(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024002780
(43)【公開日】2024-01-11
(54)【発明の名称】ボイラシステム
(51)【国際特許分類】
F22B 35/00 20060101AFI20231228BHJP
F23K 5/00 20060101ALI20231228BHJP
【FI】
F22B35/00 J
F23K5/00 301
【審査請求】未請求
【請求項の数】6
【出願形態】OL
(21)【出願番号】P 2022102187
(22)【出願日】2022-06-24
(71)【出願人】
【識別番号】000175272
【氏名又は名称】三浦工業株式会社
(74)【代理人】
【識別番号】100142022
【弁理士】
【氏名又は名称】鈴木 一晃
(74)【代理人】
【識別番号】100196623
【弁理士】
【氏名又は名称】松下 計介
(72)【発明者】
【氏名】松木 繁昌
(72)【発明者】
【氏名】佐伯 和洋
(72)【発明者】
【氏名】武田 大
(72)【発明者】
【氏名】松田 脩平
【テーマコード(参考)】
3K068
3L021
【Fターム(参考)】
3K068AA02
3K068AA11
3K068BA03
3K068BB01
3K068BB02
3K068BB12
3K068BB24
3K068CA01
3K068CA05
3K068CB01
3L021AA05
3L021DA26
3L021FA12
(57)【要約】
【課題】フリーフローラインから排出されるBOGを排出量に応じて燃焼し、熱回収が可能なボイラシステムを実現することにある。
【解決手段】液化ガス貯蔵タンクT1と、液化ガス貯蔵タンクT1内で発生したBOGを流通するフリーフローライン2Aとを備えた船舶に搭載されるボイラシステム1である。ボイラシステム1は、少なくともフリーフローライン2Aを流れるBOGを燃焼するボイラ10と、ボイラ10に供給される気体燃料の流量を調整する気体燃料流量調整部3と、フリーフローライン2Aの下流側に接続しボイラ10にBOGを供給するBOG供給ライン2Bと、気体燃料流量調整部3の上流側に配置され、BOG供給ライン2BのBOG圧力Pgを検知するBOG圧力検知部11と、BOG圧力検知部11の検知結果に基づいて気体燃料流量調整部3を制御する制御部14と、を有する。
【選択図】
図1
【特許請求の範囲】
【請求項1】
液化ガス貯蔵タンクと、前記液化ガス貯蔵タンク内で発生したボイルオフガスが流れるフリーフローラインとを備えた船舶に搭載されるボイラシステムであって、
前記ボイラシステムは、
少なくとも前記フリーフローラインを流れるボイルオフガスを燃焼するボイラと、
前記ボイラに供給されるボイルオフガスの流量を調整する気体燃料流量調整部と、
前記フリーフローラインの下流側に接続し前記ボイラにボイルオフガスを供給するボイルオフガス供給ラインと、
前記気体燃料流量調整部の上流側に配置され、前記ボイルオフガス供給ラインのボイルオフガスの圧力を検知するボイルオフガス圧力検知部と、
前記ボイルオフガス圧力検知部の検知結果に基づいて前記気体燃料流量調整部を制御する制御部と、
を有するボイラシステム。
【請求項2】
請求項1に記載のボイラシステムにおいて、
前記制御部は、
ボイルオフガスの複数の圧力範囲毎にボイルオフガスの目標圧力を記憶する記憶部を有し、前記ボイルオフガス圧力検知部の検知結果に基づいて前記記憶部から選択した前記目標圧力になるように、前記気体燃料流量調整部を制御する、
ボイラシステム。
【請求項3】
請求項1に記載のボイラシステムにおいて、
前記制御部は、
ボイルオフガスの複数の圧力範囲毎に前記ボイラの目標燃焼量を記憶する記憶部を有し、前記ボイルオフガス圧力検知部の検知結果に基づいて前記記憶部から選択した前記ボイラの目標燃焼量になるように、前記気体燃料流量調整部を制御する、
ボイラシステム。
【請求項4】
請求項1から3のいずれか一項に記載のボイラシステムであって、
前記ボイラは、
液体燃料を燃焼可能に構成され、
前記ボイラに液体燃料を供給する液体燃料流量調整部を有し、
前記制御部は、
前記ボイラが液体燃料を燃焼中の場合、前記ボイラに対するボイルオフガスの供給を開始してから所定時間後に前記ボイラに対する液体燃料の供給を停止するように、液体燃料流量調整部を制御する、
ボイラシステム。
【請求項5】
請求項1から3のいずれか一項に記載のボイラシステムであって、
前記ボイラに供給されるボイルオフガス中の不活性ガスの混合割合を検知する不活性ガス検知部を有し、
前記制御部は、
前記不活性ガス検知部が検知した前記混合割合が基準値以下の場合、ボイルオフガスのみを燃焼するように前記気体燃料流量調整部を制御する、
ボイラシステム。
【請求項6】
請求項1から3のいずれか一項に記載のボイラシステムであって、
前記ボイラで燃焼した燃焼ガスを排出する排気路と、
前記排気路を流通する燃焼ガスの酸素濃度を検知する排ガス酸素濃度検知部と、を有し、
前記制御部は、
前記排ガス酸素濃度検知部が検知した前記酸素濃度に基づいてボイルオフガス中の不活性ガスの混合割合を算出し、前記混合割合が基準値以下の場合、ボイルオフガスのみを燃焼するように前記気体燃料流量調整部を制御する、
ボイラシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、フリーフローラインを流れるボイルオフガスを燃焼可能なボイラシステムに関する。
【背景技術】
【0002】
天然ガスは、船舶によって輸送する場合、大気圧下において約-160℃に冷却することで液化した状態(液化ガス)で輸送されている。このような液化ガスを輸送する船舶は、内部を極低温状態に保持可能な断熱、防熱機能を有する液化ガス貯蔵タンク内に液化ガスを貯蔵して輸送する。しかし、前記液化ガス貯蔵タンク内の液化ガスは、前記液化ガス貯蔵タンク内に侵入した熱によってボイルオフガス(以下、単に「BOG」と記載する)が発生する。BOGの発生によりタンク圧が上昇した前記液化ガス貯蔵タンクは、許容タンク圧に到達する前にBOGを処理する必要がある。特許文献1では、液化ガス貯蔵タンク内で発生したBOGは、圧縮機へ導かれて圧縮され推進用の主ガスエンジン及び船内発電用の副ガスエンジンの燃料として利用されている。また、BOGは、GCUへ供給して燃焼することが可能である。
【0003】
一方、圧縮機を必要とする特許文献1の構成では、設備費用およびランニング費用が増大する。よって、液化ガス貯蔵タンクにおいて発生するBOGをガス焼却装置にフリーフローラインによって供給するためのフリーフローガス供給手段と、タンクから汲み上げた液化ガスを過冷却する液化ガス過冷却装置と、過冷却された液化ガスを前記タンク内に戻す液化ガス噴霧手段とを備えるタンク圧力制御システムが特許文献2に開示されている。特許文献2では、余剰BOGは、ガス圧縮機を用いずに、液化ガス貯蔵タンク内の圧力で燃料ガスをガス燃焼装置に送るフリーフローガス供給ラインを通して燃焼装置に供給される。しかしながら、特許文献2には、ガス燃焼装置における余剰BOGの燃焼制御技術に関する記載はない。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2018―48607号公報
