(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024025571
(43)【公開日】2024-02-26
(54)【発明の名称】全固体電池及び全固体電池の加圧方法
(51)【国際特許分類】
H01M 10/0585 20100101AFI20240216BHJP
H01M 10/0562 20100101ALI20240216BHJP
【FI】
H01M10/0585
H01M10/0562
【審査請求】未請求
【請求項の数】13
【出願形態】OL
(21)【出願番号】P 2022129100
(22)【出願日】2022-08-12
(71)【出願人】
【識別番号】000003997
【氏名又は名称】日産自動車株式会社
(71)【出願人】
【識別番号】507308902
【氏名又は名称】ルノー エス.ア.エス.
【氏名又は名称原語表記】RENAULT S.A.S.
【住所又は居所原語表記】122-122 bis, avenue du General Leclerc, 92100 Boulogne-Billancourt, France
(74)【代理人】
【識別番号】110002468
【氏名又は名称】弁理士法人後藤特許事務所
(72)【発明者】
【氏名】川口 俊介
【テーマコード(参考)】
5H029
【Fターム(参考)】
5H029AK01
5H029AK03
5H029AL01
5H029AL02
5H029AL06
5H029AL07
5H029AL08
5H029AL11
5H029AL12
5H029AM12
5H029CJ03
5H029HJ00
5H029HJ03
5H029HJ04
(57)【要約】
【課題】加圧時に、全固体電池の端部においても十分に圧力を加えることのできる技術を提供すること。
【解決手段】全固体電池1は、発電要素2と、発電要素2の外周端を取り囲むように配置された、弾性体により形成される、枠状の第1絶縁部3と、積層方向に沿って発電要素2及び第1絶縁部3を圧縮するように加圧する、加圧機構5と、第1絶縁部3の外周端を取り囲むように配置された、枠状の第2絶縁部4とを備える。
【選択図】
図1
【特許請求の範囲】
【請求項1】
固体電解質層、前記固体電解質層の一方の面上に積層された第1電極層、及び、前記固体電解質層の他方の面上に積層された第2電極層、を有する発電要素と、
前記発電要素の外周端を取り囲むように配置され、弾性体により形成される、枠状の第1絶縁部と、
積層方向に沿って前記発電要素及び前記第1絶縁部を圧縮するように加圧する、加圧機構と、
前記第1絶縁部の外周端を取り囲むように配置された、枠状の第2絶縁部と、
を備え、
前記第2絶縁部のヤング率は、前記第1絶縁部のヤング率よりも大きく、
前記加圧機構により加圧された状態において、前記第1絶縁部の外周端が前記第2絶縁部に当接しており、前記発電要素の外周端が、前記第1絶縁部により加圧されている、
全固体電池。
【請求項2】
請求項1に記載された全固体電池であって、
前記第1絶縁部及び前記第2絶縁部は、非圧縮時において前記第1絶縁部の外周端が前記第2絶縁部に接触するように構成されている、
全固体電池。
【請求項3】
請求項1又は2に記載された全固体電池であって、
前記第1絶縁部は、非圧縮時において前記発電要素の外周端から離れるように配置されている
全固体電池。
【請求項4】
請求項1又は2に記載された全固体電池であって、
前記第1絶縁部は、非圧縮時において前記発電要素の外周端に接触するように配置されている、
全固体電池。
【請求項5】
請求項1又は2に記載された全固体電池であって、
前記第1絶縁部の枠幅は、前記第2絶縁部の枠幅よりも大きい、
全固体電池。
【請求項6】
請求項1に記載された全固体電池であって、
更に、
前記発電要素を積層方向において挟むように設けられた第1集電体及び第2集電体を有し、
積層方向に沿って見た場合に、前記第1集電体の外周端及び前記第2集電体の外周端は、それぞれ、前記発電要素の外周端よりも外側に位置しており、
前記第1絶縁部及び前記第2絶縁部は、前記第1集電体と前記第2集電体との間に配置されている、
全固体電池。
【請求項7】
請求項6に記載された全固体電池であって、
前記第1絶縁部は、前記第1集電体に接合されており、前記第2集電体には接合されていない、
全固体電池。
【請求項8】
請求項7に記載された全固体電池であって、
前記第2絶縁部は、前記第1集電体に接合されており、前記第2集電体には接合されていない、
全固体電池。
【請求項9】
請求項7に記載された全固体電池であって、
前記第2絶縁部は、前記第2集電体に接合されており、前記第1集電体には接合されていない、
全固体電池。
【請求項10】
請求項1又は2に記載された全固体電池であって、
前記第1絶縁部は、積層方向に配列された2つの第1絶縁要素からなる、
全固体電池。
【請求項11】
請求項1又は2に記載された全固体電池であって、
前記第2絶縁部は、積層方向に配列された2つの第2絶縁要素からなる、
全固体電池。
【請求項12】
請求項1又は2に記載された全固体電池であって、
積層方向における前記第2絶縁部の長さは、積層方向における前記第1絶縁部の長さよりも、大きい、
全固体電池。
【請求項13】
全固体電池を提供するステップであって、
前記全固体電池が、
固体電解質層、前記固体電解質層の一方の面上に積層された第1電極層、及び、前記固体電解質層の他方の面上に積層された第2電極層を有する発電要素と、
前記発電要素の端部を取り囲むように配置された、枠状の第1絶縁部と、
前記第1絶縁部の外周端を取り囲むように配置された、枠状の第2絶縁部と、
を備えるステップと、
積層方向において前記全固体電池を圧縮するように加圧するステップと、
を備え、
前記加圧するステップは、
