(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024027465
(43)【公開日】2024-03-01
(54)【発明の名称】記憶媒体サポートシステム
(51)【国際特許分類】
G06F 3/06 20060101AFI20240222BHJP
G06Q 10/20 20230101ALI20240222BHJP
G11B 20/10 20060101ALI20240222BHJP
G11B 27/00 20060101ALI20240222BHJP
【FI】
G06F3/06 304R
G06Q10/00 300
G11B20/10 F
G11B27/00 A
【審査請求】有
【請求項の数】4
【出願形態】OL
(21)【出願番号】P 2022130269
(22)【出願日】2022-08-17
(11)【特許番号】
(45)【特許公報発行日】2023-06-12
(71)【出願人】
【識別番号】516010205
【氏名又は名称】デジタルデータソリューション株式会社
(74)【代理人】
【識別番号】100126000
【弁理士】
【氏名又は名称】岩池 満
(74)【代理人】
【識別番号】100154748
【弁理士】
【氏名又は名称】菅沼 和弘
(72)【発明者】
【氏名】熊谷 聖司
【テーマコード(参考)】
5D044
5D110
5L049
【Fターム(参考)】
5D044HH17
5D044HL06
5D110DA04
5D110DA08
5D110DA14
5D110FA08
5L049AA01
(57)【要約】
【課題】記憶媒体のユーザにとって利便性の高い故障予測やその関連サービスを提供すること。
【解決手段】サポートシステムは、販売者BからユーザUに販売されてユーザUにより利用されるストレージデバイスSDが搭載されたユーザ端末2と、ストレージデバイスSDが搭載されたユーザ端末2にインストールされると、ストレージデバイスSDに対する故障予測をして、サポートが必要な状態であるという故障予測診断結果の場合にはアラートを出力する制御処理を実行する機能をユーザ端末2に発揮させるプログラムであって、販売者BからユーザUに譲渡される故障予測診断プログラムと、を備える。故障予測診断プログラムは、アラートが出力された状態の、ストレージデバイスSDが搭載されたユーザ端末2を、サポートを受ける権利をユーザUが有していることを販売者Bに示す媒体として機能させる。
【選択図】
図12
【特許請求の範囲】
【請求項1】
販売者からユーザに販売されて当該ユーザにより利用される所定記憶媒が搭載された情報処理装置と、
前記所定記憶媒体が搭載された前記情報処理装置にインストールされると、前記所定記憶媒体に対する故障予測をして、サポートが必要な状態であるという故障予測診断結果の場合にはアラートを出力する制御処理を実行する機能を前記情報処理装置に発揮させるプログラムであって、前記販売者から前記ユーザに譲渡されるプログラムと、
を備え、
前記アラートが出力された状態の、前記所定記憶媒体が搭載された前記情報処理装置を、前記サポートを受ける権利を前記ユーザが有していることを前記販売者に示す媒体として機能させる、
記憶媒体サポートシステム。
【請求項2】
前記プログラムは、前記提供者から前記販売者に提供されたものであり、
前記プログラムは、サポートが必要な状態であるという故障予測診断結果の場合には第1アラートを出力し、さらに、前記プログラム自体にエラーが存在する場合には第2アラートを出力する制御処理を実行する機能を前記情報処理装置に発揮させ、
前記第1アラートが出力された状態の、前記所定記憶媒体が搭載された前記情報処理装置を、前記販売者による前記サポートを受ける権利を前記ユーザが有していることを前記販売者に示す媒体として機能させ、
前記第2アラートが出力された状態の、前記所定記憶媒体が搭載された前記情報処理装置を、前記提供者によるサポートを受ける権利を前記ユーザが有していることを前記提供者に示す媒体として機能させる、
請求項1に記載の記憶媒体サポートシステム。
【請求項3】
前記プログラムはリムーバブル記憶媒体に格納されて、前記提供者により発行される当該プログラムのライセンスキーと共に、前記販売者に提供され、前記販売者から前記ユーザに譲渡され、
前記ユーザにより、前記所定記憶媒体が搭載された前記情報処理装置に前記リムーバブル記憶媒体が装着されることで、前記プログラムが前記情報処理装置にインストールされ、
前記ライセンスキーが前記情報処理装置に入力されることで、前記制御処理を実行させる前記機能を前記情報処理装置に発生させる、
請求項2に記載の記憶媒体サポートシステム。
【請求項4】
前記プログラムは、前記制御処理として、
前記所定記憶媒体の状態を示すスマート情報についての複数の項目のうち、N(Nは2以上の整数値)の項目の値を、当該所定記憶媒体から取得するスマート情報取得ステップと、
前記Nの項目をパラメータとして用いる所定の演算手法に従って、前記所定記憶媒体から取得された前記Nの項目の値から、前記所定記憶媒体の総合的な状態を示す総合状態値を算出する総合状態算出ステップと、
前記所定記憶媒体から取得された前記Nの項目の値のうち少なくとも一部の項目の値と、各項目毎に設定された第1指標とを比較し、その比較の結果を用いる所定の第1判断手法に従って、故障予測に関する項目診断結果を決定する項目診断ステップと、
前記総合状態値と第2指標とを比較し、その比較の結果を用いる所定の第2判断手法に従って、故障予測に関する総合診断結果を決定する総合診断ステップと、
前記項目診断結果と前記総合診断結果とに基づいて、前記所定記憶媒体についての故障予測診断結果を決定する故障予測診断ステップと、
前記所定記憶媒体についての前記故障予測制御を実行するアラート出力制御ステップと、
を含む制御処理を実行する機能を前記情報処理装置に発揮させるプログラムであり、
請求項1に記載の記憶媒体サポートシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、記憶媒体サポートシステムに関する。
【背景技術】
【0002】
従来より、ハードディスクドライブ等の記憶媒体には、その記憶媒体自身による自己診断を行い、その結果であるスマート情報を取得する機能(S.M.A.R.T.機能:Self-Monitoring, Analysis and Reporting Technology 機能)が備えられている。そして、スマート情報を利用して、ハードディスクの故障診断を行う技術が存在する(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、上述の特許文献1を含む従来技術では、単にスマート情報に含まれた所定パラメータが所定値を超えていることをもって故障が発生している旨を特定しているに過ぎなかった。さらに言えば、故障の程度が小さい時期、即ち故障の早期に発見したとしても、ひとたび故障した記憶媒体は一気に故障の程度が進み、記憶媒体に記憶されたデータのコピーを行おうとしてもデータが読みだせない状態となることが多々あった。
このように、記憶媒体のユーザにとって利便性の高い故障予測やその関連サービスが要求されていた。
【0005】
本発明は、このような状況に鑑みてなされたものであり、記憶媒体のユーザにとって利便性の高い故障予測やその関連サービスを提供することを目的とする。
【課題を解決するための手段】
【0006】
上記目的を達成するために、本発明の一態様の記憶媒体サポートシステムは、
販売者からユーザに販売されて当該ユーザにより利用される所定記憶媒が搭載された情報処理装置と、
前記所定記憶媒体が搭載された前記情報処理装置にインストールされると、前記所定記憶媒体に対する故障予測をして、サポートが必要な状態であるという故障予測診断結果の場合にはアラートを出力する制御処理を実行する機能を前記情報処理装置に発揮させるプログラムであって、前記販売者から前記ユーザに譲渡されるプログラムと、
を備え、
前記アラートが出力された状態の、前記所定記憶媒体が搭載された前記情報処理装置を、前記サポートを受ける権利を前記ユーザが有していることを前記販売者に示す媒体として機能させる。
【発明の効果】
【0007】
本発明によれば、記憶媒体のユーザにとって利便性の高い故障予測やその関連サービスを提供することができる。
【図面の簡単な説明】
【0008】
【
図1】本発明の情報処理装置の第1実施形態にかかるサーバを含む情報処理システムの構成の一例を示した図である。
【
図2】
図1の情報処理システムのうちサーバのハードウェア構成の一例を示すブロック図である。
【
図3】
図1の情報処理システムのうちユーザ端末のハードウェア構成の一例を示すブロック図である。
【
図4】
図2及び
図3に示すサーバ及びユーザ端末を含む情報処理システムの機能的構成の一例を示す図である。
【
図5】
図4の機能的構成を有するサーバにより実行される故障予測の条件の一例を示す図である。
【
図6】
図4のサーバによる総合状態値の算出手法の概要について説明する図である。
【
図7】
図4のサーバにより生成されてユーザ端末を介してユーザに提示される故障予測結果の一例を示す図である。
【
図8】
図4のサーバにより生成されてユーザ端末を介してユーザに提示される故障予測結果の一例を示す図であって、
図7とは異なる例を示す図である。
【
図9】
図4の機能的構成を有するサーバにより実現される、本サービスの事前対応の例を説明する図である。
【
図10】
図4の機能的構成を有するサーバを用いた故障予測の手法の特徴を示す図である。
【
図11】
図4の機能的構成を有するサーバにより、ユーザ端末に対してなされる故障予測診断結果を含む画面の例を示す図である。
【
図12】本発明の情報処理装置の一実施形態にかかるユーザ端末を用いた第2実施形態の本サービスの概要の一例を示す図である。
【
図13】第2実施形態の本サービスの全体のフローを説明する図である。
【
図14】第2実施形態の本サービスの基本的な商流フローを説明する図である。
【発明を実施するための形態】
【0009】
まず、本発明の情報処理装置の一実施形態にかかるサーバを含む情報処理システムの適用対象となるサービス(以下、「本サービス」と呼ぶ)について簡単に説明する。
本サービスは、ハードディスクドライブやソリッドステートドライブといった、情報処理装置において用いられるストレージデバイスの故障を予測するサービスである。
即ち、本サービスは、ユーザが管理をする情報処理装置(以下、「ユーザ端末」と呼ぶ)に備えられるストレージデバイスからスマート情報を取得して、当該スマート情報に基づいて当該ストレージデバイスの故障予測診断を行い、その故障予測診断の結果等をユーザ等に報知するサービスである。