【特許文献2】特開2019―163804号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
近年のSDGs等への社会的要請の高まりにより、地球温暖化係数が高いメタンなどのBOGを、大気に排出することなく余剰のBOGの発生量に応じて効率的に処理すること、また、その燃焼により発生する熱エネルギーを可能な限り有効に活用できるボイラシステムが求められていた。
【0006】
本発明の目的は、フリーフローラインから排出される余剰のBOGを排出量に応じて燃焼し、熱回収が可能なボイラシステムを実現することにある。
【課題を解決するための手段】
【0007】
本発明の一実施形態に係るボイラシステムは、液化ガス貯蔵タンクと、液化ガス貯蔵タンク内で発生したBOG(ボイルオフガス)を流通するフリーフローラインと、を備えた船舶に搭載されるボイラシステムである。前記ボイラシステムは、少なくとも前記フリーフローラインを流れるBOGを燃焼するボイラと、前記ボイラに供給されるBOGの流量を調整する気体燃料流量調整部と、前記フリーフローラインの下流側に接続し前記ボイラにBOGを供給するBOG供給ラインと、前記気体燃料流量調整部の上流側に配置され、前記ボイルオフガス供給ラインのBOGの圧力を検知するBOG圧力検知部と、前記ボイルオフガス圧力検知部の検知結果に基づいて前記気体燃料流量調整部を制御する制御部と、を有する。
【0008】
上述のボイラシステムでは、BOG圧力検知部が前記気体燃料流量調整部の上流側に配置され、フリーフローラインの下流側に接続するBOG供給ラインにおけるBOGの圧力であるBOG圧力を検知する。BOG供給ラインのBOG圧力は、フリーフローラインのBOGの圧力を反映している。よって、前記ボイラシステムは、前記フリーフローラインを流れるBOGの増減に応じて、燃焼量を制御することができる。また、ボイラは、前記フリーフローラインの下流側に位置しているので、前記フリーフローラインから排出される余剰のBOGを排出量に応じて燃焼し、熱回収することができる。
【0009】
なお、余剰のBOGとは、主機や発電機等のボイラ以外の機器において燃料として利用されないBOG及び再液化によって液化ガス貯蔵タンクに回収されないBOGを含む。また、船内の蒸気需要等に対してボイラを運転する場合など、ボイラで回収された熱量を有効利用する場合に燃料として利用されるBOGは、余剰のBOGに含むものとする。
【0010】
他の観点によれば、本発明のボイラシステムは、以下の構成を含むことが好ましい。制御部は、BOGの複数の圧力範囲毎にBOGの目標圧力を記憶する記憶部を有する。前記制御部は、BOG圧力検知部の検知結果に基づいて前記記憶部から選択した前記目標圧力になるように、前記気体燃料流量調整部を制御する。
【0011】
上述の構成では、制御部は、BOG圧力の圧力範囲毎に前記BOG圧力の目標圧力を記憶部において記憶している。前記制御部は、BOG圧力がBOG圧力に応じた目標圧力になるように、ボイラに供給される余剰のBOGの流量を気体燃料流量調整部によってBOGの圧力変動に応じて逐次制御する。更に、前記制御部は、気体燃料流量調整部によってBOGの目標圧力をBOG圧力に応じて多段階に制御するので、余剰のBOGの発生量の変動に対して柔軟に対応し、BOGの燃焼量を増減させることができる。これにより、フリーフローラインから排出される余剰のBOGを排出量に応じて燃焼し、熱回収することができる。
【0012】
他の観点によれば、本発明のボイラシステムは、以下の構成を含むことが好ましい。前記制御部は、BOGの複数の圧力範囲毎に前記ボイラの目標燃焼量を記憶する記憶部を有する。前記制御部は、前記BOG圧力検知部の検知結果に基づいて前記記憶部から選択した前記ボイラの目標燃焼量になるように、前記気体燃料流量調整部を制御する。
【0013】
上述の構成では、制御部は、BOG圧力の圧力範囲毎に前記ボイラの目標燃焼量を記憶部において記憶している。前記制御部は、ボイラの燃焼量がBOG圧力に応じた目標燃焼量になるように、気体燃料流量調整部によって前記ボイラに供給される余剰のBOGの流量を制御する。前記ボイラには、BOG圧力検知部が検知したBOG圧力が所定の圧力範囲内において変動している場合、一定量のBOGが供給される。よって、前記ボイラは、BOG圧力が変動しても安定した燃焼状態で燃焼する。さらに、前記制御部は、複数のBOGの圧力範囲毎にそれぞれ設定されている目標燃焼量に応じて、前記ボイラに供給される余剰のBOGの流量を前記気体燃料流量調整部によって制御する。つまり、前記制御部は、気体燃料流量調整部によって前記ボイラに供給する余剰のBOGの流量をBOG圧力に応じて多段階に制御するので、余剰のBOGの流量の変動に柔軟に対応した燃焼処理が可能である。これにより、フリーフローラインから排出される余剰のBOGを排出量に応じて燃焼し、熱回収することができる。
【0014】
他の観点によれば、本発明のボイラシステムは、以下の構成を含むことが好ましい。前記ボイラは、液体燃料を燃焼可能に構成される。前記ボイラシステムは、前記ボイラに液体燃料を供給する液体燃料流量調整部を有する。前記制御部は、前記ボイラが液体燃料を燃焼中の場合、前記ボイラに対するBOGの供給を開始してから所定時間後に前記ボイラに対する液体燃料の供給を停止するように、液体燃料流量調整部を制御する。
【0015】
上述の構成では、制御部は、ボイラにおいて燃焼する燃料を任意のタイミングで液体燃料である重油等から気体燃料であるBOGに変更することができる。前記ボイラは、液体燃料と余剰のBOGとが同時に供給されている状態から余剰のBOGのみが供給されている状態に切り替わることで、余剰のBOGの燃焼量を増大させることができる。また、前記制御部は、前記ボイラに対する余剰のBOGの供給を開始してから所定時間後に前記ボイラに対する液体燃料の供給を停止する。これにより、前記ボイラは、液体燃料のみを燃焼している状態から余剰のBOGのみを燃焼している状態に切り替わる際に、液体燃料と余剰のBOGとが共に供給されている状態を経て切り替わるので、燃焼状態が安定する。また、前記制御部は、前記ボイラに液体燃料が供給されている状態において余剰のBOGを供給するので余剰のBOGの燃焼処理遅れ等によるBOGの大気への放出を防止することができる。これにより、フリーフローラインから排出される余剰のBOGを排出量に応じて燃焼し、熱回収することができる。
【0016】
他の観点によれば、本発明のボイラシステムは、以下の構成を含むことが好ましい。前記ボイラに供給される余剰のBOG中の不活性ガスの混合割合を検知する不活性ガス検知部を有する。前記制御部は、前記不活性ガス検知部が検知した前記混合割合が基準値以下の場合、余剰のBOGのみを燃焼するように前記気体燃料流量調整部を制御する。
【0017】
上述のように、制御部は、気体燃料流量調整部によってBOGに含まれる不活性ガスの混合割合に応じてボイラに対する燃料の供給を制御する。前記ボイラは、供給されるBOG中の不活性ガスの混合割合が基準値よりも大きい場合、燃焼状態が不安定になる。よって、前記制御部は、BOG中の不活性ガスの混合割合が前記ボイラの安定した燃焼を維持可能な基準値以下の場合に、不活性ガスが含まれるBOGのみを前記ボイラにおいて燃焼するように前記気体燃料流量調整部を制御する。これにより、フリーフローラインから排出される余剰のBOGを排出量に応じて燃焼し、熱回収することができる。
