IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ エイブイエックス コーポレイションの特許一覧

<>
  • 特開-固体電解キャパシタアセンブリ 図1
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024029077
(43)【公開日】2024-03-05
(54)【発明の名称】固体電解キャパシタアセンブリ
(51)【国際特許分類】
   H01G 9/042 20060101AFI20240227BHJP
   H01G 9/08 20060101ALI20240227BHJP
   H01G 9/15 20060101ALI20240227BHJP
   H01G 9/048 20060101ALI20240227BHJP
   H01G 2/02 20060101ALI20240227BHJP
   H01G 4/228 20060101ALI20240227BHJP
【FI】
H01G9/042
H01G9/08 E
H01G9/15
H01G9/048
H01G2/02 101D
H01G4/228 G
【審査請求】有
【請求項の数】1
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2023216069
(22)【出願日】2023-12-21
(62)【分割の表示】P 2022024503の分割
【原出願日】2018-03-06
(31)【優先権主張番号】62/467,276
(32)【優先日】2017-03-06
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】500047848
【氏名又は名称】キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション
(74)【代理人】
【識別番号】100118902
【弁理士】
【氏名又は名称】山本 修
(74)【代理人】
【識別番号】100106208
【弁理士】
【氏名又は名称】宮前 徹
(74)【代理人】
【識別番号】100196508
【弁理士】
【氏名又は名称】松尾 淳一
(74)【代理人】
【識別番号】100129458
【弁理士】
【氏名又は名称】梶田 剛
(72)【発明者】
【氏名】ウィーバー,ミッチェル・ディー
(72)【発明者】
【氏名】ペトルジレック,ヤン
(72)【発明者】
【氏名】ウーヘル,ミロスラフ
(72)【発明者】
【氏名】プリバン,フランティシェク
(72)【発明者】
【氏名】ホフィーレク,トマーシュ
(57)【要約】      (修正有)
【課題】高湿度(例えば60%の相対湿度)の条件下で良好に機能するキャパシタアセンブリを提供する。
【解決手段】キャパシタアセンブリ30は、焼結多孔質陽極体、陽極体の上に配されている誘電体及び誘電体の上に配されている固体電解質を含む固体電解キャパシタ素子33を含む。陽極終端62が陽極体と電気的に接続されており、陰極終端72が固体電解質と電気的に接続されている。陽極終端62の少なくとも一部の上には、有機金属化合物を含む第1の被覆が配置されており、陰極終端72の少なくとも一部の上には、有機金属化合物を含む第2の被覆が配置されている。更に、ケーシング材料28がキャパシタ素子33を収容し、陽極終端62及び陰極終端72の実装面を露出した状態にしている。
【選択図】図1
【特許請求の範囲】
【請求項1】
焼結多孔質陽極体、前記陽極体の上に配されている誘電体、及び前記誘電体の上に配されている固体電解質を含む固体電解キャパシタ素子;
前記陽極体と電気的に接続されている陽極終端、ここで前記陽極終端の少なくとも一部の上に有機金属化合物を含む第1の被覆が配置されている;
前記固体電解質と電気的に接続されている陰極終端、ここで前記陰極終端の少なくとも一部の上に有機金属化合物を含む第2の被覆が配置されている;及び
前記キャパシタ素子を収容し、前記陽極終端及び前記陰極終端の実装面を露出した状態にしているケーシング材料;
を含むキャパシタアセンブリ。
【請求項2】