【0010】
ここで、スマート情報とは、S.M.A.R.T.機能によって取得することが可能な、ストレージデバイスの状態に関する情報をいう。即ち例えば、スマート情報には、S.M.A.R.T.機能によって取得することが可能なストレージデバイスの製品としての仕様や、自己診断結果、使用の程度の情報などが含まれる。
具体的には例えば、スマート情報には、ストレージデバイスについての、各種エラーの発生頻度、温度、積算使用時間、スタートアップ回数、不良セクタやペンディングセクタ、アンコレクトセクタの使用情報等の項目の情報が含まれる。また例えば、本例のスマート情報には、スピンドルモータや軸受の劣化を補填するための増加トルク等に関する情報等も含まれる。また例えば、スマート情報には、書き込まれた合計LBA(セクタ数)/読み取られた合計LBAといったパラメータも含まれ得る。ここで、これらの項目はあくまでも本例に採用された例示であり、スマート情報には、ストレージデバイスの状態に関する各種各様な項目に関する情報が含まれる。
また、ユーザ端末において仮想サーバが構成されている場合、当該仮想サーバの構成に必要な情報等も、スマート情報に含まれてもよい。
本サービスは、スマート情報に含まれるこれらの情報を組み合わせることで、精度の高い故障予測診断をすることができる。
【0011】
さらに、本サービスの故障予測診断においては、予測の以後の所定の時間帯においてストレージデバイスが故障する蓋然性に関する観点(例えば故障確率の観点)で設定された複数のレベルが採用されている。即ち、これらの複数のレベルのうち、診断対象のストレージデバイスが該当する所定レベルが、故障予測診断結果として決定されるものである。これにより、ユーザは、当該ストレージデバイスに対して所定レベルに応じた対応を行うことができる。
以下の例では、ストレージデバイスはハードディスクドライブであって、5つのレベルのうち所定レベルが故障予測診断結果として決定されるものとして説明する。
【0012】
以下、本発明の情報処理装置の一実施形態にかかるサーバを含む情報処理システム及び当該情報処理システムを適用した第1実施形態及び第2実施形態について、順に説明する。
[第1実施形態]
【0013】
図1は、本発明の情報処理装置の第1実施形態に係るサーバを含む情報処理システムの構成の一例を示した図である。
図1に示す情報処理システムは、本サービスのサービス提供者により管理されるサーバ1と、n人(nは、1以上の任意の整数値)のユーザの夫々により使用されるユーザ端末2-1乃至2-nとを含むように構成される。
サーバ1と、ユーザ端末2-1乃至2-nの夫々とは、インターネット等の所定のネットワークNWを介して相互に接続されている。
ここで、ユーザ端末2-1乃至2-nの夫々は、
図1に示すように、ストレージデバイスSD-1乃至SD-nの夫々を備えるものとする。
ユーザ端末2には、ユーザUが本サービスの提供を受けるための専用のアプリケーションソフトウェア(例えば、後述の故障予測プログラム)がインストールされている。
【0014】
なお、以下、ユーザ端末2-1乃至2-nの夫々を個別に区別する必要がない場合、これらをまとめて「ユーザ端末2」と呼ぶ。また、ユーザ端末2と呼んでいる場合、ストレージデバイスSD-1乃至SD-nをまとめて「ストレージデバイスSD」と呼ぶ。
【0015】
まず、前提として、本サービスのサービス提供者は、本サービスを提供する前から、ユーザからの依頼に応じて、故障したストレージデバイスSDのデータ復旧を行うデータ復旧サービスを提供していた。そのため、サービス提供者は、すでに故障、或いは、故障の直前(例えば、不調)のストレージデバイスSDをユーザから提供され、そのストレージデバイスSDからデータをコピーすることができた。このため、サービス提供者は、ストレージデバイスSDの故障の原因やその時のスマート情報等のデータを所有している。さらに言えば、ストレージデバイスSDからデータをコピーするべく修理した結果として、通常ユーザ端末2にストレージデバイスSDが搭載されている状態では読み取り不能な、故障した後におけるストレージデバイスSDのスマート情報をも所有している。
このような、故障したストレージデバイスSDの型番や故障原因、スマート情報等は、後述する学習処理に用いられる学習用データとして、サーバ1に備えられた学習データDB81に格納して管理されている。
【0016】
サーバ1は、後述する学習処理において、学習データDB81に記憶された学習用データを用いて、ストレージデバイスSDの故障予測診断を行うためのモデルを生成又は更新し、学習データDB81に格納して管理する。
【0017】
そして、第1実施形態の例においては、ユーザ端末2において夫々取得されたストレージデバイスSDのスマート情報は、サーバ1に送信される。
サーバ1は、送信されてきたスマート情報、及びモデルDB82に格納されたモデルを用いた推論処理を実行することにより、そのストレージデバイスSDの故障予測診断を行う。
【0018】
ここで、スマート情報には、ストレージデバイスSDの温度、書き込み中の振動、電源のON/OFF回数、通信エラーの回数、書き込みエラーの発生率、平均消去回数及び最大消去回数等、ストレージデバイスSDのメーカや機種の違いを含めると100以上のパラメータ(項目)の値が含まれ得る。
詳しくは後述するが、本サービスにおける故障予測診断では、診断対象のストレージデバイスSDのスマート情報に含まれる300程度に及ぶ項目のパラメータの値が取得される。
そして、これら取得された各項目の値と、各項目毎に設定された第1指標とが比較され、その比較の結果を用いる所定の第1判断手法に従って、各項目の観点(ミクロの観点)からの診断結果(以下、「項目診断結果」と呼ぶ)が得られる。即ち、第1指標、及び当該第1指標との比較の結果を用いる所定の第1判断手法が、本サービスで用いられるモデルの1つである。即ち、第1指標及び第1判断手法は、学習処理により日々更新されていくものである。
また、これら取得された各項目の値から、診断対象のストレージデバイスSDの総合的な状態を示す値(以下、「総合状態値」と呼ぶ)が得られ、この総合状態値と第2指標とが比較され、その比較の結果を用いる所定の第2判断手法に従って、診断対象のストレージデバイスSDの総合状態の観点(マクロの観点)からの診断結果(以下、「総合診断結果」と呼ぶ)が得られる。即ち、第2指標、及び当該第2指標との比較の結果を用いる所定の第2判断手法が、本サービスで用いられるモデルの1つである。即ち、第2指標及び第2判断手法は、学習処理により日々更新されていくものである。
そして、ミクロ診断結果とマクロ診断結果とに基づいて、最終結果として、ストレージデバイスSDの故障予測診断結果が決定される。
このようにして決定された故障予測診断結果は、ストレージデバイスSDの故障をあらかじめ確度高く診断することができる。
【0019】
なお、このとき、サーバ1に送信されてきたストレージデバイスSDのスマート情報等は、学習データDB81に記憶されて管理される。
サーバ1は、学習処理を適宜実行することにより、モデルDB82に格納されたストレージデバイスSDの故障診断予測を行うためのモデル(第1指標及び第1判断手法、並びに第2指標及び第2判断手法の少なくとも一部)を更新する。これにより、故障予測診断の精度は日々向上していく。
【0020】
図2は、
図1の情報処理システムのうちサーバのハードウェア構成の一例を示すブロック図である。
【0021】
サーバ1は、CPU(Central Processing Unit)11と、ROM(Read Only Memory)12と、RAM(Random Access Memory)13と、バス14と、入出力インターフェース15と、入力部16と、出力部17と、記憶部18と、通信部19と、ドライブ20とを備えている。
【0022】
CPU11は、ROM12に記録されているプログラム、又は、記憶部18からRAM13にロードされたプログラムに従って各種の処理を実行する。
RAM13には、CPU11が各種の処理を実行する上において必要な情報等も適宜記憶される。
【0023】
CPU11、ROM12及びRAM13は、バス14を介して相互に接続されている。このバス14にはまた、入出力インターフェース15も接続されている。入出力インターフェース15には、入力部16、出力部17、記憶部18、通信部19及びドライブ20が接続されている。
【0024】
入力部16は、キーボードやマウス等各種ハードウェアで構成され、各種情報を入力する。
出力部17は、液晶ディスプレイやスピーカ等の各種ハードウェアで構成され、各種情報を出力する。
記憶部18は、ハードディスクやDRAM(Dynamic Random Access Memory)等で構成され、各種情報を記憶する。
通信部19は、インターネットを含むネットワークNWを介して他の装置(例えば、
図1の例で言えば、ユーザ端末2等)との間で行う通信を制御する。
【0025】
ドライブ20は、必要に応じて設けられる。ドライブ20には磁気ディスク、光ディスク、光磁気ディスク、或いは半導体メモリ等よりなる、リムーバブルメディア31が適宜装着される。ドライブ20によってリムーバブルメディア31から読み出されたプログラムは、必要に応じて記憶部18にインストールされる。また、リムーバブルメディア31は、記憶部18に記憶されている各種情報も、記憶部18と同様に記憶することができる。
【0026】
図3は、
図1の情報処理システムのうちユーザ端末のハードウェア構成の一例を示すブロック図である。
【0027】
ユーザ端末2は、CPU41と、ROM42と、RAM43と、バス44と、入出力インターフェース45と、入力部46と、出力部47と、記憶部48と、通信部49と、ドライブ50とを備えている。
【0028】
CPU41は、ROM42に記録されているプログラム、又は、記憶部48からRAM43にロードされたプログラムに従って各種の処理を実行する。
RAM43には、CPU41が各種の処理を実行する上において必要な情報等も適宜記憶される。
【0029】
CPU41、ROM42及びRAM43は、バス44を介して相互に接続されている。このバス44にはまた、入出力インターフェース45も接続されている。入出力インターフェース45には、入力部46、出力部47、記憶部48、通信部49及びドライブ50が接続されている。
【0030】
入力部46は、キーボードやマウス等各種ハードウェアで構成され、各種情報を入力する。
出力部47は、液晶ディスプレイ等を含む表示部Dや、スピーカ等の各種ハードウェアで構成され、各種情報を出力する。