【0018】
他の観点によれば、本発明のボイラシステムは、以下の構成を含むことが好ましい。ボイラシステムは、前記ボイラで燃焼した燃焼ガスを排出する排気路と、前記排気路を流通する燃焼ガスの酸素濃度を検知する排ガス酸素濃度検知部と、を有する。前記制御部は、排ガス酸素濃度検知部が検知した前記酸素濃度に基づいてBOG中の不活性ガスの混合割合を算出し、前記混合割合が基準値以下の場合、前記BOGのみを燃焼するように前記気体燃料流量調整部を制御する。
【0019】
上述のように、制御部は、排ガス酸素濃度検知部が検知した排ガスの酸素濃度からBOG中の不活性ガスの混合割合を算出することができる。よって、不活性ガス検知器を備えて不活性ガスを検知する必要がない。これにより、フリーフローラインから排出される余剰のBOGを排出量に応じて燃焼し、熱回収することができる。
【発明の効果】
【0020】
フリーフローラインから排出される余剰のBOGの発生量に応じたBOGの燃焼処理を行うことができるボイラシステムを実現することができる。
【図面の簡単な説明】
【0021】
【
図1】
図1は、本発明に係るボイラシステムを含むBOG処理システム100の概略構成を示す図である。
【
図2】
図2は、本発明に係るボイラシステムにおける圧力範囲/目標圧力マップを示す図である。
【
図3】
図3は、本発明に係るボイラシステムの目標圧力を維持する燃焼制御においてBOG圧力に対するBOGの燃焼量を表すグラフを示す図である。
【
図4】
図4は、本発明に係るボイラシステムにおける圧力範囲/目標燃焼量マップを示す図である。
【
図5】
図5は、本発明に係るボイラシステムの目標燃焼量を維持する燃焼制御においてBOG圧力に対するBOGの燃焼量を表すグラフを示す図である。
【0022】
以下で、ボイラシステムの各実施形態について、図面を参照しながら説明する。各図において、同一部分には同一の符号を付して、その同一部分の説明は繰り返さない。なお、各図中の構成部材の寸法は、実際の構成部材の寸法及び各構成部材の寸法比率等を忠実に表したものではない。
【0023】
以下の説明において、上流とは、液化ガス貯蔵タンクT1からBOGを燃焼処理等する機器に向かってBOGが流通する配管において液化ガス貯蔵タンクT1側を意味し、液体燃料貯蔵タンクT2から液体燃料を燃焼処理等する機器に向かって液体燃料が流通する配管において液体燃料貯蔵タンクT2側を意味する。下流とは、BOGまたは液体燃料が流通する配管においてBOGまたは液体燃料を燃焼処理等する機器側を意味する。
【0024】
また、以下の説明において、“固定”、“接続”及び“取り付ける”等(以下、固定等)の表現は、部材同士が直接、固定等されている場合だけでなく、他の部材を介して固定等されている場合も含む。すなわち、以下の説明において、固定等の表現には、部材同士の直接的及び間接的な固定等の意味が含まれる。
【0025】
(実施形態1)
(ボイラシステム)
図1から
図5を用いて本発明の実施形態1に係るボイラシステムについて説明する。
図1は、本発明に係るボイラシステム1を含むBOG処理システム100の概略構成を示す図である。
図2は、BOG圧力検知部11で検知される圧力範囲Pr毎の気体燃料流量調整弁5の制御目標値となるBOGの目標圧力Ptを示した図(圧力範囲/目標圧力マップMp1)である。
図3は、
図2に示した圧力範囲/目標圧力マップMp1に基づいて、ボイラシステム1を制御した場合のBOG供給ライン2BのBOG圧力Pgに対するBOG燃焼量を表すグラフを示す図である。
図4は、BOG圧力検知部11で検知される圧力範囲Pr毎の気体燃料流量調整弁5の制御目標値となる目標燃焼量Ctを示した図(圧力範囲/目標燃焼量マップMc1)である。
図5は、
図4に示した圧力範囲/目標燃焼量マップMc1に基づいて、所定のBOGの圧力範囲Pr毎に目標燃焼量Ctを維持する燃焼制御を行った場合のBOG圧力Pgに対するBOG燃焼量を表すグラフを示す図である。
【0026】
図1は、液化ガス貯蔵タンクT1で発生したBOGが流れるフリーフローライン2Aと、フリーフローライン2Aにおける上流側に接続された圧縮機Cと、圧縮機Cにより昇圧されたBOGを燃料とする発電機Geと、フリーフローライン2Aの下流側に接続されるボイラシステム1とを有するBOG処理システム100の一例を示す。BOG処理システム100は、BOGを再液化させて液化ガス貯蔵タンクT1に回収する再液化ガス回収システム(図示せず)をフリーフローライン2Aにおける上流側に備えても良い。
【0027】
BOG処理システム100のフリーフローライン2Aは、液化ガス貯蔵タンクT1の液化ガスが熱によって蒸発したBOGを液化ガス貯蔵タンクT1の外部に排出する配管である。フリーフローライン2Aは、液化ガス貯蔵タンクT1内で発生したBOGが流入可能に構成されている。
【0028】
ボイラシステム1は、フリーフローライン2Aを流れるBOGを昇圧することなく燃焼できるボイラシステムである。本実施形態において、BOG処理システム100は、液化ガスを輸送する船舶に搭載されている。ボイラシステム1は、前記船舶において液化ガスを貯蔵している液化ガス貯蔵タンクT1内で発生したBOGのうち発電機Geでの使用量と、図示しない再液化ガス回収システムによる回収量を除いた余剰のBOGを燃焼処理することができる。なお、以下の説明において、BOGは、BOGまたは余剰のBOGを示すものとする。
【0029】
ボイラシステム1は、BOG供給ライン2Bと、気体燃料流量調整部3と、液体燃料流量調整部7と、ボイラ10と、BOG圧力検知部11と、不活性ガス検知部12と、排気路13と、制御部14と、を有す。
【0030】
ボイラシステム1のBOG供給ライン2Bは、フリーフローライン2A内を流れるBOGをボイラ10に供給する配管である。BOG供給ライン2Bの上流側は、フリーフローライン2Aに接続されている。BOG供給ライン2Bの下流側は、気体燃料流量調整部3を介してボイラ10に接続されている。BOG供給ライン2Bには、液化ガス貯蔵タンクT1内で発生したBOGの圧力によってフリーフローライン2A内のBOGが流れ込む。BOG供給ライン2B内のBOGの圧力であるBOG圧力Pgは、フリーフローライン2AからBOG供給ライン2B内に流れ込むBOGの流量と気体燃料流量調整部3が下流側に流すBOGの流量との関係によって増減する。BOG供給ライン2Bは、BOG供給ライン2BのBOG圧力Pgに有意な変化を起こすボイラ10以外の機器と接続されないことが望ましい。
【0031】
また、
図1のBOG処理システム100では、BOG供給ライン2Bの圧力は、液化ガス貯蔵タンクT1で発生するBOGの発生量と発電機Ge等において燃料として使用されるBOGの流量との関係を反映して変動する。例えば、液化ガス貯蔵タンクT1の余剰のBOGの発生量が変わらない場合でも、BOG供給ライン2BのBOG圧力Pgは、発電機Geにおいて使用されるBOGの増加により低下し、発電機Geにおいて使用されるBOGの減少により上昇する。このように、BOG供給ライン2B内のBOG圧力Pgは、フリーフローライン2Aを流れる余剰のBOGの流量を反映して変動する。このように、BOG供給ライン2Bの圧力は、BOG供給ライン2Bを介してボイラ10に供給されるBOGの流量と、フリーフローライン2Aから発電機Geに供給されるBOGの流量との関係によって変動する。
