IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ミネベア株式会社の特許一覧

特開2024-27420モータ駆動制御装置及びモータ診断方法
<>
  • 特開-モータ駆動制御装置及びモータ診断方法 図1
  • 特開-モータ駆動制御装置及びモータ診断方法 図2
  • 特開-モータ駆動制御装置及びモータ診断方法 図3
  • 特開-モータ駆動制御装置及びモータ診断方法 図4
  • 特開-モータ駆動制御装置及びモータ診断方法 図5
  • 特開-モータ駆動制御装置及びモータ診断方法 図6
  • 特開-モータ駆動制御装置及びモータ診断方法 図7
  • 特開-モータ駆動制御装置及びモータ診断方法 図8
  • 特開-モータ駆動制御装置及びモータ診断方法 図9
  • 特開-モータ駆動制御装置及びモータ診断方法 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024027420
(43)【公開日】2024-03-01
(54)【発明の名称】モータ駆動制御装置及びモータ診断方法
(51)【国際特許分類】
   H02P 29/024 20160101AFI20240222BHJP
【FI】
H02P29/024
【審査請求】未請求
【請求項の数】6
【出願形態】OL
(21)【出願番号】P 2022130201
(22)【出願日】2022-08-17
(71)【出願人】
【識別番号】000114215
【氏名又は名称】ミネベアミツミ株式会社
(74)【代理人】
【識別番号】100107766
【弁理士】
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【弁理士】
【氏名又は名称】伊東 忠彦
(72)【発明者】
【氏名】寺岡 進
(72)【発明者】
【氏名】海津 浩之
(72)【発明者】
【氏名】青木 政人
【テーマコード(参考)】
5H501
【Fターム(参考)】
5H501AA08
5H501BB08
5H501GG03
5H501HA08
5H501HB07
5H501HB16
5H501JJ03
5H501JJ23
5H501JJ24
5H501LL07
5H501LL10
5H501LL22
5H501LL23
5H501LL35
5H501LL53
(57)【要約】
【課題】本開示は、モータの異常を検知可能なモータ駆動制御装置を提供する。
【解決手段】モータを駆動するモータ駆動制御装置であって、制御部を備え、前記制御部は、(a)前記モータの動作状態を示す複数の変数に基づいて分散共分散行列を求める手順と、(b)前記分散共分散行列の逆行列である精度行列を求める手順と、(c)前記精度行列を正則化して、正則化精度行列を求める手順と、(d)前記正則化精度行列に基づいて、前記複数の変数から相関のある変数の組み合わせを求める手順と、(e)前記組み合わせに基づいて、前記モータにおける異常の発生を推定する手順と、を実行するモータ駆動制御装置。
【選択図】図1
【特許請求の範囲】
【請求項1】
モータを駆動するモータ駆動制御装置であって、
制御部を備え、
前記制御部は、
(a)前記モータの動作状態を示す複数の変数に基づいて分散共分散行列を求める手順と、
(b)前記分散共分散行列の逆行列である精度行列を求める手順と、
(c)前記精度行列を正則化して、正則化精度行列を求める手順と、
(d)前記正則化精度行列に基づいて、前記複数の変数から相関のある変数の組み合わせを求める手順と、
(e)前記組み合わせに基づいて、前記モータにおける異常の発生を推定する手順と、
を実行する、
モータ駆動制御装置。
【請求項2】
前記複数の変数は、前記モータに供給する電圧値と、前記モータに供給する電流値と、前記モータを駆動する制御値と、前記モータの回転速度と、を含む、
請求項1に記載のモータ駆動制御装置。
【請求項3】
前記制御部は、前記(e)手順において、前記電圧値と前記制御値との間に相関関係がある場合に、前記モータにおける異常の発生を推定する、
請求項2に記載のモータ駆動制御装置。
【請求項4】
前記制御部は、前記(e)手順において、前記電流値と前記制御値との間に相関関係がある場合に、前記モータにおける異常の発生を推定する、
請求項2に記載のモータ駆動制御装置。
【請求項5】
前記制御部は、前記(e)手順において、前記電圧値と前記制御値との間に相関関係があって、前記電流値と前記制御値との間に相関関係がある場合に、前記モータにおける異常の発生を推定する、
請求項2に記載のモータ駆動制御装置。
【請求項6】
モータの異常を診断するモータ診断方法であって、
(a)前記モータの動作状態を示す複数の変数に基づいて分散共分散行列を求める手順と、
