IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社SCREENホールディングスの特許一覧

<>
  • 特開-検知装置、および、検知方法 図1
  • 特開-検知装置、および、検知方法 図2
  • 特開-検知装置、および、検知方法 図3
  • 特開-検知装置、および、検知方法 図4
  • 特開-検知装置、および、検知方法 図5
  • 特開-検知装置、および、検知方法 図6
  • 特開-検知装置、および、検知方法 図7
  • 特開-検知装置、および、検知方法 図8
  • 特開-検知装置、および、検知方法 図9
  • 特開-検知装置、および、検知方法 図10
  • 特開-検知装置、および、検知方法 図11
  • 特開-検知装置、および、検知方法 図12
  • 特開-検知装置、および、検知方法 図13
  • 特開-検知装置、および、検知方法 図14
  • 特開-検知装置、および、検知方法 図15
  • 特開-検知装置、および、検知方法 図16
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024002549
(43)【公開日】2024-01-11
(54)【発明の名称】検知装置、および、検知方法
(51)【国際特許分類】
   G01S 7/481 20060101AFI20231228BHJP
   G01C 3/06 20060101ALI20231228BHJP
   G02B 26/08 20060101ALI20231228BHJP
【FI】
G01S7/481 A
G01C3/06 120Q
G01C3/06 140
G02B26/08 E
【審査請求】未請求
【請求項の数】10
【出願形態】OL
(21)【出願番号】P 2022101801
(22)【出願日】2022-06-24
(71)【出願人】
【識別番号】000207551
【氏名又は名称】株式会社SCREENホールディングス
(74)【代理人】
【識別番号】100088672
【弁理士】
【氏名又は名称】吉竹 英俊
(74)【代理人】
【識別番号】100088845
【弁理士】
【氏名又は名称】有田 貴弘
(72)【発明者】
【氏名】蘆田 雄樹
(72)【発明者】
【氏名】橋本 佳三
【テーマコード(参考)】
2F112
2H141
5J084
【Fターム(参考)】
2F112AD01
2F112BA03
2F112CA12
2F112DA04
2F112DA06
2F112DA11
2F112DA15
2F112DA21
2F112DA25
2F112DA28
2F112EA05
2F112GA01
2F112GA03
2H141MA12
2H141MA27
2H141MB29
2H141MB62
2H141MC06
2H141MD04
2H141MD32
2H141ME01
2H141ME13
2H141ME24
2H141ME25
2H141MG10
2H141MZ03
2H141MZ24
5J084AA05
5J084AD01
5J084BA04
5J084BA36
5J084BA39
5J084BA49
5J084CA03
5J084CA09
5J084EA07
(57)【要約】
【課題】光による検知と測距を行うにあたって、測距距離をのばすことができる技術の提供。
【解決手段】検知装置100は、走査領域Aに光を送信する送信部と、走査領域Aにある対象物で反射された光を受信する受信部と、を備える。送信部は、光を出射する光源11と、光の位相を変調することによって該光を第1方向Axに誘導して走査領域Aを走査させる光誘導部12と、走査領域Aに投射される光が、第1方向Axと交差する第2方向Ayに沿って複数のコリメートビームCが隙間を設けつつ配列された変形ラインビームLdとなるように、光に成形を施す成形部13と、を備える。
【選択図】図2
【特許請求の範囲】
【請求項1】
走査領域に光を送信する送信部と、
前記走査領域にある対象物で反射された光を受信する受信部と、
を備え、
前記送信部が、
光を出射する光源と、
光の位相を変調することによって該光を第1方向に誘導して前記走査領域を走査させる光誘導部と、
前記走査領域に投射される光が、前記第1方向と交差する第2方向に沿って複数のコリメートビームが隙間を設けつつ配列された変形ラインビームとなるように、光に成形を施す成形部と、
を備える、検知装置。
【請求項2】
請求項1に記載の検知装置であって、
前記受信部が、
複数のフォトディテクタが前記第2方向に沿って配列された光検出部、
を備え、
前記コリメートビームの隙間が、前記フォトディテクタの隙間と対応するように構成されている、
検知装置。
【請求項3】
請求項2に記載の検知装置であって、
前記変形ラインビームにおいて隣り合うコリメートビームのそれぞれが、前記光検出部において隣り合うフォトディテクタのそれぞれに入射するように構成されている、
検知装置。
【請求項4】
請求項1から3のいずれかに記載の検知装置であって、
前記成形部が、
凹凸構造によって回折格子パターンが形成された回折光学素子、
を備え、
前記回折格子パターンで光を回折させることによって光に成形を施す、
検知装置。
【請求項5】
請求項1から3のいずれかに記載の検知装置であって、
前記成形部が、
2次元に配列された複数の格子要素を有し、前記複数の格子要素の各々が駆動されることで回折格子パターンが形成される、2次元の空間位相変調素子、
を備え、
前記回折格子パターンで光を回折させることによって光に成形を施す、
検知装置。
【請求項6】
請求項5に記載の検知装置であって、
前記光誘導部と前記成形部との間で前記2次元の空間位相変調素子が共用されており、前記2次元の空間位相変調素子が、光を誘導するとともに該光に成形を施す、
検知装置。
【請求項7】
請求項5に記載の検知装置であって、
前記2次元の空間位相変調素子において、前記複数の格子要素によって形成される回折格子パターンを変更するパターン変更部、
を備える、検知装置。
【請求項8】
請求項7に記載の検知装置であって、
前記パターン変更部が、
前記走査領域に投射される前記変形ラインビームにおいて、前記第2方向の端にあるコリメートビームが1個以上消滅するように、前記回折格子パターンを変更する、
検知装置。
【請求項9】
請求項7に記載の検知装置であって、
前記パターン変更部が、
前記送信部が備えるレンズを通じて前記走査領域に投射される前記変形ラインビームにおいて、前記複数のコリメートビームが等間隔で配列されるように、前記レンズの収差を加味して前記回折格子パターンを補正する、
検知装置。
【請求項10】
走査領域に光を送信する送信工程と、
前記走査領域にある対象物で反射された光を受信する受信工程と、
を備え、
前記送信工程が、
光を出射する出射工程と、
光の位相を変調することによって該光を第1方向に誘導して前記走査領域を走査させる光誘導工程と、
前記光誘導工程の前、前記光誘導工程の後、あるいは、前記光誘導工程と並行して、前記走査領域に投射される光が、前記第1方向と交差する第2方向に沿って複数のコリメートビームが隙間を設けつつ配列された変形ラインビームとなるように、光に成形を施す成形工程と、
を備える、検知方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、光による検知と測距を行う検知装置、および、検知方法に関する。
【背景技術】
【0002】
光を用いた検知技術は様々に存在するが、その一つに、LiDAR(Light Detection And Ranging:光による検知と測距)技術がある(例えば、特許文献1)。LiDAR技術では、例えば、物体などに向けて光を照射して、物体で反射されて戻ってきた光を検出し、光が跳ね返って戻ってくるまでにかかった時間に基づいて、物体までの距離などを算出する。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2021-184067号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
LiDAR技術では、使用する光源のパワー(出力)が高いほど、物体に照射される光の強度、ひいては、反射されて戻ってくる反射光の強度が高くなるため、測定可能な距離(測距距離)が長くなる。ところが、自動車に搭載されるLiDAR装置などでは、目に対する安全性(アイセーフ)を担保する必要があるため、光源のパワーを無制限に高めることができない。このため、光源のパワーに制約がある中で、測距距離をできるだけのばすことが求められる。
【0005】
ここで、図16に示されるように、LiDAR装置では、周囲の領域に光を照射する方式として様々なものが存在し、光源のパワーが同じであっても、光を照射する方式によって測距距離が異なる。
【0006】
例えば、2次元的に広がる光を出射して、2次元に広がる領域に一括して光を照射する方式(2Dフラッシュ方式)P1は、光源から出射される光が2次元的に広げられて照射されるため、単位面積あたりに照射される光の強度(パワー密度)は低くなる。このため、比較的短い測距距離しか実現できない。その一方で、2Dフラッシュ方式P1は、2次元に広がる領域の全体に一瞬で光を照射することができるため、高いフレームレートが実現される。
【0007】
一方、コリメートビームを出射して、これを2方向に動かして2次元に広がる領域を走査することによって、該領域に光を照射する方式(2Dラスタースキャン方式)P2は、光源から出射される光が広げられることなく照射されるため、単位面積あたりに照射される光の強度は比較的高い。このため、比較的長い測距距離が実現される。その一方で、2Dラスタースキャン方式P2は、2次元に広がる領域の全体に光を照射するためにある程度以上の時間が必要となり、フレームレートを高めることが難しい。
【0008】
このように、測距距離はフレームレートとトレードオフの関係にあるため、測距距離をのばそうとするとフレームレートが低下するという問題が避けられない。その中で、1次元に広がる光(ラインビーム)Lnを出射して、該ラインビームLnをその延在方向と交差する(例えば直交する)方向に動かして2次元に広がる領域を走査することによって、該領域に光を照射する方式(1Dラインスキャン方式)P3は、比較的長い測距距離と比較的高いフレームレートとを両立できる、バランスのとれた方式である。