【0032】
気体燃料流量調整部3は、BOGの流量を調整するバルブユニットである。気体燃料流量調整部3は、BOG供給ライン2Bに接続している。気体燃料流量調整部3は、減圧弁4Aと、気体燃料遮断弁4Bと、気体燃料流量調整弁5とを有する。
【0033】
減圧弁4Aは、BOG圧力Pgを減圧する弁である。減圧弁4Aは、エア駆動の直動式減圧弁もしくはパイロット式減圧弁または電動弁等によって構成されている。減圧弁4Aは、減圧弁4Aよりも下流側のBOG圧力Pgが一定の圧力以下になるようにBOG圧力Pgを調整する。
【0034】
気体燃料遮断弁4Bは、BOGの流れを遮断する弁である。気体燃料遮断弁4Bは、エア駆動弁または電動弁等によって構成されている。気体燃料遮断弁4Bは、BOGの流通を遮断する。
【0035】
気体燃料流量調整弁5は、BOGの流量を調整する弁である。気体燃料流量調整弁5は、弁開度を任意の開度に変更可能なエア駆動弁または電動弁等である。気体燃料流量調整弁5は、気体燃料遮断弁4Bの下流側に配置される。
【0036】
液体燃料供給ライン6は、液体燃料である重油をボイラ10に供給する配管である。液体燃料供給ライン6は、重油を貯蔵している液体燃料貯蔵タンクT2に接続され、液体燃料貯蔵タンクT2の重油が流入可能に構成されている。液体燃料供給ライン6は、発電機Ge、主機Egに接続され、発電機Ge、主機Egが重油を利用可能に構成されても良い。
【0037】
液体燃料流量調整部7は、重油の流量を調整するバルブユニットである。液体燃料流量調整部7は、ボイラ10の上流側であって液体燃料供給ライン6の下流側に接続されている。液体燃料流量調整部7は、液体燃料遮断弁8と、液体燃料流量調整弁9とを有する。
【0038】
液体燃料遮断弁8は、重油の流れを遮断する弁である。液体燃料遮断弁8は、エア駆動弁または電動弁等によって構成されている。液体燃料遮断弁8は、液体燃料供給ライン6に接続されている。
【0039】
液体燃料流量調整弁9は、重油の流量を調整する電動弁である。液体燃料流量調整弁9は、弁の開度を任意の開度に変更可能なエア駆動弁または電動弁等である。液体燃料流量調整弁9は、液体燃料遮断弁8の下流側に接続されている。
【0040】
ボイラ10は、燃料の燃焼による熱によって水を温めて温水または蒸気を生成する装置である。ボイラ10は、BOGと重油との両方の燃料を燃焼可能なデュアルフューエルボイラである。ボイラ10は、BOG、BOGと重油との混合燃料、及び重油の燃焼を可能に構成されている。ボイラ10は、前記船舶の船内から供給された水を被加熱媒体として燃焼で発生した熱を回収し、温水または蒸気を生成する。ボイラ10は、熱媒体ライン15を通じて温水または蒸気を前記船舶の船内に供給する。ボイラ10は、排気路13を通じて熱回収後の燃焼ガスを船外に排気する。
【0041】
なお、ボイラ10は、前記船舶の主機関への動力の供給に使用されない補助ボイラである。よって、ボイラ10の燃焼量の変動が前記主機関の運転に直接影響することが無い。ボイラ10は、例えば、定格蒸気圧力が約0.3MPaから1.0MPa程度のボイラである。好ましくは、ボイラ10は、定格出力が約0.5から0.7MPa程度のボイラである。ボイラ10において生成された蒸気は、熱媒体ライン15を通して前記船舶の蒸気使用機器(液体燃料・積み荷の加熱、洗浄用等の温水供給、バイナリ発電システムの熱源、蒸気タービン発電機の蒸気供給)等に供給され、その後復水器等によって複水される。ボイラ10は、フリーフローライン2Aを流れるBOG(ガス圧力は低く、変動する)の発生量に応じた燃焼量でBOGを直接燃焼することができる。また、ボイラ10は、発生した蒸気を有効利用することも可能である。
【0042】
BOG圧力検知部11は、BOG圧力Pgを検知する圧力センサである。BOG圧力検知部11は、気体燃料流量調整部3の上流側に位置している。BOG圧力検知部11は、気体燃料流量調整部3の上流側に接続されているBOG供給ライン2Bに位置している。BOG圧力検知部11はBOG供給ライン2BにおけるBOG圧力Pgの変動を定量的に検知することができれば、BOG供給ライン2Bの上流側近傍のフリーフローライン2Aに位置してもよい。
【0043】
不活性ガス検知部12は、窒素等の不活性ガスの濃度を検出するセンサである。不活性ガス検知部12は、BOG供給ライン2Bまたはフリーフローライン2Aに位置している。
【0044】
制御部14は、気体燃料流量調整部3、液体燃料流量調整部7及びボイラ10を制御する制御装置である。制御部14は、実体的には、CPU、ROM、RAM、HDD等がバスで接続されている。または、制御部14は、PLCあるいはワンチップのLSI等からなる構成であってもよい。
【0045】
制御部14は、気体燃料流量調整部3、液体燃料流量調整部7及びボイラ10の動作を制御したり検知データを取得したりするために種々のプログラムおよびデータが格納されている。制御部14は、記憶部14aを有している。記憶部14aは、ボイラ10の稼働条件、BOG圧力検知部11の検知結果等に応じてBOGの目標圧力Ptを算出する圧力範囲/目標圧力マップMp1、Mp2・・・(
図2参照)を記憶する。圧力範囲/目標圧力マップMp1、Mp2・・・は、複数の圧力範囲Pr及び圧力範囲Pr毎のボイラ10の目標圧力Ptがそれぞれ設定されている。記憶部14aは、単一の圧力範囲/目標圧力マップを備えてもよい。
【0046】
制御部14は、気体燃料流量調整部3の気体燃料遮断弁4Bと気体燃料流量調整弁5とに電気的に接続されている。制御部14は、気体燃料遮断弁4Bに弁を開閉する制御信号を送信することができる。制御部14は、気体燃料流量調整弁5に調整弁の開度を変更する制御信号を送信することができる。
【0047】
制御部14は、液体燃料流量調整部7の液体燃料遮断弁8と液体燃料流量調整弁9とに電気的に接続されている。制御部14は、液体燃料遮断弁8に弁を開閉する制御信号を送信することができる。制御部14は、液体燃料流量調整弁9に調整弁の開度を変更する制御信号を送信することができる。
【0048】
制御部14は、BOG圧力検知部11に電気的に接続されている。制御部14は、BOG圧力検知部11からBOG圧力Pgを取得することができる。
【0049】
制御部14は、不活性ガス検知部12に電気的に接続されている。制御部14は、不活性ガス検知部12からBOGに含まれる不活性ガスの混合割合である不活性ガスの濃度を取得することができる。また、制御部14は、不活性ガスが含まれるBOGがボイラ10によって適切に燃焼可能な不活性ガスの濃度の基準値(BOGが燃焼可能な不活性ガスの濃度の上限値)を有している。
【0050】
制御部14は、ボイラ10に電気的に接続されている。制御部14は、ボイラ10からボイラ10の稼働状態を検知するための各種測定データを取得することができる。制御部14は、ボイラ10を稼働させるためにBOGの供給量を示す気体燃料流量調整弁5に対する制御信号、ボイラ10の各装置を制御するための制御信号等をボイラ10に送信することができる。
【0051】