(b)前記分散共分散行列の逆行列である精度行列を求める手順と、
(c)前記精度行列を正則化して、正則化精度行列を求める手順と、
(d)前記正則化精度行列に基づいて、前記複数の変数から相関のある変数の組み合わせを求める手順と、
(e)前記組み合わせに基づいて、前記モータにおける異常の発生を推定する手順と、
を実行する、
モータ診断方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、モータ駆動制御装置及びモータ診断方法に関する。
【背景技術】
【0002】
モータの異常検知をする手段として、モータにセンサを取り付けて検知する手段が知られている。例えば、固定子と回転子の間に磁気センサを取り付けて、モータ周辺の電磁場を解析してモータの異常を検知する方法が知られている。また、ベアリング近辺や巻き線の近くにサーミスタ等の温度センサを取り付けて、モータの温度変化を解析してモータの異常を検出する方法が知られている。さらに、固定子や回転子に振動センサを取り付けて、モータの振動を解析してモータの異常を検出する方法が知られている。さらにまた、固定子や回転子に感音センサを取り付けて、モータ駆動時の音を解析してモータの異常を検出する方法が知られている。
【0003】
例えば、特許文献1には、加速度センサを用いる余寿命診断方法が開示されている。
【0004】
また、モータの異常検知をする手段として、センサを使わずに、モータ駆動時の電気信号を解析する電流兆候解析が知られている。例えば、モータの軸受けが損傷しミスアライメントが生じた時、エアギャップの変化、回転子の抵抗値の変化等が空間磁束線を通じて電流に影響を与える。したがって、異常のあるモータにおいて、電流信号を高速フーリエ変換解析すると、モータに流れる電流の低周波数帯の高調波成分が増加する。電流の低周波数帯における高調波成分の増加(変化)を異常の徴候として検出することにより、モータ異常を検知する。モータ駆動時の電気信号を解析する電流兆候解析では、モータ個々にセンサを取り付ける必要はない。
【0005】
例えば、特許文献2には、設定値以上の信号強度の側帯波が抽出されたときに警報出力を行う電動機の診断装置が開示されている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2010-190901号公報
【特許文献2】特開2016-195524号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
センサを用いるモータ異常検知手段は、相互のデータを解析するため複数のセンサを使用するのが一般的である。産業機器用モータ等、大型で高価なモータの場合は、モータ価格に対するセンサ価格の割合が低いため、大幅な価格上昇率とはならない。しかしながら、サーバー用ファンモータ等の比較的安価なモータの場合は、センサ分の価格上昇率が大きくなり価格面で市場では受け入れ難くなると予想される。
【0008】
また、センサを用いないモータ異常検知手段は、電流波形を取得するためのオシロスコープを別途用意する必要があるため、やはり大型の産業機器用モータに対して、別途オシロスコープを用い電気室等から遠隔でデータを取得し解析することになる。また、高速フーリエ変換解析において計算量が多いため、リアルタイムでの検知は困難である。
【0009】
本開示は、モータの異常を検知可能なモータ駆動制御装置を提供する。
【課題を解決するための手段】
【0010】
本開示の一態様では、モータを駆動するモータ駆動制御装置であって、制御部を備え、前記制御部は、(a)前記モータの動作状態を示す複数の変数に基づいて分散共分散行列を求める手順と、(b)前記分散共分散行列の逆行列である精度行列を求める手順と、(c)前記精度行列を正則化して、正則化精度行列を求める手順と、(d)前記正則化精度行列に基づいて、前記複数の変数から相関のある変数の組み合わせを求める手順と、(e)前記組み合わせに基づいて、前記モータにおける異常の発生を推定する手順と、を実行するモータ駆動制御装置が提供される。
【発明の効果】
【0011】
本開示のモータ駆動制御装置によれば、モータの異常を検知できる。
【図面の簡単な説明】
【0012】
図1図1は、本実施形態に係るモータ駆動制御装置が用いられるモータシステムの概略を示す図である。
図2図2は、本実施形態に係るモータ駆動制御装置における処理を説明するフロー図である。
図3図3は、本実施形態に係るモータ駆動制御装置の動作結果について説明する図である。
図4図4は、本実施形態に係るモータ駆動制御装置における演算結果について説明する図である。
図5図5は、本実施形態に係るモータ駆動制御装置における演算結果について説明する図である。