記憶部48は、ストレージデバイスSDやDRAM等で構成され、各種情報を記憶する。なおここで、ストレージデバイスSDは、上述のS.M.A.R.T.機能を搭載しているものとする。
【0031】
通信部49は、インターネットを含むネットワークNWを介して他の装置(例えば、
図1の例で言えば、サーバ1等)との間で行う通信を制御する。
【0032】
ドライブ50は、必要に応じて設けられる。ドライブ50には磁気ディスク、光ディスク、光磁気ディスク、或いは半導体メモリ等よりなる、リムーバブルメディア61が適宜装着される。ドライブ50によってリムーバブルメディア61から読み出されたプログラムは、必要に応じて記憶部48にインストールされる。また、リムーバブルメディア61は、記憶部48に記憶されている各種情報も、記憶部48と同様に記憶することができる。
【0033】
このように構成されたサーバ1及びユーザ端末2の各種ハードウェアと各種ソフトウェアとの協働により、サーバ1及びユーザ端末2において、各種処理の実行が可能になる。
【0034】
例えば、サーバ1及びユーザ端末2は、故障予測診断処理及び学習処理を含む各種処理を実行するにあたり、
図4に示すような機能的構成を有する。
故障予測診断処理とは、サーバ1が、ユーザ端末2からスマート情報を取得し、スマート情報に基づいて故障予測診断を実行し、その故障予測診断結果をユーザ端末2に提示するまでの、一連の処理をいう。
学習処理とは、サーバ1が、機械学習を実行することにより、故障予測処理に用いるモデル(第1指標及び第1判断手法、並びに第2指標及び第2判断手法)を生成又は更新する処理をいう。
【0035】
サーバ1で故障予測診断処理が実行される場合には、CPU11において、学習データ管理部72と、故障予測診断部73と、故障予測診断結果提示制御部74とが機能する。
【0036】
学習データ管理部72は、故障予測診断処理が実行される場合には、モデル(第1指標及び第1判断手法、並びに第2指標及び第2判断手法)を学習データDB81から取得して、故障予測診断部73に提供する。
【0037】
故障予測診断部73においては、故障予測診断処理が実行される場合には、スマート情報取得部731、総合状態算出部732、項目診断部733、総合診断部734、及び最終診断結果決定部735が機能する。
【0038】
ここで、故障予測診断処理の対象となるユーザ端末2のCPU41においては、スマート監視部91が機能している。スマート監視部91は、上述のユーザ端末2に搭載されたストレージデバイスSDから、そのスマート情報を取得してサーバ1に送信する。
すると、サーバ1のスマート情報取得部731は、ユーザ端末2から送信されてきたスマート情報についての複数の項目のうち、N(Nは2以上の整数値)の項目の値を取得する。
【0039】
総合状態算出部732は、スマート情報のNの項目をパラメータとして用いる所定の演算手法に従って、スマート情報取得部731により取得されたNの項目の値から、ユーザ端末2のストレージデバイスSDの総合的な状態を示す総合状態値を算出する。
【0040】
項目診断部733は、スマート情報取得部731により取得されたNの項目の値のうち少なくとも一部の項目の値と、各項目毎に設定された第1指標とを比較し、その比較の結果を用いる所定の第1判断手法に従って、故障予測に関する項目診断結果を決定する。
【0041】
最終診断結果決定部735は、項目診断部733により決定された項目診断結果と、総合診断部734により決定された総合診断結果とに基づいて、ユーザ端末2のストレージデバイスSDについての最終診断結果としの故障予測診断結果を決定する。
【0042】
故障予測診断結果提示制御部74は、故障予測診断部73の最終診断結果たる故障予測診断結果を、ユーザ端末2を介してユーザに提示する制御を実行する。
即ち、故障予測診断結果提示制御部74は、故障予測診断部73の最終診断結果たる故障予測診断結果を通信部19を介してユーザ端末2に送信する。すると、ユーザ端末2のCPU41において、故障予測診断結果提示部92が機能する。即ち、故障予測診断結果提示部92は、故障予測診断結果を、通信部49を介して受信して表示部Dに表示させることで、ユーザに提示する。
【0043】
ここで、故障予測診断結果の具体例として、
図7及び
図8を参照して後述するように、ユーザ端末2のストレージデバイスSDからのデータのバックアップを推奨する第1種と、当該ストレージデバイスSDからのデータのバックアップが不要な第2種レベルとのうち何れかが決定される。
さらに、第1種レベルはM段階(Mは2以上の整数値であり、
図7及び
図8の例ではM=2)のレベルに区分される。第2種レベルはL段階(LはMとは独立した2以上の整数値であり、
図7及び
図8の例ではL=3)のレベルに区分される。
この場合、故障予測診断部73(最終診断結果決定部735)は、故障予測診断結果として、(M+L)段階のレベル(
図7及び
図8の例では第1乃至第5のレベル)のうち所定段階のレベルを決定する。
故障予測診断結果提示制御部74は、故障予測診断部73の最終診断結果たる故障予測診断結果として、当該所定レベルを、ユーザ端末2を介してユーザに提示する制御を実行する。
さらに、故障予測診断結果提示制御部74は、当該所定レベルが第1種レベルである場合、ストレージデバイスSDが搭載されたユーザ端末2からアラートを出力する制御を実行する。アラートの具体例については、
図8及び
図11を参照して後述する。
【0044】
また、サーバ1で学習処理が実行される場合には、CPU11において、学習部71と、学習データ管理部72とが機能する。
学習部71においては、項目診断学習部711と、総合診断学習部712が設けられている。
【0045】
上述したように、故障又は正常の状態が既知の複数のストレージデバイスから得られたスマート情報等は学習用データとして学習データDB81に格納されている。ここで、学習用データには、故障予測診断部73から過去に出力された故障予測診断結果(各種ユーザ端末2についての故障予測診断結果)も含まれている。
そこで、学習データ管理部72は、学習用データを学習データDB81から抽出して学習部71に提供する。
【0046】
項目診断学習部711は、学習用データを用いて所定の機械学習を実行し、その結果を用いて、第1指標と第1判断手のうち少なくとも一部(モデルの一部)を生成または更新する。
総合診断学習部712は、学習用データを用いて所定の機械学習を実行し、その結果を用いて、第2指標と第2判断手のうち少なくとも一部(モデルの一部)を生成または更新する。
【0047】
学習データ管理部72は、学習部71により生成又は更新されたモデル(第1指標及び第1判断手法並びに第2指標及び第2判断手法)を学習データDB81に格納する。
【0048】
以上、
図1乃至
図4を用いて、第1実施形態のサーバ1を含む情報処理システムの概要及び構成等を説明した。以下、
図5及び
図6を用いて、上述の第1実施形態の情報処理システムにおける、第1指標、及び第1判定手法、並びに第2指標、及び第2判定手法の一例を示す図である。
図5は、
図4の機能的構成を有するサーバにより実行される故障予測の条件の一例を示す図である。
【0049】
図5の表は、5つのレベルの夫々を評価する条件式の一例を示している。
図5の表の条件式は、各レベルについてそのレベルに該当するスマート情報の条件を、サーバ1の学習処理(例えば、機械学習のアルゴリズムを用いた学習処理)により、生成又は更新された閾値が採用されている。
そして、判定対象のストレージデバイスSDについて、そのストレージデバイスSDから取得されたスマート値をレベル5から順に条件式を適用する。条件式を適用した結果、合致した場合、その条件式のレベルが故障予測診断の結果として出力される。
【0050】
具体的には例えば、ストレージデバイスSDのスマート情報が、修正不可能なセクタ数(ID198)の最悪値が200、温度(ID194)の最悪値が70、読み取りエラー率(ID1)の最悪値が50、再割り当てセクタ数(ID5)が30,スピンドルモータの回転/停止した回数(ID4)が38回かつ代替処理待ちとなっているセクタ数(ID197)が0の場合について条件式が適用される。
また、詳しくは
図7を用いて後述するが、ストレージデバイスSDの総合評価値(例えば、
図7の面積S)も、各レベルの条件式に含まれている。ストレージデバイスSDについて、総合評価値は70(例えば、
図7の面積Saが70)であったものとする。このような総合評価値についての条件も、条件式に含まれている。
【0051】
その結果、条件式2の第2行目(確認)の条件、即ち、修正不可能なセクタ数(ID198)の最悪値が227未満かつ温度(ID194)の最悪値が65以上かつ読み取りエラー率(ID1)の最悪値が57以内かつ再割り当てセクタ数(ID5)が23以上かつスピンドルモータの回転/停止した回数(ID4)が36回以上かつ代替処理待ちとなっているセクタ数(ID197)が1未満という条件に合致する。
また、条件式の第2行目の総合評価値(
図7の面積SA)が50以上という条件に合致する。
これにより、そのストレージデバイスSDの総合評価が第2レベルであるものとして判断なされる。
【0052】
ここで、
図5におけるSaは、総合評価値に相当する。そして、Saと比較対象とされている数値(例えば、第5のレベルの1行目における60)は、第2指標の一例である。また、Saと比較対象とされている数値の間の記号(例えば、第5のレベルの1行目における「=>」(左辺は右辺以上))は、第2判断手法の一例である。
【0053】
また、
図5におけるsaは、スマート情報に含まれるある項目の数値に相当する。そして、saと比較対象とされている数値(例えば、第5のレベルの1行目における50)は、第1指標の一例である。また、saと比較対象とされている数値の間の記号(例えば、第5のレベルの1行目における「>」(左辺は右辺より大きい))は、第1判断手法の一例である。
図5に示すように、第1指標及び第1判断手法は、複数の項目の夫々について規定される。
本第1実施形態のモデルDB82には、このような各レベルに該当するか否かを判定するための判定式の集合がモデルとして格納されている。
【0054】
ここで、ストレージデバイスSDから取得可能なスマート情報は、メーカや型番、製造時期などによって、異なっている。そこで、ストレージデバイスSDのメーカや型番、製造時期等に応じて、適宜異なる条件式が用いられる。
図5の例は、あるメーカや型番、製造時期のあるストレージデバイスSDに関する条件式である。
【0055】
図5の説明において、総合評価は、対象のストレージデバイスSDのスマート情報を各レベルの判定式に合致する場合、そのストレージデバイスSDのレベルが判定されるものとしたが、