このように構成されるボイラシステム1は、BOG供給ライン2Bを通じて液化ガス貯蔵タンクT1内で発生したBOGをボイラ10に供給する。ボイラシステム1は、気体燃料流量調整部3によってボイラ10に供給されるBOGの流量を調整する。また、ボイラシステム1は、液体燃料流量調整部7によってボイラ10に供給される重油の流量を調整する。ボイラシステム1は、ボイラ10によってBOGを燃焼処理する。
【0052】
次に、ボイラシステム1におけるBOGの燃焼制御について説明する。ボイラシステム1は、BOG圧力検知部11のBOG圧力Pgが目標圧力PtになるようにBOGの燃焼量を調整する。なお、BOG供給ライン2Bへの余剰のBOGの流入は、BOGの発生量の変動を伴って継続しているものとする。
【0053】
図1と
図2とに示すように、制御部14は、記憶部14aに記憶されている複数の圧力範囲/目標圧力マップMp1、Mp2・・・(
図2にはMp1のみを記載)からボイラ10の稼働条件、液化ガス貯蔵タンクT1の状態等に基づいて、または予め設定されている圧力範囲/目標圧力マップMp1を選択する。圧力範囲/目標圧力マップMp1、Mp2・・・は、複数の圧力範囲Pr及び圧力範囲Pr毎のBOGの目標圧力Ptがそれぞれ設定されている。圧力範囲/目標圧力マップMp1は、圧力範囲Pr1において目標圧力Pt1、圧力範囲Pr2において目標圧力Pt2、圧力範囲Pr3において目標圧力Pt3、圧力範囲Pr4において目標圧力Pt4が設定されている。
【0054】
本実施形態において、圧力範囲/目標圧力マップMp1は、0.12MPa以下を範囲とする圧力範囲Pr1において目標圧力Pt1が0MPaに設定され、0.12MPaよりも高く0.18MPa以下を範囲とする圧力範囲Pr2において目標圧力Pt2が0.15MPaに設定され、0.18MPaよりも高く0.25MPa以下を範囲とする圧力範囲Pr3において目標圧力Pt3が0.22MPaに設定され、0.25MPaよりも高く0.30MPa以下を範囲とする圧力範囲Pr4において目標圧力Pt4が0.27MPaに設定されているものとする。なお、圧力範囲/目標圧力マップMp1の圧力範囲Pr及び目標圧力Ptは、前述の値に限定されるものではない。
【0055】
制御部14は、BOG圧力検知部11から、検知結果であるBOG圧力Pgを単位時間毎に取得する。制御部14は、選択した圧力範囲/目標圧力マップMp1に基づいて、取得したBOG圧力Pgが含まれる圧力範囲Prにおける目標圧力Ptを決定する。制御部14は、BOG圧力Pgが決定した目標圧力Ptになるように気体燃料流量調整弁5の開度を調整する。制御部14は、BOG圧力検知部11から取得するBOG圧力Pgをフィードバック信号とするフィードバック制御により、気体燃料流量調整弁5の開度を制御する。
【0056】
次に、
図1から
図3を用いて、BOG処理システム100におけるBOG圧力Pgと燃焼量の変化について説明する。
【0057】
制御部14は、時間t1、時間t2において、BOG圧力検知部11から圧力範囲Pr1に含まれるBOG圧力Pgを取得すると、圧力範囲/目標圧力マップMp1に基づいて目標圧力Ptを圧力範囲Pr1の目標圧力Pt1である0MPaに決定する。時間t1から時間t2においてBOG圧力Pgが安定して燃焼できない圧力範囲(0.12MPa以下)であるため、気体燃料流量調整弁5は、閉状態に維持される。この結果、ボイラ10には、時間t1から時間t2までBOGが供給されない。一方、BOG供給ライン2BのBOG圧力Pgは上昇する。
【0058】
制御部14は、時間t3においてBOG圧力Pgが0.12MPaを上回ると、目標圧力Ptを圧力範囲Pr2の目標圧力Pt2である0.15MPaに決定する。制御部14は、時間t3から時間t5にかけて、BOG圧力検知部11が検知するBOG圧力Pgが0.15MPaになるように気体燃料流量調整弁5の開度を調整する。制御部14は、時間t4(BOG圧力Pgが0.15MPa)の気体燃料流量調整弁5の弁開度を基準にすると、時間t3(0.12MPa)では相対的に小さな弁開度、時間t5(0.18MPa)では相対的に大きな弁開度に制御される。この間、BOG供給ライン2Bに流入するBOGの単位時間当たりの流量が増加している。よって、BOG供給ライン2BのBOG圧力Pgは上昇する。よって、ボイラ10の燃焼量が増加する。
【0059】
制御部14は、時間t6において、BOG圧力Pgが0.18MPaを上回ると、目標圧力Ptを圧力範囲Pr3の目標圧力Pt3である0.22MPaに決定する。制御部14は、BOG圧力検知部11が検知するBOG圧力Pgが目標圧力Pt3である0.22MPaになるように気体燃料流量調整弁5の開度を調整する。制御部14は、時間t6から時間t7にかけて、BOG圧力Pgの上昇に伴い、気体燃料流量調整弁5の開度をさらに増大させる。時間t7を過ぎるとBOG流量は低下し、時間t8から時間t10において、0.22MPa近傍に維持される。時間t9では、BOG供給ライン2Bに流入するBOGの単位時間当たりの流量が一時的に増加する。制御部14は、BOG圧力Pgを目標圧力Pt3に調整するために気体燃料流量調整弁5の弁開度が大きくなるように制御する。よって、ボイラ10における燃焼量が一時的に増加する。
【0060】
時間t10から時間t11において、BOG流量は、目標圧力Pt3における気体燃料流量調整弁5の単位時間当たりに通過可能な流出量を下回ってさらに低下し、ボイラ10の燃料量は減少する。制御部14は、時間t11において、BOG圧力検知部11が検知するBOG圧力Pgが0.18MPaに低下すると、目標圧力Ptを圧力範囲Pr2の目標圧力Pt2である0.15MPaに決定する。
【0061】
制御部14は、時間t12、時間t13、時間t14及び時間t15において、BOG圧力検知部11が検知するBOG圧力Pgが0.15MPaになるように気体燃料流量調整弁5の開度を調整する。時間t12から時間t15にかけて、BOG供給ライン2Bに流入するBOGの単位時間当たりの流量は、気体燃料流量調整弁5によって目標圧力Pt2に調整できる範囲内で推移している。時間t14では、BOG供給ライン2Bに流入するBOGの単位時間当たりの流量が減少する。制御部14は、BOG圧力Pgを目標圧力Pt2に調整するために気体燃料流量調整弁5の弁開度が小さくなるように制御する。よって、ボイラ10における燃焼量が一時的に減少する。
【0062】
制御部14は、時間t16において、BOG圧力検知部11が検知するBOG圧力Pgが0.18MPaを上回ると、目標圧力Ptを圧力範囲Pr3の目標圧力Pt3である0.22MPaに決定し、BOG圧力検知部11が検知するBOG圧力Pgが0.22MPaになるように気体燃料流量調整弁5の開度を調整する。時間t15から時間t17の間において、BOG供給ライン2Bに流入するBOGの単位時間当たりの流量は、目標圧力Pt2における気体燃料流量調整弁5の単位時間当たりに通過可能な流出量を上回っている。よって、BOG圧力Pgは上昇し、ボイラ10における燃焼量が増加する。
【0063】
制御部14は、時間t18において、BOG圧力Pgが0.25MPaを上回ると、目標圧力Ptを圧力範囲Pr4の目標圧力Pt4である0.27MPaに決定し、BOG圧力検知部11が検知するBOG圧力Pgが0.27MPaになるように気体燃料流量調整弁5の開度を調整する。時間t17において、BOG供給ライン2Bに流入するBOGの単位時間当たりの流量は、目標圧力Pt3における気体燃料流量調整弁5の単位時間当たりに通過可能な流出量を上回っている。