図6図6は、本実施形態に係るモータ駆動制御装置における演算結果について説明する図である。
図7図7は、本実施形態に係るモータ駆動制御装置における演算結果について説明する図である。
図8図8は、本実施形態に係るモータ駆動制御装置における演算結果について説明する図である。
図9図9は、本実施形態に係るモータ駆動制御装置における演算結果について説明する図である。
図10図10は、本実施形態に係るモータ駆動制御装置における演算結果について説明する図である。
【発明を実施するための形態】
【0013】
≪モータシステム≫
以下、図面を参照して、本実施形態に係るモータ駆動制御装置が用いられるモータシステムについて説明する。
【0014】
図1は、本実施形態に係るモータ駆動制御装置の一例であるモータ駆動制御装置100が用いられるモータシステム1の概略を示す図である。
【0015】
モータシステム1は、モータ10と、モータ駆動制御システム20と、を備える。モータ10は、例えば、ファンを回転させるために用いられる。モータ駆動制御システム20は、モータ10を駆動制御する。
【0016】
モータ駆動制御システム20は、モータ駆動制御装置100と、上位装置200と、を備える。
【0017】
<モータ駆動制御装置100>
モータ駆動制御装置100は、モータ駆動回路101と、センサ部102と、FG(Frequency Generator)信号生成部103と、を備える。また、モータ駆動制御装置100は、電源電圧測定部110と、駆動制御信号生成部120と、通信部130と、電流計測部140と、回転速度計測部150と、異常検知制御部160と、データ管理部170と、を備える。
【0018】
なお、モータ駆動制御装置100における駆動制御信号生成部120、回転速度計測部150、異常検知制御部160及びデータ管理部170は、例えば、プログラム処理装置(コンピュータ)によって実現される。より具体的には、プログラム処理装置は、CPU(Central Processing Unit)等のプロセッサと、RAM(Random Access Memory)及びROM(Read Only Memory)等の各種記憶装置を備える。また、プログラム処理装置は、カウンタ(タイマ)、AD(Analog-to-digital)変換回路、DA(Digital-to-analog)変換回路、クロック発生回路及び入出力I/F(Interface)回路等の周辺回路を備える。例えば、プロセッサ、記憶装置及び周辺回路のそれぞれは、バスや専用線を介して互いに接続される。プログラム処理装置は、例えば、マイクロコントローラである。プログラム処理装置において、CPUが、メモリに記憶されているプログラムに従って各種演算処理を実行することにより、処理を実現する。
【0019】
[モータ駆動回路101]
モータ駆動回路101は、駆動制御信号生成部120が生成する駆動制御信号Ctlに基づいてモータ10を駆動する。モータ駆動回路101は、例えば、プリドライブ回路と、インバータ回路と、を備える。
【0020】
プリドライブ回路は、駆動制御信号Ctlに基づいて、インバータ回路を駆動するための出力信号を生成する。プリドライブ回路は、生成した出力信号をインバータ回路に出力する。プリドライブ回路は、例えば、駆動制御信号Ctlに基づいて、インバータ回路の各スイッチ素子を駆動する駆動信号を生成して出力する。
【0021】
インバータ回路は、プリドライブ回路から出力された出力信号に基づいてモータ10に駆動信号を出力する。インバータ回路が出力した駆動信号は、モータ10が備えるコイルに通電する。インバータ回路は、例えば、直流電源の両端に設けられた2つのスイッチ素子、例えば、電界効果トランジスタ等のトランジスタの直列回路の対が、各相のコイルに接続される。2つのスイッチ素子の各対において、スイッチ素子同士の接続点に、モータ10の各相の端子が接続される。
【0022】
プリドライブ回路が生成した駆動信号が、インバータ回路を構成する各スイッチ素子をオン及びオフさせることにより、モータ10の各相に電力が供給されてモータ10のロータが回転する。
【0023】
モータ駆動回路101は、上位装置200が備える電源210から電力が供給される。モータ駆動回路101は、上位装置200が備える電源210に接続する。モータ駆動回路101は、電源210から供給される電力を、駆動制御信号Ctlに基づいて変換する。そして、モータ駆動回路101は、変換した電力をモータ10に供給する。
【0024】
[センサ部102]
センサ部102は、モータ10のロータの回転位置を検出する。センサ部102は、例えば、位置センサを備える。センサ部102は、例えば、ホール素子を備える。センサ部102のホール素子は、ロータの磁極を検出する。そして、センサ部102のホール素子は、ロータの回転に応じて電圧が変化するホール信号を出力する。