前記第1の被覆の前記有機金属化合物、前記第2の被覆の前記有機金属化合物、又は両方が、次の一般式:
【化1】
(式中、
Mは有機金属原子であり;
、R、及びRは、独立して、アルキル又はヒドロキシアルキルであり、R、R、及びRの少なくとも1つはヒドロキシアルキルであり;
nは、0~8の整数であり;
Xは、有機又は無機官能基である)
を有する、請求項1に記載のキャパシタアセンブリ。
【請求項3】
Mがケイ素である、請求項2に記載のキャパシタアセンブリ。
【請求項4】
前記ヒドロキシアルキルがOCHである、請求項3に記載のキャパシタアセンブリ。
【請求項5】
、R、及びRがヒドロキシアルキルである、請求項2に記載のキャパシタアセンブリ。
【請求項6】
前記有機金属化合物が、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルメチルジエトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルメチルジエトキシシラン、グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、グリシドキシメチルトリプロポキシシラン、グリシドキシメチルトリブトキシシラン、β-グリシドキシエチルトリメトキシシラン、β-グリシドキシエチルトリエトキシシラン、β-グリシドキシエチルトリプロポキシシラン、β-グリシドキシエチルトリブトキシシラン、β-グリシドキシエチルトリメトキシシラン、α-グリシドキシエチルトリエトキシシラン、α-グリシドキシエチルトリプロポキシシラン、α-グリシドキシエチルトリブトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリプロポキシシラン、γ-グリシドキシプロピルトリブトキシシラン、β-グリシドキシプロピルトリメ
トキシシラン、β-グリシドキシプロピルトリエトキシシラン、β-グリシドキシプロピルトリプロポキシシラン、α-グリシドキシプロピルトリブトキシシラン、α-グリシドキシプロピルトリメトキシシラン、α-グリシドキシプロピルトリエトキシシラン、α-グリシドキシプロピルトリプロポキシシラン、α-グリシドキシプロピルトリブトキシシラン、γ-グリシドキシブチルトリメトキシシラン、δ-グリシドキシブチルトリエトキシシラン、δ-グリシドキシブチルトリプロポキシシラン、δ-グリシドキシブチルトリブトキシシラン、δ-グリシドキシブチルトリメトキシシラン、γ-グリシドキシブチルトリエトキシシラン、γ-グリシドキシブチルトリプロポキシシラン、γ-プロポキシブチルトリブトキシシラン、δ-グリシドキシブチルトリメトキシシラン、δ-グリシドキシブチルトリエトキシシラン、δ-グリシドキシブチルトリプロポキシシラン、α-グリシドキシブチルトリメトキシシラン、α-グリシドキシブチルトリエトキシシラン、α-グリシドキシブチルトリプロポキシシラン、α-グリシドキシブチルトリブトキシシラン、又はこれらの組合せである、請求項1に記載のキャパシタアセンブリ。
【請求項7】
前記陽極終端のそれぞれの表面が第1の被覆を含む、請求項1に記載のキャパシタアセンブリ。
【請求項8】
前記陰極終端のそれぞれの表面が第2の被覆を含む、請求項1に記載のキャパシタアセンブリ。
【請求項9】
前記キャパシタ素子が、前記固体電解質の上に配されている金属粒子層を含む陰極被覆を更に含み、前記金属粒子層は樹脂状ポリマーマトリクス内に分散されている複数の導電性金属粒子を含む、請求項1に記載のキャパシタアセンブリ。
【請求項10】
前記陽極体がタンタルを含み、前記誘電体が五酸化タンタルを含む、請求項1に記載のキャパシタアセンブリ。
【請求項11】
前記固体電解質が複数の導電性ポリマー粒子を含む、請求項1に記載のキャパシタアセンブリ。
【請求項12】
前記導電性ポリマー粒子が、次式(III):
【化2】
(式中、
は、線状又は分岐の、C~C18アルキル基、C~C12シクロアルキル基、C~C14アリール基,C~C18アラルキル基、又はこれらの組合せであり;
qは0~8の整数である)
の繰り返し単位を有する外因性導電性ポリマーを含む、請求項11に記載のキャパシタアセンブリ。
