IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社石垣の特許一覧

<>
  • 特開-水中ポンプの冷却ファン 図1
  • 特開-水中ポンプの冷却ファン 図2
  • 特開-水中ポンプの冷却ファン 図3
  • 特開-水中ポンプの冷却ファン 図4
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024027231
(43)【公開日】2024-03-01
(54)【発明の名称】水中ポンプの冷却ファン
(51)【国際特許分類】
   F04D 13/08 20060101AFI20240222BHJP
   F04D 29/58 20060101ALI20240222BHJP
【FI】
F04D13/08 F
F04D29/58 D
【審査請求】未請求
【請求項の数】5
【出願形態】OL
(21)【出願番号】P 2022129857
(22)【出願日】2022-08-17
(71)【出願人】
【識別番号】000197746
【氏名又は名称】株式会社石垣
(72)【発明者】
【氏名】岡田 光博
【テーマコード(参考)】
3H130
【Fターム(参考)】
3H130AA03
3H130AA13
3H130AB23
3H130AB46
3H130AB52
3H130AC07
3H130BA33C
3H130BA33G
3H130BA33H
3H130BA76C
3H130CB12
3H130DA02Z
3H130DD01Z
3H130DG01Z
3H130EA03C
3H130EA07A
3H130EA07C
3H130EA07G
3H130EC08C
(57)【要約】
【課題】 気中及び水中で冷却ファンが受ける抵抗差を利用し、最適なファン形状に変形させてモータ部の強制冷却を行う水中ポンプの冷却ファンを提供する。
【解決手段】
羽根車9を内挿したポンプ部2と、ポンプ部2の上部に配置しポンプ主軸8及びモータ14を収容したモータ部3と、を有する水中ポンプにおいて、モータ部3の上方に延設しポンプ主軸8と一体的に回転するファン主軸22に固定されたハブ部26と、ハブ部26の円周方向に等角度で略放射状に配置され、回転時に作用する所定の力で直径が減少するように変形する翼部27と、を備えたことで、低動力でモータ部を効率よく冷却できる。

【選択図】 図1
【特許請求の範囲】
【請求項1】
羽根車(9)を内挿したポンプ部(2)と、ポンプ部(2)の上部に配置しポンプ主軸(8)及びモータ(14)を収容したモータ部(3)と、を有する水中ポンプにおいて、
モータ部(3)の上方に延設しポンプ主軸(8)と一体的に回転するファン主軸(22)に固定されたハブ部(26)と、
ハブ部(26)の円周方向に等角度で略放射状に配置され、回転時に作用する所定の力で直径が減少するように変形する翼部(27)と、を備えた
ことを特徴とする水中ポンプの冷却ファン。
【請求項2】
前記翼部(27)を薄板状の弾性部材で形成し、ハブ部(26)の外周面に固着した
ことを特徴とする請求項1に記載の水中ポンプの冷却ファン。
【請求項3】
前記翼部(27)の基部(30)に形成した係合孔(36)をハブ部(26)に立設した軸部(37)に係合させて回動可能に構成し、翼部(27)が遠心力を受けて略放射状に突出した状態で回動できる構成とした
ことを特徴とする請求項1に記載の水中ポンプの冷却ファン。
【請求項4】
前記翼部(27)は、没水した際に水の抵抗力を受けて直径が減少した状態で回転する
ことを特徴とする請求項1から請求項3までのいずれか一項に記載の水中ポンプの冷却ファン。
【請求項5】
前記モータ部(3)の上方から頂部に複数の通気口(31)を有し、下方を開放したファンカバー(25)を被覆し、モータ部(3)とファンカバー(25)との間に翼部(27)から生じる冷却空気の冷却空気路を形成した