【0025】
なお、センサ部102の位置センサは、ホール素子に限らない。位置センサは、モータのロータの回転位置を検出することができるセンサであればよい。位置センサとして、例えば、エンコーダ等を適用してもよい。位置センサとしてエンコーダを用いる場合、センサ部102は、モータ駆動制御装置100の構成要素の一つとしてではなく、モータ駆動制御装置100とは互いに独立した装置として、モータ駆動制御装置100の外部に設けられていてもよい。
【0026】
[FG信号生成部103]
FG信号生成部103は、モータ10の回転速度を示す回転速度信号としてのFG信号を生成する。FG信号生成部103は、例えば、センサ部102のホール素子から出力された検出信号(ホール信号)に基づいて、モータ10の回転速度に比例する周期(周波数)を有する信号(FG信号)を生成する。FG信号生成部103から出力されたFG信号は、上位装置200に入力される。なお、FG信号生成部103は、例えば、モータ10が搭載される基板(プリント基板)上に形成されたFGパターンによって実現してもよい。
【0027】
[電源電圧測定部110]
電源電圧測定部110は、上位装置200から供給される電力の電圧Vを測定する。言い換えると、電源電圧測定部110は電源電圧を測定する。電源電圧測定部110は、測定した電圧値Vmを異常検知制御部160に出力する。
【0028】
[駆動制御信号生成部120]
駆動制御信号生成部120は、モータ10の駆動を制御するための駆動制御信号Ctlを生成する。駆動制御信号生成部120は、例えば、上位装置200から駆動指令として出力された駆動指令信号である速度指令信号Svを受信する。駆動制御信号生成部120は、速度指令信号Svを受信した場合に、モータ10の回転速度が速度指令信号Svによって指定された目標回転速度と一致するように、駆動制御信号Ctlを生成する。
【0029】
駆動制御信号Ctlは、例えば、PWM(Pulse Width Modulation)信号である。
【0030】
駆動制御信号生成部120は、速度指令解析部121と、デューティ比決定部122と、通電制御部123と、を備える。
【0031】
(速度指令解析部121)
速度指令解析部121は、上位装置200から出力された速度指令信号Svを受信する。そして、速度指令解析部121は、速度指令信号Svによって指定された目標回転速度を解析する。例えば、速度指令信号Svが目標回転速度に対応するデューティ比を有するPWM信号である場合、速度指令解析部121は、速度指令信号Svのデューティ比を解析し、そのデューティ比に対応する回転速度の情報を目標回転速度として出力する。
【0032】
(デューティ比決定部122)
デューティ比決定部122は、速度指令解析部121から出力された目標回転速度と回転速度計測部150によって計測されたモータ10の回転速度の計測値とに基づいて、駆動制御信号CtlとしてのPWM信号のデューティ比を決定する。
【0033】
具体的には、デューティ比決定部122は、目標回転速度とモータ10の回転速度の計測値との差が小さくなるようにモータ10の制御値を算出する。そして、デューティ比決定部122は、算出した制御値に応じたPWM信号のデューティ比を決定する。例えば、デューティ比決定部122は、目標回転速度とモータ10の回転速度の計測値との差が小さくなるように、PID(Proportional-Integral-Differential)制御、PD制御及びPI制御のいずれかにより制御値を算出する。そして、デューティ比決定部122は、制御値に応じたPWM信号のデューティ比Dtyを決定する。
【0034】
デューティ比決定部122は、決定したデューティ比Dtyを、異常検知制御部160に出力する。
【0035】
(通電制御部123)
通電制御部123は、デューティ比決定部122によって決定したデューティ比を有するPWM信号を生成する。そして、通電制御部123は、生成したPWM信号を駆動制御信号Ctlとしてモータ駆動回路101に出力する。
【0036】
[通信部130]
通信部130は、外部と通信を行う。通信部130は、上位装置200と通信を行う。具体的には、通信部130は、制御装置としての上位装置200との間でデータの送受信を行う。通信部130は、送信部131と、受信部132と、通信制御部133と、を備える。
【0037】