積層方向において前記第1絶縁部を圧縮することにより、前記第1絶縁部を介して前記発電要素の端部を加圧するステップと、
前記第2絶縁部により、前記圧縮された第1絶縁部の外周端が外側に変位することを規制するステップと、
を備える、
全固体電池の加圧方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、全固体電池及び全固体電池の加圧方法に関する。
【背景技術】
【0002】
全固体電池は、固体材料により構成された二次電池である。全固体電池は、通常、発電要素として、固体電解質層、正極層、及び負極層を有している。これらは、固体電解質層が正極層及び負極層により挟まれるように、積層される。
【0003】
全固体電池がその機能を十分に発揮するためには、各電極層が固体電解質層に強固に接合している必要がある。このため、全固体電池は、例えば製造時や使用時に、積層方向に沿って圧縮するように加圧される。
【0004】
製造時における加圧に関連する技術が、例えば、特許文献1に記載されている。特許文献1には、正極層、固体電解質層および負極層を積層してプレス成形を行うと、正極層と負極層との短絡が生じてしまい、電気素子の特性が損なわれる場合があることが記載されている。そして、短絡を抑制した発明として、第1固体電極層と、リチウムイオン伝導性を有する固体電解質層と、第2固体電極層と、がこの順に積層されることにより構成された素子部を含み、素子部を平面視したときに、第1固体電極層と第2固体電極層とのうちの少なくとも何れか一方の電極層の外形線が、固体電解質層の外形線の内側に収まっている電気素子が開示されている。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
ところで、本発明者らは、積層方向に沿って全固体電池を加圧したとしても、全固体電池の端部には圧力が加わり難いことを見出した。全固体電池の機能を十分に発揮させるためには、端部においても圧力を十分に加えることが望まれる。
【0007】
従って、本発明の目的は、加圧時に、全固体電池の端部に十分に圧力を加えることのできる技術を提供することにある。
【課題を解決するための手段】
【0008】
一態様において、本発明に係る全固体電池は、固体電解質層、固体電解質層の一方の面上に積層された第1電極層、及び、固体電解質層の他方の面上に積層された第2電極層、を有する発電要素と、発電要素の外周端を取り囲むように配置され、弾性体により形成される、枠状の第1絶縁部と、積層方向に沿って発電要素及び第1絶縁部を圧縮するように加圧する、加圧機構と、第1絶縁部の外周端を取り囲むように配置された、枠状の第2絶縁部とを備える。第2絶縁部のヤング率は、前記第1絶縁部のヤング率よりも大きい。加圧機構により加圧された状態において、第1絶縁部の外周端は第2絶縁部に当接し、発電要素の外周端が、第1絶縁部により加圧される。
【発明の効果】
【0009】
本発明によれば、加圧時に、全固体電池の端部に十分に圧力を加えることのできる技術が提供される。
【図面の簡単な説明】
【0010】
【
図1】
図1は、本発明の実施形態に係る全固体電池の主要部を模式的に示す図である。
【
図2】
図2は、第1の実施形態に係る全固体電池の全体的な構成を示す概略図である。
【
図3】
図3は、第1の実施形態に係る全固体電池の端部の一部を示す概略断面図である。
【
図4A】
図4Aは、参考例に係る全固体電池を模式的に示す断面図である。
【
図4B】
図4Bは、第1の実施形態に係る全固体電池における圧力の加わり方を示す模式図である。
【
図5】
図5は、第1絶縁部と第2絶縁部の配置の一例を示す図である。
【
図6】
図6は、第1絶縁部と第2絶縁部の配置の他の一例を示す図である。
【
図7】
図7は、第1絶縁部と第2絶縁部の配置の更に他の一例を示す図である。
【
図8】
図8は、第1絶縁部と第2絶縁部の配置の更に他の一例を示す図である。
【
図9】
図9は、第2の実施形態に係る全固体電池の構成を概略的に示す断面図である。
【
図10】
図10は、第3の実施形態に係る全固体電池の構成を概略的に示す断面図である。
【
図11】
図11は、第4の実施形態に係る全固体電池の構成を概略的に示す断面図である。
【
図12】
図12は、第5の実施形態に係る全固体電池の構成を概略的に示す断面図である。
【
図13】
図13は、第6の実施形態に係る全固体電池の構成を概略的に示す断面図である。
【
図14】
図14は、第7の実施形態に係る全固体電池の構成を概略的に示す断面図である。
【
図15】
図15は、第8の実施形態に係る全固体電池の構成を概略的に示す断面図である。
【発明を実施するための形態】
【0011】
以下に、図面を参照しつつ、本発明の実施形態について説明する。
【0012】
まず、本発明の実施形態に係る全固体電池1の原理について説明する。
図1は、本実施形態に係る全固体電池1の主要部を模式的に示す図であり、本実施形態の原理を説明するための図である。
【0013】
図1に示されるように、全固体電池1は、発電要素2、加圧機構5、第1絶縁部3、及び第2絶縁部4を備えている。
図1には示されていないが、発電要素2は、第1電極層、固体電解質層、及び第2電極層が積層方向に沿ってこの順に積層された構成を有している。第1絶縁部3は、枠状であり、発電要素2の外周端面を取り囲むように配置されている。第2絶縁部4も枠状であり、第1絶縁部3の外周端面を取り囲むように配置されている。第2絶縁部4のヤング率は、第1絶縁部3のヤング率よりも大きい。加圧機構5は、積層方向に沿って、発電要素2及び第1絶縁部3を加圧するように構成されている。
【0014】