図5の例の各数式は、以下のような概念に基づいて生成又は更新されている。
【0056】
図6は、
図4のサーバによる総合状態値の算出手法の概要について説明する図である。
図6(A)は、説明の便宜上スマート情報の項目数N=6に絞り、スマート情報の6つの項目の値から総合状態値を算出する手法の概要について説明している。
図6(A)の例では、スマート情報の6つの項目が所定円の周上に均等間隔で割り当てられ、所定円の中心から周までの軸が6つの項目毎に割り当てられ、各軸の座標(0乃至5の数値)は、割り当てられた項目の値を示すレーダチャートが採用されている。
即ち、
図6(A)の例のレーダチャートにおいては、上から時計回りに、温度、読み書き量、不良セクタ数、使用時間、起動回数、起動にかかる時間の6つの項目が夫々割り当てられている。
図4の総合状態算出部732は、ユーザ端末2から取得された6つの項目の値の夫々を、割り当てられた軸の対応する座標にプロットする。
図6(A)の例のレーダチャートにおいては、上から時計回りに、温度の値として「3」がプロットされ、読み書き量の値として「4」がプロットされ、不良セクタ数の値として「5」がプロットされ、使用時間の値として「2」がプロットされ、起動回数の値として「1」がプロットされ、起動にかかる時間の値として「5」がプロットされている。
このように、
図6の例では、Nの項目の値とは、各項目の生データ(例えば温度が65度等)そのものではなく、項目診断に用いられる第1指標及び第1判断手法に基づいて、0乃至5の値の何れかとなるように正規化されたものである。
この場合、
図4の総合状態算出部732は、
図6(A)に示すように、プロットされた6つの項目の点の夫々を結ぶことで形成される閉曲線の面積Sを、総合状態値として演算する。
即ち、
図6(A)の例では、第2指標として例えば面積SAが用いられ、第2判断手法としては、
図6(A)のレーダチャートにおいてプロットされた6つの項目の点の夫々を結ぶことで形成される閉曲線の面積Sと、第2指標たる面積SAとを比較して、その比較結果に基づいて総合判断結果を決定する手法として採用されていることになる。
【0057】
なお、
図6(A)例では、説明の便宜上スマート情報の多数の項目のうちN=6の項目のみがレーダチャートに反映されていた。
しかしながら、上述したように、スマート情報には、ストレージデバイスSDのメーカや機種の違いを含めると1000以上の項目が含まれ得る。そのため、実際には、
図6(B)に示すように、N=多数だけ頂点を有する多角形(Nが増えれば増えるほど円に近づく多角形)となる。
【0058】
図7は、
図4のサーバにより生成されてユーザ端末を介してユーザに提示される故障予測結果の一例を示す図である。
図7の例では、故障予測結果(Failure Prediction)の一例として、ストレージデバイスSDを特定する情報(ここでは、1つ目のドライブであることを示す「ドライブ01」という文字列)とともに、「ドライブは正常稼働しています」という文字列とともに、第3のレベルである旨が示されている。
即ち、
図7の例では、
図4の故障予測診断部73(最終診断結果決定部735)は、故障予測診断結果として、ユーザ端末2のストレージデバイスSDからのデータのバックアップを推奨する第1種レベルと、ストレージデバイスSDからのデータのバックアップが不要な第2種レベルとのうち何れかを決定する。
第1種レベルは2段階のレベルとして、第5のレベル(危険レベル)と、第4のレベル(注意レベル)とに区分されている。
第2種レベルは、正常レベルであるが、さらに第1のレベル乃至第3のレベルといった3段階のレベルに区分されている。ここで、第1のレベルとは、新品と同様のレベルである。第2のレベルとは、1乃至3年ほど使用したのと同様のレベルである。第3のレベルとは、3年以上したのと同様のレベルである。
即ち、故障予測診断手段は、
図4の故障予測診断部73(最終診断結果決定部735)は、故障予測診断結果として5段階のレベルのうち所定段階のレベル(同図においては正常レベルのうち第3のレベル)を決定する。
図7に示すように、ユーザに対する故障予測の結果のうち、健全である旨を示す結果は、正常な状態において、故障には該当せず、その兆候もない経年劣化のレベルとして3つのレベルから提示が行われる。これにより、ユーザは、経年での劣化を把握するとともに、いつの日か故障予測として危険の提示がされる可能性を把握することができる。
【0059】
図8は、
図4のサーバにより生成されてユーザ端末を介してユーザに提示される故障予測結果の一例を示す図であって、
図7とは異なる例を示す図である。
【0060】
図8は、
図4の機能的構成を有するサーバによるユーザに対する故障予測の結果のうち、不健全である旨を示す結果を出力した画面の一例を示す図である。
図8(A)に示す画面においては、故障予測(Failure Prediction)の一例として、ストレージデバイスSDを特定する情報(ここでは、1つ目のドライブであることを示す「ドライブ01」という文字列)とともに、「故障の可能性があるので念のためバックアップをとってください」という文字列とともに、第4のレベルである旨が示されている。
即ち、
図8(A)の例では、
図4の故障予測診断部73(最終診断結果決定部735)は、故障予測診断結果として、ユーザ端末2のストレージデバイスSDからのデータのバックアップを推奨する第1種レベルのうち、第4のレベル(注意レベル)であるとして診断されている。
即ち、故障予測診断手段は、
図4の故障予測診断部73(最終診断結果決定部735)は、故障予測診断結果として5段階のレベルのうち所定段階のレベルとして、第4のレベルを決定する。
その結果として、
図8(A)の例に示すように、ストレージデバイスSDについて、第4のレベルとして決定された旨がユーザに提示される。
【0061】
図8は、
図4の機能的構成を有するサーバによるユーザに対する故障予測の結果のうち、不健全である旨を示す結果を出力した画面の一例を示す図である。
図8(B)に示す画面においては、故障予測(Failure Prediction)の一例として、ストレージデバイスSDを特定する情報(ここでは、1つ目のドライブであることを示す「ドライブ01」という文字列)ともに、「今すぐにでも故障する可能性があるのですぐにバックアップをとってください」という文字列とともに、第5のレベルである旨が示されている。
即ち、
図8(B)の例では、
図4の故障予測診断部73(最終診断結果決定部735)は、故障予測診断結果として、ユーザ端末2のストレージデバイスSDからのデータのバックアップを推奨する第1種レベルのうち、第5のレベル(危険レベル)であるとして診断されている。
即ち、故障予測診断手段は、
図4の故障予測診断部73(最終診断結果決定部735)は、故障予測診断結果として5段階のレベルのうち所定段階のレベルとして、第5のレベルを決定する。
その結果として、
図8(B)の例に示すように、ストレージデバイスSDについて、第5のレベルとして決定された旨がユーザに提示される。
【0062】
図8(A)及び
図8(B)に示すように、ユーザに対する故障予測の結果のうち、不健全である旨を示す結果は、将来的に故障に該当(あるいはす でに故障に該当)するような、バックアップを推奨するレベルとして2つのレベルから提示が行われる。これにより、ユーザは、故障の予測に基づいて、バックアップが推奨されるため、ユーザは適切にバックアップのためのアクションを起こしていくことができるのである。
【0063】
図9は、
図4の機能的構成を有するサーバにより実現される、本サービスの事前対応の例を説明する図である。
図9に示すように、従来の対応においては、正常動作の後、故障が発生する。換言すれば、正常動作しなくなったことをもって、故障したとユーザが把握することが通常である。
具体的には、ユーザがユーザ端末2に備えられたストレージデバイスSDに記憶されたデータを読み出そうとした際に、ユーザ端末2のオペレーションシステムにより、複数回データの読み出しが試みられ、それでも読み出しが失敗した場合に、警告等が表示されるのが通常である。
即ち、すでにデータの読み出しが失敗した時点で、故障としてユーザは気が付くのである。
【0064】
そして、このような状況において、ユーザが自身で故障を取り除くことは困難である。
即ち、ストレージデバイスSDのうち特にハードディスクドライブは、クリーンルームでないと分解修理等は行うことができない。また、同型のストレージデバイスSDから健全なパーツを流用した修理などをする必要がある。
また例えば、ストレージデバイスSDに記憶されたデータが論理的(データビット的)に破損しているために読み出しができない場合、データをそのまま読みだしたうえで、破損しているデータのビット列を確認して壊れたビット列の修復を行う必要がある。
このようなことは、ユーザにとって対応することはできないのである。
【0065】
そこで、自身で修理を行うことができないユーザは、故障が発生した時点で、データ復旧業者にデータ復旧の依頼を行う。
その結果、データ復旧業者は、データ復旧を行う。このような作業は、ユーザ端末2が家庭用のパーソナルコンピュータ等である場合には1週間程度以上、ユーザ端末2が業務用のサーバ等である場合であって複数台のストレージデバイスSDに分散記憶されているとき(例えば、RAIDシステムが採用されているとき)には、3週間程度以上が必要となることがある。
【0066】
上述したように、本サービスのサービス提供者は、本サービスの提供する前から、ユーザからの依頼に応じて、故障したストレージデバイスSDのデータ復旧を行うデータ復旧サービスを提供している。本サービスのサービス提供者は、現在において、業界最大手であり、屈指の復旧率を達成しているが、仮に故障発生後すぐにデータ復旧の依頼をしたとしても、復旧率は95.2%であり、100%には達しない。さらに言えば、データ復旧には、相当の費用が必要となるのが実情である。それだけ、故障後のストレージデバイスSDのデータ復旧は困難なのである。
【0067】
これに対して、本第1実施形態の故障予測が行われた場合、故障予測がなされるため、上述の従来における故障が発生する前の正常動作の時期に、故障予測がなされる。そのため、データコピーを正常動作期間内に行うことができる。その結果、データ復旧作業は不要となり、データの移行率(データのバックアップ完了率)は、100%に近いものとなるのである。
即ち、実際にデータを読み出すことができないといったデータトラブルは、未然に防がれる。換言すれば、本サービスの故障予測により、世の中のデータトラブルをゼロにすることができるのである。
