【請求項1】
被験者の生体サンプル中における、アクロレインの含有量及びタウリンの含有量を測定し、得られた測定値と該被験者の年齢を指標として認知症及び/又は軽度認知障害を検出する方法。
【請求項2】
被験者の生体サンプル中における、アクロレインの含有量及びタウリンの含有量を測定し、得られた測定値と被験者の年齢から数学的な統計解析を行い、統計学的に有意な変化を与える値を得、その値に基づき認知症及び/又は軽度認知障害を検出する方法。
【請求項3】
被験者の生体サンプル中における、アクロレインの含有量及びタウリンの含有量を測定し、得られた測定値と被験者の年齢から、人工ニューラルネットワーク手法によって数学的な統計解析を行い、統計学的に有意な変化を与える値を得、その値に基づき認知症及び/又は軽度認知障害を検出する方法。
【請求項4】
前記アクロレインの含有量及び前記タウリンの含有量は、前記サンプル中のクレアチニン含有量で補正した含有量である、請求項1~3のいずれか1に記載の方法。
【請求項5】
前記人工ニューラルネットワーク手法による数学的な統計解析は、以下のモデルを使用する、請求項4に記載の方法。
〇軽度認知障害検出モデル
(1)健常者から得られた生体サンプル中のアクロレインの含有量及びタウリンの含有量並びに健常者の年齢を説明変数として、目的変数を0とする。
(2)軽度認知障害患者から得られた生体サンプル中のアクロレインの含有量及びタウリンの含有量並びに軽度認知障害患者の年齢を説明変数として、目的変数を1とする。
(3)(1)(2)により被験者の相対危険値を出力可能なモデルを作成する。
〇認知症検出モデル
(1)健常者から得られた生体サンプル中のアクロレインの含有量及びタウリンの含有量並びに健常者の年齢を説明変数として、目的変数を0とする。
(2)認知症患者から得られた生体サンプル中のアクロレインの含有量及びタウリンの含有量並びに認知症患者の年齢を説明変数として、目的変数を1とする。
(3)(1)(2)により被験者の相対危険値を出力可能なモデルを作成する。
【請求項6】
被験者の軽度認知障害検出モデルでの相対危険値が、予め設定した軽度認知障害検出モデルのカットオフ値と比較して高ければ、さらに、認知症検出モデルでの相対危険値を算出して、認知症又は軽度認知障害のいずれかを判別することを補助することを含む、請求項5に記載の方法。
【請求項7】
軽度認知障害検出モデルの感度および特異度は、それぞれ、70%以上および70%以上であり、かつ、認知症検出モデルの感度および特異度は、それぞれ、90%以上および90%以上である、請求項6に記載の方法。
【請求項8】
生体サンプル中における、アクロレインの含有量及びタウリンの含有量を測定するための試薬を含む、認知症及び/又は軽度認知障害を検出するためのキット。
【請求項9】
認知症及び/又は軽度認知障害を検出するためのシステムであって、
(1)生体サンプル中における、アクロレインの含有量及びタウリンの含有量を測定するための試薬、及び
(2)数学的な統計解析を行うための電子処理機器及びソフトウェア
を含む、システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、認知症及び/又は軽度認知障害を検出する方法、認知症及び/又は軽度認知障害を検出するためのキット並びに認知症及び/又は軽度認知障害を検出するためのシステムに関する。
【背景技術】
【0002】
(認知症)
アルツハイマー病(AD)は、進行性の認知機能および行動障害を特徴とする神経変性疾患である。ADは、特に高齢者において最も一般的な認知症の一形態である。ADや軽度認知障害(MCI)患者の重症度を評価するために、フルオロデオキシグルコース(FDG)-ポジトロン断層法(PET)やアミロイドPETが画像バイオマーカーとして用いられてきた。しかし、PET装置は高価であるため、これらは頻繁にスクリーニング目的では使用されていない。そのため、ADの評価に利用しやすいバイオマーカーを含む、より簡便な診断ツールが現在求められている。認知症の検出のために、これまでにいくつかのバイオマーカーが同定され、その有効性が検証されている。それらは、脳脊髄液(CSF)および血漿中のアミロイドβおよびタウ蛋白質レベルである。CSFや血液サンプルの採取は侵襲性を伴うため、患者など検査対象者にとって身体的・精神的な負担を伴う。