上述の構成によれば、発電要素2及び第1絶縁部3が、加圧機構5により、積層方向に沿って加圧される。ここで、第1絶縁部3は弾性体により構成されているから、加圧により圧縮される。圧縮された第1絶縁部3には、横方向(積層方向に垂直な方向)に膨らむような力が発生する。圧縮された第1絶縁部3の外周端は、第2絶縁部4の内周端に当接している。第2絶縁部4のヤング率は、第1絶縁部3のヤング率よりも小さいから、第1絶縁部3は外側にほとんど膨らまない。その結果、圧縮された第1絶縁部3に生じる力は、主に内側に向かう。この結果、発電要素2の端部が第1絶縁部3によって加圧される。従って、圧力が加わり難い全固体電池1の端部に対しても、十分に圧力を加えることができる。
【0015】
以上が、本実施形態の原理についての説明である。続いて、本実施形態に係る全固体電池1について具体的に説明する。
【0016】
(第1の実施形態)
図2は、第1の実施形態に係る全固体電池1の全体的な構成を示す概略図である。
図2に示されるように、この全固体電池1は、電池セル8と、一対の加圧板6と、一対の弾性シート7とを有している。電池セル8は、概ねシート状である。一対の弾性シート7は、積層方向において電池セル8を挟むように設けられている。一対の加圧板6は、一対の弾性シート7の外側に設けられている。一対の加圧板6は、例えばゴムバンド等により結束されている。これにより、一対の加圧板6から、一対の弾性シート7を介して、電池セル8に対して積層方向に圧縮するような力が加えられている。すなわち、一対の加圧板6及び一対の弾性シート7は、加圧機構5として機能する。
【0017】
図3は、全固体電池1の端部の一部を示す概略断面図である。
図3には、電池セル8の内部構成などが示されている。
図3に示されるように、電池セル8は、外装材9、複数の発電要素2、複数の第1集電体10、複数の第2集電体11、複数の第1絶縁部3、及び複数の第2絶縁部4を有している。
【0018】
(外装材)
外装材9は、電池セル8内に存在する構成部材を保護するために設けられている。すなわち、複数の発電要素2、複数の第1集電体10、複数の第2集電体11、複数の第1絶縁部3、及び複数の第2絶縁部4は、外装材9の内部に収容されている。外装材9は、例えば、アルミニウムフィルム等により構成される。
【0019】
(集電体)
複数の第1集電体10及び複数の第2集電体11は、複数の発電要素2を外部の装置に電気的に接続するために設けられている。第1集電体10及び第2集電体11のうちの一方は正極集電体であり、他方は負極集電体である。第1集電体10及び第2集電体11は、それぞれ、シート状である。複数の第1集電体10と、複数の第2集電体11とは、積層方向において交互になるように並んでいる。なお、図示していないが、複数の第1集電体10は、一端で1つにまとめられ、外装材9の外部にまで延びるタブに接続されている。同様に、複数の第2集電体11も、一端で1つにまとめられ、タブに接続されている。
【0020】
(発電要素)
各発電要素2は、充放電機能を実現する部分である。各発電要素2は、積層方向において隣り合う第1集電体10と第2集電体11との間に配置されている。各発電要素2は、固体電解質層13、第1電極層12、及び第2電極層14を有している。第1電極層12は、固体電解質層13の一方の面上に積層されている。第2電極層14は、固体電解質層13の他方の面上に積層されている。各発電要素2は、第1電極層12が第1集電体10に接続され、第2電極層14が第2集電体11に接続されるように、第1集電体10と第2集電体11との間に配置されている。
【0021】
固体電解質層13は、固体であり、二次電池における電解質層として機能するものであればよく、その材質は特に限定されない。例えば、固体電解質層13は、硫化物や酸化物により形成することができる。好ましくは、固体電解質層13は、硫化物固体電解質を含む。硫化物固体電解質としては、例えばLPS系(例えばアルジロダイト(Li6PS5Cl))、およびLGPS系(例えばLi10GeP2S12)の材料が挙げられる。固体電解質層13の厚みは、特に限定されないが、例えば5~100μm、好ましくは20~60μmである。
【0022】
第1電極層12及び第2電極層14は、それぞれ、電極として機能する層である。第1電極層12及び第2電極層14のうちの一方は正極層であり、他方は負極層である。
【0023】
正極層は、充電時にリチウムイオンを放出し、放電時にリチウムイオンを吸蔵することができる材料により形成されていればよい。正極層は、例えば、樹脂バインダーと、樹脂バインダー中に分散した正極活物質とを含む材料により形成される。正極活物質としては、例えば、リチウム金属複合酸化物などを用いることができる。リチウム金属複合酸化物としては、例えば、LiCoO2、LiMnO2、LiNiO2、LiVO2、及びLi(Ni-Mn-Co)O2等の層状岩塩型化合物、LiMn2O4、及びLiNi0.5Mn1.5O4等のスピネル型化合物、LiFePO4、及びLiMnPO4等のオリビン型化合物、並びに、Li2FeSiO4、及びLi2MnSiO4等のSi含有化合物等が挙げられる。また、Li4Ti5O12なども用いることができる。
【0024】
正極層の厚みは、特に限定されるものではないが、例えば10~500μm、好ましくは50~200μmである。
【0025】
負極層は、充電時にリチウムを吸蔵し(あるいはリチウムを析出させ)、放電時にリチウムイオンを放出することができるように構成されていればよい。例えば、負極層は、樹脂バインダーと、樹脂バインダーに分散された負極活物質とを含む材料により、形成することができる。負極活物質としては、例えば、リチウム金属、ケイ素材料(シリコン)、スズ材料、ケイ素やスズを含む化合物(酸化物、窒化物、他の金属との合金)、および炭素材料(グラファイト等)を用いることができる。負極層の厚みは、例えば1~100μm、好ましくは5~80μmである。
【0026】