【請求項13】
前記外因性導電性ポリマーがポリ(3,4-エチレンジオキシチオフェン)である、請求項12に記載のキャパシタアセンブリ。
【請求項14】
前記粒子がポリマー対イオンも含む、請求項12に記載のキャパシタアセンブリ。
【請求項15】
前記導電性ポリマー粒子が、次式(IV):
【化3】
(式中、
Rは(CH-O-(CHであり;
aは、0~10であり;
bは、1~18であり;
Zはアニオンであり;
Xはカチオンである)
の繰り返し単位を有する固有導電性ポリマーを含む、請求項11に記載のキャパシタアセンブリ。
【請求項16】
前記固体電解質の上に配されており、予め重合された導電性ポリマー粒子及び架橋剤を含む外側ポリマー被覆を更に含む、請求項1に記載のキャパシタアセンブリ。
【請求項17】
前記キャパシタが約40%以上の相対湿度を有する雰囲気と接触する、請求項1に記載のキャパシタアセンブリ。
【請求項18】
ケーシング材料の少なくとも一部を被覆する湿分バリヤ層を更に含む、請求項1に記載のキャパシタアセンブリ。
【請求項19】
前記湿分バリヤ層がシリコーンエラストマーを含む、請求項18に記載のキャパシタアセンブリ。
【発明の詳細な説明】
【技術分野】
【0001】
本出願は、2017年3月6日の出願日を有する米国仮特許出願62/467,276(その全部を参照として本明細書中に包含する)の出願の利益を主張する。
【背景技術】
【0002】
電解キャパシタ(例えばタンタルキャパシタ)は、それらの体積効率、信頼性、及びプロセス適合性のために、回路の設計においてますます使用されるようになっている。例えば、開発されたキャパシタの1つのタイプは、タンタル陽極、誘電体、及び導電性ポリマー固体電解質を含む固体電解キャパシタ素子である。キャパシタ素子を表面実装するためには、陽極を陽極終端(termination)に接続し、固体電解質を陰極終端に接続する。更に
、キャパシタを外部環境から保護し、それに良好な機械的安定性を与えることを助けるために、キャパシタ素子はまた、樹脂状ケーシング材料(例えばエポキシ樹脂)で封入して、陽極終端及び陰極終端の一部が表面に実装するために露出した状態になるようにされている。残念なことに、キャパシタの製造(例えばリフロー)中にしばしば用いられる高い温度によって、陽極終端及び/又は陰極終端内に微小クラックが形成される可能性がある。高い湿度レベルに曝露されると、これらの微小クラックは湿分を吸収する可能性があり、それにより導電性ポリマー固体電解質の酸化がもたらされて、電気特性の急速な劣化が引き起こされる可能性がある。
【0003】
したがって、高い湿度レベルにおいて用いるための改良された固体電解キャパシタに対する必要性が存在する。
【発明の概要】
【0004】
本発明の一態様によれば、焼結多孔質陽極体、陽極体の上に配されている誘電体、及び誘電体の上に配されている固体電解質を含む固体電解キャパシタ素子を含むキャパシタアセンブリが開示される。陽極終端が陽極体と電気的に接続されており、陰極終端が固体電解質と電気的に接続されている。陽極終端の少なくとも一部の上に有機金属化合物を含む第1の被覆が配置されており、陰極終端の少なくとも一部の上に有機金属化合物を含む第2の被覆が配置されている。更に、ケーシング材料がキャパシタ素子を収容して、陽極終端及び記陰極終端の実装面(mounting surface)を露出した状態にしている。
【0005】
本発明の他の特徴及び形態を、下記においてより詳細に示す。
当業者に向けられた、本発明のベストモードを含む本発明の完全かつ実施可能な開示を、添付の図面を参照する本明細書の残りでより詳しく示す。
【図面の簡単な説明】
【0006】
図1図1は、本発明にしたがって形成することができるキャパシタの一態様の概要図である。
【発明を実施するための形態】
【0007】
本明細書及び図面中で参照記号を繰り返し使用することは、本発明の同じか又は類似する特徴又は構成要素を表すことを意図している。
本議論は代表的な態様のみの説明であり、本発明のより広い形態を限定することは意図しておらず、より広い形態は代表的な構成において具現化されることが当業者によって理解される。