ことを特徴とする請求項1から請求項3までのいずれか一項に記載の水中ポンプの冷却ファン。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、水中および気中で効率的に水中モータを冷却する水中ポンプの冷却ファンに関する。
【背景技術】
【0002】
従来、汚水ピット内の排水処理等に用いられる水中ポンプは、水中モータを冷却しながら運転する必要があった。水中モータの冷却は、モータ室外周を揚液に接触させて冷却する自然冷却方式や、揚液の一部をモータ室外側に設けたジャケット内に循環させながら冷却する強制冷却方式等により行っている。しかし、自然冷却方式を用いた場合には、汚水ピット内の水位低下時に水中モータが気中に露出するため、揚液によって冷却できなかった。強制冷却方式を用いた場合も、水位の低下により揚液をジャケット内に効率よく取り込むことができず、水中モータを冷却できなかった。そこで、気中運転時でも効率よく冷却を継続できる水中モータの冷却装置が望まれていた。
【0003】
特許文献1には、モータケーシングの外側に配置されたアウターケーシング内に予め封入した冷却水や、冷却油等の冷却液を循環羽根車の回転によって循環させながらモータを冷却する強制冷却仕様の水中ポンプが開示されている。
【0004】
特許文献2は、モータケースの外周にアウトカバーと冷却ファンを設けた水中ポンプであって、水位の低下によりモータケースが水面上へ露出し、気中運転となった際に、冷却ファンを稼働させることで、アウトカバーの上方から下方に向かって送気される空気によって、モータが気中空冷される技術が開示されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特許第5552402号公報
【特許文献2】特許第4530728号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
従来、水中ポンプは、水中モータを冷却しながら運転するが、水位の低下により、水中モータが気中に露出した際、水中モータを十分に冷却できず発熱する恐れがあった。そのため、水位が低下するたびに運転を停止する必要があった。この場合、水位が上昇したタイミングで運転を再開していたが、モータの起動・停止を頻繁に繰り返していたため、電気系統に多大な負荷がかかり、電気系統の故障を引き起こしていた。また、揚液の一部をモータ室外側のジャケット内に取り込みながら強制冷却する場合には、揚液中に混入した異物によってポンプ内部の閉塞が生じ、運転効率の低下や機器の故障を招くといった課題を有していた。
【0007】
特許文献1は、アウターケーシング内に予め封入した冷却液を循環させながら、モータを冷却する強制冷却方式を用いている。揚液を用いた冷却方式ではないため、水位変動に左右されず、気中運転時でもモータの冷却を継続できる。しかし、冷却液として別途、冷却水や冷却油を用意する必要があるため、コストが嵩むといった問題があった。そして、液体により冷却を行っているため、揚液がアウターケーシング内に浸入した場合には、アウターケーシング内の冷却液を取り換える必要があった。同時に、アウターケーシング内の冷却液が外部に漏洩することも懸念される。また、冷却液を封入するアウターケーシングをモータケーシングの外周に重設しているため、直径が大きくなるとともに、全体重量が大きくなり、装置が大型化していた。さらに、冷却液を循環させるための循環用羽根車が連通室内で浸漬状態となっているため、羽根車の点検や交換、補修作業等を行う際には、冷却液を外部に排出する必要があり、維持管理の負担が大きかった。
【0008】
特許文献2は、気中運転時に冷却ファンを稼働して水中モータを空冷しながら冷却する技術であるため液体を用いずにモータを冷却できる。しかし、水中ポンプ駆動用とは別に冷却ファン駆動用の水中モータを設置する必要があり、水中モータ増設による装置の複雑化や、ランニングコストの増加といった問題があった。また、水中冷却から気中冷却への切り替えを行うために水位検知器にて随時水位を検出し、機器を制御する必要があるため、運転制御が煩雑化する課題も有していた。