上述した構成を有する発電要素2では、充電時に正極側から固体電解質層13を介して負極側にリチウムイオンが移動し、負極層にリチウムが吸蔵される。あるいは、負極側にリチウムが析出する。一方、放電時には、負極側から固体電解質層13を介して正極側にリチウムイオンが移動し、正極層にリチウムが吸蔵される。これにより、二次電池としての機能が実現される。
【0027】
なお、発電要素2は、いわゆる「全析出型」の二次電池として機能するものであってもよい。全析出型の二次電池とは、完全放電状態では負極側に負極活物質としてのリチウムが含まれず、充電時に正極側から負極側にリチウムイオンが移動し、負極集電体上にリチウム金属が析出するように構成された電池である。このような電池においては、少なくとも、充電時に負極側に析出するリチウム金属が負極層として機能するから、本実施形態における発電要素2に包含される。
【0028】
また、全析出型の二次電池において析出するリチウム金属が固体電解質層13に接触することを防ぐため、固体電解質層13と負極集電体との間に負極中間層が配置されてもよい。負極中間層は、析出するリチウム金属と固体電解質層との間に設けられる層である。負極中間層は、リチウム反応性材料を含有する。リチウム反応性材料としては、充電時にリチウムイオンを吸蔵放出可能な材料や、充電時にリチウムと合金化可能な金属が挙げられる。
【0029】
リチウムイオンを吸蔵放出可能な材料としては、特に制限されないが、炭素材料が好ましい。炭素材料の具体例としては、カーボンブラック(具体的には、アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラック、チャンネルブラック、サーマルランプブラック等)、カーボンナノチューブ(CNT)、グラファイト、ハードカーボン等が挙げられる。中でも、カーボンブラックが好ましく、アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラック、チャンネルブラックおよびサーマルランプブラックからなる群から選択させる少なくとも1種であることがより好ましい。
【0030】
リチウムと合金化可能な金属としては、例えば、In、Al、Si、Sn、Mg、Au、Ag、Znなどが挙げられる。中でも、In、Si、Sn、Agが好ましく、Agがより好ましい。
【0031】
リチウム反応性材料は、1種を単独で使用しても、2種以上を併用しても構わない。2種以上を併用する形態として、リチウムイオンを吸蔵放出可能な材料と、リチウムと合金化可能な金属とを併用することも好ましい。これにより、負極中間層の充分な強度やリチウムイオン伝導性を確保することができる。より詳細には、In、Si、Sn、Agからなるナノ粒子と、カーボンブラックとを併用することが好ましく、Agからなるナノ粒子と、カーボンブラックとを併用することがより好ましい。リチウムイオンを吸蔵放出可能な材料と、リチウムと合金化可能な金属とを併用する場合のこれらの配合比(質量比)は、特に制限されないが、リチウムイオンを吸蔵放出可能な材料:リチウムと合金化可能な金属が好ましくは10:1~1:1であり、より好ましくは5:1~2:1である。
【0032】
負極中間層におけるリチウム反応性材料の含有量(2種以上の材料を併用する場合はそれらの含有量の合計を指す、以下同様)は、特に制限されないが、50~100質量%の範囲内であることが好ましく、70~100質量%の範囲内であることがより好ましく、85~99質量%の範囲内であることがさらに好ましく、90~100質量%の範囲内であることが特に好ましい。
【0033】
負極中間層は、リチウム反応性材料のみで自立膜を作製可能であれば、リチウム反応性材料のみからなるものであってもよいが、必要に応じてバインダを含んでもよい。バインダの種類は、特に制限されず、本技術分野で公知のものを適宜採用することができる。一例としては、ポリフッ化ビニリデン(PVDF)(水素原子が他のハロゲン元素にて置換された化合物を含む)、ポリテトラフルオロエチレン(PTFE)、スチレン・ブタジエンゴム(SBR)、カルボキシメチルセルロースが挙げられる。
【0034】
負極中間層におけるバインダの含有量は、特に制限されないが、1~15質量%の範囲内であることが好ましく、5~10質量%の範囲内であることがより好ましい。バインダの含有量が1質量%以上であれば充分な強度を有する負極中間層を形成できる。バインダの含有量が15質量%以下であれば、充分なリチウムイオン伝導性を有する負極中間層を形成できる。
【0035】
負極中間層の厚さは、特に制限されないが、1~50μmであることが好ましく、5~40μmであることがより好ましく、10~30μmであることがさらに好ましい。負極中間層の厚さが1μm以上であると、負極中間層が有する機能を充分に発揮できる。負極中間層の厚さが50μm以下であると、エネルギー密度の低下を抑制できる。
【0036】
なお、
図3には、好適な一例として、固体電解質層13の端部が、積層方向に沿って見た場合に、第1電極層12及び第2電極層14の端部よりも外側に位置している例が示されている。このような構成を採用することにより、固体電解質層13の端部を回り込むようなリチウムデンドライトの成長が抑制される。従って、第1電極層12と第2電極層14との短絡を防止できる。
【0037】
また、積層方向に沿って見た場合に、第1電極層12の端部と、第2電極層14の端部とは揃っていてもよいが、揃っていなくてもよい。好ましい一例では、正極層の端部よりも、負極層の端部の方が、外側に位置している。このような構成を採用することにより、充電時に負極層の端部にリチウムが集中的に析出することが防止され、正極と負極との間の短絡が防止される。
【0038】
(第1絶縁部及び第2絶縁部)
続いて、第1絶縁部3及び第2絶縁部4について説明する。既述のように、第1絶縁部3及び第2絶縁部4は、発電要素2の端部に十分に圧力を加えるために設けられている。
【0039】