【0003】
(MCI)
MCIは、正常老化過程で予想されるよりも認知機能が低下しているが、認知症とは診断されない状態をいう。認知症の前段階にあたるが、認知機能低下よりも記憶機能低下が主兆候である。主観的・客観的に記憶障害を認めるが、一般的な認知機能や日常生活能力はほぼ保たれている。MCIから、認知症と診断される程度に進行するまで、通常5~10年、平均で6~7年の期間がある。医療機関を受診したMCI患者のうち、年間10%から15%が認知症に移行するとされる。さらに、単に軽度の記憶障害のみ症例より、他の認知障害を合わせて持つ症例の方が、認知症への進行リスクがはるかに高いことが知られている。
【0004】
(先行技術1)
本発明者らは、「被験者より得られた尿検体中の3-ヒドロキシプロピルメルカプツール酸含有量とクレアチニン含有量との比(3-HPMA/Cre)、及び/又は、尿検体中のアクロレイン付加アミノ酸含有量とCre含有量との比(AC-Acro/Cre)を指標にする、認知症及び/又は軽度認知障害の検査方法」を開示している(特許文献1)。
本発明の方法は、特許文献1に記載の検査方法とは異なる生化学マーカーを使用している。
【0005】
(先行技術2)
本発明者らは、「被験者の生体サンプル中における、アクロレイン、インターロイキン-6 、及びC 反応性蛋白質の含有量、並びに、ポリアミンオキシダーゼ活性又はポリアミンオキシダーゼの蛋白質量を測定し、得られた測定値と被験者の年齢を指標として無症候性脳梗塞を検出する方法」を開示している(特許文献2)。
本発明の方法は、特許文献2に記載の検査方法とは異なる検出対象である。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2016-148619号公報
【特許文献2】特開2008-286651号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明は、認知症患者、軽度認知症患者及び健常者を高感度かつ高特異度で判別可能な検査方法を提供することを課題とした。
【課題を解決するための手段】
【0008】
本発明者らは、上述した目的を達成するため、鋭意検討した結果、被験者サンプル中のアクロレイン、タウリン及び被験者の年齢を数学的に統計解析することで得られる値が認知症患者、軽度認知症患者及び健常者を統計的に判別可能であることを見出し、本発明を完成するに至った。
【0009】
すなわち、本発明は以下の通りである。
1.被験者の生体サンプル中における、アクロレインの含有量及びタウリンの含有量を測定し、得られた測定値と該被験者の年齢を指標として認知症及び/又は軽度認知障害を検出する方法。
2.被験者の生体サンプル中における、アクロレインの含有量及びタウリンの含有量を測定し、得られた測定値と被験者の年齢から数学的な統計解析を行い、統計学的に有意な変化を与える値を得、その値に基づき認知症及び/又は軽度認知障害を検出する方法。
3.被験者の生体サンプル中における、アクロレインの含有量及びタウリンの含有量を測定し、得られた測定値と被験者の年齢から、人工ニューラルネットワーク手法によって数学的な統計解析を行い、統計学的に有意な変化を与える値を得、その値に基づき認知症及び/又は軽度認知障害を検出する方法。
4.前記アクロレインの含有量及び前記タウリンの含有量は、前記サンプル中のクレアチニン含有量で補正した含有量である、前項1~3のいずれか1に記載の方法。
5.前記人工ニューラルネットワーク手法による数学的な統計解析は、以下のモデルを使用する、前項4に記載の方法。
〇軽度認知障害検出モデル
(1)健常者から得られた生体サンプル中のアクロレインの含有量及びタウリンの含有量並びに健常者の年齢を説明変数として、目的変数を0とする。
(2)軽度認知障害患者から得られた生体サンプル中のアクロレインの含有量及びタウリンの含有量並びに軽度認知障害患者の年齢を説明変数として、目的変数を1とする。