なお、100%に近いものと表現したのは、厳密にはデータ移行率は100%にならないためである。即ち、ストレージデバイスSD内において、アクセスしていない領域においてごく少数の不良セクタや軽度の論理障害が発生している可能性がある。このような、アクセスしていない領域の不良セクタは、スマート情報においてはカウントされない。即ち例えば、不良セクタ数がゼロであることを条件として正常とした場合において、まだ検出されていな不良セクタが存在し、データの移行に失敗する可能性はゼロではない。
また例えば、データの移行中に全く新たな障害が発生する可能性もゼロではない。
このため、完全なる100%のデータ移行率は達成できないのである。
【0068】
図10は、
図4の機能的構成を有するサーバを用いた故障予測の手法の特徴を示す図である。
図10(A)に示す故障予測方法は、上述の総合評価値を用いずに、スマート情報に含まれる各項目を個別に用いて判定する。
即ち、
図10(A)に示す例では、修復不可能なセクタ数の最悪値が10未満、かつ、温度の最悪値が30以上60未満である場合に、故障度が低(第2のレベル)であるものとして予測される。そのため、例えば、修復不可能なセクタ数の最悪値が5であって、温度の最悪値が50である場合、この条件に合致するため、故障度(故障の程度)は低(第2のレベル)であるものとして判定される。
ここで、
図10(A)に示す例では、第2のレベルと、第4のレベルのみが存在している。これは、
図10(A)に示す例では、故障予測の結果として、故障する兆候が見受けられず、バックアップのバックアップが不要なレベルとして第2のレベルのみが存在し、バックアップを推奨するレベルとして第4のレベル4が存在していることを示している。
このように、ユーザには、故障の兆候の有無のみに基づいて判定されたレベルが報知されるのである。
【0069】
これに対して、
図10(B)に示す故障予測方法は、上述の総合評価値とスマート情報に含まれる各項目を個別に用いて判定する。
即ち、
図10(B)に示す例では、総合評価値が所定条件を満たし、さらに、修復不可能なセクタ数の最悪値が10未満、かつ、温度の最悪値が0以上30未満である場合に、故障度が低の第1のレベルであるものとして予測される。また、総合評価値が所定条件を満たし、さらに、修復不可能なセクタ数の最悪値が10未満、かつ、温度の最悪値が30以上45未満である場合に、故障度が低の第2のレベルであるものとして予測される。また、総合評価値が所定条件を満たし、さらに、修復不可能なセクタ数の最悪値が10未満、かつ、温度の最悪値が45以上60未満である場合に、故障度が低の第3のレベルであるものとして予測される。総合評価値が所定条件を満たし、さらに、修復不可能なセクタ数の最悪値が10未満、かつ、温度の最悪値が60以上である場合に、故障度が中の第4のレベルであるものとして予測される。
このように、
図10(B)に示す故障予測方法は、上述の総合評価値とスマート情報に含まれる各項目を個別に用いて判定するため、
図10(A)に示す故障予測方法では、単に1つの故障度が低(第2のレベル)とされていたものを、第1のレベル乃至第3のレベルとして判定することができるのである。
その結果、ユーザに対して、第1のレベルから第3のレベルと段階的に通知がなされる。そのため、ユーザにとっては、第3のレベルが報知された場合、第4のレベルが近付いていること、即ち、故障予測結果により、ストレージデバイスSDが故障しそうであるためにバックアップを推奨する旨の通知がなされる。これにより、ユーザは、バックアップに備え、ストレージデバイスSDをバックアップするためのソフトウェアやハードウェアをあらかじめ用意するといった準備も可能となるのである。
【0070】
図11は、
図4の機能的構成を有するサーバにより、ユーザ端末に対してなされる故障予測診断結果を含む画面の例を示す図である。
図11に示すように、故障診断予測結果は、例えば、ユーザ端末2が備える出力部147の一例であるディスプレイDに表示されることで出力される。
故障予測診断結果には、「S.M.A.R.T.情報 警告」、「ご利用の記憶デバイスは故障する可能性が高まっています。すぐにバックアップをとってください」、「ご購入の量販店XX社 YY店にサポートを依頼することもできます」との表示がなされる。
このように、ユーザ端末2には、サーバ1による故障予測診断結果に基づいて、ユーザへのその旨の出力がなされる。これにより、ユーザは、ストレージデバイスSDが故障する前にバックアップを完了することができるからこそ、
図9に示すようにデータの移行率100%が達成されるのである。
【0071】
なお、上述したように、ユーザは、バックアップを自身で行うのではなく、購入した量販店等へサポートの依頼をすることができる。本サービスは、このような量販店等におけるサポートのための情報の管理や提示も行うことができる。この点については、以下の第2実施形態の説明において詳述する。
[第2実施形態]
【0072】
第1実施形態では、故障予測診断処理はサーバ1において実行された。即ち、第1実施形態では、故障診断対象のストレージデバイスSDから取得されたスマート情報をユーザ端末2からサーバ1に送信するための通信や、故障診断予測結果をサーバ1からユーザ端末2に送信するための通信が必要であった。
これに対して、第2実施形態では、故障予測診断処理はユーザ端末2において実行される。即ち、第2実施形態では、故障予測診断処理に伴うユーザ端末2とサーバ1との通信は不要になる。
【0073】
図12は、本発明の情報処理装置の一実施形態にかかるユーザ端末を用いた第2実施形態の本サービスの概要の一例を示す図である。
【0074】
図12に示すように、故障予測診断処理をコンピュータ(ここではユーザ端末2のCPU41)に実行させるためのプログラム(以下、「故障予測プログラム」と呼ぶ)を格納するUSBメモリが、提供者Tから販売者Bに提供される。
ここで、提供者Tは、故障予測診断処理をユーザ端末2で実行させる本サービス(第2実施形態の本サービス)の提供者である。
また、USBメモリは、提供者Tから、必要に応じて第3者を経由して、販売者Bに提供される。
【0075】
販売者Bは、例えば各種各様な情報処理装置BPを販売する量販店であり、所定のストレージデバイスSDが搭載された情報処理装置BPを、故障予測プログラムが格納されたUSBメモリと共にセット販売をしている。
【0076】
ユーザUは、所定のストレージデバイスSDが搭載された情報処理装置BPを、故障予測プログラムが格納されたUSBメモリと共に販売者Bから購入する。
ユーザUが、USBを情報処理装置BPに挿入し、故障予測プログラムを情報処理装置BPにインストールする。これにより、情報処理装置BPは、第2実施形態のユーザ端末2となる。
即ち、第2実施形態のユーザ端末2のハードウェア構成は
図3と同様の構成となる。また、第2実施形態のユーザ端末2の機能的構成としては、図示はしないが、CPU41において、
図4のスマート監視部91及び故障予測診断結果提示部92に加えてさらに、故障予測診断部73及び故障予測診断結果提示制御部74が機能すると共に、モデル(第1指標及び第1判断手法並びに第2指標及び第2判断手法)が記憶部48に格納される。
これにより、ユーザ端末2は、故障予測診断処理を常時実行するようになる。
【0077】
ここで、サポートが必要な状態であるという故障予測診断結果(例えば第1実施形態の
図6や
図7で説明した第1種レベル、即ち第4のレベル又は第5のレベル)である場合には、所定のアラート(例えば
図11参照)がユーザ端末2の表示部Dに表示される。
第2実施形態では、このようなアラートが出力された状態の、ストレージデバイスSDが搭載されたユーザ端末2は、販売者Bからのサポートを受ける権利をユーザUが有していることを販売者Bに示す媒体として機能することができる。
【0078】
即ち、販売者Bは、アラートが出力された状態の、ストレージデバイスSDが搭載されたユーザ端末2がユーザUから示されることで、当該ユーザUはサポートを受ける権利を有しているとして、当該ユーザUに対して各種各様なサポートをすることができる。
ここで、「アラートが出力された状態の、ストレージデバイスSDが搭載されたユーザ端末2がユーザUから示される」とは、現物のユーザ端末2が販売者Bに直接持ち込まれることの他、アラートが表示されたユーザ端末2の写真が持ち込まれたり、所定の方法で販売者Bの端末に通信により通知される等して、ユーザ端末2が販売者Bのサポート対象であることがわかるように任意の手法で示されることを意味する。
また、サポートとは、ユーザ端末2自体を点検や修理することの他、ユーザ端末2を下取りに新規の情報処理装置BPをユーザUに販売したりする等、販売者Bにより自由自在に決定できるものも含む広義な概念である。
このように、第2実施形態の本サービスの提供により、ユーザUがサポートを受けるため販売者Bに赴くことになり、販売者BにとってはユーザUの来店促進になるという効果を奏することになる。
【0079】
さらに、故障予測プログラムは、プログラム自体にエラーが存在する場合にもアラートを出力する制御処理を実行する機能をユーザ端末2に発揮させることができる。
第2実施形態では、このような故障予測プログラム自体にエラーが存在する旨を示すアラートが出力された状態の、ストレージデバイスSDが搭載されたユーザ端末2は、提供者Tによるサポートを受ける権利をユーザUが有していることを提供者Tに示す媒体として機能することができる。
【0080】
即ち、提供者Tは、故障予測プログラム自体にエラーが存在する旨を示すアラートが出力された状態の、ストレージデバイスSDが搭載されたユーザ端末2がユーザUから示されることで、当該ユーザUはサポートを受ける権利を有しているとして、当該ユーザUに対して各種各様なサポートをすることができる。
ここで、「アラートが出力された状態の、ストレージデバイスSDが搭載されたユーザ端末2がユーザUから示される」とは、現物のユーザ端末2が提供者Tに直接持ち込まれることの他、提供者Tと販売者Bとが予め契約の上で現物のユーザ端末2が販売者Bに持ち込まれることや、アラートが表示されたユーザ端末2の写真が提供者T又は販売者B持ち込まれたり、所定の方法で提供者T又は販売者Bの端末に通信により通知される等して、ユーザ端末2が提供者Tのサポート対象であることがわかるように任意の手法で示されることを意味する。
また、ここでいうサポートとは、故障予測プログラムに関するアラートに対するものであるため、故障予測プログラムの修理や交換、再販となる。
なお、故障予測プログラムの不具合の状況によっては、アラートが発生した故障予測プログラム単体での対応で済む場合の他、他の故障予測プログラム全体に影響を及ぼす場合もある。他の故障予測プログラム全体に影響を及ぼす場合のサポートとしては、販売者Bでの店舗在庫回収や、提供者Tは販売者BのHP上で不具合報告をすることなども、サポートの一環として行われる。