【0009】
この1Dラインスキャン方式P3において、2Dラスタースキャン方式P2に対するフレームレートの優位性を維持しつつ(すなわち、フレームレートを犠牲にすることなく)、測距距離をさらにのばすことが求められている。
【0010】
本開示は、光による検知と測距を行うにあたって、測距距離をのばすことができる技術の提供を目的とする。
【課題を解決するための手段】
【0011】
第1の態様は、検知装置であって、走査領域に光を送信する送信部と、前記走査領域にある対象物で反射された光を受信する受信部と、を備え、前記送信部が、光を出射する光源と、光の位相を変調することによって該光を第1方向に誘導して前記走査領域を走査させる光誘導部と、前記走査領域に投射される光が、前記第1方向と交差する第2方向に沿って複数のコリメートビームが隙間を設けつつ配列された変形ラインビームとなるように、光に成形を施す成形部と、を備える。
【0012】
第2の態様は、第1の態様に係る検知装置であって、前記受信部が、複数のフォトディテクタが前記第2方向に沿って配列された光検出部、を備え、前記コリメートビームの隙間が、前記フォトディテクタの隙間と対応するように構成されている。
【0013】
第3の態様は、第2の態様に係る検知装置であって、前記変形ラインビームにおいて隣り合うコリメートビームのそれぞれが、前記光検出部において隣り合うフォトディテクタのそれぞれに入射するように構成されている。
【0014】
第4の態様は、第1から第3のいずれかの態様に係る検知装置であって、前記成形部が、凹凸構造によって回折格子パターンが形成された回折光学素子、を備え、前記回折格子パターンで光を回折させることによって光に成形を施す。
【0015】
第5の態様は、第1から第3のいずれかの態様に係る検知装置であって、前記成形部が、2次元に配列された複数の格子要素を有し、前記複数の格子要素の各々が駆動されることで回折格子パターンが形成される、2次元の空間位相変調素子、を備え、前記回折格子パターンで光を回折させることによって光に成形を施す。
【0016】
第6の態様は、第5の態様に係る検知装置であって、前記光誘導部と前記成形部との間で前記2次元の空間位相変調素子が共用されており、前記2次元の空間位相変調素子が、光を誘導するとともに該光に成形を施す。
【0017】
第7の態様は、第5または第6の態様に係る検知装置であって、前記2次元の空間位相変調素子において、前記複数の格子要素によって形成される回折格子パターンを変更するパターン変更部、を備える。
【0018】
第8の態様は、第7の態様に係る検知装置であって、前記パターン変更部が、前記走査領域に投射される前記変形ラインビームにおいて、前記第2方向の端にあるコリメートビームが1個以上消滅するように、前記回折格子パターンを変更する。
【0019】
第9の態様は、第7または第8の態様に係る検知装置であって、前記パターン変更部が、前記送信部が備えるレンズを通じて前記走査領域に投射される前記変形ラインビームにおいて、前記複数のコリメートビームが等間隔で配列されるように、前記レンズの収差を加味して前記回折格子パターンを補正する。
【0020】
第10の態様は、検知方法であって、走査領域に光を送信する送信工程と、前記走査領域にある対象物で反射された光を受信する受信工程と、を備え、前記送信工程が、光を出射する出射工程と、光の位相を変調することによって該光を第1方向に誘導して前記走査領域を走査させる光誘導工程と、前記光誘導工程の前、前記光誘導工程の後、あるいは、前記光誘導工程と並行して、前記走査領域に投射される光が、前記第1方向と交差する第2方向に沿って複数のコリメートビームが隙間を設けつつ配列された変形ラインビームとなるように、光に成形を施す成形工程と、を備える。
【発明の効果】
【0021】
第1から第10の態様によると、第1方向と交差する第2方向に沿って複数のコリメートビームが隙間を設けつつ配列された変形ラインビームが、第1方向に誘導されて走査領域を走査することで、2次元に広がる走査領域に光が照射される。変形ラインビームは、第2方向に沿って直線状に配列される不連続な部分(例えば線分)の集まりからなる領域に光を照射するものであるので、例えば、第2方向に沿って連続的に延在する線状の領域に光を照射する通常のラインビームと比べて、光が照射される部分における光の強度(パワー密度)が高い。したがって、変形ラインビームで走査領域を走査することで、通常のラインビームで走査領域を走査する場合に比べて、測距距離をのばすことができる。
【0022】
第2の態様によると、通常のラインビームにおいてフォトディテクタの隙間に入射していた光(すなわち、検出されることなく損失されていた光、換言すると、光検出部のフィルファクタ損失となっていた光)の少なくとも一部を間引くことで、走査領域に照射される光の強度を高めて、測距距離をのばしている。したがって、分解能の低下を抑制しつつ、測距距離をのばすことができる。
【0023】
第3の態様によると、変形ラインビームにおける複数のコリメートビームの隙間が、フォトディテクタを跨ぐものとはならないので、分解能の低下が十分に抑制される。その一方で、変形ラインビームが入射する複数のフォトディテクタの間に存在する隙間の全てについて、各隙間に入射していた光の少なくとも一部が間引かれることになるので、測距距離を十分にのばすことができる。つまり、分解能の低下を十分に抑制しつつ、測距距離を十分にのばすことができる。
【0024】
第4および第5の態様によると、光の回折現象を利用して、簡易に光を成形することができる。
【0025】
第6の態様によると、部品点数を減らして装置構成を単純化することができる。
【0026】
第7の態様によると、回折格子パターンを変更することによって、走査領域に投射される変形ラインビームにおけるコリメートビームの配列パターンを変更することができる。
【0027】
第8の態様によると、変形ラインビームにおいて、第2方向の端にあるコリメートビームが1個以上消滅されることで、変形ラインビームに含まれるコリメートビームの総数が減少し、残ったコリメートビームの強度を高めることができる。これによって、測距距離をさらにのばすことが可能となる。
【0028】
第9の態様によると、送信部が備えるレンズの収差を加味して回折格子パターンが補正されることで、レンズの収差のために、走査領域に投射される変形ラインビームにおいて、複数のコリメートビームの間隔が、コリメートビームの配列方向の端に近づくにつれて広がる(あるいは狭まる)、といった事態の発生が未然に回避される。
【図面の簡単な説明】
【0029】
図1】第1実施形態に係る検知装置の概略構成を示すブロック図である。
図2】検知装置を説明するための模式図である。
図3】制御部のハードウェア構成を示すブロック図である。
図4】グレーティングライトバルブの一部を模式的に示す平面図である。
図5】グレーティングライトバルブを模式的に示す側面図である。
図6】グレーティングライトバルブの動作を説明するための模式図である。
図7】光誘導部による光ビームの誘導方向に沿って見た検知装置の光学系を模式的に示す図である。
図8】変形ラインビームにおける複数のコリメートビームの配列方向に沿って見た検知装置の光学系を模式的に示す図である。
図9】検知装置で行われる動作の流れを示す図である。
図10】第1変形例に係る検知装置を説明するための模式図である。
図11】平面ライトバルブの一部を模式的に示す平面図である。
図12】第2変形例に係る検知装置を説明するための模式図である。
図13】第3変形例に係る検知装置の動作の一例を説明するための模式図である。
図14】第3変形例に係る検知装置の動作の一例を説明するための模式図である。
図15】変形ラインビームにおけるコリメートビームの配列パターンの別の例を説明するための模式図である。
図16】周囲の領域に光を照射する方式を説明するための模式図である。
【発明を実施するための形態】
【0030】
以下、添付の図面を参照しながら、実施形態について説明する。なお、この実施形態に記載されている構成要素はあくまでも例示であり、本開示の範囲をそれらのみに限定する趣旨のものではない。また、図面においては、理解容易のため、必要に応じて各部の寸法または数が誇張または簡略化して図示されている場合がある。
【0031】
相対的または絶対的な位置関係を示す表現(例えば、「一方向に」、「一方向に沿って」、「平行」、「直交」、「中心」、「同心」、「同軸」、など)は、特に断らない限り、その位置関係を厳密に表すのみならず、公差もしくは同程度の機能が得られる範囲で相対的に角度または距離に関して変位された状態も表すものとする。また、等しい状態であることを示す表現(例えば、「同一」、「等しい」、「均質」、など)は、特に断らない限り、定量的に厳密に等しい状態を表すのみならず、公差もしくは同程度の機能が得られる差が存在する状態も表すものとする。また、形状を示す表現(例えば、「円形状」、「四角形状」、「円筒形状」、など)は、特に断らない限り、幾何学的に厳密にその形状を表すのみならず、同程度の効果が得られる範囲の形状を表すものとし、例えば凹凸または面取りなどを有していてもよい。また、構成要素を「備える」、「具える」、「具備する」、「含む」、「有する」、といった各表現は、他の構成要素の存在を除外する排他的表現ではない。また、「A、BおよびCのうちの少なくとも一つ」という表現には、「Aのみ」、「Bのみ」、「Cのみ」、「A、BおよびCのうち任意の2つ」、「A、BおよびCの全て」が含まれる。
【0032】
<1.検知装置の概略構成>
実施形態に係る検知装置100の概略構成について、図1図2を参照しながら説明する。図1は、検知装置100の概略構成を示すブロック図である。図2は、検知装置100を説明するための模式図である。以下において参照する各図(特に、図2および後に参照する図10図12図13図14)において、図に現れる要素は、説明のために簡略化され、誇張されて示されており、その配置や形状なども模式的なものである。また、一部の要素の図示は省略されている。
【0033】
検知装置100は、光を用いた検知と測距を行う装置(いわゆる、LiDAR装置)であり、検知装置100の周囲の領域(走査領域)Aに光(光ビーム)Lを送信する送信部1と、送信部1から走査領域Aに送信されて走査領域Aにある対象物Atで反射された光ビームLを受信する受信部2と、これら各部1,2を制御する制御部3と、を備える。