【0008】
一般的に言うと、本発明は、焼結多孔質陽極体、陽極体の上に配されている誘電体、及
び誘電体の上に配されている固体電解質を含むキャパシタ素子を含むキャパシタアセンブリに関する。陽極体は陽極終端と電気的に接続されており、固体電解質は陰極終端と電気的に接続されている。更に、キャパシタ素子は、ケーシング材料で封止して、陽極終端及び記陰極終端の少なくとも1つの表面が電子コンポーネント(例えば印刷回路基板)に実装するために露出した状態になるようにされている。特に、第1の被覆が陽極終端の少なくとも一部の上に配置されており、第2の被覆が陰極終端の少なくとも一部の上に配置されている。第1及び第2の被覆は有機金属化合物を含んでおり、これによりケーシング材料の終端への接着を向上させて、約150℃~約350℃、幾つかの態様においては200℃~約300℃(例えば250℃)のピークリフロー温度のような高い温度に(例えばリフロー中に)曝露した後に通常であれば形成される微小クラックの数を減少させることができる。
【0009】
その独特の構造のために、得られるキャパシタアセンブリは湿分に対して感受性が高くなく、したがって約40%以上、幾つかの態様においては約45%以上、幾つかの態様においては約50%以上、幾つかの態様においては約60%以上(例えば約60%~約85%)の相対湿度を有する雰囲気と接触させて配置した場合のように高い湿度レベルに曝露した場合であっても優れた電気特性を示すことができる。相対湿度は、例えばASTM-E337-02、方法A(2007)にしたがって求めることができる。高湿度雰囲気は、キャパシタアセンブリそれ自体の内部雰囲気の一部であってよく、或いはこれはキャパシタアセンブリが貯蔵及び/又は使用中に曝露される外部雰囲気であってよい。本キャパシタは、例えば、高湿度雰囲気(例えば60%の相対湿度)に曝露した際に、100kHzの動作周波数において測定して約200ミリオーム、幾つかの態様においては約150ミリオーム未満、幾つかの態様においては約0.01~約125ミリオーム、幾つかの態様においては約0.1~約100ミリオームのような比較的低い等価直列抵抗(ESR)を示すことができる。本キャパシタアセンブリは、僅か約50マイクロアンペア(μA)以下、幾つかの態様においては約40μA以下、幾つかの態様においては約20μA以下、幾つかの態様においては約0.1~約10μAのDCLを示すことができる。本キャパシタアセンブリはまた、その湿潤キャパシタンスの高いパーセントも示すことができ、これにより雰囲気湿分の存在下において小さなキャパシタンスの損失及び/又は変動しか有しないようにすることが可能である。この性能特性は、等式:
湿潤対乾燥キャパシタンス=(乾燥キャパシタンス/湿潤キャパシタンス)×100
によって求められる「湿潤対乾燥キャパシタンスパーセント(wet-to-dry capacitance percentage)」によって定量される。
【0010】
本キャパシタアセンブリは、約50%以上、幾つかの態様においては約60%以上、幾つかの態様においては約70%以上、幾つかの態様においては約80%~100%の湿潤対乾燥キャパシタンスパーセントを示すことができる。乾燥キャパシタンスは、120Hzの周波数において測定して、約30ナノファラド/平方センチメートル(nF/cm)以上、幾つかの態様においては約100nF/cm以上、幾つかの態様においては約200~約3,000nF/cm、幾つかの態様においては約400~約2,000nF/cmであってよい。
【0011】
特に、ESR、DCL、及びキャパシタンスの値を、更に、高い湿度レベルにおいて相当な時間維持することもできる。例えば、これらの値は、約20℃~約50℃、幾つかの態様においては約25℃~約40℃(例えば30℃)の温度において試験した際に、約10時間以上、幾つかの態様においては約20時間~約30時間、幾つかの態様においては約40時間~約80時間(例えば、24時間、48時間、又は72時間)維持することができる。
【0012】
ここで、キャパシタの種々の態様をより詳細に記載する。
I.キャパシタ素子:
A.陽極体:
キャパシタ素子は、焼結多孔質体上に形成された誘電体を含む陽極を含む。多孔質陽極体は、バルブメタル(すなわち酸化することができる金属)又はバルブメタル系化合物、例えば、タンタル、ニオブ、アルミニウム、ハフニウム、チタン、それらの合金、それらの酸化物、それらの窒化物などを含む粉末から形成することができる。粉末は、通常は、タンタル塩(例えば、フッ化タンタル酸カリウム(KTaF)、フッ化タンタル酸ナトリウム(NaTaF)、五塩化タンタル(TaCl)等)を還元剤と反応させる還元プロセスから形成される。還元剤は、液体、気体(例えば水素)、又は固体、例えば金属(例えばナトリウム)、金属合金、又は金属塩の形態で提供することができる。例えば一態様においては、タンタル塩(例えばTaCl)を約900℃~約2,000℃、幾つかの態様においては約1,000℃~約1,800℃、幾つかの態様においては約1,100℃~約1,600℃の温度で加熱して蒸気を形成することができ、それを気体還元剤(例えば水素)の存在下で還元することができる。かかる還元反応の更なる詳細は、MaeshimaらのWO-2014/199480に記載されている。還元後、生成物を冷却、粉砕、及び洗浄して粉末を形成することができる。
【0013】
粉末の比電荷は、通常は、所望の用途に応じて約2,000~約800,000マイクロファラド・ボルト/グラム(μF・V/g)で変動する。例えば、幾つかの態様においては、約100,000~約800,000μF・V/g、幾つかの態様においては約120,000~約700,000μF・V/g、幾つかの態様においては約150,000~約600,000μF・V/gの比電荷を有する高電荷粉末を用いることができる。他の態様においては、約2,000~約100,000μF・V/g、幾つかの態様においては約5,000~約80,000μF・V/g、幾つかの態様においては約10,000~約70,000μF・V/gの比電荷を有する低電荷粉末を用いることができる。当該技術において公知なように、比電荷は、キャパシタンスに用いた陽極酸化電圧をかけ、次にこの積を陽極酸化電極体の重量で割ることによって求めることができる。
【0014】
粉末は、一次粒子を含む自由流動性の微細粉末であってよい。粉末の一次粒子は、一般的に、場合によっては粒子を70秒間の超音波振動にかけた後に、例えばBECKMAN COULTER Corporation製のレーザー粒径分布分析装置(例えばLS-230)を用いて求めて、約5~
約500ナノメートル、幾つかの態様においては約10~約400ナノメートル、幾つかの態様においては約20~約250ナノメートルのメジアン径(D50)を有する。一次粒子は、通常は三次元の粒子形状(例えば球状又は角状)を有する。かかる粒子は、通常は比較的低い「アスペクト比」、すなわち粒子の平均直径又は幅を平均厚さで割った値(D/T)を有する。例えば、粒子のアスペクト比は、約4以下、幾つかの態様においては約3以下、幾つかの態様においては約1~約2であってよい。一次粒子に加えて、粉末は、一次粒子の凝集(又は凝塊化)によって形成される二次粒子のような他のタイプの粒子を含んでいてもよい。かかる二次粒子は、約1~約500マイクロメートル、幾つかの態様においては約10~約250マイクロメートルのメジアン径(D50)を有していてよ
い。
【0015】
粒子の凝集は、粒子を加熱することによるか、及び/又はバインダを用いることによって行うことができる。例えば、凝集は、約0℃~約40℃、幾つかの態様においては約5℃~約35℃、幾つかの態様においては約15℃~約30℃の温度で行うことができる。また好適なバインダとしては、例えば、ポリ(ビニルブチラール);ポリ(酢酸ビニル);ポリ(ビニルアルコール);ポリ(ビニルピロリドン);セルロースポリマー、例えばカルボキシメチルセルロース、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、及びメチルヒドロキシエチルセルロース;アタクチックポリプロピレン、ポリエチレン;ポリエチレングリコール(例えば、Dow Chemical Co.製のCarbowax);ポリ