(3)(1)(2)により被験者の相対危険値を出力可能なモデルを作成する。
〇認知症検出モデル
(1)健常者から得られた生体サンプル中のアクロレインの含有量及びタウリンの含有量並びに健常者の年齢を説明変数として、目的変数を0とする。
(2)認知症患者から得られた生体サンプル中のアクロレインの含有量及びタウリンの含有量並びに認知症患者の年齢を説明変数として、目的変数を1とする。
(3)(1)(2)により被験者の相対危険値を出力可能なモデルを作成する。
6.被験者の軽度認知障害検出モデルでの相対危険値が、予め設定した軽度認知障害検出モデルのカットオフ値と比較して高ければ、さらに、認知症検出モデルでの相対危険値を算出して、認知症又は軽度認知障害のいずれかを判別することを補助することを含む、前項5に記載の方法。
7.軽度認知障害検出モデルの感度および特異度は、それぞれ、70%以上および70%以上であり、かつ、認知症検出モデルの感度および特異度は、それぞれ、90%以上および90%以上である、前項6に記載の方法。
8.生体サンプル中における、アクロレインの含有量及びタウリンの含有量を測定するための試薬を含む、認知症及び/又は軽度認知障害を検出するためのキット。
9.認知症及び/又は軽度認知障害を検出するためのシステムであって、
(1)生体サンプル中における、アクロレインの含有量及びタウリンの含有量を測定するための試薬、及び
(2)数学的な統計解析を行うための電子処理機器及びソフトウェア
を含む、システム。
【図面の簡単な説明】
【0010】
【
図1】MMSE、年齢、尿中バイオマーカーの健常者群、MCI群およびAD群との比較。MMSE、年齢、AC-Acro及びTaurineの健常者群、MCI群及びAD群における分布を示す。枠内の横線は中央値、枠の下と上は25%、75%、ひげ(縦線)は5%、95%を示す。****, p < 0.0001; ***, p<0.001; **, p < 0.01; *, p < 0.05; ns, not significant.
【
図2】AD群 対 健常者群(A、B)、MCI群 対 健常者群(C、D)のROC(Receiver Operating Characteristic)曲線と年齢・AC-Acro/Cre・Taurine/Cre組み合わせで評価した相対危険値。(A,C)ROC曲線解析は実施例1に記載されているように行った。 AUC, 曲線下面積。(B,D)相対危険値(RRV)は人工ニューラルネットワークから算出した。****, p < 0.0001; ***, p<0.001; **, p < 0.01; ns, not significant.
【
図3】AD群 対 健常者群(A、B)、MCI群 対 健常者群(C、D)に対するAC-Acro/TaurineによるROC曲線と相対危険値評価。AD群 対 健常者群(A、B)、MCI群 対 健常者群(C、D)に対するAC-Acro/Cre・Taurine/Cre組み合わせにおけるROC曲線と相対危険値(RRV)。ROC曲線解析およびRRVの算出は、
図2の凡例に記載されているように行った。
【
図4】MCI群およびAD群におけるAC-Acro/CreとTaurine/CreのROC曲線の比較。ROC曲線解析は、
図2の凡例に記載されているように行った。
【発明を実施するための形態】
【0011】
(本発明の対象)
本発明は、認知症及び/又は軽度認知障害を検出する方法(以後、「本発明の方法」と略する場合がある)、認知症及び/又は軽度認知障害を検出するためのキット(以後、「本発明のキット」と略する場合がある)並びに認知症及び/又は軽度認知障害を検出するためのシステム(以後、「本発明のシステム」と略する場合がある)に関する。
【0012】
(被験者)
本発明の「被験者」とは、ヒトを含む哺乳動物をいう。哺乳動物は、ヒト、家畜、非ヒ ト霊長類、運動競技用動物(競馬ウマ)、又はペット用動物、例えばイヌ、ウマ、ネコ、 ウシ等を含む、哺乳類として類別されるいかなる動物も対象とするが、好ましくはヒトで ある。特に好ましくは、軽度認知障害あるいは認知症に罹患していることが疑われるヒト や、軽度認知障害あるいは認知症に罹患しているか否かの判定を必要とするヒトをいう。