各第1絶縁部3は枠状であり、各発電要素2の外周端を取り囲むように配置されている。同様に、各第2絶縁部4も枠状であり、各第1絶縁部3の外周端を取り囲むように配置されている。各第1絶縁部3及び各第2絶縁部4は、各発電要素2と同様に、積層方向において隣り合う第1集電体10と第2集電体11との間に配置されている。すなわち、積層方向に沿って見た場合に、各第1集電体10及び各第2集電体11は、各発電要素2よりも大きく、その外周端は各発電要素2の外周端よりも外側に位置している。そして、各発電要素2の外側において、第1集電体10と第2集電体11との間に各第1絶縁部3及び各第2絶縁部4が配置されている。
【0040】
既述のように、第1絶縁部3は、絶縁性であり、弾性体により構成されている。第1絶縁部3は、圧縮されている。すなわち、第1絶縁部3は、集電体(第1集電体10及び/又は第2集電体11)並びに外装材9等を介して、弾性シート7から積層方向に沿って加圧され、圧縮されている。圧縮された第1絶縁部3の内周端は、発電要素2の外周端に当接している。また、圧縮された第1絶縁部3の外周端は、第2絶縁部4の内周端に当接している。
【0041】
第1絶縁部3のヤング率は、例えば1MPa以下である。第1絶縁部3は、例えば、ゴム材料により形成することができる。
【0042】
第2絶縁部4は、圧縮された第1絶縁部3が外側に膨らむことを規制するために設けられている。第2絶縁部4は、第1絶縁部3よりも大きいヤング率を有する。第2絶縁部4のヤング率は、例えば1MPa以上である。第2絶縁部4は、例えば、ゴム部材により形成することができる。第2絶縁部4の内周端には、圧縮された第1絶縁部3の外周端が接触している。第2絶縁部4のヤング率が第1絶縁部3のそれよりも大きいことにより、第1絶縁部3が外側に膨らむことが規制されている。
【0043】
(加圧機構)
続いて、加圧機構5として機能する弾性シート7及び加圧板6について説明する。
【0044】
図3に示されるように、弾性シート7は、積層方向における外装材9の外側に配置されている。積層方向に沿って見た場合に、弾性シート7の外周端は、第2絶縁部4よりも外側に位置している。加圧板6は、積層方向における弾性シート7の外側に設けられている。積層方向に沿って見た場合に、加圧板6の外周端は、弾性シート7よりも外側に位置している。このような構成により、発電要素2、第1絶縁部3及び第2絶縁部4が、弾性シート7を介して、加圧板6により積層方向に沿って加圧されている。
【0045】
なお、発電要素2は、通常、弾性体である第1絶縁部3よりも固い(ヤング率が大きい)。従って、弾性シート7は、発電要素2に重なる部分において、第1絶縁部3に重なる部分よりも薄くなるように、大きく圧縮されている。
【0046】
弾性シート7としては、例えば、ヤング率が10MPa以下の材料を用いることができる。弾性シート7のヤング率は、好ましくは、0.1~10MPaである。弾性シート7としては、例えば、シリコンゴム等のゴム製のシートを用いることができる。弾性シート7の厚みは、例えば0.3~3mm、好ましくは0.5~2mmである。
【0047】
続いて、本実施形態に係る全固体電池1の作用について、参考例を参照しつつ、説明する。
【0048】
図4Aは、参考例に係る全固体電池を模式的に示す断面図である。この参考例に係る全固体電池は、第1絶縁部3及び第2絶縁部4を欠く点を除いて、本実施形態に係る全固体電池1と同様の構成を有している。
図4Aには、加圧板6から発電要素2に加えられる圧力が、矢印により模式的に示されている。
図4Aに示されるように、参考例に係る全固体電池においては、加圧板6から弾性シート7を介して発電要素2に圧力が加えられるが、その圧力は端部において外側に抜けやすい。すなわち、発電要素2の端部には力が加わり難い。
【0049】
一方、
図4Bは、本実施形態に係る全固体電池1における圧力の加わり方を示す模式図である。
図4Bに示されるように、本実施形態においては、弾性シート7を介して、発電要素2が積層方向に沿って加圧される。また、第1絶縁部3及び第2絶縁部4も、積層方向に沿って加圧される。第1絶縁部3は弾性体であるから、加圧により圧縮される。圧縮された第1絶縁部3には、横方向に広がろうとする力が生じる。その結果、発電要素2の端部には、弾性シート7からの積層方向に沿う力に加えて、第1絶縁部3による横方向からの力も加えられる。言い換えれば、積層方向に沿って第1絶縁部3に加えられた力が、横方向の力に変換される。これにより、圧力が加わり難い発電要素2の端部にも、十分に圧力を加えることができる。なお、圧縮された第1絶縁部3の外周端は、第2絶縁部4の内周端に接触している。第2絶縁部4のヤング率は第1絶縁部3よりも大きいから、第1絶縁部3の外周端が外側に変位することが規制される。これにより、弾性シート7を介して第1絶縁部3に加えられた力が外側に逃げにくくなり、発電要素2側に向きやすくなる。この観点からも、発電要素2の端部が十分に加圧される。従って、全固体電池1の全面を均一に加圧することが可能となる。
【0050】
なお、本実施形態に係る全固体電池1は、加圧状態で使用される。ここで、発電要素2の外周端と第1絶縁部3の内周端とは、加圧状態において接触していればよい。第1絶縁部3と第2絶縁部4も、加圧状態において接触していればよい。言い換えれば、仮に非加圧状態となった場合には、発電要素2と第1絶縁部3とが離れるように配置されていてもよい。同様に、非加圧状態においては、第1絶縁部3と第2絶縁部4とが離れていてもよい。以下に、非加圧状態となった場合における第1絶縁部3と第2絶縁部4の配置例について説明する。
【0051】
図5は、第1絶縁部3と第2絶縁部4の配置の一例を示す図であり、非加圧状態における全固体電池1の構成を示す概略断面図である。