【0009】
本発明は、水中モータの空冷時及び水冷時に自ら最適な羽根形状に変化する冷却ファンを用いて水中モータの冷却を行う技術であり、最小限の動力で水中モータを効率よく冷却できる水中ポンプの冷却ファンを提供する。
【課題を解決するための手段】
【0010】
本発明は、羽根車を内挿したポンプ部と、ポンプ部の上部に配置しポンプ主軸及びモータを収容したモータ部と、を有する水中ポンプにおいて、モータ部の上方に延設しポンプ主軸と一体的に回転するファン主軸に固定されたハブ部と、ハブ部の円周方向に等角度で略放射状に配置され、回転時に作用する所定の力で直径が減少するように変形する翼部と、を備えたことで、最適な形状に変化した冷却ファンを用いてモータ部を冷却できるため、回転所要動力を軽減できるとともに、水中モータ上方に冷却ファンを取り付けたシンプルな機構であるため、従来の水中モータに流用可能であり、大幅な設計変更を必要としない。
【0011】
前記翼部を薄板状の弾性部材で形成し、ハブ部の外周面に固着したことで、翼部が回転時に作用する抵抗力を受けて自ら形状を変化させることができる。
【0012】
前記翼部の基部に形成した係合孔をハブ部に立設した軸部に係合させて回動可能に構成し、翼部が遠心力を受けて略放射状に突出した状態で回動できる構成としたことで、翼部が回転時に作用する抵抗力を受けて自ら形状を変化させることができるうえ、翼部の基部を軸部から取り外し可能であるため、維持管理が容易である。
【0013】
前記翼部は、没水した際に水の抵抗力を受けて直径が減少した状態で回転することで、翼部が受ける抵抗力を最小化できるため、回転所要動力を最小限に抑制できる。
【0014】
前記モータ部の上方から頂部に複数の通気口を有し、下方を開放したファンカバーを被覆し、モータ部とファンカバーとの間に翼部から生じる冷却空気の冷却空気路を形成した
ことで、ファンカバーを介して通気口より吸入した冷却空気をモータ部に向かって効率よく送気できると共に、ファンの防音カバー及び安全カバーとして機能させることができる。
【発明の効果】
【0015】
本発明に係る水中ポンプの冷却ファンは、密度の異なる気中と水中で冷却ファンが自ら最適な形状を維持した状態で回転しながらモータ部を冷却できるため、冷却時に必要な所要動力を軽減できる。揚液の水位変動に応じてファン形状を自ら変化させるため、空冷・水冷の切り替えを効率よく行うことができ、突発的な排水機場の浸水等によりポンプが没水した場合にも迅速に対応できる。そのうえ、水位の検出及びそれに伴う制御も不要となり、運転操作が煩雑化しない。また、気中及び水中で連続運転可能であり、モータ部の起動・停止を頻繁に繰り返す必要がないため、電気系統設備への負荷を減らし、設備の長寿命化を図ることも可能である。さらに、冷却ファンはポンプ羽根車の回転動力を共用しており、別途、冷却ファン回転用のモータが不要であるため、コンパクトで省エネルギーな装置となる。モータ部の冷却媒体として、揚液や水、油等を必要としないため、異物によるポンプ内の閉塞や、冷却媒体の漏洩等も発生しない。
【図面の簡単な説明】
【0016】
図1】本発明に係る水中モータの概略断面図である。
図2】同じく、空冷時の冷却ファンの平面図である。
図3】同じく、水冷の冷却ファンの平面図である。
図4】同じく、他の実施形態に係る空冷時及び水冷時の冷却ファンの平面図である。
【発明を実施するための形態】
【0017】
図1は本発明に係る水中ポンプの概略断面図である。
本発明に係る水中ポンプ1は、下から順にポンプ部2、モータ部3及びファン部4を接続して構成している。ポンプ部2は、第1ケーシング5及び第1ケーシング5上部に配置された第2ケーシング6からなるポンプケーシング7を備える。
【0018】