【0034】
(送信部1)
送信部1は、光源11と、光誘導部12と、成形部13と、を備える。
【0035】
光源11は、光ビームLを出射する。具体的には例えば、光源11は、半導体レーザを含んで構成される。また、光源11から出射される光ビームLは、具体的には例えば、短パルス(例えば、1~2nsec程度の短パルス)のレーザ光である。光ビームLの波長は、例えば、LiDAR装置において好適に用いられる波長(すなわち、水中を透過しやすい、太陽光の影響を受けにくい、人間の目に対する安全性が担保される、などといった要件を充足することができる波長)であることが好ましい。具体的には例えば、光ビームLの波長は、850nm以上かつ1550nm以下であることが好ましく、特に、850nm、905nm、1064nm、1550nm、のいずれかの中心波長であることが好ましい。
【0036】
光誘導部12は、ここに入射した光ビームLを所定方向(以下「第1方向」ともいう)Axに誘導して、走査領域Aを走査させる。光誘導部12は、具体的には例えば、位相変調型の空間光変調器の一種である空間位相変調素子121を含んで構成される。空間位相変調素子121は、複数の格子要素を有し、該複数の格子要素の各々を駆動する(具体的には、変位させる)ことで入射した光ビームLの位相を変調して、該光ビームLを誘導する。この実施形態では、空間位相変調素子121は、光位相アレイ(光フェーズドアレイ)の一種であるグレーティングライトバルブ(Grating Light Valve)5を用いて実現される。
【0037】
成形部13は、走査領域Aに投射される光が変形ラインビームLdとなるように、光ビームLに成形を施す。ここで、「変形ラインビームLd」とは、複数のコリメートビームCが、隙間を設けつつ、所定方向(光誘導部12による光ビームLの誘導方向である第1方向Axと交差する方向であり、以下「第2方向」ともいう)Ayに沿って、配列されてなるものである。このような変形ラインビームLdが走査領域Aに照射されると、第2方向Ayに沿って直線状に配列される不連続な部分(例えば線分)の集まりからなる領域に光が照射されることになる。光ビームLをこのような変形ラインビームLdに成形して走査領域Aに照射することで、同じ光ビームLを通常のラインビームLn(すなわち、所定方向に沿って連続的に延在する線状の領域に光を照射する通常のラインビームLn)(図16)に成形して照射した場合と比べて、光が照射される部分における光の強度(パワー密度)を高めることが可能となる。
【0038】
成形部13が光ビームLに成形を施す態様は、どのようなものであってもよい。この実施形態では、成形部13は、回折光学素子(DOE:Diffractive Optical Element)4を含んで構成される。回折光学素子4は、光の回折現象を利用して光に成形を施す光学素子であり、例えば、板状の基材の主面に刻設された微細な凹凸構造によって回折格子パターンが形成されたものである。回折光学素子4に入射した光ビームLは、凹凸構造によって形成される回折格子パターンに応じて回折される(回折格子パターンに応じた位相分布を付与される)ことで、該回折格子パターンに応じた形状(成形パターン)に成形される。つまり、所望の成形パターンに応じて設計された回折格子パターンが設けられた回折光学素子4を用いることで、光ビームLを該所望の成形パターンに成形することができる。
【0039】
走査領域Aに投射される光が変形ラインビームLdとなるように光ビームLに成形を施す回折光学素子4は、例えば次のようにして得ることができる。まず、走査領域Aに投射されるべき変形ラインビームLdが決定される。すなわち、変形ラインビームLdにおけるコリメートビームCの配列パターン(具体的には例えば、コリメートビームCの個数、間隔(ピッチ)、ビーム径、プロファイル、など)が決定される。そして、該決定された変形ラインビームLdに基づいて、回折格子パターンが設計される。すなわち、走査領域Aに投射される光が該決定された変形ラインビームLdとなるように光ビームLに成形を施すことができる回折格子パターンが、例えばシミュレーションによって設計される。このようにして設計された回折格子パターンを、基材に刻設するなどして、回折光学素子4が得られる。こうして得られた回折光学素子4を用いることで、走査領域Aに投射される光が所期の変形ラインビームLdとなるように、光ビームLに成形を施すことができる。別の言い方をすると、走査領域Aに投射される光が所期の変形ラインビームLdとなるような位相分布を、光ビームLに付与することができる。
【0040】
(受信部2)
受信部2は、光検出部21を備える。
【0041】
光検出部21は、走査領域Aに照射されてここにある対象物Atで反射された変形ラインビームLdを、レンズ201などを通じて受光して、該受光した変形ラインビームLdを検出する。光検出部21は、具体的には例えば、複数のフォトディテクタ(受光素子)211が1次元(1列)に配列された、いわゆる1次元フォトディテクタアレイを含んで構成される。一例として、光検出部21は、フォトディテクタ211としてのSPAD(Single Photon Avalanche Diode)が一列に配列された、いわゆる、1次元アレイSPADを含んで構成することができる。
【0042】
光検出部21は、フォトディテクタ211の配列方向が、変形ラインビームLdにおける複数のコリメートビームCの配列方向(第2方向)Ayに沿うように配置される。ここでは、変形ラインビームLdにおけるコリメートビームCの隙間が、光検出部21におけるフォトディテクタ211の隙間と対応するように、コリメートビームCの配列パターンが規定される。具体的には、そのような配列パターンでコリメートビームCが配列された変形ラインビームLdが得られるように、回折光学素子4に設けられる回折格子パターンが設計される。ここで、「コリメートビームCの隙間とフォトディテクタ211の隙間とが対応する」とは、変形ラインビームLdが光検出部21に入射する際に、コリメートビームCの隙間の少なくとも一部が、フォトディテクタ211の隙間の少なくとも一部と一致することを意味する。つまり、この変形ラインビームLdでは、通常のラインビームLnにおいてフォトディテクタ211の隙間に入射していた光(すなわち、検出されることなく損失されていた光、換言すると、光検出部21のフィルファクタ損失となっていた光)の少なくとも一部が間引かれて、隙間を構成する。
【0043】
特に、図2に示されるように、変形ラインビームLdにおいて隣り合うコリメートビームCのそれぞれが、光検出部21において隣り合うフォトディテクタ211のそれぞれに入射するように、コリメートビームCの配列パターンが規定されることが好ましい。具体的には例えば、光検出部21に入射する際の変形ラインビームLdにおけるコリメートビームCの配列ピッチ(隣り合うコリメートビームCの中心線の間隔)が、フォトディテクタ211の配列ピッチ(隣り合うフォトディテクタ211の中心線の間隔)と略一致するように、コリメートビームCの配列パターンが規定されることが好ましい。さらに、変形ラインビームLdに含まれるコリメートビームCの個数が、光検出部21が備えるフォトディテクタ211の個数と同じとなるように(すなわち、光検出部21が備える複数のフォトディテクタ211の全てにコリメートビームCが入射するように)、コリメートビームCの配列パターンが規定されることも好ましい。またさらに、光検出部21に入射する際の変形ラインビームLdにおける各コリメートビームCのビーム径が、各フォトディテクタ211の受光面の径と略一致するように、コリメートビームCの配列パターンが規定されることも好ましい。
【0044】
(制御部3)
制御部3は、検知装置100が備える各部1,2の動作を制御するとともに、各種の演算処理を行う要素であり、例えば、電気回路を有する一般的なコンピュータ、あるいは、マイクロコンピュータ、などによって構成される。
【0045】
制御部3は、具体的には例えば、図3に示されるように、データ処理を担う中央演算装置としてのCPU(Central Processor Unit)31といったプロセッサ、あるいは、FPGA(Field Programmable Gate Array)を備える。さらに、制御部3は、基本プログラムなどが格納されるROM(Read Only Memory)32、CPU31が所定の処理(データ処理)を行う際の作業領域として用いられるRAM(Random Access Memory)33、フラッシュメモリ、ハードディスク装置、などの不揮発性記憶装置によって構成される記憶装置34、これらを相互に接続するバスライン35、などを含んで構成される。
【0046】
記憶装置34には、制御部3が実行する処理を規定するプログラムPが格納されており、CPU31がこのプログラムPを実行することにより、制御部3がプログラムPによって規定された処理を実行することができる。もっとも、制御部3が実行する処理の一部または全部が、専用の論理回路などのハードウェア(例えば、専用プロセッサ)によって実行されてもよい。記憶装置34には、演算処理などに用いられる各種のデータも格納される。
【0047】
また、制御部3には、各種の情報を表示する表示部36、および、オペレータからの入力操作を受け付ける入力部37、などがさらに接続されてもよい。表示部36として、液晶ディスプレイなどの各種のディスプレイ装置を用いることができる。また、入力部37として、キーボード、マウス、タッチパネル、マイク、などを用いることができる。
【0048】
<2.検知装置の構成>
次に、検知装置100の具体的な構成例について説明する。以下においては、まず、光誘導部12が備える空間位相変調素子121であるグレーティングライトバルブ5の構成例について説明してから、空間位相変調素子121を含む検知装置100の全体の構成例を説明する。
【0049】
<2-1.グレーティングライトバルブ>
グレーティングライトバルブ5について、図4図6を参照しながら説明する。図4は、グレーティングライトバルブ5の一部を模式的に示す平面図である。図5は、グレーティングライトバルブ5を模式的に示す側面図である。図6は、グレーティングライトバルブ5の動作を説明するための図である。
【0050】