スチレン、ポリ(ブタジエン/スチレン);ポリアミド、ポリイミド、及びポリアクリルアミド、高分子量ポリエーテル;エチレンオキシドとプロピレンオキシドのコポリマー;フルオロポリマー、例えばポリテトラフルオロエチレン、ポリビニリデンフルオリド、及びフルオロオレフィンコポリマー;アクリルポリマー、例えばナトリウムポリアクリレート、ポリ(低級アルキルアクリレート)、ポリ(低級アルキルメタクリレート)、及び低級アルキルアクリレートとメタクリレートのコポリマー;並びに脂肪酸及びワックス、例えばステアリン酸及び他の石鹸脂肪酸、植物性ワックス、マイクロワックス(精製パラフィン)等を挙げることができる。
【0016】
得られる粉末は、任意の従来の粉末プレス装置を用いて圧縮してペレットを形成することができる。例えば、ダイと1つ又は複数のパンチを含むシングルステーション式圧縮プレス機であるプレス成形機を用いることができる。或いは、ダイと単一の下方パンチのみを用いるアンビルタイプの圧縮プレス成形機を用いることができる。シングルステーション式圧縮プレス成形機は、シングルアクション、ダブルアクション、浮動ダイ、可動式プラテン、対向ラム、スクリュー、インパクト、ホットプレス、圧印加工、又はサイジングのような種々の能力を有するカムプレス、トグル/ナックルプレス、及び偏心/クランクプレスのようないくつかの基本的タイプで入手可能である。粉末は、ワイヤ、シート等の形態であってよい陽極リードの周囲に圧縮することができる。リードは、陽極体から長手方向に伸長させることができ、タンタル、ニオブ、アルミニウム、ハフニウム、チタン等、並びにそれらの導電性酸化物及び/又は窒化物のような任意の導電性材料から形成することができる。リードの接続はまた、他の公知の技術を用いて、例えば、リードを陽極体に溶接するか、或いは形成中(例えば圧縮及び/又は焼結の前)に陽極体内部にそれを埋め込むことによって達成することもできる。
【0017】
バインダは、プレス後にペレットを真空下で一定の温度(例えば約150℃~約500℃)において数分間加熱することによって除去することができる。或いは、バインダは、ペレットを、Bishopらの米国特許6,197,252に記載されているような水溶液と接触させることによって除去することもできる。その後、ペレットを焼結して多孔質の一体部材を形成する。ペレットは、通常は約700℃~約1600℃、幾つかの態様においては約800℃~約1500℃、幾つかの態様においては約900℃~約1200℃の温度で、約5分~約100分間、幾つかの態様においては約8分~約15分間焼結する。これは1以上の工程で行うことができる。所望の場合には、焼結は、酸素原子の陽極への移動を制限する雰囲気中で行うことができる。例えば、焼結は、真空下、不活性ガス下、水素下などの還元雰囲気中で行うことができる。還元雰囲気は、約10トル~約2000トル、幾つかの態様においては約100トル~約1000トル、幾つかの態様においては約100トル~約930トルの圧力であってよい。水素と他の気体(例えばアルゴン又は窒素)の混合物を用いることもできる。
【0018】
B.誘電体:
陽極はまた誘電体によって被覆される。誘電体は、焼結した陽極を陽極酸化して、誘電体層が陽極の上及び/又はその中に形成されるようにすることによって形成することができる。例えば、タンタル(Ta)陽極を陽極酸化して五酸化タンタル(Ta)にすることができる。通常は、陽極酸化は、まず、陽極を電解液中に浸漬することなどによって溶液を陽極に施すことによって行われる。水(例えば脱イオン水)のような溶媒が一般的に用いられる。イオン伝導度を増大させるために、溶媒中で解離してイオンを形成することができる化合物を用いることができる。かかる化合物の例としては、例えば、電解質に関して下記に記載するような酸が挙げられる。例えば、酸(例えばリン酸)が、陽極酸化溶液の約0.01重量%~約5重量%、幾つかの態様においては約0.05重量%~約0.8重量%、幾つかの態様においては約0.1重量%~約0.5重量%を構成することができる。所望の場合には、複数の酸のブレンドを用いることもできる。
【0019】