【0081】
図13は、第2実施形態の本サービスの全体のフローを説明する図である。
図14は、第2実施形態の本サービスの基本的な商流フローを説明する図である。
なお、
図13の例では、USBはUSBメーカにより製造され、提供者Tから販売者Bに提供される間に第三者P1及びP2が介在するものとされている。しかしながらこれらは例示に過ぎず、例えば第三者P1及びP2の処理(作業)を提供者Tが実行することで第三者P1及びP2を除外することもできるし、例えば第三者P1及びP2の処理(作業)を1人又は3人以上の第三者に分担させることもできる。
【0082】
図13及び
図14のステップS1において、USBメーカは、USBメモリを製造し、提供者Tへ送付する。
【0083】
図13及び
図14のステップS2において、提供者Tは、ライセンスキーを発行する。
図14のステップS21において、USBメモリとライセンスキーとを共有して第三者P1へ送付する。
【0084】
図13及び
図14のステップS3において、第三者P1は、USBメモリに対するキッティングを行う。例えば第三者P1は、故障予測プログラムのインストラーをUSBメモリに移行する。
図14のステップS31において、第三者P1は、USBメモリ(ライセンスキー)を第三者P2に送付する。
【0085】
図13及び
図14のステップS4において、第三者P2は、USBメモリ(ライセンスキー)に対するパッケージングを行う。例えば第三者P2は、USBメモリ(ライセンスキー)を製品状態にパッケージングを行う。ここでパッケージングを行うとは、パッケージのプリントや梱包といった作業のことである。
図14のステップS41において、パッケージングを行われたUSBメモリ(ライセンスキー)を製品として、販売者Bへ送付する。
【0086】
図13及び
図14のステップS5において、販売者Bは、製品たるUSBメモリ(ライセンスキー)をユーザUに販売する。
図13のステップS6において、ユーザUは、製品たるUSBメモリ(ライセンスキー)を販売者Bから購入する。
図13のステップS7において、販売者B及びユーザUは、製品たるUSBメモリ(ライセンスキー)に対するレジ決済をする。
図13のステップS8において、販売者Bは、POS連携をする。即ち、
図13のステップS9において、販売者Bは、USBメモリ(ライセンスキー)の販売情報及び在庫確認を管理すると共に、
図13のステップS19において、提供者Tは、USBメモリ(ライセンスキー)の販売情報及び在庫確認を管理する。
図13のステップS10において、販売者Bは、追加発注の必要性に応じて、USBメーカに対して、USBメモリ製造の追加発注をする。この追加発注された者に対しては、上述の
図13及び
図14のステップS1乃至
図14のステップS41の処理が繰り返し実行されて、追加発注された製品としてのUSBメモリ(ライセンスキー)が販売者Bに送付される。
【0087】
一方、ユーザU側においては、
図13のステップS11以降の処理が実行される。
即ち、
図13及び
図14のステップS11において、ユーザUは、USBメモリをユーザ端末2に挿入して、故障予測プログラムをインストールする。
図13のステップS12において、ユーザUは、ユーザ端末2に対してライセンスキーを入力する。
ユーザ端末2は、
図13のステップS13において、整合性の確認を行い、
図13のステップS14において、故障予測プログラムについてアクティベート処理を施す。
これにより、ユーザ端末2のCPU41において、
図4のスマート監視部91及び故障予測診断結果提示部92に加えてさらに、故障予測診断部73及び故障予測診断結果提示制御部74が機能すると共に、モデル(第1指標及び第1判断手法並びに第2指標及び第2判断手法)が記憶部48に格納される。
これにより、ユーザ端末2は、故障予測診断処理を常時実行するようになる。
そこで、
図13のステップS15において、ユーザUは、ストレージデバイスSDが搭載されたユーザ端末2を利用開始する。
【0088】
即ち、
図14のステップS22において、ユーザ端末2は、故障予測プログラムを常駐稼働させる。即ち、ユーザ端末2は、故障予測診断処理を適宜実行する。
図14のステップS23において、ユーザ端末2は、不具合が発生したか否かを判定する。
不具合が発生していない場合、即ち、故障予測診断結果が第1のレベル乃至第3のレベルの何れかであり、かつ、故障予測プログラム自体が正常の場合、
図14のステップS23においてNOであると判定されて、処理は
図14のステップS22に戻され、それ以降の処理が繰り返し実行される。
これに対して、不具合が発生した場合、即ち、故障予測診断結果が第4のレベル若しくは第5のレベルの何れかであるか、又は、故障予測プログラム自体に不具合が発生した場合、所定のアラートがユーザ端末2に表示され、処理は
図14のステップS16に進む。
【0089】
ここで、例えば、故障予測診断結果が第4のレベル若しくは第5のレベルであることから
図13のステップS23においてYESである(不具合である)と判定されてアラートが発生されたものとする。この場合、上述したように、ストレージデバイスSDの故障予測に関するアラートが出力された状態の、ストレージデバイスSDが搭載されたユーザ端末2は、販売者Bからのサポートを受ける権利をユーザUが有していることを販売者Bに示す媒体として機能するようになる。
即ち、ストレージデバイスSDの故障予測に関するアラートが出力された状態の、ストレージデバイスSDが搭載されたユーザ端末2が販売者Bに示されると、販売者Bは、
図13及び
図14のステップS16として、サポート対応(アラート対応)をする。
この際、
図13のステップS17において、第三者P1は、販売者Bとして連携してアラート対応(サポート対応)をすることができる。
図14のステップS24において、不具合が解決されたか否かが判定される。不具合が解決されていない場合、
図14のステップS24においてNOであると判定されて、処理は
図14のステップS16に戻され、更なるサポート対応が実行される。
これに対して、不具合が解決された場合、
図14のステップS24においてYESであると判定されて、処理はステップS22に戻され、それ以降の処理が繰り返し実行される。ここで、不具合の解決手法として、不具合が生じたユーザ端末2自体が修理等されて再度ユーザにより使用される手法が採用された場合には、
図14のステップS22において、当該ユーザ端末2自体が、故障予測プログラムを常駐起動させる。一方、不具合の解決方法として新たなユーザ端末2が再版される手法が採用された場合には、
図14のステップS22において、再販されたユーザ端末2が、故障予測プログラムを常駐起動させる。
【0090】
また、例えば、故障予測プログラムが不具合であることから
図13のステップS23においてYESである(不具合である)と判定されてアラートが発生されたものとする。この場合、上述したように、故障予測プログラムが不具合であることを示すアラートが出力された状態の、ストレージデバイスSDが搭載されたユーザ端末2は、提供者Tからのサポートを受ける権利をユーザUが有していることを提供者Tに示す媒体として機能するようになる。
即ち、故障予測プログラムが不具合であることを示すアラートが出力された状態の、ストレージデバイスSDが搭載されたユーザ端末2が提供者Tに示されると、提供者Tは、
図13のステップS18(
図14の例ではステップS16に相当)として、サポート対応(アラート対応)をする。
すると、
図14のステップS24において、不具合が解決されたか否かが判定される。不具合が解決されていない場合、
図14のステップS24においてNOであると判定されて、処理は
図14のステップS16に戻され、更なるサポート対応が実行される。
これに対して、不具合が解決された場合、
図14のステップS24においてYESであると判定されて、処理はステップS22に戻され、それ以降の処理が繰り返し実行される。
【0091】
以上本発明の一実施形態について説明したが、本発明は、上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での、変形、改良等は本発明に含まれるものである。
上述の実施形態では、ストレージデバイスSDに関する情報として、スマート情報を用いて故障予測がなされるものとしたが、特にこれに限定されない。
具体的には例えば、上述したように、ストレージデバイスSDを用いて構築されたファイルシステムやRAIDシステム等の構成情報も学習や故障予測診断に用いられてもよい。また例えば、不良セクタに関するファームウェア情報も、学習や故障予測診断に用いられてもよい。即ち、ストレージデバイスSDのファームウェアやそのバージョンにより不良セクタの取り扱い条件が異なる旨の情報が、学習や故障予測診断に用いられてもよい。
【0092】
さらに、上述のスマート情報とは別に、ユーザ端末2に関する情報として、端末情報と、データ授受情報とが利用されてもよい。
端末情報とは、ユーザ端末2の状態に関する情報であって、スマート情報以外の情報をいう。具体的には例えば、端末情報には、ユーザ端末2のCPU41の使用率、ユーザ端末2のRAM43の使用率、ユーザ端末2の通信部49の1秒当たりの入出力操作の回数等の情報が含まれ得る。ここで、これらはあくまでも例示であり、端末情報には、ユーザ端末2の状態に関する、スマート情報以外のありとあらゆる情報が含まれ得る。
データ授受情報とは、ユーザ端末2に備えられるストレージデバイスSDと、当該ユーザ端末2に備えられる他のハードウェア機器(例えばCPU41等)と、のデータの授受に関する情報をいう。具体的には例えば、データ授受情報には、ストレージデバイスSDのデータの入出力にかかる、1秒当たりの入出力操作の回数や、スループットや、レイテンシの情報等の情報が含まれ得る。ここで、これらはあくまでも例示であり、データ授受情報には、ユーザ端末2と、当該ユーザ端末2に備えられるストレージデバイスSDとのデータの授受に関する、ありとあらゆる情報が含まれ得る。サーバ1は、スマート情報、端末情報、データ授受情報を用いて、精度の高い故障確率を演算することもできる。
このように、サーバ1は、スマート情報のみならず、端末情報や、データ授受情報を含み得る「スマート情報等」を用いて、故障予測診断を行うことができる。
【0093】
上述の第2実施形態では、販売者Bや提供者Tによるサポートとして、ユーザ端末2自体を点検や修理することの他、ユーザ端末2を下取りに新規の情報処理装置BPをユーザUに販売したりする等、販売者Bにより自由自在に決定できるものとしたが、以下のようなものが含まれ得る。