グレーティングライトバルブ5は、ベース部51と、複数(例えば数千本程度)のリボン52と、を備える。
【0051】
ベース部51は、基板511と、電極(ベース電極)512とを備える。基板511は、板状の基材であり、例えばシリコン基板などを用いて構成される。一方、ベース電極512は、基板511に設けられる電極であり、例えば、基板511の上面(リボン52が設けられる側の主面)に形成された金属膜によって、実現される。
【0052】
複数のリボン52の各々は、グレーティングライトバルブ5において、格子要素としての役割を担う。複数のリボン52は、基板511の一方の主面に、一列に配列されて設けられる。各リボン52は、平面視にて細長い形状であり、長尺方向を配列方向と直交させるような向きで設けられる。なお、図4図6においては、説明の便宜のために、複数のリボン52の配列方向を「Gx」とし、各リボン52の長尺方向を「Gy」とする座標系が示されている。
【0053】
各リボン52は、可撓性を有しており、長尺方向の中央部において基板511との間に隙間を設けつつ、長尺方向の両端部において基板511の主面に接続される。また、各リボン52は、その上面(基板511と対向する側の面と逆側の面)に設けられた、光ビームLを正反射する反射面521を備える。反射面521は、例えば、リボン52の上面に形成された金属(例えばアルミニウム)の薄膜によって実現される。さらに、各リボン52は、電極(リボン電極)522を備える。リボン電極522は、例えば、反射面521を実現するための金属の薄膜によって実現される。いうまでもなく、反射面521を実現するための薄膜とは別に、リボン電極522を実現するための薄膜などが設けられてもよい。
【0054】
上記のとおり、各リボン52は可撓性を有している。したがって、ベース電極512とリボン電極522との間に電位差が付与されると、静電気力によって、リボン52が基板511に向けて撓み、基板511の法線方向に変位する(図5において一点鎖線で示す状態)。また、両電極512,522の間の電位差がなくなると、静電気力がなくなり、リボン52は弾性復帰して、撓んでいない状態(図5において実線で示す状態)に戻る。両電極512,522の間には、制御部3からの信号に応じた電位差が付与され、各リボン52は、付与された電位差に応じた量だけ、基板511に対して変位する。つまり、基板511に対するリボン52の変位量ΔGは、制御部3からの信号によって制御される。
【0055】
グレーティングライトバルブ5においては、複数のリボン52の各々の変位量ΔGが制御部3からの信号で制御されることによって、複数のリボン52が様々なモード(パターン)を形成することができる。例えば、グレーティングライトバルブ5は、複数のリボン52の変位量ΔGが、等しくゼロであるようなパターンを形成することができる(第1モードM1)。このとき、グレーティングライトバルブ5は、鏡として機能し、グレーティングライトバルブ5に入射した光ビームLは、鏡面反射される。また例えば、グレーティングライトバルブ5は、複数のリボン52の変位量ΔGがリボン52の配列方向に沿って周期的に変化するブレーズパターンを形成することもできる(第2モードM2、第3モードM3)。いうまでもなく、グレーティングライトバルブ5では、第2モードM2および第3モードM3として図に例示される以外にも、任意のブレーズ周期(変位の周期)B、および、任意のブレーズ角度(鋸歯形状の傾斜面が基板511に対してなす角度)のブレーズパターンを形成することができる。複数のリボン52が、配列方向に沿ってブレーズパターンを形成するとき、グレーティングライトバルブ5は、ブレーズド回折格子として機能する。すなわち、このときのグレーティングライトバルブ5は、ここに入射した光ビームLの位相を変調して、該光ビームLをブレーズ周期Bに応じた角度に反射する。したがって、複数のリボン52が形成するブレーズパターンのブレーズ周期Bを次々に変化させる(ブレーズ周期Bを循環させる)ことで、グレーティングライトバルブ5から光ビームLが反射される角度を次々に変化させることが可能となる。このようにして、光ビームLが射出される方向を次々に変化させることによって、光ビームLを誘導して走査領域Aを走査させることができる。
【0056】
<2-2.検知装置の全体構成>
次に、検知装置100の全体構成について、図7図8を参照しながら説明する。図7は、第1方向Ax(すなわち、光誘導部12による光ビームLの誘導方向)に沿って見た検知装置100の光学系を模式的に示す図であり、図8は、第2方向Ay(すなわち、変形ラインビームLdにおける複数のコリメートビームCの配列方向)に沿って見た検知装置100の光学系を模式的に示す図である。
【0057】
第1方向Axに沿って見ると(図7)、光源11から出射された光ビーム(測定光ビーム)Lは、シリンドリカルレンズ101によって、第2方向Ayについてコリメートされる。上記のとおり、光源11から出射される光ビームLは、例えば、短パルスのレーザ光である。
【0058】
続いて、光ビームLは、レンズ102に入射し、該レンズ102によって、第2方向Ayについて空間位相変調素子121の中央に結像される。上記のとおり、空間位相変調素子121は、グレーティングライトバルブ5を用いて実現されており、グレーティングライトバルブ5は、リボン52の配列方向Gxが第1方向Axと平行となり、各リボン52の延在方向Gyが第2方向Ayと平行となるように配置されている。したがって、光ビームLは、レンズ102によって、各リボン52の延在方向Gyに集光されて、該延在方向Gyの中央に結像される。各リボン52の変位量ΔGは、リボン52の延在方向Gyの中央領域において特に高い精度で制御されるところ、該中央領域に光ビームLが入射するような構成とされることで、空間位相変調素子121から反射される光ビームLの角度(走査角度)を十分に高い精度で制御することが可能となる。
【0059】
空間位相変調素子121で反射された光ビームLは、レンズ103に入射し、該レンズ103によって第2方向Ayについてコリメートされた後に、回折光学素子4に入射する。回折光学素子4は、成形部13としての役割を担うものであり、例えば、レンズ104の前側のフーリエ面に配置される。上記のとおり、回折光学素子4には、予め設計された回折格子パターン(すなわち、走査領域Aに投射される光が所期の変形ラインビームLdとなるように光ビームLに成形を施すことができる回折格子パターン)が設けられており、回折光学素子4に入射した光ビームLは、該回折格子パターンに応じて回折されることで、走査領域Aに投射される光が所期の変形ラインビームLdとなるような成形を施される。別の言い方をすると、該光ビームLは、走査領域Aに投射される光が所期の変形ラインビームLdとなるような位相分布を付与される。
【0060】
回折光学素子4で成形を施された光ビームLは、レンズ104に入射し、該レンズ104によって第2方向Ayについて結像される。レンズ104によって光ビームLが結像される結像点は、レンズ104と走査領域Aとの間に規定される。そのため、光ビームLは、第2方向Ayに広がりつつ、走査領域Aに入射する。つまり、一群のレンズ103,104を含んで構成される投影光学系は、光ビームLを第2方向Ayに広げるように成形して、走査領域Aに照射する。上記のとおり、光ビームLには、回折光学素子4によって成形が施されているため、レンズ105を通じて走査領域Aに投射される光は、第2方向Ayに沿って複数のコリメートビームCが隙間を設けつつ配列された変形ラインビームLdとなる。
【0061】
一方、第2方向Ayに沿って見ると(図8)、光源11から出射された光ビームLは、シリンドリカルレンズ101に入射するものの、シリンドリカルレンズ101は、第1方向Axについてはパワーを有さない。したがって、光源11から出射された光ビームLは、シリンドリカルレンズ101によって第1方向Axについて屈折されることなく進行する。
【0062】
続いて、光ビームLは、レンズ102に入射し、該レンズ102によって第1方向Axについてコリメートされてから空間位相変調素子121に入射する。つまり、光ビームLは、空間位相変調素子121を実現するグレーティングライトバルブ5の各リボン52の配列方向Gxに沿って細長く延在する帯状の領域に、入射する。上記のとおり、グレーティングライトバルブ5では、制御部3からの信号で複数のリボン52の各々の変位量ΔGが制御されることによって、光ビームLに対して位相変調が実行され、光ビームLは、複数のリボン52の変位態様(モード)に応じた角度(走査角度)で反射される。そして、光ビームLが反射される角度が次々に変更されることで、光ビームLが第1方向Axに誘導される。図8では、2つの異なる角度へ反射された光ビームLが併記されている。
【0063】
空間位相変調素子121で反射された光ビームLは、レンズ103に入射し、該レンズ103によって第1方向Axについて結像された後に、レンズ104によって第1方向Axについてコリメートされる。つまり、一群のレンズ103,104を含んで構成される投影光学系は、空間位相変調素子121から射出された光ビームLを、第1方向Axに狭めるように成形して、走査領域Aに照射する。
【0064】
以上のとおり、送信部1においては、光誘導部12の空間位相変調素子121(具体的には、グレーティングライトバルブ5)が、ここに入射した光ビームLを反射する角度を次々に変更することで、光ビームLを第1方向Axに誘導し、その一方で、成形部13(具体的には、回折光学素子4)が、走査領域Aに投射される光が、第2方向Ayに沿って複数のコリメートビームCが配列された変形ラインビームLdとなるように、光ビームLに成形を施す。したがって、第2方向Ayに沿って複数のコリメートビームCが配列された変形ラインビームLdが、第1方向Axに誘導されて走査領域Aを走査することとなり、これによって、第1方向Axおよび第2方向Ayから規定される2次元に広がる走査領域Aに、光が照射される。走査領域Aの大きさ、すなわち、検知装置100の視野(FOV)は、第2方向Ayについての変形ラインビームLdの全体の長さと、光誘導部12による光ビームLの誘導範囲(走査角度の範囲)とから規定される。
【0065】