送信部131は、上位装置200にデータを送信する。受信部132は、上位装置200からデータを受信する。送信部131及び受信部132のそれぞれは、通信制御部133により制御される。送信部131は、例えば、所定のシリアル信号を生成して通信線路に送信するシリアル通信用インタフェイス回路である。また、受信部132は、例えば、所定のシリアル信号を生成して通信線路からシリアル信号を受信するシリアル通信用インタフェイス回路である。
【0038】
通信制御部133は、送信部131及び受信部132のそれぞれを制御する。通信制御部133は、送信部131にエンコードしたデータを送る。また、通信制御部133は、受信部132から受信したデータをデコードする。通信制御部133が、送信部131及び受信部132を制御することにより、上位装置200との間でデータの送受信を行う。通信制御部133は、例えば、モータ駆動制御装置100が備えるプロセッサによるプログラム処理によって実現される。
【0039】
通信制御部133は、上位装置200から駆動指令として出力された速度指令信号Svを受信する。そして、通信制御部133は、受信した速度指令信号Svを、速度指令解析部121に送信する。
【0040】
[電流計測部140]
電流計測部140は、モータ駆動回路101からモータ10に供給される電力の電流を測定する。電流計測部140は、例えば、カレントトランスを備える。電流計測部140は、モータ駆動回路101からモータ10に供給される電力の電流を測定した電流値Imを、異常検知制御部160に出力する。
【0041】
[回転速度計測部150]
回転速度計測部150は、モータ10の回転速度を計測する。回転速度計測部150は、例えば、センサ部102におけるホール素子の検出信号(ホール信号)に基づいて、モータ10の回転速度を計測する。回転速度計測部150は、計測した回転速度Rmを異常検知制御部160に出力する。
【0042】
[異常検知制御部160]
異常検知制御部160は、モータ10の異常を検知する。異常検知制御部160は、電圧値Vm、電流値Im、回転速度Rm及びデューティ比Dtyに基づいて、モータ10の異常の発生を推定して、検知する。
【0043】
[データ管理部170]
データ管理部170は、データを管理する。
【0044】
<上位装置200>
次に、上位装置200について説明する。上位装置200は、モータ駆動制御装置100に電源を供給する。また、上位装置200は、モータ駆動制御装置100に回転速度を指示する。上位装置200は、電源210と、データ処理制御部220と、通信部230と、を備える。
【0045】
[電源210]
電源210は、モータ駆動制御装置100に、モータ10を動作させるための電源を供給する。電源210は、直流電源である。電源210は、例えば、12V(ボルト)の電力を、モータ駆動制御装置100に供給する。
【0046】
[データ処理制御部220]
データ処理制御部220は、モータ駆動制御装置100に、モータ10の目標となる回転速度(目標回転速度)を指示する。データ処理制御部220は、通信部230を介して、モータ駆動制御装置100に、速度指令信号Svを送信する。データ処理制御部220は、モータ駆動制御装置100に、速度指令信号Svを送信することにより、モータ駆動制御装置100に目標となる回転速度(目標回転速度)を指示する。
【0047】
[通信部230]
通信部230は、モータ駆動制御装置100との間で通信を行う。通信部230は、モータ駆動制御装置100における通信部130と通信する。通信部230は、通信部130における送信部131から送信された信号を受信信号Rxとして受信する。また、通信部230は、送信信号Txを、通信部130における受信部132に送信する。通信部230は、例えば、所定のシリアル信号を生成して通信線路からシリアル信号を送受信するシリアル通信用インタフェイス回路である。
【0048】
<異常検知制御部における処理>
次に、異常検知制御部160が行う処理について説明する。異常検知制御部160が行う処理を説明することにより、モータ駆動制御装置100が行うモータ10の異常を診断するモータ診断方法が含む手順について説明する。図2は、本実施形態に係るモータ駆動制御装置の一例であるモータ駆動制御装置100における処理を説明するフロー図である
【0049】
発明者らは、モータ10の異常を検出するために、モータ10の動作状態を示す変数単体では、異常の検出が困難であることを見いだした。そして、モータ10の動作状態を示す複数の変数における変数間の関係性に注目し、複数の変数間の関係性を示す指標をスパース化することによって、より精度よくモータ10の異常を検出できることを見いだした。
【0050】
(ステップS10)