即ち例えば、販売者Bは、ユーザ端末2の保証期間内の場合、ユーザ端末2の保証対応をすることができる。
また例えば、販売者Bは、ユーザ端末2が保証期間外であって、ストレージデバイスSDからデータのコピーが可能な状態である場合、ユーザに対して他のストレージデバイス(例えば外付けハードディスクドライブ)を紹介し、販売することができる。
【0094】
さらに言えば、例えば、販売者Bは、そのユーザ端末2を中古の情報処理端末として買い取ることができる。この時、ユーザ端末2が故障予測の状態(例えば上述の第4又は第5のレベルのアラートがされた状態)ではない場合、ユーザ端末2が健全な状態(バックアップの推奨をしない、バックアップ不要なレベル(第1乃至第3のレベル)の場合と比較して低額で買い取る等、本サービスのアラートを査定のための情報として用いることができる。
さらに言えば、このとき、ユーザUは、ユーザ端末2が健全な状態(バックアップの推奨をしない、バックアップ不要なレベル(第1乃至第3のレベル)なうちに、販売者B等に中古の情報処理端末として売ることにより、より高額での買取を期待できる。
【0095】
また例えば、提供者Tや販売者Bは、故障予測プログラムに、ストレージデバイスSDのデータ復旧サポート権を付与してもよい。これにより、例えば、ユーザUが第4のレベルの状態においてサポートを求めた場合であって、データのバックアップ中にもしもストレージデバイスSDが故障してしまったとき、提供者Tがデータ復旧を行うことができる。これにより、より故障の確率が低い状態でストレージデバイスSDのデータ復旧が提供者Tに依頼されるため、よりデータ復旧率を高めることができる。
【0096】
また例えば、販売者Bは、サポートの結果取り外されたストレージデバイスSDを、提供者Tに提供することができる。これにより、提供者Tは第1乃至第5のレベルのストレージデバイスSDの提供を受けることにより、他のストレージデバイスSDの修理用のパーツとして利用したり、珍しい症例の故障の研究用として利用したり、故障の状態とスマート情報等の関係性のデータを収集し、学習用データとして活用できる。これにより、故障予測診断の精度の向上が期待される。
また、上述したように、前提として、本サービスのサービス提供者(提供者T)は、本サービスを提供する前から、ユーザからの依頼に応じて、故障したストレージデバイスSDのデータ復旧を行うデータ復旧サービスを提供していた。そのため、サービス提供者(提供者T)は、ストレージデバイスSDのデータ復旧技術や、それに関連するストレージデバイスSDのファームウェアの解析技術を有する。これにより、効率的に、学習用データの収集などができる。
【0097】
また、上述の第2実施形態の説明では、故障予測プログラムを格納するUSBメモリが、提供者Tから販売者Bに提供されるものとしたが、特にこれに限定されない。即ち例えば、故障予測プログラムは、任意のリムーバブルメディアで提供されてもよい。さらに言えば、故障予測プログラムは、インターネット経由でダウンロードされてもよい。
【0098】
また例えば、上述した一連の処理は、ハードウェアにより実行させることもできるし、ソフトウェアにより実行させることもできる。
換言すると、
図4の機能的構成は例示に過ぎず、特に限定されない。
即ち、上述した一連の処理を全体として実行できる機能が情報処理システムに備えられていれば足り、この機能を実現するためにどのような機能ブロックやデータベースを用いるのかは特に
図4の例に限定されない。また、機能ブロックの存在場所も、
図4に特に限定されず、任意でよい。例えば、サーバ1の機能ブロックをユーザ端末2等に移譲させてもよい。また、ユーザ端末2の機能ブロックをサーバ1等に移譲させてもよい。更に言えば、サーバ1とユーザ端末2は、同じハードウェアでもよい。
【0099】
また例えば、一連の処理をソフトウェアにより実行させる場合には、そのソフトウェアを構成するプログラムが、コンピュータ等にネットワークや記録媒体からインストールされる。
コンピュータは、専用のハードウェアに組み込まれているコンピュータであってもよい。
また、コンピュータは、各種のプログラムをインストールすることで、各種の機能を実行することが可能なコンピュータ、例えばサーバの他汎用のスマートフォンやパーソナルコンピュータであってもよい。
【0100】
また例えば、このようなプログラムを含む記録媒体は、ユーザにプログラムを提供するために装置本体とは別に配布される図示せぬリムーバブルメディアにより構成されるだけでなく、装置本体に予め組み込まれた状態でユーザに提供される記録媒体等で構成される。
【0101】
なお、本明細書において、記録媒体に記録されるプログラムを記述するステップは、その順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的或いは個別に実行される処理をも含むものである。
また、本明細書において、システムの用語は、複数の装置や複数の手段等より構成される全体的な装置を意味するものとする。
【0102】
以上を換言すると、本発明が適用される情報処理装置は、次のような構成を有する各種各様の実施形態を取ることができる。
【0103】
即ち、本発明が適用される情報処理装置(第1実施形態ではサーバ1、第2実施形態ではユーザ端末2)は、
記憶媒体(例えば、
図1のストレージデバイスSD)についての故障前の故障予測診断をする情報処理装置であって、
記憶媒体の状態を示すスマート情報等についての複数の項目(例えば、
図6の温度、読み書き量、不良セクタ数、使用時間、起動回数、起動にかかる時間をはじめとする項目)のうち、N(Nは2以上の整数値)の項目の値を、故障予測の対象記憶媒体から取得するスマート情報取得手段(例えば、
図4のスマート情報取得部731)と、
前記Nの項目をパラメータとして用いる所定の演算手法に従って、前記対象記憶媒体から取得された前記Nの項目の値から、前記対象記憶媒体の総合的な状態を示す総合状態値(例えば、
図6の面積S)を算出する総合状態算出手段(例えば、
図4の総合状態算出部732)と、
前記対象記憶媒体から取得された前記Nの項目の値のうち少なくとも一部の項目の値と、各項目毎に設定された第1指標(例えば、
図5の説明における、修復不可能なセクタ数の最悪値が227という指標)とを比較し、その比較の結果を用いる所定の第1判断手法(例えば、
図5の説明における、修復不可能なセクタの最悪値が第1指標と比較して「未満」であるという判断手法)に従って、故障予測に関する項目診断結果を決定する項目診断手段(例えば、
図4の項目診断部733)と、
前記総合状態値と第2指標(例えば、面積Sが50)とを比較し、その比較の結果を用いる所定の第2判断手法(例えば、面積Sが第2指標と比較して「未満」であるという判断指標)に従って、故障予測に関する総合診断結果を決定する総合診断手段(例えば、
図4の総合診断部734)と、
前記項目診断結果と前記総合診断結果とに基づいて、前記対象記憶媒体についての故障予測診断結果を決定する故障予測診断手段(例えば、
図4の最終診断結果決定部735)
と、
を備えれば足りる。
これにより、記憶媒体のユーザにとって利便性の高い故障予測やその関連サービスを提供することができる。
【0104】
前記故障予測診断手段は、前記故障予測診断結果として、対象記憶媒体からのデータのバックアップを推奨する第1種レベルと、対象記憶媒体からのデータのバックアップが不要な第2種レベルとのうち何れかを決定する、ことができる。
【0105】
前記対象記憶媒体についての前記故障予測診断結果が前記第1種レベルであると決定された場合、前記対象記憶媒体が搭載された搭載装置からアラートを出力する制御を実行するアラート出力制御手段、をさらに備えることができる。
【0106】
前記第1種レベルはM段階(Mは2以上の整数値)のレベルに区分され、
前記第2種レベルはL段階(LはMとは独立した2以上の整数値)のレベルに区分され、
前記故障予測診断手段は、前記故障予測診断結果として、(M+L)段階のレベルのうち所定段階のレベルを決定する、ことができる。
【0107】
前記Nの項目が所定円の周上に均等間隔で割り当てられ、前記所定円の中心から周までの軸が前記Nの項目毎に割り当てられ、前記軸の座標は、割り当てられた項目の値を示しており、
前記総合状態算出手段は、対象記憶媒体から取得された前記Nの項目の値の夫々を、割り当てられた前記軸の対応する座標にプロットした場合において、プロットされた前記Nの項目の点の夫々を結ぶことで形成される閉曲線の面積を、前記総合状態値として演算する、ことができる。
【0108】
所定項目の前記第1指標、及び当該所定項目についての前記第1判断手法のうち少なくとも一方は、他の項目との相関関係が考慮されて設定される、ことができる。
【0109】
故障又は正常の状態が既知の複数の記憶媒体から得られたスマート情報を用いる所定の機械学習の結果に基づいて、前記第1指標、前記第1判断手法、前記第2指標、及び前記第2判断手法のうち少なくとも一部を生成または更新する学習手段、ことができる。
【0110】
また、本発明が適用される情報処理装置は、次のような構成を有する各種各様の実施形態を取ることができる。
【0111】
即ち、本発明が適用されるシステム(例えば、
図12のサービスのサポートシステム)は、
販売者からユーザに販売されて当該ユーザにより利用される所定記憶媒が搭載された情報処理装置(例えば、
図12のユーザ端末2)と、
前記所定記憶媒体が搭載された前記情報処理装置にインストールされると、前記所定記憶媒体に対する故障予測をして、サポートが必要な状態であるという故障予測診断結果の場合にはアラートを出力する制御処理を実行する機能を前記情報処理装置に発揮させるプログラムであって、前記販売者から前記ユーザに譲渡されるプログラム(例えば、
図12の故障予測診断プログラム)と、
を備え、
前記アラートが出力された状態の、前記所定記憶媒体が搭載された前記情報処理装置を、前記サポートを受ける権利を前記ユーザが有していることを前記販売者に示す媒体として機能させれば足りる。
これにより、記憶媒体のユーザにとって利便性の高い故障予測やその関連サービスを提供することができる。
【0112】
前記プログラムは、前記提供者から前記販売者に提供されたものであり、
前記プログラムは、サポートが必要な状態であるという故障予測診断結果の場合には第1アラートを出力し、さらに、前記プログラム自体にエラーが存在する場合には第2アラートを出力する制御処理を実行する機能を前記情報処理装置に発揮させ、