上記のとおり、変形ラインビームLdは、通常のラインビームLn(図16)と比べて、光が照射される部分における光の強度が高い。したがって、変形ラインビームLdで走査領域Aを走査することで、通常のラインビームLnで走査領域Aを走査する場合に比べて、測距距離をのばすことができる。一方、変形ラインビームLdで走査領域Aを走査する場合と、通常のラインビームLnで走査領域Aを走査する場合とを比較したとき、光が誘導される速度が同じであればフレームレートは同じである。また、第2方向Ayについて両ラインビームLn,Ldの全体の長さが同じであれば、走査領域Aの大きさも同じである。つまり、変形ラインビームLdで走査領域Aを走査することで、フレームレートおよび視野(FOV)を維持しつつ、測距距離をのばすことができる。
【0066】
引き続き、第2方向Ayに沿って見ると(図8)、走査領域Aに照射されてここに存在する対象物Atで反射された変形ラインビームLdは、レンズ(例えば、カメラレンズ)201などを通じて受信されて、光検出部21に入射し、ここで検出される。
【0067】
一方、第1方向Axに沿って見ると(図7)、上記のとおり、光検出部21は、複数のフォトディテクタ211を備え、該複数のフォトディテクタ211の配列方向が、第2方向Ayに沿うように配置される。例えば、変形ラインビームLdにおいて隣り合うコリメートビームCのそれぞれが、光検出部21において隣り合うフォトディテクタ211のそれぞれに入射するように、コリメートビームCの配列パターンが規定されている場合、走査領域Aに照射され、ここにある対象物Atで反射されて戻ってきた変形ラインビームLdにおける隣り合うコリメートビームCのそれぞれが、隣り合うフォトディテクタ211のそれぞれに入射し、各フォトディテクタ211が各コリメートビームCの強度を検出することになる。
【0068】
光検出部21での検出結果は、制御部3に送信され、制御部3は、該検出結果を用いて各種の演算処理を行う。例えば、制御部3は、光検出部21での検出結果に基づいて、走査領域Aにある対象物Atに関する各種の測定データ(例えば、対象物Atまでの距離、対象物Atの位置、など)を算出する。具体的には例えば、制御部3は、ToF(Time of Flight)方式の測距技術を用いて、測定データを算出する。この場合、制御部3は、光源11から短パルスのレーザ光が出射されてから、その反射光が光検出部21で検出されるまでの時間(飛行時間)から、対象物Atまでの距離を算出する。また例えば、制御部3は、対象物Atで反射された変形ラインビームLdが走査領域Aに投射されたときの走査角度(光誘導部12による光ビームLの誘導位置)に基づいて、第1方向Axについての対象物Atの位置を特定する。また例えば、制御部3は、対象物Atで反射された変形ラインビームLdを検出したフォトディテクタ211の配列位置に基づいて、第2方向Ayについての対象物Atの位置を特定する。
【0069】
<3.効果>
上記の実施形態に係る検知装置100は、走査領域Aに光(光ビーム)Lを送信する送信部1と、走査領域Aにある対象物Atで反射された光ビームLを受信する受信部2と、を備える。そして、送信部1が、光ビームLを出射する光源11と、光ビームLの位相を変調することによって該光ビームLを第1方向Axに誘導して走査領域Aを走査させる光誘導部12と、走査領域Aに投射される光が、第1方向Axと交差する第2方向Ayに沿って複数のコリメートビームCが隙間を設けつつ配列された変形ラインビームLdとなるように、光ビームLに成形を施す成形部13と、を備える。
【0070】
この構成によると、第1方向Axと交差する第2方向Ayに沿って複数のコリメートビームCが隙間を設けつつ配列された(別の言い方をすると、複数のコリメートビームCに分岐された)変形ラインビームLdが、第1方向Axに誘導されて走査領域Aを走査することで、2次元に広がる走査領域Aに光が照射される。変形ラインビームLdは、第2方向Ayに沿って直線状に配列される不連続な部分(例えば線分)の集まりからなる領域に光を照射するものであるので、例えば、第2方向Ayに沿って連続的に延在する線状の領域に光を照射する通常のラインビームLn(図16)と比べて、光が照射される部分における光の強度(パワー密度)が高い(別の言い方をすると、光ビームLの伝送効率が高い)。ひいては、光検出部21で検出される光の強度(検出信号の強度)も高い。したがって、変形ラインビームLdで走査領域Aを走査することで、通常のラインビームLnで走査領域Aを走査する場合に比べて、測距距離をのばすことができる。
【0071】
変形ラインビームLdにおいて、コリメートビームCに対する隙間の割合が大きくなるほど、走査領域Aに照射される光の強度が高まり、測距距離が長くなる。その半面で、この割合が大きくなるほど、第2方向Ayについて分解能が低下する可能性が高まる。ここで、例えば自動車に搭載されるLiDAR装置などでは、運転視野に現れる物体の多くは水平方向に動くものであって、鉛直方向に動く物体はほとんど存在しないため、鉛直方向についてはそれほど高い分解能が求められない。別の言い方をすると、鉛直方向については、分解能の低下が許容される。したがって、第2方向Ayが、分解能の低下が許容される鉛直方向に相当するように検知装置100を設置すれば、第2方向Ayについての分解能の低下は、実質的な問題にはならない場合が多い。
【0072】
また、上記の実施形態に係る検知装置100では、受信部2が、複数のフォトディテクタ211が第2方向Ayに沿って配列された光検出部21を備える。そして、コリメートビームCの隙間が、フォトディテクタ211の隙間と対応するように構成されている。この構成によると、通常のラインビームLnにおいてフォトディテクタ211の隙間に入射していた光(すなわち、検出されることなく損失されていた光、換言すると、光検出部21のフィルファクタ損失となっていた光)の少なくとも一部を間引くことで、走査領域Aに照射される光の強度を高めて、測距距離をのばしている。したがって、分解能の低下を抑制しつつ、測距距離をのばすことができる。
【0073】
特に、変形ラインビームLdにおいて隣り合うコリメートビームCのそれぞれが、光検出部21において隣り合うフォトディテクタ211のそれぞれに入射するように構成すれば、変形ラインビームLdにおける複数のコリメートビームCの隙間が、フォトディテクタ211を跨ぐものとはならないので、分解能の低下が十分に抑制される。その一方で、このように構成すれば、変形ラインビームLdが入射する複数のフォトディテクタ211の間に存在する隙間の全てについて、各隙間に入射していた光の少なくとも一部が間引かれることになるので、測距距離を十分にのばすことができる。つまり、隣り合うコリメートビームCのそれぞれが、隣り合うフォトディテクタ211のそれぞれに入射するように構成することで、分解能の低下を十分に抑制しつつ、測距距離を十分にのばすことができる。
【0074】
また、上記の実施形態に係る検知装置100は、成形部13が、凹凸構造によって回折格子パターンが形成された回折光学素子4を備え、該回折格子パターンで光ビームLを回折させることによって光ビームLに成形を施す。この構成によると、光の回折現象を利用して、簡易に光ビームLを成形することができる。
【0075】
また、上記の実施形態に係る検知装置100において行われる検知方法は、図9に示されるように、走査領域Aに光(光ビーム)Lを送信する送信工程S1(送信部1での動作工程)と、走査領域Aにある対象物Atで反射された光ビームLを受信する受信工程S2(受信部2での動作工程)と、受信工程S2で取得された検出結果に基づく演算処理などを行う演算工程S3(制御部3での動作工程)と、が含まれる。そして、送信工程S1が、光源11から光ビームLを出射する出射工程S11と、光源11から出射された光ビームLの位相を変調することによって該光ビームLを第1方向Axに誘導して走査領域Aを走査させる光誘導工程S12(光誘導部12での動作工程)と、走査領域Aに投射される光が、第1方向Axと交差する第2方向Ayに沿って複数のコリメートビームCが隙間を設けつつ配列された変形ラインビームLdとなるように、光ビームLに成形を施す成形工程S13(成形部13での動作工程)と、を備える。また、受信工程S2が、走査領域Aにある対象物Atで反射された変形ラインビームLdを受光して、これを検出する光検出工程S21(光検出部21での動作工程)を備える。さらに、演算工程S3が、光検出工程S21で取得された検出結果に基づいて、走査領域Aにある対象物Atに関する各種の測定データを算出する測定データ算出工程S31(制御部3での動作工程)を備える。
【0076】
この検知方法によると、変形ラインビームLdで走査領域Aを走査することで、通常のラインビームLn(図16)で走査領域Aを走査する場合に比べて、測距距離をのばすことができる。なお、上記の実施形態においては、成形部13(具体的には、回折光学素子4)が、光誘導部12の空間位相変調素子121(具体的には、グレーティングライトバルブ5)の後段に配置されており(図7図8)、成形工程S13は光誘導工程S12の後に行われていたが、後述する変形例のように、成形工程S13は光誘導工程S12と並行して行われてもよいし、成形工程S13は光誘導工程S12の前に行われてもよい。
【0077】
<4.変形例>
<4-1.第1変形例>
上記の実施形態に係る検知装置100に係る成形部13は、回折光学素子4を含んで構成されるものとしたが、成形部13の構成はこれに限られるものではない。例えば、図10に示される検知装置100aのように、成形部13aが、平面ライトバルブ(PLV:Planar Light Valve)6を含んで構成されてもよい。具体的には例えば、上記の実施形態に係る検知装置100の光学系(図7図8)において、回折光学素子4が配置されていた位置に、回折光学素子4に代えて、平面ライトバルブ6を配置してもよい。
【0078】
平面ライトバルブ6は、グレーティングライトバルブ5と同様、空間位相変調素子の一種である。すなわち、平面ライトバルブ6は、複数の格子要素を有し、該複数の格子要素の各々を駆動する(具体的には、変位させる)ことで入射した光ビームLの位相を変調する。ただし、グレーティングライトバルブ5が、格子要素であるリボン52が1次元に配列された1次元の空間位相変調素子であるのに対し、平面ライトバルブ6は、格子要素である反射素子62(後述する)が2次元に配列された2次元の空間位相変調素子である。
【0079】
平面ライトバルブ6について、図11を参照しながら具体的に説明する。図11は、平面ライトバルブ6の一部を模式的に示す平面図である。