本明細書において健常者というときは、認知機能障害の既往歴のない被験者を意味する 。
【0013】
(生体サンプル)
本発明方法で使用する被験者の生体サンプルは、好ましくは下記実施例において使用している尿である。しかし他の生体サンプルも適宜使用することが可能であり。その様な他の生体サンプルとして、例え血漿、唾液、脳脊髄液、骨髄液などを挙げることが可能である。
尿とは、尿由来の試料を意味し、未処理尿、薬品添加済尿、及び精製済尿のいずれをも含む。被験者からの尿の採取及び処理は、公知の方法によって実施できる。尿検体は、必要に応じて、試験に使用するまで-80℃で保存することができる。
【0014】
(認知症)
「認知症」とは、後天的な脳の器質的障害により、認知機能が低下した、認知機能障害のある症候群をいい、その原因疾患により、アルツハイマー型認知症、レビー小体型認知症、及び前頭側頭型認知症などの神経変性性認知症、多発脳梗塞型認知症及び限局性脳梗塞型認知症などの脳血管性認知症、並びに正常圧水頭症や甲状腺機能低下などによる治療可能な認知症に分類される。認知機能障害とは、脳内の情報処理によって実現する機能、例えば記憶、言語、思考、知覚、判断などの機能の障害をいう。
【0015】
(軽度認知障害)
「軽度認知障害」とは、正常老化過程で予想されるよりも認知機能が低下しているが、認知症とは診断されない状態をいう。認知症の前段階にあたり、記憶機能低下が主兆候である。
【0016】
(アクロレインの含有量、タウリンの含有量及びクレアチニン含有量)
本発明の「アクロレインの含有量」、「タウリンの含有量」及び「クレアチニン含有量」は、生体サンプル中のタンパク質量、遺伝子量、活性量等を意味するが、好ましくはタンパク質量を対象とする。「アクロレインの含有量」、「タウリンの含有量」及び「クレアチニン含有量」の測定方法は、下記の実施例で示す公知の測定キットを使用することができるが、特に限定されない。
例えば、アクロレイン含有量は、当業者に公知の任意の方法、例えば、アクロレイン付加アミノ酸であるFDP-リジン(Nε;-ホルミルピペリジノ・リジン)の含有量を測定することにより同定することができる。FDP-リジンの含有量は、例えばACR-LYSINE ADDUCT ELISASYSTEM(日本油脂株式会社)を使用し、添付のマニュアルに従って測定することができる。なお、アクロレイン含量はFDP-リジン以外の誘導体の形で測定することも可能である。またアクロレイン含量を直接測定することも可能であり、かかる方法は例えばAlarconらの報告(参考文献:Alarcon, R.A. (1968) Anal.Chem. 40, 1704-1708)に記載されている。しかし、アクロレインは他の分子との反応性が高いために、遊離の形で存在する量が少ないという問題がある。そこで、FDP-リジンの形で測定することが簡便であることも併せて考えると、本発明において、FDP-リジンの形でアクロレインを測定することは好適な態様である。
生体サンプル(尿検体)中のクレアチニンの測定方法は、自体公知の方法を利用することができる。また、市販の クレアチニンアッセイキット(Cayman Chemical社)を使用して、付属の手順書に 従って実施することができる。クレアチニン補正は、自体公知の算出方法で行うことができる。
【0017】
(数学的な統計解析)
数学的な統計解析は、当業者に公知の方法、好ましくは、人工ニューラルネットワーク手法を用いて行うことが出来る。人工ニューラルネットワーク手法は、例えば、NEUROSIM/L(富士通株式会社)を使用し、添付のマニュアルに従って行うことができる。
【0018】
(カットオフ値)
カットオフ値は、特定の疾患の検出・判定・診断を目的として設定する値である。本発明の方法で得られた数値(相対危険値)を、カットオフ値として取り扱うことで、認知症、軽度認知障害及び健常者を検出、判定、診断又はそれらの補助をすることができる。