図5に示される例においては、非加圧状態においても、第1絶縁部3が発電要素2に接触している。一方で、非加圧状態において、第1絶縁部3は第2絶縁部4から離れている。この例によれば、非加圧状態においても第1絶縁部3が発電要素2に接触するように第1絶縁部3が配置されることにより、加圧時に発電要素2の端部がより加圧されやすくなる。
【0052】
図6は、第1絶縁部3と第2絶縁部4の配置の他の一例を示す図であり、非加圧状態における全固体電池1の構成を示す概略断面図である。
図6に示される例においては、非加圧状態において、第1絶縁部3と発電要素2とが離れており、第1絶縁部3と第2絶縁部4も離れている。発電要素2の構造は、充放電等に伴って、変化する場合がある。
図6に示されるように、非加圧状態において第1絶縁部3と発電要素2とが離れるように配置されていれば、発電要素2の構造変化に対して第1絶縁部3が追従しやすくなる。従って、発電要素2の構造が変化した場合であっても、発電要素2の端部を均一に加圧しやすくなる。
【0053】
図7は、第1絶縁部3と第2絶縁部4の配置の更に他の一例を示す図であり、非加圧状態における全固体電池1の構成を示す概略断面図である。
図7に示される例においては、非加圧状態において、第1絶縁部3と発電要素2とが離れている。一方、第1絶縁部3と第2絶縁部4とは、非加圧状態においても接触している。このような構成を採用すれば、非加圧状態において第1絶縁部3と発電要素2とが離れているから、
図6に示した例と同様に、第1絶縁部3が発電要素2の構造変化に対して追従しやすくなり、発電要素2の端部を均一に加圧しやすくなる。一方で、第1絶縁部3と第2絶縁部4とは非加圧状態においても接触しているから、加圧時に第1絶縁部3に生じる横方向の力が、外側により逃げにくくなる。従って、発電要素2の端部をより十分に加圧することができる。
【0054】
図8は、第1絶縁部3と第2絶縁部4の配置の更に他の一例を示す図であり、非加圧状態における全固体電池1の構成を示す概略断面図である。
図8に示される例においては、非加圧状態において、第1絶縁部3と発電要素2とが接触している。第1絶縁部3と第2絶縁部4も、非加圧状態においても接触している。このような構成によれば、
図5に示した例と同様に、非加圧状態において第1絶縁部3が発電要素2に接触するように配置されているから、加圧時に発電要素2の端部がより加圧されやすくなる。加えて、
図7に示した例と同様に、第1絶縁部3と第2絶縁部4とが非加圧状態においても接触しているから、加圧状態において、第1絶縁部3に加えられた力が発電要素2側に向きやすくなる。従って、発電要素2の端部をより十分に加圧することができる。
【0055】
(製造方法)
続いて、全固体電池1の製造方法について説明する。本実施形態に係る全固体電池1の製造方法は、発電要素2の端部を取り囲むような位置に第1絶縁部3及び第2絶縁部4を配置することができる方法であればよく、特に限定されない。以下に、製造方法の一例を説明する。
【0056】
[正極層の作製]
正極活物質、硫化物固体電解質、導電助剤、バインダー、キシレンを所定量秤量して混合してスラリーを調製する。得られたスラリーを、カーボンコートAl箔(正極集電体)の両面に塗布し、乾燥させ、厚み200μm(片面100μm)の正極層を作製する。また、正極集電体上の所定位置に、第1絶縁部3及び第2絶縁部4となるゴム材料を接合させる。
【0057】
[固体電解質層の作製]
硫化物固体電解質、バインダー、及びキシレンを所定量混合してスラリーを調製する。調製したスラリーを、SUS箔上に塗工し、乾燥させ、厚み40μmの固体電解質層を作製する。
【0058】
[負極層(又は負極中間層)の作製]
負極活物質(あるいは、負極中間層を形成する場合には、銀粒子及びカーボン粒子)、バインダー、及びNMP(N-メチルピロリドン)を所定量混合し、スラリーを調製する。調製したスラリーを、負極集電体(SUS箔)の両面上に塗布し、乾燥させる。これにより、厚み20μm(片面10μm)の負極層(又は負極中間層)を作製する。また、負極集電体上に、第1絶縁部3及び第2絶縁部4となるゴム材料を接合させる。
【0059】
[正極/固体電解質層積層体の作製]
正極層上に固体電解質層を配置し、ロールプレスすることにより、固体電解質層を正極層上に転写させる。これにより正極層及び固体電解質層が形成された正極集電体(正極/固体電解質層積層体)を得る。
【0060】
[電極積層体の作製]
続いて、負極層(又は負極中間層)が形成された負極集電体と、正極層などが形成された正極集電体とを積層し、ロールプレスし、電極積層体を得る。なお、必要に応じて、負極集電体及び正極集電体は、それぞれ、複数使用される。その後、正極集電体に正極タブ(アルミニウムタブ)を、負極集電体に負極タブ(ニッケルタブ)をそれぞれ超音波溶接機により接合する。必要に応じて、電極積層体の両面に放熱部材を配置した後、電極積層体を外装材(アルミラミネートフィルム)に収容し、真空封止する。これにより、電池セル8が得られる。その後、一対の弾性シート7、及び一対の加圧板6を配置する。更に、一対の加圧板6をゴムバンド等により結束することにより、電池セル8を加圧する。これにより、本実施形態に係る全固体電池1を得ることができる。
【0061】
なお、本実施形態では、加圧機構5として、弾性シート7及び加圧板6が用いられる場合について説明した。ただし、加圧機構5は、積層方向において発電要素2及び第1絶縁部3を圧縮するように加圧するように構成されていればよく、他の構成が採用されてもよい。例えば、一枚の弾性シート7によって、発電要素2と第1絶縁部3の双方が加圧される必要はなく、第1絶縁部3を加圧する部材と、発電要素2を加圧する部材が別々の部材であってもよい。
【0062】
また、本実施形態では、全固体電池1が複数の発電要素2を有している場合について説明した。ただし、発電要素2は必ずしも複数設けられている必要はなく、単一の発電要素2が使用されてもよい。この場合、第1集電体10及び第2集電体11も、それぞれ単一であってよい。