【0080】
平面ライトバルブ6は、ベース部61と、複数の反射素子62と、を備える。
【0081】
ベース部61は、基板611と、電極(ベース電極)(図示省略)とを備える。基板611は、板状の基材であり、例えばシリコン基板などを用いて構成される。一方、ベース電極は、基板611に設けられる電極であり、例えば、基板611の上面(反射素子62が設けられる側の主面)に形成された金属膜によって、実現される。
【0082】
複数の反射素子62の各々は、平面ライトバルブ6において、格子要素としての役割を担う。複数の反射素子62は、基板611の一方の主面に、マトリクス状に配列されて設けられる。
【0083】
反射素子62は、平面視にて矩形の平板状部材であり、その下面と基板611との間に、厚みが略均一な隙間を設けつつ、基板611上に支持される。反射素子62の上面には、光ビームLを正反射する反射面が設けられる。該反射面は、例えば、反射素子62の上面に形成された金属(例えばアルミニウム)の薄膜によって実現される。各反射素子62は、可撓性を有する支持体621によって、基板611との間に隙間を設けつつ、基板611の上方に支持される。支持体621は、具体的には例えば、平面視にて十字状の構造体であり、平面視における中央部分が、反射素子62の下面(基板611と対向する側の面)と接続あるいは一体化される。また、支持体621は、平面視における中央部分から各端部に至る部分が、反射素子62と基板611との間に架け渡されるようにして設けられる。さらに、支持体621は、例えば、金属(例えばアルミニウム)の薄膜で被覆されており、この薄膜が、反射素子62に設けられた電極(反射素子電極)を構成する。
【0084】
上記のとおり、反射素子62を支持する支持体621は、可撓性を有している。したがって、ベース電極と反射素子電極との間に電位差が付与されると、静電気力によって、支持体6221が基板611に向けて撓み、反射素子62が基板611の法線方向に変位する。また、両電極の間の電位差がなくなると、静電気力がなくなり、支持体621は弾性復帰して撓んでいない状態に戻り、反射素子62も元の位置に戻る。両電極の間には、制御部3からの信号に応じた電位差が付与され、各反射素子62は、付与された電位差に応じた量だけ、基板611に対して、変位する。つまり、基板611に対する反射素子62の変位量は、制御部3からの信号によって制御される。
【0085】
平面ライトバルブ6においては、複数の反射素子62を駆動することによって(具体的には、各反射素子62の変位量を、制御部3からの信号で制御することによって)、複数の反射素子62に様々なモード(パターン)を形成させることができる。つまり、平面ライトバルブ6においては、各反射素子62の変位量を制御部3からの信号で制御することによって、例えば上記の実施形態に係る回折光学素子4に形成されていた回折格子パターン(すなわち、基材の主面に刻設された微細な凹凸構造によって形成されていた回折格子パターン)と同様の回折格子パターンを、複数の反射素子62によって形成することができる。
【0086】
平面ライトバルブ6に入射した光ビームLは、複数の反射素子62によって形成されている回折格子パターンに応じて回折される(回折格子パターンに応じた位相分布を付与される)ことで、該回折格子パターンに応じた形状(成形パターン)に成形される。つまり、所望の成形パターンに応じて設計された回折格子パターンが複数の反射素子62によって形成されるように、各反射素子62を変位させる(具体的には、各反射素子62に与える制御信号を規定する)ことで、光ビームLを該所望の成形パターンに成形することができる。
【0087】
走査領域Aに投射される光が変形ラインビームLdとなるように光ビームLに成形を施すことができる制御信号は、例えば次のようにして得ることができる。まず、走査領域Aに投射されるべき変形ラインビームLdが決定される。そして、該決定された変形ラインビームLdに基づいて、回折格子パターンが設計される。すなわち、走査領域Aに投射される光が該決定された変形ラインビームLdとなるように光ビームLに成形を施すことができる回折格子パターンが、例えばシミュレーションによって設計される。そして、このようにして設計された回折格子パターンを形成するために各反射素子62に与えるべき制御信号が算出される。該算出された制御信号で各反射素子62が変位されることで、走査領域Aに投射される光が所期の変形ラインビームLdとなるように、光ビームLに成形を施すことができる。別の言い方をすると、走査領域Aに投射される光が所期の変形ラインビームLdとなるような位相分布を、光ビームLに付与することができる。
【0088】
このように、第1変形例に係る検知装置100aは、成形部13aが、2次元の空間位相変調素子である平面ライトバルブ6を備える。該平面ライトバルブ6は、2次元に配列された複数の格子要素である反射素子62を有し、該複数の反射素子62の各々が駆動される(具体的には、制御部3からの信号に応じて変位される)ことで回折格子パターンが形成されるものであり、該回折格子パターンで光を回折させることによって光に成形を施す。この構成によると、光の回折現象を利用して、簡易に光を成形することができる。
【0089】
<4-2.第2変形例>
また例えば、図12に示される検知装置100bのように、光誘導部12bと成形部13bとの間で、平面ライトバルブ6が共用されてもよい。具体的には例えば、上記の実施形態に係る検知装置100の光学系(図7図8)において、グレーティングライトバルブ5が配置されていた箇所に、グレーティングライトバルブ5に代えて平面ライトバルブ6を配置するとともに、回折光学素子4を省略してもよい。
【0090】
上記のとおり、平面ライトバルブ6においては、予め設計された回折格子パターン(すなわち、走査領域Aに投射される光が所期の変形ラインビームLdとなるように光ビームLに成形を施すことができる回折格子パターン)が複数の反射素子62によって形成されるように、各反射素子62を変位させることで、入射した光ビームLに成形を施すことができる。つまり、複数の反射素子62に、光ビームLを成形するための回折格子パターンを形成させることで、平面ライトバルブ6を成形部13bとして機能させることができる。
【0091】
その一方で、平面ライトバルブ6においては、光ビームLを誘導するためのブレーズパターンが複数の反射素子62によって形成されるように、各反射素子62を変位させることで、入射した光ビームLを誘導して走査領域Aを走査させることができる。つまり、複数の反射素子62に、光ビームLを誘導するためのブレーズパターンを形成させることで、平面ライトバルブ6を光誘導部12bとして機能させることもできる。
【0092】
ここで、光ビームLを誘導するためのブレーズパターンを、複数の反射素子62に形成させる態様について説明する。いま、グレーティングライトバルブ5に代えて設けられた平面ライトバルブ6において、第1方向Axに沿う複数の反射素子62の配列方向を「行方向Px」とよび、第2方向Ayに沿う複数の反射素子62の配列方向を「列方向Py」とよび、さらに、同じ列に配置されている一群の反射素子62を反射素子群620と呼ぶとする(図11)。上記のとおり、平面ライトバルブ6においては、複数の反射素子62の各々の変位量が制御部3からの信号で制御されることによって、複数の反射素子62が様々なモードを形成することができる。例えば、平面ライトバルブ6は、複数の反射素子群620の変位量が、等しくゼロであるようなパターンを形成することができる。このとき、平面ライトバルブ6は、鏡として機能し、平面ライトバルブ6に入射した光ビームLは、鏡面反射される。また例えば、平面ライトバルブ6は、複数の反射素子群620の変位量が、行方向Pxに沿って周期的に変化するブレーズパターンを形成することもできる。いうまでもなく、平面ライトバルブ6では、任意のブレーズ周期、および、任意のブレーズ角度のブレーズパターンを形成することができる。複数の反射素子群620が、配列方向に沿ってブレーズパターンを形成するとき、平面ライトバルブ6は、ブレーズド回折格子として機能する。すなわち、このときの平面ライトバルブ6は、ここに入射した光ビームLの位相を変調して、該光ビームLをブレーズ周期に応じた角度に反射する。したがって、複数の反射素子群620が形成するブレーズパターンのブレーズ周期を次々に変化させることで、平面ライトバルブ6から光ビームLが反射される角度を次々に変化させることが可能となる。このようにして、光ビームLが射出される方向を次々に変化させることによって、光ビームLを、行方向Px(すなわち、第1方向Ax)に誘導して、走査領域Aを走査させることができる。
【0093】
ここでは、光ビームLを成形するための回折格子パターン(すなわち、走査領域Aに投射される光が所期の変形ラインビームLdとなるように光ビームLに成形を施すことができる回折格子パターン)と、光ビームLを第1方向Axに誘導するためのブレーズパターン(いうまでもなく、ブレーズ周期が次々に変化するブレーズパターン)とが重畳されたパターンが、複数の反射素子62によって形成されるように、各反射素子62を変位させる(具体的には、各反射素子62に与える制御信号を規定する)。すると、平面ライトバルブ6に入射した光ビームLは、回折格子パターンに応じた成形を施されつつ、ブレーズパターンに応じて誘導されることになる。すなわち、平面ライトバルブ6を成形部13bとして機能させるとともに、光誘導部12bとして機能させることができる。
【0094】
このように、第2変形例に係る検知装置100bは、光誘導部12bと成形部13bとの間で2次元の空間位相変調素子である平面ライトバルブ6が共用されており、該平面ライトバルブ6が、光ビームLを誘導するとともに該光ビームLに成形を施す。この構成によると、部品点数を減らして装置構成を単純化することができる。
【0095】
この変形例に係る検知装置100bで行われる検知方法においては、光ビームLに成形を施す成形工程S13と、光ビームLを誘導する光誘導工程S12とが、並行して行われることになる。
【0096】
なお、いうまでもなく、上記の実施形態に係る検知装置100の光学系(図7図8)において、グレーティングライトバルブ5に代えて平面ライトバルブ6が設けられる場合に、これに伴って適宜の変更がなされてもよい。例えば、光源11から出射された光ビームLが、第1方向Axおよび第2方向Ayに広げられつつ平面ライトバルブ6に入射するように、光学部品の追加、変更などがなされることも好ましい。