前記第1アラートが出力された状態の、前記所定記憶媒体が搭載された前記情報処理装置を、前記販売者による前記サポートを受ける権利を前記ユーザが有していることを前記販売者に示す媒体として機能させ、
前記第2アラートが出力された状態の、前記所定記憶媒体が搭載された前記情報処理装置を、前記提供者によるサポートを受ける権利を前記ユーザが有していることを前記提供者に示す媒体として機能させる、ことができる。
【0113】
前記プログラムはリムーバブル記憶媒体(例えば、
図12のUSBメモリ)に格納されて、前記提供者により発行される当該プログラムのライセンスキーと共に、前記販売者に提供され、前記販売者から前記ユーザに譲渡され、
前記ユーザにより、前記所定記憶媒体が搭載された前記情報処理装置に前記リムーバブル記憶媒体が装着されることで、前記プログラムが前記情報処理装置にインストールされ、
前記ライセンスキーが前記情報処理装置に入力されることで、前記制御処理を実行させる前記機能を前記情報処理装置に発生させる、ことができる。
【0114】
前記プログラムは、前記制御処理として、
前記所定記憶媒体の状態を示すスマート情報についての複数の項目のうち、N(Nは2以上の整数値)の項目の値を、当該所定記憶媒体から取得するスマート情報取得ステップと、
前記Nの項目をパラメータとして用いる所定の演算手法に従って、前記所定記憶媒体から取得された前記Nの項目の値から、前記所定記憶媒体の総合的な状態を示す総合状態値を算出する総合状態算出ステップと、
前記所定記憶媒体から取得された前記Nの項目の値のうち少なくとも一部の項目の値と、各項目毎に設定された第1指標とを比較し、その比較の結果を用いる所定の第1判断手法に従って、故障予測に関する項目診断結果を決定する項目診断ステップと、
前記総合状態値と第2指標とを比較し、その比較の結果を用いる所定の第2判断手法に従って、故障予測に関する総合診断結果を決定する総合診断ステップと、
前記項目診断結果と前記総合診断結果とに基づいて、前記所定記憶媒体についての故障予測診断結果を決定する故障予測診断ステップと、
前記所定記憶媒体についての前記故障予測制御を実行するアラート出力制御ステップと、
を含む制御処理を実行する機能を前記情報処理装置に発揮させるプログラム、とすることができる。
【符号の説明】
【0115】
1・・・サーバ、2・・・ユーザ端末、11・・・CPU、18・・・記憶部、20・・・ドライブ、31・・・リムーバブルメディア、41・・・CPU、42・・・ROM、48・・・記憶部、50・・・ドライブ、61・・・リムーバブルメディア、71・・・学習部、72・・・学習データ管理部、73・・・故障予測診断部、74・・・故障予測診断結果提示制御部、81・・・学習データDB、82・・・モデルDB、91・・・スマート監視部、92・・・故障予測診断結果提示部、147・・・出力部、711・・・項目診断学習部、712・・・総合診断学習部、731・・・スマート情報取得部、732・・・総合状態算出部、733・・・項目診断部、734・・・総合診断部、735・・・最終診断結果決定部
【手続補正書】
【提出日】2023-01-20
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
販売者からユーザに販売されて当該ユーザにより利用される所定記憶媒体が搭載された情報処理装置と、
前記所定記憶媒体が搭載された前記情報処理装置にインストールされると、前記所定記憶媒体に対する故障予測をして、サポートが必要な状態であるという故障予測診断結果の場合にはアラートを出力する制御処理を実行する機能を前記情報処理装置に発揮させるプログラムであって、前記販売者から前記ユーザに譲渡されるプログラムと、
を備え、
前記アラートが出力された状態の、前記所定記憶媒体が搭載された前記情報処理装置を、前記サポートを受ける権利を前記ユーザが有していることを前記販売者に示す媒体として機能させる、
記憶媒体サポートシステム。
【請求項2】
前記プログラムは、提供者から前記販売者に提供されたものであり、
前記プログラムは、サポートが必要な状態であるという故障予測診断結果の場合には第1アラートを出力し、さらに、前記プログラム自体にエラーが存在する場合には第2アラートを出力する制御処理を実行する機能を前記情報処理装置に発揮させ、
前記第1アラートが出力された状態の、前記所定記憶媒体が搭載された前記情報処理装置を、前記販売者による前記サポートを受ける権利を前記ユーザが有していることを前記販売者に示す媒体として機能させ、
前記第2アラートが出力された状態の、前記所定記憶媒体が搭載された前記情報処理装置を、前記提供者によるサポートを受ける権利を前記ユーザが有していることを前記提供者に示す媒体として機能させる、
請求項1に記載の記憶媒体サポートシステム。
【請求項3】
前記プログラムはリムーバブル記憶媒体に格納されて、前記提供者により発行される当該プログラムのライセンスキーと共に、前記販売者に提供され、前記販売者から前記ユーザに譲渡され、
前記ユーザにより、前記所定記憶媒体が搭載された前記情報処理装置に前記リムーバブル記憶媒体が装着されることで、前記プログラムが前記情報処理装置にインストールされ、
前記ライセンスキーが前記情報処理装置に入力されることで、前記制御処理を実行させる前記機能を前記情報処理装置に発生させる、
請求項2に記載の記憶媒体サポートシステム。
【請求項4】
前記プログラムは、前記制御処理として、
前記所定記憶媒体の状態を示すスマート情報を少なくとも含み、当該所定記憶媒体を利用する端末の状態に関する情報、及び、当該所定記憶媒体と当該端末に備えられる他のハードウェア機器とのデータの授受に関する情報を含み得る情報群を「スマート情報等」として、当該スマート情報等についての複数の項目のうち、N(Nは2以上の整数値)の項目の値を、当該所定記憶媒体から取得するスマート情報取得ステップと、
前記Nの項目をパラメータとして用いる所定の演算手法に従って、前記所定記憶媒体から取得された前記Nの項目の値から、前記所定記憶媒体の総合的な状態を示す総合状態値を算出する総合状態算出ステップと、
前記所定所定記憶媒体から取得された前記Nの項目の値のうち少なくとも一部の項目の値と、各項目毎に設定された第1指標とを比較し、その比較の結果を用いる所定の第1判断手法に従って、故障予測に関する項目診断結果を決定する項目診断ステップと、
前記総合状態値と第2指標とを比較し、その比較の結果を用いる所定の第2判断手法に従って、故障予測に関する総合診断結果を決定する総合診断ステップと、
前記項目診断結果と前記総合診断結果とに基づいて、前記所定記憶媒体についての故障予測診断結果を決定する故障予測診断ステップと、
前記所定記憶媒体についての前記故障予測制御を実行するアラート出力制御ステップと、
を含む制御処理を実行する機能を前記情報処理装置に発揮させるプログラムである、
請求項1に記載の記憶媒体サポートシステム。
【手続補正書】
【提出日】2023-01-30
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
販売者からユーザに販売されて当該ユーザにより利用される所定記憶媒体が搭載された情報処理装置と、
前記所定記憶媒体が搭載された前記情報処理装置にインストールされると、前記所定記憶媒体に対する故障予測をして、サポートが必要な状態であるという故障予測診断結果の場合にはアラートを出力する制御処理を実行する機能を前記情報処理装置に発揮させるプログラムであって、前記販売者から前記ユーザに譲渡されるプログラムと、
を備え、
前記アラートが出力された状態の、前記所定記憶媒体が搭載された前記情報処理装置を、前記サポートを受ける権利を前記ユーザが有していることを前記販売者に示す媒体として機能させる、
記憶媒体サポートシステム。
【請求項2】
前記プログラムは、提供者から前記販売者に提供されたものであり、
前記プログラムは、サポートが必要な状態であるという故障予測診断結果の場合には第1アラートを出力し、さらに、前記プログラム自体にエラーが存在する場合には第2アラートを出力する制御処理を実行する機能を前記情報処理装置に発揮させ、
前記第1アラートが出力された状態の、前記所定記憶媒体が搭載された前記情報処理装置を、前記販売者による前記サポートを受ける権利を前記ユーザが有していることを前記販売者に示す媒体として機能させ、
前記第2アラートが出力された状態の、前記所定記憶媒体が搭載された前記情報処理装置を、前記提供者によるサポートを受ける権利を前記ユーザが有していることを前記提供者に示す媒体として機能させる、
請求項1に記載の記憶媒体サポートシステム。
【請求項3】
前記プログラムはリムーバブル記憶媒体に格納されて、前記提供者により発行される当該プログラムのライセンスキーと共に、前記販売者に提供され、前記販売者から前記ユーザに譲渡され、
前記ユーザにより、前記所定記憶媒体が搭載された前記情報処理装置に前記リムーバブル記憶媒体が装着されることで、前記プログラムが前記情報処理装置にインストールされ、
前記ライセンスキーが前記情報処理装置に入力されることで、前記制御処理を実行させる前記機能を前記情報処理装置に発生させる、
請求項2に記載の記憶媒体サポートシステム。
【請求項4】
前記プログラムは、前記制御処理として、
前記所定記憶媒体の状態を示すスマート情報を少なくとも含み、当該所定記憶媒体を利用する端末の状態に関する情報、及び、当該所定記憶媒体と当該端末に備えられる他のハードウェア機器とのデータの授受に関する情報を含み得る情報群を「スマート情報等」として、当該スマート情報等についての複数の項目のうち、N(Nは2以上の整数値)の項目の値を、当該所定記憶媒体から取得するスマート情報取得ステップと、
前記Nの項目をパラメータとして用いる所定の演算手法に従って、前記所定記憶媒体から取得された前記Nの項目の値から、前記所定記憶媒体の総合的な状態を示す総合状態値を算出する総合状態算出ステップと、
前記所定記憶媒体から取得された前記Nの項目の値のうち少なくとも一部の項目の値と、各項目毎に設定された第1指標とを比較し、その比較の結果を用いる所定の第1判断手法に従って、故障予測に関する項目診断結果を決定する項目診断ステップと、
前記総合状態値と第2指標とを比較し、その比較の結果を用いる所定の第2判断手法に従って、故障予測に関する総合診断結果を決定する総合診断ステップと、
前記項目診断結果と前記総合診断結果とに基づいて、前記所定記憶媒体についての故障予測診断結果を決定する故障予測診断ステップと、
前記所定記憶媒体についての前記故障予測制御を実行するアラート出力制御ステップと、
を含む制御処理を実行する機能を前記情報処理装置に発揮させるプログラムである、
請求項1に記載の記憶媒体サポートシステム。