認知症患者、軽度認知障害患者及び健常者において、各バイオマーカーの含有量の測定値に基づき、市販の統計解析ソフトを使用してROC(Receiver Operating Characteristic)曲線を作成し、最適な感度及び特異度を求め、検出の目的に応じて、例えば、一次スクリーニング等の目的の検査では感度が高い方を優先し、精査目的の検査では特異度が高くなるようなカットオフ値を設定することが可能である。
【0019】
(軽度認知障害検出モデル及び認知症検出モデル)
本発明の方法及びシステムで使用する軽度認知障害検出モデル及び認知症検出モデルは、自体公知の人工ニューラルネットワーク手法により構築することができるが、例えば、以下の方法により構築することができる。
〇軽度認知障害検出モデル
(1)健常者から得られた生体サンプル中のアクロレインの含有量(特に、クレアチニン補正後のアクロレインの含有量)及びタウリンの含有量(特に、クレアチニン補正後のタウリンの含有量)並びに健常者の年齢を説明変数として、目的変数を0とする。
(2)軽度認知障害患者から得られた生体サンプル中のアクロレインの含有量(特に、クレアチニン補正後のアクロレインの含有量)及びタウリンの含有量(特に、クレアチニン補正後のタウリンの含有量)並びに軽度認知障害患者の年齢を説明変数として、目的変数を1とする。
(3)(1)(2)により被験者の相対危険値を出力可能なモデルを作成する。
〇認知症検出モデル
(1)健常者から得られた生体サンプル中のアクロレインの含有量(特に、クレアチニン補正後のアクロレインの含有量)及びタウリンの含有量(特に、クレアチニン補正後のタウリンの含有量)並びに健常者の年齢を説明変数として、目的変数を0とする。
(2)認知症患者から得られた生体サンプル中のアクロレインの含有量(特に、クレアチニン補正後のアクロレインの含有量)及びタウリンの含有量(特に、クレアチニン補正後のタウリンの含有量)並びに認知症患者の年齢を説明変数として、目的変数を1とする。
(3)(1)(2)により被験者の相対危険値を出力可能なモデルを作成する。
【0020】
(認知症及び/又は軽度認知障害を検出する方法)
本発明の方法は、被験者の生体サンプル中における、アクロレインの含有量及びタウリンの含有量を測定し、得られた測定値と被験者の年齢から、人工ニューラルネットワーク手法によって数学的な統計解析を行い、統計学的に有意な変化を与える値を得、その値に基づき認知症及び/又は軽度認知障害を検出する方法である。
【0021】
本発明の方法で使用する相対危険値のカットオフ値は、下記の実施例2の結果(参照:
図2)により、以下のように設定することができる。
好ましくは、ROC グラフの左上隅に最も近い ROC 曲線上のポイントの値をカットオフ値の候補とすることができる。
軽度認知障害検出モデルを使用した相対危険値のカットオフ値を0.46とする(参照:
図2D)。また、例えば、カットオフ値を0.5、0.6、0.7、又は0.8とすることもできる。
認知症検出モデルを使用した相対危険値のカットオフ値を0.39とする(参照:
図2B)。また、例えば、カットオフ値を0.4、0.5、0.6、0.7、0.8、0.9又は0.95とすることもできる。
【0022】
本発明の方法での軽度認知障害検出モデルの感度および特異度は、以下の実施例により、それぞれ、70%以上および70%以上であり、かつ、認知症検出モデルの感度および特異度は、それぞれ、90%以上および90%以上である。
各モデルを構築するサンプル数や検証データを増やすことで、感度及び特異度をさらに向上させることが期待できる。
【0023】
(本発明の方法での検出結果例)
〇被験者Aの場合
本発明の方法では、被験者Aの軽度認知障害検出モデルで算出した相対危険値が0.2である時、軽度認知障害検出モデルの相対危険値のカットオフ値を0.46に設定した場合には、健常者であると検出(判定、診断補助)できる(参照:
図2D)。
〇被験者Bの場合
被験者Bの軽度認知障害検出モデルで算出した相対危険値が0.7である時、軽度認知障害検出モデルの相対危険値のカットオフ値を0.46に設定した場合には、軽度認知障害又は認知症であると検出(判定、診断補助)できる(参照:
図2D)。