【0097】
<4-3.第3変形例>
上記のとおり、平面ライトバルブ6では、入射した光ビームLが、複数の反射素子62によって形成される回折格子パターンに応じて回折されることで、該回折格子パターンに応じた形状(成形パターン)に成形される。ここで、各反射素子62は、制御部3からの信号に応じて変位されるものであるので、制御部3から各反射素子62に与える信号を変更することによって、複数の反射素子62によって形成される回折格子パターン(ひいては、光ビームLに施される成形パターン)を自在に変更することができる。
【0098】
そこで、例えば、成形部13a,13bが平面ライトバルブ6を含んで構成される場合(第1あるいは第2変形例に係る検知装置100a,100b)に、平面ライトバルブ6が備える各反射素子62に与える制御信号を変更することによって、複数の反射素子62によって形成される回折格子パターンを変更するパターン変更部301を設けてもよい。パターン変更部301は、制御部3において、例えばCPU31が記憶装置34に格納されたプログラムPを実行することによって実現される。
【0099】
この構成によると、パターン変更部301が回折格子パターンを変更することによって、走査領域Aに投射される変形ラインビームLdにおけるコリメートビームCの配列パターン(具体的には例えば、コリメートビームCの個数、間隔、ビーム径、プロファイル、など)を自在に変更することができる。
【0100】
<4-3-1.変更の態様(1)>
パターン変更部301は、例えば、走査領域Aに投射される変形ラインビームLdにおいて、第2方向Ayの端にあるコリメートビームCが1個以上消滅するように、回折格子パターンを変更してもよい。
【0101】
具体的には例えば、図13に示されるように、パターン変更部301は、走査領域Aよりも狭い領域(関心領域)Arの指定をユーザから受け付けて、該指定された関心領域Arの外側に投射されるコリメートビームCが消滅するように、回折格子パターンを変更してもよい。ただし、図13においては、変更前の回折格子パターンで光ビームLが成形された場合の変形ラインビームLd’が二点鎖線で示され、変更後の回折格子パターンで光ビームLが成形された場合の変形ラインビームLdが実線で示されている。
【0102】
このように、変形ラインビームLdにおいて、第2方向Ayの端にあるコリメートビームCが1個以上消滅されることで、変形ラインビームLdに含まれるコリメートビームCの総数が減少し、残ったコリメートビームCの強度が高まる。これによって、測距距離をさらにのばすことが可能となる。すなわち、走査領域Aよりも狭い領域である関心領域Arについて、走査領域Aよりも長い測距距離を実現することができる。
【0103】
<4-3-2.変更の態様(2)>
上記のとおり、平面ライトバルブ6では、入射した光ビームLが、複数の反射素子62によって形成される回折格子パターンに応じて回折されることで、該回折格子パターンに応じた形状(成形パターン)に成形されるところ、この成形パターンにおけるコリメートビームCの配列パターンと、実際に走査領域Aに投射される変形ラインビームLdにおけるコリメートビームCの配列パターンとが、一致しない(相似関係にならない)場合がある。その原因の一つは、送信部1が備えるレンズ(例えば、広角レンズ)の収差(例えば、ディストーション)にある。すなわち、例えば、平面ライトバルブ6において、コリメートビームCの間隔が一定となるような成形パターンに光ビームLが成形されたとしても、成形後の光ビームLが、レンズ103,104(図7図8)を通じて走査領域Aに投射された結果、実際に走査領域Aに投射される変形ラインビームLdにおいて、コリメートビームCの配列方向(第2方向)Ayの端に近づくにつれて隣り合うコリメートビームCの間隔が広くなる(レンズ103,104に糸巻き型のディストーションがある場合)、あるいは、狭くなる(レンズ103,104に樽型のディストーションがある場合)、といった事態が発生する場合がある。
【0104】
そこで、パターン変更部301が、送信部1が備えるレンズ(例えば、レンズ103,104)を通じて走査領域Aに投射される変形ラインビームLdにおいて、複数のコリメートビームCが等間隔で配列されるように、該レンズの収差を加味して回折格子パターンを補正してもよい。
【0105】
例えば、平面ライトバルブ6において、コリメートビームCの間隔が一定となるような成形パターンに光ビームLが成形された場合に、成形後の光ビームLがレンズ103,104を通じて走査領域Aに投射されたときに、レンズ103,104の収差のために、走査領域Aに投射される変形ラインビームLd’において、コリメートビームCの配列方向(第2方向)Ayの端に近づくにつれて隣り合うコリメートビームCの間隔が広くなったとする(図14の二点鎖線)。この場合、パターン変更部301は、レンズ103,104の収差を加味して、コリメートビームCの配列方向の端に近づくにつれて隣り合うコリメートビームCの間隔が狭くなるような成形パターンに光ビームLが成形されるように、回折格子パターンを補正する。すると、補正後の回折格子パターン(補正回折格子パターン)に応じた成形パターンに成形された光ビームLが、レンズ103,104を通じて走査領域Aに投射されたときに、レンズ103,104の収差のために、走査領域Aに投射される変形ラインビームLdにおいて、複数のコリメートビームCが等間隔で配列される(図14の実線)。
【0106】
多くの場合、レンズ103,104の収差の影響は、光ビームLの誘導範囲の端に近づくにつれて(すなわち、走査角度の絶対値が大きくなるにつれて)、大きくなる。すなわち、誘導範囲の端に近づくにつれて、成形パターンにおけるコリメートビームCの配列パターンと、レンズ103,104を通じて走査領域Aに投射される変形ラインビームLdにおけるコリメートビームCの配列パターンとのズレ量が、大きくなる。したがって、レンズ103,104を通じて走査領域Aに投射される変形ラインビームLdにおいて複数のコリメートビームCが等間隔で配列されるようにするための補正回折格子パターンは、光ビームLの誘導位置(走査角度)によって異なるものとなる。そこで、光ビームLの誘導位置ごとに補正回折格子パターンを予め設計して例えば記憶装置34などに記憶しておき、パターン変更部301が、光誘導部12,12bによって光ビームLが誘導されるのと並行して、複数の反射素子62に形成させる回折格子パターンを、各誘導位置について設計された補正回折格子パターンに次々に切り替えることが好ましい。これによって、誘導範囲の全域にわたって、走査領域Aに投射される変形ラインビームLdが、複数のコリメートビームCが等間隔で配列されたものとなるように、担保することができる。
【0107】
このように、パターン変更部301によって、送信部1が備えるレンズ103,104の収差を加味して回折格子パターンが補正されることで、レンズ103,104の収差のために、走査領域Aに投射される変形ラインビームLdにおいて、複数のコリメートビームCの間隔が、コリメートビームCの配列方向の端に近づくにつれて広がる(あるいは狭まる)、といった事態の発生が未然に回避される。すなわち、レンズ104,105の収差の影響を低減あるいは除去する(収差を補正する)ことができる。
【0108】
なお、送信部1が備えるレンズ103,104の収差は、これらを通じて走査領域Aに投射される変形ラインビームLdにおけるコリメートビームCの間隔にバラツキを生じさせるだけでなく、コリメートビームCのビーム径にもバラツキを生じさせる場合がある。したがって、パターン変更部301は、ビーム径のバラツキが低減されるような成形パターンに光ビームLが成形されるように、回折格子パターンを補正することも好ましい。すなわち、パターン変更部301が、送信部1が備えるレンズ103,104を通じて走査領域Aに投射される変形ラインビームLdにおいて、複数のコリメートビームCのビーム径が互いに等しいものとなるように、該レンズの収差を加味して回折格子パターンを補正することも好ましい。
【0109】
<4-4.第4変形例>
複数のコリメートビームCが配列されてなる(マルチスポットのコリメートビームCである)変形ラインビームLdにおけるコリメートビームCの配列パターンは、上記の実施形態などにおいて例示したものに限らない。
【0110】
図15には、コリメートビームCの配列パターンの別の例が示されている。ここに示される変形ラインビームLd1のように、各コリメートビームCが、隣り合う所定数個(図の例では3個)のフォトディテクタ211からなるフォトディテクタ群2110に入射するように、コリメートビームCの配列パターンが規定されてもよい。また、変形ラインビームLd2のように、隣り合うコリメートビームCのそれぞれが、所定数(図の例では1個)のフォトディテクタ211を飛ばして、各フォトディテクタ211に入射するように(すなわち、所定数個おきのフォトディテクタ211に入射するように)、コリメートビームCの配列パターンが規定されてもよい。また、変形ラインビームLd3のように、隣り合うコリメートビームCのそれぞれが、所定数個(図の例では1個)のフォトディテクタ211を飛ばして、フォトディテクタ群2110(図の例では、隣り合う2個のフォトディテクタ211からなるフォトディテクタ群2110)に入射するように、コリメートビームCの配列パターンが規定されてもよい。
【0111】
これらの変形ラインビームLd1,Ld2,Ld3のいずれにおいても、コリメートビームCの隙間が、フォトディテクタ211の隙間と対応することとなる。つまり、通常のラインビームLnにおいてフォトディテクタ211の隙間に入射していた光の少なくとも一部を間引くことで、走査領域Aに照射される光の強度を高めて、測距距離をのばしている。したがって、分解能の低下を抑制しつつ、測距距離をのばすことができる。
【0112】
<4-5.他の変形例>
上記の実施形態および上記の各変形例の構成もあくまで例示であり、これらは適宜に変更することができる。
【0113】