最初に、異常検知制御部160は、所定の期間におけるモータ10の動作状態を示す複数の変数に関するデータを取得する。具体的には、異常検知制御部160は、電源電圧である電圧値Vm、モータ10に供給される電流の電流値Im、モータ10の回転速度Rm及びデューティ比Dtyのそれぞれのデータを取得する。異常検知制御部160は、例えば、所定の期間における電圧値Vm、電流値Im、回転速度Rm及びデューティ比Dtyのそれぞれをデータ管理部170に保存する。そして、データ管理部170から電圧値Vm、電流値Im、回転速度Rm及びデューティ比Dtyのそれぞれを読み出して取得する。
【0051】
(ステップS20)
次に、異常検知制御部160は、取得した所定の期間における電圧値Vm、電流値Im、回転速度Rm及びデューティ比Dtyについて分散共分散行列Sを算出する。
【0052】
分散共分散行列Sは、式1に基づいて算出される。なお、Xは、多変数ベクトルである入力データ、μは平均を表す。
【0053】
【数1】
【0054】
(ステップS30)
次に、異常検知制御部160は、求めた分散共分散行列Sから、精度行列Λを求める。精度行列Λは、分散共分散行列Sの逆行列である。精度行列Λは、式2に基づいて算出される。
【0055】
【数2】
【0056】
(ステップS40)
次に、異常検知制御部160は、正則化項を加えた精度行列を算出する。複数のデータにおけるデータ相互間の特徴を見る手段として相関係数が挙げられる。しかしながら、相関係数を用いた場合、見かけの相関が存在するため、相関係数の数値では明確に判別しにくい。例えば、相関係数が0.3から0.7までの範囲にある場合は弱い相関があると考えられ、相関があるかどうか曖昧さが残る場合がある。
【0057】
そこで、異常検知制御部160は、見かけの相間を排除するために、複数のデータから分散共分散行列Sを求め、その分散共分散行列Sから精度行列Λを求める。そして、精度行列Λに正則化項を加えることで曖昧さを排除する。
【0058】
すなわち、異常検知制御部160は、精度行列Λに正則化項を加えることで精度行列Λをスパース化し、重要でない変数を間引き、重要な変数のみ抽出する。
【0059】
正則化項を加えた精度行列を正則化精度行列という場合がある。正則化項を加えた精度行列は、推定値問題を解く過程で求められる。言い換えると、正則化項を加えた精度行列及び分散共分散行列のそれぞれは、対数尤度関数から精度行列及び分散共分散行列のそれぞれの最尤推定値を求めることにより求める。
【0060】
式3は、多次元正規分布の対数尤度関数である。
【0061】
【数3】
【0062】
なお、detは行列式を表す。constは定数を表す。式3を変形すると式4となる。
【0063】
【数4】
【0064】
なお、trは行列のトレースを表す。
【0065】
式4の対数尤度関数に対して、正則化項を加えた最適化問題を解き、精度行列及び分散共分散行列のそれぞれのパラメータを推定する。尤度を最大にするには、式4の括弧内を最小化する。
【0066】
式5は、正則化項を加えた最適化問題を示す。Λは、正則化項を加えた精度行列(正則化精度行列)である。
【0067】
【数5】
【0068】
なお、ρ||Λ||は正則化項を示す。ρは、ハイパーパラメータを示す。
【0069】
式5により求める精度行列Λが、正則化項を加えた最尤推定の解である精度行列である。すなわち、精度行列Λが、正則化精度行列である。
【0070】
(ステップS50)
次に、異常検知制御部160は、異常の有無を判定する。異常検知制御部160は、正則化精度行列Λにおける電圧値Vm、電流値Im、回転速度Rm及びデューティ比Dtyのそれぞれについて、他の変数との間の係数について調べる。すなわち、異常検知制御部160は、正則化精度行列Λにおける非対角成分について調べる。
【0071】
正則化精度行列Λにおいて、相関関係のない組み合わせに対応する非対角成分は、零となる。一方、正則化精度行列Λにおいて、相関関係のある組み合わせに対応する非対角成分は、零以外の数値となる。零以外の数値となる非対角成分から、複数の変数から相関のある変数の組み合わせを求める。
【0072】
後述するように、正則化精度行列Λにおいて、電圧値Vmと電流値Imとの間にのみ相関関係がある場合、言い換えると、相関関係にある組み合わせが電圧値Vmと電流値Imのみである場合、異常検知制御部160は、モータ10は正常であると推定する。一方、正則化精度行列Λにおいて、デューティ比Dtyに対して、電圧値Vm及び電流値Imの少なくともいずれか一方と相関関係がある場合、異常検知制御部160は、モータ10は異常の発生の可能性があると推定する。言い換えると、正則化精度行列Λにおいて、相関関係にある組み合わせが、デューティ比Dtyと電圧値Vmとの組み合わせ及びデューティ比Dtyと電流値Imとの組み合わせのいずれか一方を含む場合、異常検知制御部160は、モータ10は異常の発生を推定する。