次に、認知症検出モデルの相対危険値のカットオフ値を0.39に設定した場合には、被験者Bの相対危険値が0.3である時には軽度認知障害であると検出(判定、診断補助)でき、または、相対危険値が0.9である時には認知症であると検出(判定、診断補助)できる(参照:
図2B)。
【0024】
本発明の方法で認知症及び/又は軽度認知障害を罹患している、又は罹患している可能性があると判定された被験者は、MRIによる頭部断層画像の撮影、ミニメンタルステート検査(MMSE)、及び臨床的認知症評価尺度の項目合計スコア(Clinical Dementia Rating Scale Sum of Boxes Scores;CDRsob)などの従来実施されていた認知症の検査を受けることにより、さらに詳しい評価を得ることができる。
【0025】
本発明の方法は、一定の期間をおいて繰り返し実施することが好ましく、それにより相対危険値の該期間中の変化を検出することができ、ひいては認知症及び/又は軽度認知障害の進行を早期に評価することができる。例えば、軽度認知障害であると診断されている被験者の相対危険値を、その経過観察期間中、一定期間をおいて測定し、該測定で得られた値が、前回測定された相対危険値と比較して上昇したとき(特に、認知症検出モデルでの相対危険値のカットオフ値と比較して高いとき)は、該被験者は、軽度認知障害から認知症に進行した、又は進行した可能性があると検出、判定、又は診断補助できる。
【0026】
(認知症及び/又は軽度認知障害を検出するためのキット)
本発明のキットは、生体サンプル中における、アクロレインの含有量及びタウリンの含有量を測定するための試薬を含む。更に、必要に応じて、当業者に公知の任意の、測定器具・装置、標準液、緩衝液等を含有させることができる。
【0027】
(認知症及び/又は軽度認知障害を検出するためのシステム)
本発明のシステムは、(1)生体サンプル中における、アクロレインの含有量及びタウリンの含有量を測定するための試薬、及び(2)数学的な統計解析を行うための電子処理機器及びソフトウェアを含む。数学的な統計解析を行うための電子処理機器としては、当業者に公知の適当なコンピューター等、及び、数学的な統計解析を行うためのソフトウェアとしては、例えば、上記の人工ニューラルネットワーク手法を実施することができるものを挙げることが出来る。
【0028】
(認知症及び/又は軽度認知障害の治療剤又は予防剤のスクリーニング方法)
認知症及び/又は軽度認知障害の治療に有効である可能性のある候補化合物を実験動物に投与し、該化合物が該実験動物において、相対危険値を減少するかを測定することにより、認知症及び/又は軽度認知障害の治療・予防に有効である新たな薬剤をスクリーニング(探索)する方法を提供することができる。
【0029】
以下、実施例を挙げて本発明を詳細に説明するが、本発明の範囲はこれらの実施例により限定されるものではない。
【実施例0030】
材料、各測定方法及び各検出モデルの構築方法は、以下の方法で行った。
【0031】
(尿の採取)
認知症のない健常者群57名(男性25名、女性32名、年齢71.0±8.5歳)、MCI群62名(男性23名、女性39名、年齢82.0±5.0歳)、AD群42名(男性16名、女性26名、年齢81.0±4.5歳)から尿を採取した。MCIおよびAD群を含む認知症の診断は、ADについては国立神経・コミュニケーション障害・脳卒中研究所およびアルツハイマー病関連疾患協会(NINCDS-ADRDA)の基準「参照文献:Neurology 34, 939-944.」、MCIについては公表されている基準「参照文献:Arch Neurol 56, 303-308.」に従い、文献「J Neurol Sci285, 100-108.」のとおり実施した。
【0032】
(MMSE(Mini-Mental StateExamination)「参照文献:J Psychiatr Res 12, 189-198.」)
被験者が医師による診察を受けた際に評価された。インフォームドコンセントは、各受診者またはその親族によって行われた。研究計画書は、千葉大学大学院薬学研究科および東松戸病院の倫理委員会の承認を得た。実験はヘルシンキ宣言の原則に則って行われた。尿は使用するまで-80 ℃で保存した。