第1ケーシング5は、ケーシング内部から上方に向かって挿通するポンプ主軸8と、ポンプ主軸8に固定した羽根車9と、を内設している。第1ケーシング5の内部には、ポンプ室10が形成されており、羽根車9を回転させて水などの液体を下方の吸込口32から吸い込んだ後、羽根車9とポンプ室10の作用により液体を昇圧し、羽根車9側方の吐出口11から吐き出す構成としている。
【0019】
第2ケーシング6は、潤滑油が貯留され、かつポンプ主軸8が貫通するオイル室12を内設している。ポンプ主軸8の周囲には、下部メカニカルシール13を配置してあり、ポンプ室10で揚水される液体の浸入及びオイル室12内の潤滑油の外部への漏洩を防止する。
【0020】
モータ部3は、第2ケーシング6上部に配置してあり、ポンプ部2から上方に向かって延設されたポンプ主軸8と、ポンプ主軸8に固定した羽根車9を回転させるモータ14と、モータ14を収容した筒状のモータケーシング15と、を備える。
【0021】
ポンプ主軸8は、モータケーシング15上部に設けた上部軸受16及び第2ケーシング6上部に設けた下部軸受17によって回転自在に支持されている。
【0022】
モータ14は、ポンプ主軸8に固定されたロータ18と、ロータ18を取り囲むようにモータケーシング15内周に固定されたステータ19と、を備え、ステータコイル20及び図示しない電源に接続されたケーブル21を通じて外部から供給された電力によって駆動できるように構成してある。
【0023】
ファン部4は、モータ部3の上方に延設したファン主軸22と、ファン主軸22に固定された冷却ファン23と、モータケーシング15上部に配置され上部をファン主軸22が貫通するファンケーシング24と、ファンケーシング24を上方から覆うように配置されたファンカバー25と、を備える。
【0024】
ファン主軸22は、ポンプ主軸8をモータ部3の上方に延設した軸であり、ポンプ主軸8と一体的に回転する。本実施形態では、ポンプ主軸8を延設したものをファン主軸22としているが、別途形成したファン主軸22をポンプ主軸8に連結させて構成してもよい。なお、ファン主軸22の径は、設計条件に応じて適宜決定する。
【0025】
冷却ファン23は、ファン主軸22に固定するハブ部26と、ハブ部26の外周から略放射状に突出した翼部27と、を備える。ハブ部26及び翼部27は、金属部材で形成してあり、特に、翼部27をステンレスバネ鋼で形成しているため、冷却ファン23は弾性変形可能である。
【0026】
一般的に、気体と液体では流体の密度が異なっており、液体の密度のほうが大きい。つまり、気中よりも密度の大きい水中で回転する冷却ファン23が受ける抵抗は、気中よりも大きくなる。本実施形態では、この原理を利用し、弾性変形可能な冷却ファン23の翼部27の形状を気中運転時と水中運転時で、それぞれ変形させながら、モータ部3を冷却できる構成としている。
【0027】
なお、翼部27は、一例として、耐腐食性のステンレスバネ鋼を用いて形成しているが、弾性変形可能な部材であれば限定されない。
【0028】
ファンケーシング24は、冷却ファン23を固定したファン主軸22が貫通し、ファンケーシング24上方で、冷却ファン23が回転できる構成としている。ファンケーシング24内上部には、ファンケーシング24内を挿通するファン主軸22に周設した上部メカニカルシール28を配設してある。これにより、水中ポンプ1没水時に、ファンケーシング24内へ揚液が浸入することを防止できる。本実施形態では、軸封装置として、メカニカルシール(上部メカニカルシール28、下部メカニカルシール17)を設けているが、維持管理性を高めるために、液漏洩が生じない、マグネットの磁気結合力を使用したマグネットカップリング方式を用いてもよく、シール構造は限定されない。
【0029】