【0073】
上述のように、異常検知制御部160は、相関のある変数の組み合わせに基づいて、モータにおける異常の発生を推定する。より具体的に説明すると、異常検知制御部160は、正常動作しているときの相関のある変数の組み合わせと異なる相関のある変数の組み合わせが検出されたときに、異常の発生を推定する。
【0074】
(ステップS60)
次に、異常検知制御部160は、処理を終了するかどうか判定する。処理を終了する場合(ステップS60のYes)、異常検知制御部160は、処理を終了する。処理を終了しない場合、言い換えると、処理を継続する場合(ステップS60のNo)、異常検知制御部160は、ステップS10に戻って処理を繰り返す。
【0075】
<モータ駆動制御装置の動作結果>
次に、本実施形態に係るモータ駆動制御装置の一例であるモータ駆動制御装置100を動作させたときの動作結果について説明する。
【0076】
図3は、本実施形態に係るモータ駆動制御装置の一例であるモータ駆動制御装置100の動作結果について説明する図である。図3は、モータ10にファンを取り付けて、モータシステム1をファンモータとして使用した際の動作結果について示す図である。図3は、モータシステム1を動作させて、モータ10が停止するまでのデータを示す。
【0077】
図3の横軸はモータ10の運転を開始してからの時間、縦軸は推定に用いる変数の強度を示す。なお、横軸の時間は、1単位20秒である。すなわち、横軸の20,000が約5日を示す。縦軸は、同じグラフ上に複数の変数の値を表示するために、複数の変数のそれぞれを0から1までの範囲の数値になるように規格化した値を示している。
【0078】
線Lvは、電圧値Vmを規格化した結果を示す。線Liは、電流値Imを規格化した結果を示す。線Ldは、デューティ比Dtyを規格化した結果を示す。線Lrは回転速度Rmを規格化した結果を示す。回転速度Rmは、例えば、13000回転毎分である。電圧値Vmは、約12V(ボルト)である。
【0079】
図3において、時間が約165000である時間Tsにおいて、モータ10が停止した。モータ10の停止時(時間Ts)、モータ10の軸受が損傷していた。
【0080】
図3におけるデータを一見しただけでは、どこから異常の徴候が出始めているか判別できない。また、図3におけるデータにおいて、停止直前には電圧が上昇していることが確認できるが、寿命予測するには遅すぎる。
【0081】
そこで、モータ駆動制御装置100は、電圧値Vm、電流値Im、デューティ比Dty及び回転速度Rmの4つのパラメータの相互関係からデータマイニングを行う。複数のデータにおけるデータ相互間の特徴を見る手段として相関係数が挙げられる。しかしながら、相関係数を用いた場合、見かけの相関が存在するため、相関係数の数値では明確に判別しにくい。例えば、相関係数が0.3から0.7までの範囲にある場合は弱い相関があると考えられ、相関があるかどうか曖昧さが残る場合がある。
【0082】
そこで、モータ駆動制御装置100は、見かけの相間を排除するために、複数のデータから分散共分散行列Sを求め、その分散共分散行列Sから精度行列Λを求める。そして、精度行列Λに正則化項を加えることで曖昧さを排除する。
【0083】
図3において、時間20000から時間40000までを期間PRD1、時間40000から時間60000までを期間PRD2、時間60000から時間80000までを期間PRD3、時間80000から時間100000までを期間PRD4、とする。また、時間100000から時間120000までを期間PRD5、時間120000から時間140000までを期間PRD6、時間140000から時間160000までを期間PRD7とする。
【0084】
4つのパラメータ、すなわち、電圧値Vm、電流値Im、デューティ比Dty及び回転速度Rm、について、各期間における分散共分散行列S及び正則化項を加えた精度行列(正則化精度行列Λ)を表1から表7に示す。また、正則化項を加えた精度行列(正則化精度行列Λ)について、パラメータ間の相関を示すグラフを図4から図10に示す。
【0085】
なお、表1から表7及び図4から図10において、「Voltage」は電圧値Vm、「Current」は電流値Im、「Duty」はデューティ比Dty、「Rotation」は回転速度Rmをそれぞれ示す。
【0086】
表1、表2、表3、表4、表5、表6、表7は、それぞれ期間PRD1、期間PRD2、期間PRD3、期間PRD4、期間PRD5、期間PRD6、期間PRD7における演算結果を示す。図4図5図6図7図8図9図10は、それぞれ期間PRD1、期間PRD2、期間PRD3、期間PRD4、期間PRD5、期間PRD6、期間PRD7における正則化項を加えた精度行列(正則化精度行列Λ)における非対角成分が零以外の変数同士を線で結んだ図を示す。