【0033】
(尿中アミノ酸抱合アクロレインおよびタウリン含量の測定)
尿中アミノ酸抱合アクロレイン(AC-Acro)は、Acrolein-LysineAdduct Competitive EIAキット(タカラバイオ株式会社)を用いて測定した。
尿中タウリン量は、タウリンアッセイキット(セルバイオラボ株式会社)を用いて測定した。
各値は、クレアチニン比色アッセイキット(Cayman Chemical社)を用いて測定したクレアチニン量当たりで示した。
【0034】
(統計)
統計計算はGraphPad Prism(登録商標); Software (GraphPad Software社) を用いて行った。数値は中央値±四分位偏差で示した。群間比較はKruskal-Wallis testで行った。相対危険値(RRV)はNeural Works Predict(SETソフトウェア株式会社)を用いて、バックプロパゲーション法による人工ニューラルネットワークで算出した「参照文献:Clin Chem 43, 1919-1925.」。
健常群57名、MCI群62名またはAD群42名の年齢と3つの生化学マーカー(AC-Acro、タウリン、クレアチニン)をそれぞれ健常者の目的変数を0、MCIまたはADの目的変数を1として、RRVを取得した。そして、そのルールに従って、健常者群、MCI群およびAD群のRRV(0-1)を算出した。MCI群またはAD群と健常者群の感度および特異度は、受信者動作特性(ROC)曲線を用いて評価した(参照文献:Radiology 143, 29-36.)。相関係数はSpearmanの順位相関解析により評価した。
【0035】
(軽度認知障害検出モデル及び認知症検出モデルの構築方法)
人工ニューラルネットワークモデルを使用した軽度認知障害検出モデル及び認知症検出モデルを構築した(参照:特許文献2)。詳しくは、以下の通りである。
ソフトウェアはNeuralWorks Predict(SETソフトウェア株式会社)を用いた。ソフトウェア起動して、新しい検出モデルを構築するで、“データから予測する”と“モデル構築ウィザードを開始”を選択した。
人工ニューラルネットワークの説明変数として尿中バイオマーカー((アクロレイン(クレアチニン補正値)、タウリン(クレアチニン補正値))及び被験者の年齢の2種、または尿中バイオマーカー((アクロレイン(クレアチニン補正値)、タウリン(クレアチニン補正値))のみとした。
AD検出モデルを構築する場合は、教師データの目的変数は、AD群に「1」、健常者群に「0」の値を入力した。 学習データ数はAD群42検体、健常者群57検体の合計99検体とした。
同様に、MCI検出モデルを構築する場合は、教師データの目的変数には、MCI群に「1」、健常者群に「0」の値を入力した。 学習データ数はMCI群62検体、健常者群57検体の合計119検体とした。
さらに、データの前処理するために用いた4つパラメータは“多少の雑音データ”、“一般的なデータ変換”、“包括的な変数変換”、“包括的なネットワーク検索”をそれぞれ選択した後に学習した。
実際の診断による認知症及び/又は軽度認知障害の有無判定と人工ニューラルネットワークのモデルでの予測結果の精度を検討するために、上記のソフトウェア解析により算出された予測値を用いて、ROC曲線分析及びROC曲線の領域の面積(AUC)を算出した。ROC曲線分析及びAUCの算出には、GraphPad PRISM 9(GraphPad Software社)を使用した。カットオフ値の精度は、感度、特異度で評価した。
アルツハイマー病(AD)を含む認知症は、高齢者における深刻な疾患の一つであり、その早期発見は生活の質(QOL)を維持するために非常に重要である。本実施例では、被験者の生体サンプル(特に、尿)中に含まれる認知症の新規バイオマーカーを探索した。
その結果、尿中のアミノ酸(リジン)抱合アクロレイン(AC-Acro)およびタウリンは認知症スクリーニング検査(MMSE)のスコアと負の相関があり、認知症患者では健常者と比較して有意に低いことを確認した。