【0064】
制御部14は、時間t18、時間t19及び時間t20において、BOG圧力検知部11が検知するBOG圧力Pgが0.27MPaになるように気体燃料流量調整弁5の開度を調整する。BOG供給ライン2Bに流入するBOGの単位時間当たりの流入量は、気体燃料流量調整弁5によって調整できる範囲内で推移する。よって、BOG圧力Pgは、0.27MPaに安定する。時間t19では、BOG供給ライン2Bに流入するBOGの単位時間当たりの流量が増加する。制御部14は、BOG圧力Pgを目標値圧力に調整するために気体燃料流量調整弁5の弁開度が大きくなるように制御する。よって、ボイラ10における燃焼量が一時的に増加する。
【0065】
制御部14は、BOG圧力検知部11の検知結果に基づいて選択される目標圧力Ptが複数の圧力範囲Pr毎に設定されているため、BOG圧力Pgが大きく変動した場合でも、気体燃料流量調整弁5の開度の調整によって安定したボイラ10の燃焼を維持しつつ余剰のBOG量の変動に対応してボイラ10での燃焼量を制御することができる。さらに、制御部14は、其々の圧力範囲Pr内においては目標圧力Ptとなるように気体燃料流量調整弁5の開度の調整によってボイラ10での燃焼量を制御する。例えば、制御部14は、BOG圧力Pgが目標圧力Ptより高圧の場合にボイラ10での燃焼量を増加し、BOG圧力Pgが目標圧力Ptより低圧の場合にボイラ10での燃焼量を減少するように気体燃料流量調整弁5の開度を制御する。このような制御によって、BOGの圧力変動に対する追随性を高めることができる。
【0066】
このように構成されるボイラシステムの制御部14は、BOG圧力PgがBOGの所定の圧力範囲Pr毎に記憶部14aに記憶されている目標圧力Ptになるように、気体燃料流量調整部3によってボイラ10に供給されるBOGの流量をBOGの圧力変動に応じて逐次制御する。更に、制御部14は、気体燃料流量調整部3によって、BOGの目標圧力PtをBOG圧力Pgに応じて多段階に制御するので、BOGの余剰量の変動に柔軟に対応し、BOGの燃焼量を調整することができる。これにより、フリーフローライン2Aから排出されるBOGの発生量に応じたBOGの燃焼処理を行うことができる。また、BOGの大気への放出を防止することができる。
【0067】
次に、
図1、
図4及び
図5を用いて、ボイラシステム1におけるBOGの燃焼制御の別実施形態について説明する。ボイラシステム1は、ボイラ10の燃焼量が目標燃焼量CtになるようにBOGの流量を調整する。
【0068】
図1及び
図4に示すように、制御部14は、記憶部14aに記憶されている複数の圧力範囲/目標燃焼量マップMc1、Mc2・・・(
図4にはMc1のみを記載)からボイラ10の稼働条件、液化ガス貯蔵タンクT1の状態等に基づいて、または予め設定されている圧力範囲/目標燃焼量マップMc1を選択する。
図4に示す圧力範囲/目標燃焼量マップMc1は、目標燃焼量Ctとして気体燃料流量調整弁5の弁開度の割合を設定する例を示す。目標燃焼量Ctは燃焼量として質量流量等により設定しても良い。
【0069】
圧力範囲/目標燃焼量マップMc1は、圧力範囲Pr1において目標燃焼量Ct1、圧力範囲Pr2において目標燃焼量Ct2、圧力範囲Pr3において目標燃焼量Ct3、圧力範囲Pr4において目標燃焼量Ct4が設定されている。なお、燃焼量はボイラ10の最大燃焼熱量を100%とした場合の百分率の表示とする。制御部14は、目標圧力Ptになるように制御する場合と同様に、BOG圧力検知部11が検知するBOG圧力Pgに基づいて、圧力範囲Pr毎に所定の目標燃焼量Ctになるように気体燃料流量調整弁5の弁開度を制御する。なお、本実施形態において、燃焼量の百分率を気体燃料流量調整弁5の弁開度の百分率で示すものとする。
【0070】
本実施形態において、圧力範囲/目標燃焼量マップMc1は、0.12MPa以下を範囲とする圧力範囲Pr1において目標燃焼量Ct1が気体燃料流量調整弁5の弁開度0%に設定され、0.12MPaよりも高く0.18MPa以下を範囲とする圧力範囲Pr2において気体燃料流量調整弁5の弁開度30%に設定され、0.18MPaよりも高く0.25MPa以下を範囲とする圧力範囲Pr3において気体燃料流量調整弁5の弁開度60%に設定され、0.25MPaよりも高く0.30MPa以下を範囲とする圧力範囲Pr4において目標燃焼量Ct4が気体燃料流量調整弁5の弁開度100%に設定されているものとする。なお、圧力範囲/目標燃焼量マップMc1の圧力範囲Pr及び目標燃焼量Ctは、前述の値に限定されるものではない。
【0071】
制御部14は、BOG圧力検知部11が検知したBOG供給ライン2B内のBOG圧力Pgを単位時間毎に取得し、選択した圧力範囲/目標燃焼量マップMc1に基づいて、取得したBOG圧力Pgから目標燃焼量Ctを決定する。制御部14は、BOG圧力Pgを取得する度に、圧力範囲/目標燃焼量マップMc1に対応する目標燃焼量Ctを決定する。
【0072】
図5に示すように、制御部14は、時間t1、時間t2において、ボイラ10の燃焼量が目標燃焼量Ct1(0%)になるように気体燃料流量調整弁5を制御する。制御部14は、時間t3から時間t5及び時間t11から時間t15において、ボイラ10の燃焼量が目標燃焼量Ct2(30%)になるように気体燃料流量調整弁5を制御する。制御部14は、時間t6から時間t10及び時間t16と時間t17において、ボイラ10の燃焼量が目標燃焼量Ct3(60%)になるように気体燃料流量調整弁5を制御する。制御部14は、時間t18から時間t20において、ボイラ10の燃焼量が目標燃焼量Ct4(100%)になるように気体燃料流量調整弁5を制御する。
【0073】
また、制御部14は、時間t3において、BOG圧力Pgが0.12MPaを上回ると、ボイラ10の目標燃焼量Ct1を目標燃焼量Ct2に切り替えて、気体燃料流量調整弁5を制御する。制御部14は、時間t6において、BOG圧力Pgが0.18MPaを上回ると、ボイラ10の目標燃焼量Ct2を目標燃焼量Ct3に切り替えて、気体燃料流量調整弁5を制御する。制御部14は、時間t11においてBOG圧力が0.18MPaに低下するので、ボイラ10の目標燃焼量Ct3を目標燃焼量Ct2に切り替えて、気体燃料流量調整弁5を制御する。制御部14は、時間t16において、BOG圧力Pgが0.18MPaを上回るので、ボイラ10の目標燃焼量Ct2を目標燃焼量Ct3に切り替えて気体燃料流量調整弁5を制御する。制御部14は、時間t18において、BOG圧力Pgが0.25MPaを上回るので、ボイラ10の目標燃焼量Ct3を目標燃焼量Ct4に切り替えて気体燃料流量調整弁5を制御する。ボイラシステム1は、BOG圧力Pgが圧力範囲Prの範囲から外れると、対応する圧力範囲Prにおける目標燃焼量CtになるようにBOGの供給量を変更する。
【0074】
このように、ボイラシステム1は、BOG圧力Pgが圧力範囲Prの範囲内で変動すると目標燃焼量Ctを維持する。一方、ボイラシステム1は、BOG圧力Pgが一の圧力範囲Prから外れて他の圧力範囲に含まれると、ボイラ10に供給されるBOGの流量が新たな圧力範囲Prの目標燃焼量Ctになるように気体燃料流量調整弁5を調整する。