例えば、上記の実施形態および上記の各変形例において、光ビームLに成形を施す位置(位相分布を付与する位置)は、適宜に変更することができる。すなわち、上記の実施形態に係る成形部13が備える回折光学素子4の位置、あるいは、第1変形例に係る成形部13aが備える平面ライトバルブ6の位置は、適宜に変更することができる。具体的には例えば、回折光学素子4は、シリンドリカルレンズ101とレンズ102との間に設けられてもよいし、グレーティングライトバルブ5と一体的にあるいはこれと十分に近接して設けられてもよい。同様に、平面ライトバルブ6は、シリンドリカルレンズ101とレンズ102との間に設けられてもよいし、グレーティングライトバルブ5と一体的にあるいはこれと十分に近接して設けられてもよい。成形部13としての役割を担う回折光学素子4、あるいは、成形部13aとしての役割を担う平面ライトバルブ6が、光誘導部12としての役割を担うグレーティングライトバルブ5の前段に配置される場合、光ビームLに成形を施す成形工程S13が、光ビームLを誘導する光誘導工程S12の前に行われることになる。
【0114】
また例えば、上記の実施形態において、光誘導部12として設けられているグレーティングライトバルブ5の一群のリボン52の反射面521に、光ビームLを成形するための回折格子パターンを凹凸構造によって形成(例えば、刻設)してもよい。この場合、光ビームLを誘導するためのブレーズパターン(いうまでもなく、ブレーズ周期が次々に変化するブレーズパターン)が複数のリボン52によって形成されるように、各リボン52を変位させることで、グレーティングライトバルブ5に入射した光ビームLに、回折格子パターンに応じた成形を施しつつ、ブレーズパターンに応じて誘導することができる。すなわち、グレーティングライトバルブ5を光誘導部12として機能させるとともに、成形部13として機能させることができる。
【0115】
また例えば、上記の実施形態あるいは上記の各変形例において、成形部13,13a,13bは、エルコス(LCOS:Liquid Crystal On Silicon)を用いて構成することもできる。エルコスは、2次元の空間位相変調素子の一種である。すなわち、エルコスは、2次元に配列された複数の格子要素としての画素電極を有し、該複数の画素電極を駆動することで回折格子パターンを形成して、該回折格子パターンで光ビームLを回折させる(回折格子パターンに応じた位相変調を施す)。エルコスは、具体的には例えば、CMOSチップなどの上に2次元状(例えば、マトリクス状)に配置された複数の画素電極と、ガラス基板などに設けられた透明電極と、各画素電極と透明電極との間に封入された液晶と、を含んで構成されている。このような構成において、複数の画素電極の各々に電圧が印加されると、該印加された電圧に応じて液晶が変位(傾斜)して、屈折率が変化する。したがって、各画素電極に印加する電圧を制御することによって、様々なモード(パターン)を形成することができる。つまり、エルコスにおいては、各画素電極に対応する液晶の変位量を制御部3からの信号で制御することによって、例えば上記の実施形態に係る回折光学素子4に形成されていた回折格子パターンと同様の回折格子パターンを形成することができ、入射した光ビームLを、該回折格子パターンに応じて回折させる(回折格子パターンに応じた位相分布を付与する)ことで、該回折格子パターンに応じた形状(成形パターン)に成形することができる。つまり、所望の成形パターンに応じて設計された回折格子パターンが形成されるように、各画素電極に与える制御信号を規定することで、光ビームLを該所望の成形パターンに成形することができる。
【0116】
また、パターン変更部301において、回折格子パターンを変更する態様は、上記に例示したものに限らない。例えば、パターン変更部301は、上記に例示したように、走査領域Aに投射される変形ラインビームLdにおけるコリメートビームCの個数を減らすように回折格子パターンを変更してもよいし、逆に、コリメートビームCの個数を増やすように回折格子パターンを変更してもよい。また、パターン変更部301は、コリメートビームCの間隔を広げる、あるいは、狭めるように、回折格子パターンを変更してもよい。また、パターン変更部301は、コリメートビームCのビーム径を大きくする、あるいは、小さくするように、回折格子パターンを変更してもよい。いうまでもなく、これらの回折格子パターンの変更の態様は、適宜に組み合わされてもよい。
【0117】
また例えば、上記の実施形態あるいは上記の各変形例において、検知装置100,100a,100bには、光源11と光誘導部12,12bとの間に、戻り光を遮断するためのオプティカルアイソレータが設けられてもよい。また例えば、光検出部21の前段に例えばバンドパスフィルタなどを設け、ここで不要な周波数帯(例えば、光源11から出射される光ビームLの周波数帯以外の周波数帯)を減衰させるとともに、必要な周波数帯(例えば、光源11から出射される光ビームLの周波数帯)を通過させて、光検出部21に入射させるものとしてもよい。また、制御部3は、TDC(Time to Digital Converter)を含んで構成されてもよい。
【0118】
また例えば、上記の実施形態あるいは上記の各変形例において、送信部1の投影光学系は、光誘導部12,12b(具体的には、グレーティングライトバルブ5、あるいは、平面ライトバルブ6)による光ビームLの反射角を大きくして、光ビームLの誘導範囲(走査角度の範囲)を広げる機能を備えるものであってもよい。この機能は、例えば上記の実施形態のように光ビームLを走査領域Aよりも前の位置で結像することによって実現することができる他、複数のレンズの組み合わせによって実現することもできる。
【0119】
また例えば、上記の実施形態に係る成形部13が備える回折光学素子4が、送信部1が備えるレンズ(例えば、レンズ103,104)を通じて走査領域Aに投射される変形ラインビームLdにおいて、複数のコリメートビームCが等間隔で配列されるように、該レンズの収差を加味した回折格子パターンを有していてもよい。上記のとおり、レンズを通じて走査領域Aに投射される変形ラインビームLdにおいて複数のコリメートビームCが等間隔で配列されるようにするための補正回折格子パターンは、光ビームLの誘導位置(走査角度)によって異なるものとなる。ここで、回折光学素子4上における光ビームLが入射する位置は、光ビームLの誘導位置によって、変化する。そこで、光ビームLの誘導位置ごとに、回折光学素子4上における光ビームLが入射する位置、および、該誘導位置におけるレンズ103,104の収差の影響を打ち消すために回折光学素子4上の当該位置に形成するべき補正回折格子パターンを予め求めておき、各位置に当該位置に対応する補正回折格子パターンを有するような回折格子パターンを、回折光学素子4上に形成しておけばよい。このような構成によっても、レンズ103,104の収差のために、走査領域Aに投射される変形ラインビームLdにおいて、複数のコリメートビームCの間隔が、コリメートビームCの配列方向の端に近づくにつれて広がる(あるいは狭まる)ことを抑制することができる。
【0120】
また例えば、上記の実施形態あるいは上記の各変形例に係る送信部1において、偏光ビームスプリッタおよび1/4波長板をさらに設けてもよい。具体的には例えば、レンズ102から射出された光ビームLを、偏光ビームスプリッタによって直角に曲げて、1/4波長板を通過させた上で、光誘導部12,12b(具体的には、グレーティングライトバルブ5、あるいは、平面ライトバルブ6)に入射させ、さらに、光誘導部12,12bで反射された光ビームLを、再び1/4波長板を通過させた上で、偏光ビームスプリッタに入射させるような構成としてもよい。この場合、光ビームLは、1回目の1/4波長板の通過に伴って1/4波長回転してから、光誘導部12,12bに入射してここで反射された後、2回目の1/4波長板の通過に伴ってさらに1/4波長回転してから、偏光ビームスプリッタに入射する。ここで偏光ビームスプリッタに入射した光ビームLは、2回の1/4波長板の通過によって1/2波長回転しているため、偏光ビームスプリッタを通過して、投影光学系に向かうことになる。
【0121】
また例えば、上記の実施形態あるいは上記の各変形例に係る受信部2の光検出部21は、例えば、フォトディテクタ211が2次元に配列された2次元フォトディテクタアレイを含んで構成されてもよい。
【0122】
また、上記の実施形態あるいは上記の各変形例に係る制御部3の機能および動作はあくまで例示であり、これは適宜に変更することができる。例えば、制御部3が測定データを取得する方式は、必ずしもToF方式である必要はなく、例えば、周波数変調連続波(FMCW:Frequency Modulation Continuous Wave)方式、AMCW方式、などであってもよい。例えばFMCW方式を採用する場合、光源11は、連続的に波長が変化する光ビームを生成して射出するものとする。そして、走査領域Aにある対象物Atで反射された光ビームを、基準となる光ビーム(例えば、光源11から出射された光ビームが走査領域Aに照射される前に、該光ビームから分岐された光ビーム)と合成し、得られた合成波に含まれるビート信号に基づいて、対象物Atまでの距離を算出すればよい。また例えば、制御部3が取得する測定データは、対象物Atまでの距離、および、対象物Atの位置の一方であってもよいし、それ以外の各種のデータ(例えば、対象物Atの速度、加速度)が測定データとして取得されてもよい。
【0123】
以上のように、検知装置および検知方法は詳細に説明されたが、上記の説明は、全ての局面において、例示であって、これらがそれに限定されるものではない。例示されていない無数の変形例が、この開示の範囲から外れることなく想定され得るものと解される。また、上記の実施形態および各変形例で説明した各構成は、相互に矛盾しない限り、適宜に組み合わせたり、省略したりすることができる。
【符号の説明】
【0124】
100,100a,100b 検知装置
1 送信部
11 光源
12,12b 光誘導部
13,13a,13b 成形部
2 受信部
21 光検出部
211 フォトディテクタ
3 制御部
301 パターン変更部
4 回折光学素子
5 グレーティングライトバルブ
6 平面ライトバルブ(2次元の空間位相変調素子)
Ld 変形ラインビーム
C コリメートビーム
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16