【0063】
以上、第1の実施形態について説明した。以下に、本実施形態に係る全固体電池1の構成と作用効果の関係について、代表的なものについて要約する。
【0064】
本実施形態に係る全固体電池1は、固体電解質層13、固体電解質層13の一方の面上に積層された第1電極層12、及び、固体電解質層13の他方の面上に積層された第2電極層14、を有する発電要素2と、発電要素2の外周端を取り囲むように配置され、弾性体により形成される、枠状の第1絶縁部3と、積層方向に沿って発電要素2及び第1絶縁部3を圧縮するように加圧する、加圧機構5と、第1絶縁部3の外周端を取り囲むように配置された、枠状の第2絶縁部4とを有する。第2絶縁部4のヤング率は、第1絶縁部3のヤング率よりも大きい。加圧機構5により加圧された状態において、第1絶縁部3の外周端が第2絶縁部4に当接しており、発電要素2の外周端が、第1絶縁部3により加圧されている。このような構成によれば、圧縮された第1絶縁部3により、発電要素2の端部が加圧される。この際、第1絶縁部3の外周端は、第1絶縁部3よりもヤング率が大きい第2絶縁部4に当接しているから、第1絶縁部3の外周端が外側へ変位することが規制される。そのため、圧縮された第1絶縁部3に生じる横方向の力が、発電要素2側に向きやすくなる。従って、発電要素2がより大きな力で加圧され、発電要素2の端部を十分に加圧することができる。
【0065】
好ましい一態様において、第1絶縁部3及び第2絶縁部4は、非圧縮時において第1絶縁部3の外周端が第2絶縁部4に接触するように構成されている。このような構成によれば、圧縮された第1絶縁部3に生じる横方向の力が、発電要素2側に更に向けられやすくなる。従って、発電要素2の端部を更に十分に加圧することができる。
【0066】
好ましい一態様において、第1絶縁部3は、非圧縮時において発電要素2の外周端から離れるように配置されている。このような構成によれば、発電要素2に構造変化が生じた場合であっても、第1絶縁部3が発電要素2の端部に追従しやすくなる。従って、発電要素2の構造が変化した場合であっても、発電要素2の端部を均一に加圧することができる。
【0067】
好ましい一態様において、第1絶縁部3は、非圧縮時において発電要素2の外周端に接触するように配置されている。このような構成によれば、発電要素2の端部が、第1絶縁部3からより加圧されやすくなる。
【0068】
好ましい一態様において、全固体電池1は、発電要素2を積層方向において挟むように設けられた第1集電体10及び第2集電体11を有する。積層方向に沿って見た場合に、第1集電体10の外周端及び第2集電体11の外周端は、それぞれ、発電要素2の外周端よりも外側に位置している。第1絶縁部3及び第2絶縁部4は、第1集電体10と第2集電体11との間に配置されている。このような構成によれば、第1集電体10と第2集電体11との間に第1絶縁部3及び第2絶縁部4を配置することによって、発電要素2の端部を十分に加圧することができる。
【0069】
(第2の実施形態)
続いて、第2の実施形態について説明する。
図9は、第2の実施形態に係る全固体電池1の構成を概略的に示す断面図であり、非加圧時の状態を示す図である。本実施形態では、第1絶縁部3及び第2絶縁部4の枠幅が工夫されている。なお、既述の実施形態と同様の構成を採用することができる点については、詳細な説明を省略する。
【0070】
具体的には、第1絶縁部3の枠幅L1は、第2絶縁部4の枠幅L2よりも大きい。このような構成を採用すれば、全固体電池1のサイズを小さくすることができる。すなわち、第1絶縁部3は、積層方向に沿って圧縮された際に横方向(発電要素2側)に十分な押圧力を生じさせるために、ある程度の幅を有していることが望ましい。一方で、第2絶縁部4は、圧縮された第1絶縁部3の外側への変位を規制する機能を有していればよいから、第1絶縁部3に求められる程度の幅は必要がない。従って、第2絶縁部4の枠幅L2は、第1絶縁部3の枠幅L1よりも小さくすることができ、これにより、全固体電池1のサイズを低減することができる。
【0071】
(第3の実施形態)
続いて、第3の実施形態について説明する。
図10は、第3の実施形態に係る全固体電池1の構成を概略的に示す断面図であり、非加圧時の状態を示す図である。本実施形態では、第1絶縁部3に関する構成が工夫されている。なお、既述の実施形態と同様の構成を採用することができる点については、詳細な説明を省略する。
【0072】
本実施形態においては、第1絶縁部3が第1集電体10に接合されており、第2集電体11には接合されていない。より詳細には、第1集電体10の両面に、第1絶縁部3が接合されている。
【0073】
本実施形態によれば、プロセスコストを抑制することができる。すなわち、製造時において、第1集電体10にのみ、第1絶縁部3を接合させればよい。第2集電体11には第1絶縁部3を接合させる工程は必要がない。よって、製造工程を短縮することができ、プロセスコストを抑制することができる。
【0074】
なお、
図10に示される例においては、第1絶縁部3と第2集電体11とが離れている。この図に示されるように、非加圧時においては、第1絶縁部3は、必ずしも上下の集電体に接していなくてもよく、少なくとも加圧時に弾性シート7側から力が加わるように構成されていればよい。
【0075】
なお、
図10に示される例においては、発電要素2の端面に凹凸が存在し、第1絶縁部3の内周端部が発電要素2の凹部にはまり込んでいる。具体的には、発電要素2の端面において、第1電極層12の端部が、固体電解質層13の端部よりも内側に位置している。その結果、発電要素2の端面には、第1電極層12の端面を底面とする凹部が形成されている。第1絶縁部3は、その内周端部が発電要素2の凹部に入り込むように、配置されている。このような構成を採用すると、第1電極層12の端面を第1絶縁部3によって保護することが可能となる。