ファンケーシング24の側面には、ケーブル21を収容するケーブルボックス29を設けている。ケーブルボックス29は、外面にシール部材30を取り付け、ボックスを貫通するケーブル21を水密に固定してある。ケーブル21は、ケーブルボックス29、ファンケーシング24及びモータケーシング15を介してステータコイル20に接続し、他方に接続された電力供給源(図示しない)から電力を供給できる構成としている。
【0030】
ファンカバー25は、頂部に複数の通気口31を有し、下方が開放したカバーであり、冷却ファン23及びファンケーシング24を覆うように上方から取り付けている。ファンカバー25は、ファンカバー25の内側から延出した複数の支持部材38によってファンケーシング24に支持されているが、設置方法はこれに限定されない。通気口31の径や形状等も設計条件に応じて適宜選択する。
【0031】
このような構成をなすファンカバー25を、冷却ファン23の上方に配置することで、ファンの回転時に、外気(冷却空気)を通気口31から吸入しながら下方へ送出できる。通気口31から吸入された外気(冷却空気)は、ファンカバー25の内側に案内された後、モータケーシング15に沿って流下する。これにより、モータ部3表面が強制冷却される。本実施形態では、水中ポンプ1が気中に露出し、気中運転となった際に、この冷却方法にてモータ部3を強制的に空冷する。そのため、モータ部3は、水没していない状態であっても発熱しない。
【0032】
なお、冷却空気の流路となるファンカバー25の内側は、凹凸のない平坦な板面であっても、空気を下方へ案内する案内溝や、案内リブ等を追加した板面であってもよい。また、ファンカバー25の径を下方に向かって漸減(または漸増)させる等、変形可能とする。
【0033】
図2は本発明に係る空冷時の冷却ファンの平面図である。
図2は、水中ポンプ1の気中運転時に、モータ部3を空冷する冷却ファン23を示しており、冷却ファン23は気中に露出した状態である。冷却ファン23は、環状のハブ部26と、ハブ部26の周囲に設けた複数の翼部27と、を備えている。ハブ部26は、中心部35をファン主軸22に貫通させて固定しており、ファン主軸22と一体的に回転する。翼部27は、溶接等により基部30をハブ部26の外周に固着してあり、ハブ部26の中心部35から等角度で配置している。各翼部27は、ハブ部26の外周から略放射状に突出している。
【0034】
翼部27は、ステンレスバネ鋼で薄板状に形成してあるため、容易に弾性変形可能であるが、本実施例では、気中運転において、羽根形状を維持する方向に働く遠心力と羽根形状を変化させる方向に働く抵抗力の釣り合いを保つことによって、弾性変形を最小化し、冷却ファン23として必要な形状を保つように構成している。これにより、モータ部3の空冷時に冷却ファン23が効率よく冷却空気を発生させることができる。
【0035】
図3は本発明に係る水冷時の冷却ファンの平面図である。
図3は、水中ポンプ1の水中運転時に、モータ部3を水冷する冷却ファン23を示しており、冷却ファン23は水中に没水した状態である。本実施例では、水中で受ける所定の抵抗力により、翼面33が弾性変形するように構成しているため、翼部27は抵抗を受けて回転方向と逆向きに湾曲する。
【0036】
このとき、冷却ファン23の中心部35から翼部27の先端部31までの距離が図2の気中運転時よりも短くなり、冷却ファン23の直径が減少する。ファンの直径が減少することで、揚水効率及び消費電力が低下する。しかし、モータ部3が没水状態である水中運転時には、冷却ファン23による強制冷却が不要である。したがって、水中運転時においては、あえて翼部27を湾曲させて冷却ファン23の直径を減少させ、翼部27に生じる抵抗力を最小化させている。これにより、冷却ファン23を最小限の動力で駆動できる。
【0037】
水中ポンプ1の水位が低下し、再び気中運転となり、翼部27が気中に露出した際には、翼部27が受ける抵抗が小さくなる。そのため、図2のように、翼部27がハブ部26の周面から遠ざかった状態に弾性復帰する。このように、冷却ファン23は、抵抗の異なる気中及び水中で、自ら最適なファン形状に変化させながら強制冷却を行う。