【0075】
上述の構成では、制御部14は、ボイラ10の燃焼量がBOG圧力Pgの所定の圧力範囲Pr毎に記憶部14aに記憶されているボイラ10の目標燃焼量Ctになるように、気体燃料流量調整部3によってボイラ10に供給されるBOGの流量を制御する。ボイラ10には、BOG圧力検知部11が検知したBOG圧力Pgが所定の圧力範囲Pr内で変動している場合、所定量のBOGが供給される。よって、ボイラ10は、BOG圧力Pgの変動に対して燃焼量の変動が少なく、安定した燃焼状態を維持しやすい。さらに、制御部14は、複数のBOGの圧力範囲Pr毎にそれぞれ設定されている目標燃焼量Ctに応じて、ボイラ10に供給されるBOGの流量を気体燃料流量調整部3によって制御する。つまり、制御部14は、気体燃料流量調整部3によって、ボイラ10に供給するBOGの流量をBOG圧力Pgに応じて多段階に制御するので、余剰のBOGの発生量の変動に柔軟に対応した燃焼処理が可能である。これにより、BOG供給ライン2Bから排出されるBOGの発生量に応じたBOGの燃焼処理を行うことができる。
【0076】
制御部14は、其々の圧力範囲Pr内においては、気体燃料流量調整部3によってボイラ10の燃焼量を目標燃焼量Ctとなるように制御する。よって、制御部14は、気体燃料流量調整部3によってボイラ10での燃焼量の変動を抑えつつ、BOGの発生量に応じてボイラ10での燃焼量を制御することができる。このため、ボイラ10は、燃焼が不安定になりやすいBOGの性状或いは供給条件である場合に、燃焼量の変動が少ないため安定した燃焼を行いやすい。
(実施形態2)
【0077】
次に、
図1を用いて、本発明に係るボイラシステムの実施形態2であるボイラシステム1について説明する。実施形態2は、液体燃料の供給を制御する液体燃料流量調整部7を備えたボイラシステム1において、ボイラ10の運転状態に応じてBOGの燃焼処理を開始する制御に関するものである。
【0078】
制御部14は、液体燃料遮断弁8および液体燃料流量調整弁9の開閉状態を検出する等により、ボイラ10の運転状況を判定する。例えば、制御部14は、液体燃料流量調整部7の液体燃料遮断弁8が閉状態である場合、ボイラ10の燃焼が停止中であると判定する。ボイラ10の燃焼が停止状態である場合、制御部14は、液体燃料流量調整部7を低燃焼状態(例えば、最大燃焼量の20%の燃焼量供給)に制御し、ボイラ10に対して重油の供給を行う。制御部14は、重油の供給後に着火手段によって重油に着火し、ボイラ10において燃焼を開始する。
【0079】
制御部14は、ボイラ10が重油を燃焼中であり、液体燃料流量調整弁9の弁開度からボイラ10が低燃焼状態でないと判定した場合、液体燃料流量調整弁9を低燃焼状態の弁開度に調整し、低燃焼状態での重油の燃焼を継続するようにボイラ10を制御する。
【0080】
その後、制御部14は、閉状態である気体燃料遮断弁4Bを開状態に切り替え、気体燃料流量調整弁5を低燃焼状態の弁開度として、ボイラ10にBOGを供給する。制御部14は、気体燃料遮断弁4Bを開状態に切り替えてから所定時間経過後に、開状態である液体燃料遮断弁8を閉状態に切り替えてボイラ10に対して重油の供給を停止し、BOGのみの燃焼に移行する。制御部14は、実施形態1に記載の燃焼制御によってボイラ10に対するBOG供給量を制御する。
【0081】
このように構成されるボイラシステム1は、ボイラ10の運転状態に応じてBOGの燃焼制御を開始するので、ボイラ10に対するBOGの供給を速やかに開始し、BOGを優先的に燃焼処理できる。また、ボイラシステム1は、内に熱要求がある場合にボイラ10による熱供給を継続することができる。
【0082】
(実施形態3)
実施形態3は、液体燃料の供給を制御する液体燃料流量調整部7と不活性ガスを含むBOG(以降、不活性ガス混合ガスとする)における不活性ガスの割合を検知する不活性ガス検知部12(
図1)と、を備えたボイラシステム1における不活性ガスの燃焼制御に関するものである。
【0083】
ドライドックでの船舶の検査等の際には、液化ガス貯蔵タンクT1内のBOGを液化ガス貯蔵タンクT1内からフリーフローライン2Aに安全に排出するために液化ガス貯蔵タンクT1の不活性ガスのパージが行われる。窒素等の不活性ガスは、液化ガス貯蔵タンクT1に接続された不活性ガスパージライン(図示せず)から、液化ガスを荷下ろし後の可燃性ガスによって満たされた液化ガス貯蔵タンクT1に供給される。これにより、不活性ガスとBOGとを含む混合ガスが液化ガス貯蔵タンクT1に接続されているフリーフローライン2Aに排出される。
【0084】
フリーフローライン2Aに排出された不活性ガス混合ガスは、BOG供給ライン2Bを通じてボイラ10によって燃焼処理される。不活性ガス混合ガスは、BOGに対する不活性ガスの割合が増加すると不活性ガス混合ガスの発熱量(kJ/Nm3)が低下する。ボイラ10は、不活性ガス混合ガスにおける不活性ガスの割合が一定以上になると、不活性ガス混合ガスだけでの燃焼が困難になる。
【0085】
不活性ガス検知部12は、ガス熱量計、或いは窒素ガス検知器などの検出装置を使用できる。また、不活性ガス混合ガス量に対する燃焼用空気量が所定値に制御される場合、不活性ガス混合ガス中の不活性ガス割合の増加(不活性ガス混合ガス中のBOG割合の減少)により、燃焼ガス中の酸素濃度は増加することから、燃焼ガス中の酸素濃度から不活性ガス割合を推定できる。
【0086】
制御部14は、不活性ガス検知部12から取得した不活性ガスの検出結果に基づいて、気体燃料流量調整弁5の開度の調整によってボイラ10の燃焼を制御する。制御部14は、不活性ガス検知部12から取得した不活性ガスの検出結果に基づいて、重油の燃焼の要否を判定する。制御部14は、不活性ガスの検出結果に基づいて重油の要否を判断するので、ボイラ10の稼働状態に関わらず不活性ガス混合ガスの燃焼制御を適用することができる。
【0087】
不活性ガスの検出結果から不活性ガス濃度が基準値よりも低いまたは不活性ガスが含まれないと判定された場合、制御部14は、実施形態2に記載の燃焼制御によってボイラ10におけるBOGの燃焼処理を行い、実施形態1に記載の燃焼制御によってボイラ10に対するBOG供給量を制御する。
【0088】
一方、制御部14は、不活性ガス検知部12から取得した不活性ガスの検出結果から不活性ガス濃度が基準値よりも高いと判定された場合、実施形態2に記載の燃焼制御によってボイラ10におけるBOGの燃焼処理を開始するものの、BOGの供給開始後も重油の燃焼処理を継続する。さらに、制御部14は、ボイラ10におけるBOGの燃焼量が決定した目標燃焼量Ctになるように気体燃料流量調整弁5の開度を調整する。また、制御部14は、ボイラ10の燃焼状態が安定するように液体燃料流量調整弁9の開度を調整する。つまり、制御部14は、ボイラ10への重油の供給を継続するとともにBOGの供給を継続する。
【0089】
ボイラシステム1は、BOGの不活性ガス割合が基準値よりも高い場合、ボイラ10への重油の供給を継続することにより、ボイラ10におけるBOGの燃焼を安定させると共に、不活性ガス混合ガスの供給量を最大化できる。なお、不活性ガスを含むBOGを燃焼するボイラ10では、重油の供給から重油とBOGとの供給に移行する際、および重油とBOGとの供給からBOGのみの供給に移行する際、ボイラ10の燃焼状態が安定するように移行後の所定時間はボイラ10の燃焼状態を維持することが望ましい。