【0076】
(第4の実施形態)
続いて、第4の実施形態について説明する。
図11は、第4の実施形態に係る全固体電池1の構成を概略的に示す断面図であり、非加圧時の状態を示す図である。本実施形態では、第2絶縁部4に関する構成が工夫されている。その他の点については、第3の実施形態と同様の構成を採用することができる。
【0077】
具体的には、第1絶縁部3と同様に、第2絶縁部4も、第1集電体10に接合されており、第2集電体11には接合されていない。より詳細には、第1集電体10の両面に、第2絶縁部4が接合されている。
【0078】
本実施形態によれば、プロセスコストを更に抑制することができる。すなわち、製造時において、第1集電体10にのみ、第1絶縁部3及び第2絶縁部4を接合させればよい。第2集電体11には第1絶縁部3及び第2絶縁部4を接合させる必要がない。よって、製造工程を短縮することができ、プロセスコストを更に抑制することができる。
【0079】
また、本実施形態によれば、第1絶縁部3の外側への変位が第2絶縁部4により規制されやすくなる。よって、発電要素2の端部を更に十分に加圧することができる。
【0080】
(第5の実施形態)
続いて、第5の実施形態について説明する。
図12は、第5の実施形態に係る全固体電池1の構成を概略的に示す断面図であり、非加圧時の状態を示す図である。本実施形態では、第2絶縁部4に関する構成が工夫されている。その他の点については、第3の実施形態と同様の構成を採用することができる。
【0081】
本実施形態では、第1絶縁部3が、第1集電体10に接合されており、第2集電体11には接合されていない。一方で、第2絶縁部4は、第2集電体11に接合されており、第1集電体10には接合されていない。より詳細には、第1集電体10の両面に第1絶縁部3が接合されており、第2集電体11の両面に第2絶縁部4が接合されている。
【0082】
本実施形態によれば、製造時において、第1絶縁部3については、第1集電体10にのみ接合させればよい。第2絶縁部4については、第2集電体11にのみ接合させればよい。第1集電体10に第2絶縁部4を接合させる工程は必要なく、第2集電体11に第1絶縁部3を接合させる工程は必要ない。よって、製造工程を短縮することができ、プロセスコストを更に抑制することができる。
【0083】
本実施形態においても、第2絶縁部4によって第1絶縁部3の外側への変位が規制されるから、発電要素2の端部に対して第1絶縁部3から十分な圧力を加えることができる。
【0084】
(第6の実施形態)
続いて、第6の実施形態について説明する。
図13は、第6の実施形態に係る全固体電池1の構成を概略的に示す断面図であり、非加圧時の状態を示す図である。本実施形態では、第1絶縁部3に関する構成が工夫されている。その他の点については、既述の実施形態と同様の構成を採用することができる。
【0085】
図13に示されるように、本実施形態においては、第1絶縁部3が、積層方向に配列された2つの第1絶縁要素(3-1及び3-2)からなっている。一方の第1絶縁要素3-1は、第1集電体10に接合されている。他方の第1絶縁要素3-2は、第2集電体11に接合されている。このような構成を採用することによっても、第1絶縁部3の外側への変位が第2絶縁部4によって規制され、第1絶縁部3に加えられた力が、発電要素2側に向けられる。従って、発電要素2の端部に十分な圧力を加えることができる。
【0086】
(第7の実施形態)
続いて、第7の実施形態について説明する。
図14は、第7の実施形態に係る全固体電池1の構成を概略的に示す断面図であり、非加圧時の状態を示す図である。本実施形態では、第2絶縁部4に関する構成が工夫されている。その他の点については、既述の実施形態、特に第6の実施形態と同様の構成を採用することができる。
【0087】
図14に示されるように、本実施形態においては、第2絶縁部4が、積層方向に配列された2つの第2絶縁要素(4-1及び4-2)からなっている。一方の第2絶縁要素4-1は、第1集電体10に接合されている。他方の第2絶縁要素4-2は、第2集電体11に接合されている。このような構成を採用することによっても、第1絶縁部3の外側への変位が第2絶縁部4によって規制され、第1絶縁部3に加えられた力が、発電要素2側に向けられる。従って、発電要素2の端部に十分な圧力を加えることができる。
【0088】
(第8の実施形態)
続いて、第8の実施形態について説明する。
図15は、第8の実施形態に係る全固体電池1の構成を概略的に示す断面図であり、非加圧時の状態を示す図である。本実施形態では、第1絶縁部3及び第2絶縁部4に関する構成が工夫されている。その他の点については、既述の実施形態と同様の構成を採用することができる。
【0089】
図15に示されるように、積層方向における第2絶縁部4の長さT2は、積層方向における第1絶縁部3の長さT1よりも、大きい。このような構成を採用すると、第1絶縁部3の外側への変位が第2絶縁部4によってより確実に規制される。従って、第1絶縁部3に加えられた力が、発電要素2側に向けられやすくなり、発電要素2の端部により十分な圧力を加えることができる。
【0090】
以上、本発明について、第1~第8の実施形態を用いて説明した。なお、これらの実施形態は互いに独立するものではなく、矛盾の無い範囲内で組み合わせて用いることも可能である。
【符号の説明】
【0091】
1・・・全固体電池、2・・・発電要素、3・・・第1絶縁部、4・・・第2絶縁部、
5・・・加圧機構、6・・・加圧板、7・・・外側弾性部材、8・・・電池セル、
9・・・外装材、10・・・第1集電体、11・・・第2集電体、
12・・・第1電極層、13・・・固体電解質層、14・・・第2電極層