【0038】
本実施形態における冷却ファン23は、気中及び水中でファン形状を変化させながら、冷却を継続できる。そのため、気中運転時に突然水位が上昇し、水中運転に切り替わった場合であっても、水中ポンプ1の運転を停止させる必要がない。水位変動に対し、ファン形状の変化のみで自動的に空冷及び水冷に移行できるため、効率よくモータ部3の冷却を継続できる。そして、冷却ファン23は、ポンプ主軸8の回転動力を共用しているため、必要最小限の動力で運転を継続可能である。
【0039】
なお、翼部27の薄板の厚みや形状等は、気中運転時及び水中運転時にそれぞれ最適なファン形状を維持できる構成であればよい。枚数や設置間隔等に関しては、設計条件に応じて適宜選択する。
【0040】
図4は他の実施形態に係る空冷時及び水冷時の冷却ファンの平面図である。空冷時における冷却ファン23を実線で示しており、水冷時における冷却ファン23を破線で示している。水冷時の冷却ファン23は、水の抵抗力を受けてハブ部26の周面に近づくように回動し、直径が減少する。
【0041】
本実施形態では、翼部27の基部30に略円筒形状の係合孔36を形成するとともに、ハブ部26に軸部37を立設している。係合孔36及び軸部37は、周知のヒンジ機構からなり、上方から係合孔36を軸部37に係合させることで、翼部27が軸部37を起点に回転方向及び逆方向に回動できる構成としている。
【0042】
各軸部37に回動可能に係合された翼部27は、ハブ部26の円周方向に等角度で略放射状に配置している。各翼部27は、空冷時に、気中で回動する翼部27に生じる遠心力及び抵抗力が釣り合うことによって、略放射状に突出した状態を維持したまま回動する。
【0043】
翼部27が略放射状に突出した状態にあるとき、ファンの直径は最大となっており、中心部35から先端部31までの距離は最も遠い位置にある。空冷時に、翼部27をこの状態で回動させることで、効率よく冷却空気を生じさせることができる。なお、係合孔36は、溶着等により翼部27の基部37に形成している。
【0044】
一方、水冷時には、回転時に生じる水の抵抗力を受けて、ハブ部26周面に近づいた状態で回転する。水冷時における冷却ファン23の直径は、空冷時よりも減少し、ファンが受ける抵抗力が最小限となっているため、冷却ファン23は、空冷時よりも少ない動力で駆動できる。
【0045】
この実施形態では、翼部27に形成した係合孔36を軸部37に係合させる構成であるため、冷却ファン23の点検時に任意の翼部27のみ取り外し可能となり、維持管理作業に手間を要しない。
【0046】
なお、翼部27は、基部30を起点に回動するため、弾性を有さない金属や樹脂等で形成してもよい。また、基部30の回動機構に関し、ねじ等の結合具等を用いてもよく、本実施形態に限定されない。
【0047】
本発明は、以上に詳述した実施形態に限られるものではない。本発明の趣旨を逸脱しない範囲で適宜変形実施可能である。
【産業上の利用可能性】
【0048】
本発明の冷却ファンは、水中ポンプの水中運転時及び気中運転時において、ポンプ主軸の駆動力のみで、最適なファン形状に変形可能であるため、余分な動力を必要としない。省電力でモータ部を冷却できることに加え、冷却媒体として外気を使用するため、冷却油等の漏洩により水質へ悪影響を及ぼすこともない。したがって、環境に配慮した省エネルギー型の冷却装置といえる。また、従来の水中ポンプの上部の機構を少し改良するだけで、本発明を実施できるため、既存の水中ポンプに容易に適用可能である。
【符号の説明】
【0049】
2 ポンプ部
3 モータ部
8 ポンプ主軸
9 羽根車
14 モータ
22 ファン主軸
25 ファンカバー
26 ハブ部
27 翼部
30 基部
31 通気口
36 係合孔
37 軸部
図1
図2
図3
図4