【0090】
このように構成されるボイラシステム1は、気体燃料流量調整弁5よりも上流側に配置されているBOG圧力検知部11によってBOG供給ライン2BにおけるBOG圧力Pgの変動を検知する。BOG圧力検知部11がフリーフローライン2Aに接続されているBOG供給ライン2Bに設けられているので、制御部14は、BOG圧力Pgに基づいて気体燃料流量調整弁5の開度の調整によってフリーフローライン2Aを流れる余剰のBOGの増減に応じて、燃焼量を制御することができる。また、ボイラシステム1は、BOGを圧縮機等によって圧縮することなく、BOG圧力Pgに基づいた流量のBOGをボイラ10に供給する。
【0091】
また、BOG処理システム100は、供給されるBOGに含まれる不活性ガスの濃度が基準値よりも低い場合、BOGによってボイラ10が安定して燃焼を維持可能であるとしてBOGのみをボイラ10に供給する。BOG処理システム100は、ボイラ10に重油が供給されている場合、ボイラ10にBOGの供給を開始してから所定時間後にBOGのみが供給されている状態に切り替える。よって、ボイラ10は、重油のみを燃焼している状態からBOGのみを燃焼している状態に切り替わる際に、重油とBOGとが燃焼されている状態を経て切り替わるので、ボイラ10への燃料の供給が中断することなく燃焼状態が安定する。これにより、ボイラ10の燃焼状態を良好に維持し、フリーフローライン2Aから排出されるBOGの発生量に応じてBOGの燃焼処理を行うことができる。
【0092】
(実施形態4)
次に、本発明に係るボイラシステムの実施形態4であるボイラシステム(図示せず)について説明する。ボイラシステムは、不活性ガス検知部12(
図1参照)に代えて排気路13(
図1参照)に排ガス酸素濃度検知部(図示せず)を有する。排ガス酸素濃度検知部は、ボイラ10から排出される燃焼ガス中の酸素濃度を検出するセンサである。制御部14は、排ガス酸素濃度検知部が検知した燃焼ガス中の酸素濃度を単位時間毎に取得する。制御部14は、排ガス酸素濃度検知部に電気的に接続され、排ガス酸素濃度検知部が検知した燃焼ガスに含まれる酸素濃度を取得することができる。制御部14は、排ガス中の酸素濃度に基づいて、一般的な燃焼制御として空気比を適正範囲に調整するだけでなく、不活性ガス混合ガスを単独で燃焼可能か否かを判定することができる。
【0093】
制御部14は、ボイラ10において適切に燃焼可能な不活性ガスの濃度であるBOGの燃焼ガス中の酸素濃度の上限値を基準値として有している。前記基準値は、ボイラ10において不活性ガス混合ガスを単独で燃焼可能か否かを判定する基準である。
【0094】
不活性ガス混合ガスがボイラシステムに供給される場合、制御部14は、ボイラ10から排出された燃焼ガス中の酸素濃度が前記基準値以下かどうか判定する。制御部14は、燃焼ガス中の酸素濃度が前記基準値以下の場合、液体燃料による支燃が必要でない不活性ガス割合の不活性ガス混合ガスであると判定する。一方、制御部14は、燃焼ガス中の酸素濃度が前記基準値よりも高い場合、液体燃料による支燃が必要な不活性ガス割合の不活性ガス混合ガスであると判定する。
【0095】
(その他の実施形態)
以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。
【0096】
上述の各実施形態において、BOGが流れるBOG供給ライン2Bは、BOG圧力Pgを調整する圧力調整弁およびBOGの消費機器への分岐等を有していない。しかしながら、BOG供給ラインは、BOG圧力検知部が余剰のBOG圧力を速やかに検出できる構成であれば、圧力調整弁等を有していてもよく、BOGの圧力値への影響が小さい分岐等を有してもよい。
【0097】
また、ボイラシステム1は、BOG圧力検知部11を備える。しかしながら、BOG圧力検知部は、圧力値への換算可能な物理量を検出するものであればよい。例えばBOGの流量は、所定の条件を設定することでBOG圧力に換算することができる。
【0098】
上述の実施形態において、制御部14は、圧力範囲/目標圧力マップMp1、Mp2・・・または圧力範囲/目標燃焼量マップMc1、Mc2・・・に設定した圧力範囲Prにより、目標圧力Ptまたは目標燃焼量CtをBOG圧力Pgに応じた値に移行する。しかしながら、目標圧力または目標燃焼量をBOG圧力Pgに応じた値に移行する際にディファレンシャルを設けてもよい。
【0099】
例えば、制御部14は、圧力範囲Prが0.12MPa<Pr2≦0.18MPaにおける目標圧力Pt2から圧力範囲Prが0.18MPa<Pr3≦0.25MPaのPt3に移行する場合、BOG圧力Pgが0.18MPaを上回る状態が所定時間継続した後に目標圧力Pt2から目標圧力Pt3に移行する。また、目標圧力Pt3から目標圧力Pt2に移行する場合、BOG圧力Pgが0.18MPa以下の状態が所定時間継続した後に目標圧力Pt2に移行する。
【0100】
上述の各実施形態において、気体燃料流量調整部3は、気体燃料流量調整弁5が気体燃料遮断弁4Bの下流側に位置している。しかしながら、気体燃料流量調整部は、気体燃料流量調整弁が気体燃料遮断弁の上流側に位置していてもよい。
【0101】
上述の各実施形態において、液体燃料流量調整部7は、液体燃料流量調整弁9が液体燃料遮断弁8の下流側に位置している。しかしながら、液体燃料流量調整部は、液体燃料流量調整弁が液体燃料遮断弁の上流側に位置していてもよい。
【0102】
上述の各実施形態において、ボイラ10は、BOGと重油との両方を燃焼可能なデュアルフューエルボイラである。しかしながら、ボイラは、BOG及び重油以外の燃料を燃焼可能なボイラでもよい。例えば、主機用の液化ガスの気化装置Hを備えた船舶において、ボイラは気化装置Hでガス化した燃料を燃焼しても良い。
【0103】
上述の各実施形態において、BOG圧力検知部11は、BOG供給ライン2Bに位置している。しかしながら、BOG圧力検知部は、気体燃料流量調整部の上流側に位置していればよい。
【0104】
上述の各実施形態において、気体燃料遮断弁4B、気体燃料流量調整弁5、液体燃料遮断弁8及び液体燃料流量調整弁9は、電動弁によって構成されている。しかしながら、気体燃料流量調整弁及び液体燃料流量調整弁は、電磁弁、エア駆動弁等の任意の動力によって駆動するアクチュエータを有する弁であればよい。
【0105】
上述のボイラシステム1において、不活性ガス検知部12は、気体燃料流量調整弁5よりも上流側のBOG供給ライン2Bに位置している。しかしながら、不活性ガス検知部は、BOGが通過する管路に位置していればよい。不活性ガス検知部は、例えばフリーフローラインに位置していてもよい。
【符号の説明】
【0106】
1 ボイラシステム
2A フリーフローライン
2B BOG供給ライン
3 気体燃料流量調整部
4A 減圧弁
4B 気体燃料遮断弁
5 気体燃料流量調整弁
6 液体燃料供給ライン
7 液体燃料流量調整部
8 液体燃料遮断弁
9 液体燃料流量調整弁
10 ボイラ
11 BOG圧力検知部
12 不活性ガス検知部
13 排気路
14 制御部
15 熱媒体ライン