【0087】
図4から図10のそれぞれにおいて、4つのパラメータのそれぞれ、すなわち、電圧値Vm(「Voltage」)、電流値Im(「Current」)、デューティ比Dty(「Duty」)及び回転速度Rm(「Rotation」)のそれぞれを楕円で示す。そして、楕円と楕円をつなぐ線は、当該楕円と楕円との間に相関関係があることを示す。なお、数値は、正則化項を加えた精度行列(正則化精度行列Λ)における対応する非対角成分を示す。
【0088】
【表1】
【0089】
【表2】
【0090】
【表3】
【0091】
【表4】
【0092】
【表5】
【0093】
【表6】
【0094】
【表7】
【0095】
期間PRD1、期間PRD2、期間PRD3及び期間PRD4において、電流値Im(「Current」)と電圧値Vm(「Voltage」)が結びついている。すなわち、電流値Im(「Current」)と電圧値Vm(「Voltage」)とは、相関があると推定される。一方、デューティ比Dty(「Duty」)及び回転速度Rm(「Rotation」)のそれぞれは、他のいずれとも結びついておらず、相関はないと推定される。
【0096】
一方、期間PRD5になると、デューティ比Dty(「Duty」)が電圧値Vm(「Voltage」)と結びつく。すなわち、期間PRD5では、電圧値Vm(「Voltage」)が、電流値Im(「Current」)及びデューティ比Dty(「Duty)のそれぞれと相関があると推定される。さらに、期間PRD6になると、デューティ比Dty(「Duty」)が電流値Im(「Current」)と更に結びつく。すなわち、期間PRD6では、電圧値Vm(「Voltage」)、電流値Im(「Current」)及びデューティ比Dty(「Duty)のそれぞれが互いに相関があると推定される。期間PRD7においても同様である。
【0097】
したがって、期間PRD6のように、電流値Im(「Current」)とデューティ比Dty(「Duty」)との間で正則化精度行列に関係性が現れたことをトリガーとして、異常検知制御部160は、モータ10の異常の発生を推定する。具体的には、異常検知制御部160は、期間PRD1から期間PRD5において、スパース化により関係性が無いとされていた正則化精度行列における電流値Im(「Current」)とデューティ比Dty(「Duty」)の非対角成分に相関が現れたことをトリガーとして、モータ10の異常の発生を推定する。期間PRD6において異常を予測することにより、図3では、モータが停止する約6日まえに、寿命を予測できる。なお、期間PRD5のように、電圧値Vm(「Voltage」)とデューティ比Dty(「Duty」)との間で相関が現れたことをトリガーとして、異常検知制御部160は、モータ10の異常の発生を推定してもよい。さらに、電圧値Vmとデューティ比Dtyとの間に相関がなくても、電流値Im(「Current」)とデューティ比Dty(「Duty」)との間で相関が現れたことをトリガーとして、異常検知制御部160は、モータ10の異常の発生を推定してもよい。
【0098】
なお、分散共分散行列Sを求めるための複数の変数については、上記の電圧値Vm、電流値Im、デューティ比Dty及び回転速度Rmに限らず、他の変数を使用してもよい。また、回転速度Rmのように、故障前後で相関関係がない変数は分散共分散行列Sの演算に用いる変数から削除してもよい。
【0099】
なお、異常検知制御部160は、制御部の一例である。
【0100】
<作用・効果>
本実施形態に係るモータ駆動装置によれば、モータの異常を検知できる。
【0101】
以上、モータ駆動制御装置を実施形態により説明したが、本発明は上記の実施形態に限定されるものではない。他の実施形態の一部又は全部との組み合わせや置換などの種々の変形及び改良が、本発明の範囲内で可能である。
【符号の説明】
【0102】
1 モータシステム
10 モータ
20 モータ駆動制御システム
100 モータ駆動制御装置
101 モータ駆動回路
102 センサ部
103 FG信号生成部
110 電源電圧測定部
120 駆動制御信号生成部
121 速度指令解析部
122 デューティ比決定部
123 通電制御部
130 通信部
131 送信部
132 受信部
133 通信制御部
140 電流計測部
150 回転速度計測部
160 異常検知制御部
170 データ管理部
200 上位装置
210 電源
PRD1、PRD2、PRD3、PRD4、PRD5、PRD6、PRD7 期間
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10