電流を陽極酸化溶液に流して、誘電体層を形成する。化成電圧の値によって誘電体層の厚さが制御される。例えば、電源は、まず、必要な電圧に到達するまで定電流モードに設定することができる。その後、電源を定電位モードに切り替え、所望の誘電体厚さが陽極の表面全体の上に確実に形成されるようにすることができる。勿論、パルス又はステップ定電位法などの他の公知の方法も用いることができる。陽極酸化を行う電圧は、通常は、約4~約250V、幾つかの態様においては約5~約200V、幾つかの態様においては約10~約150Vの範囲である。酸化中は、陽極酸化溶液は昇温温度、例えば約30℃以上、幾つかの態様においては約40℃~約200℃、幾つかの態様においては約50℃~約100℃に維持することができる。陽極酸化は周囲温度以下で実施することもできる。得られる誘電体層は陽極の表面上及びその細孔内に形成することができる。
【0020】
必須ではないが、幾つかの態様においては、誘電体層は、陽極の外表面上に配される第1の部分と陽極の内表面上に配される第2の部分を有するという点において、陽極全体にわたって区別された厚さを有することができる。かかる態様においては、第1の部分は、その厚さが第2の部分の厚さよりも大きくなるように選択的に形成される。しかしながら、誘電体層の厚さは特定の領域内で均一である必要はないことを理解すべきである。外表面に隣接する誘電体層の幾つかの部分は、例えば、実際には内表面における層の幾つかの部分より薄い場合があり、その逆の場合もある。それでもなお、誘電体層は、外表面における層の少なくとも一部が内表面における少なくとも一部よりも大きな厚さを有するように形成することができる。これらの厚さにおける実際の差は特定の用途に応じて変化させることができるが、第2の部分の厚さに対する第1の部分の厚さの比は、通常は約1.2~約40、幾つかの態様においては約1.5~約25、幾つかの態様においては約2~約20である。
【0021】
区別された厚さを有する誘電体層を形成するためには多段階法が一般的に用いられる。このプロセスの各段階において、焼結した陽極を陽極酸化して誘電体層(例えば五酸化タンタル)を形成する。陽極酸化の第1段階中においては、通常は比較的小さい化成電圧、例えば、約1~約90ボルト、幾つかの態様においては約2~約50ボルト、幾つかの態様においては約5~約20ボルトの範囲の化成電圧を用いて、内部領域に関して所望の誘電体厚さが達成されるのを確実にする。その後、焼結体を次にプロセスの第2段階で陽極酸化して、誘電体の厚さを所望レベルに増加させることができる。これは、一般的には、電解液中において、第1段階中において用いられた電圧より高い電圧、例えば約50~約350ボルト、幾つかの態様においては約60~約300ボルト、幾つかの態様においては約70~約200ボルトの範囲の化成電圧で陽極酸化することにより達成される。第1及び/又は第2段階中においては、電解液は、約15℃~約95℃、幾つかの態様においては約20℃~約90℃、幾つかの態様においては約25℃~約85℃の範囲内の温度に維持することができる。
【0022】
陽極酸化プロセスの第1及び第2段階中において用いられる電解液は同じでも又は異なっていてもよい。しかしながら、通常は、誘電体層の外側部分においてより大きな厚さを得ることをより良好に促進することを助けるために、異なる溶液を用いることが望ましい。例えば、相当量の酸化物皮膜が陽極の内表面上に形成されないようにするためには、第2段階において用いられる電解液は、第1段階において用いられる電解液よりも低いイオン伝導度を有することが望ましい可能性がある。この点に関し、第1段階中に用いられる電解液には、塩酸、硝酸、硫酸、リン酸、ポリリン酸、ホウ酸、ボロン酸等のような酸性化合物を含ませることができる。かかる電解液は、25℃の温度で求めて、約0.1~約100mS/cm、幾つかの態様においては約0.2~約20mS/cm、幾つかの態様においては約1~約10mS/cmの導電率を有することができる。第2段階中に用いられる電解液は、通常は弱酸の塩を含ませて、ヒドロニウムイオン濃度が、細孔内での電荷
通過の結果として細孔内で増大するようにする。イオン輸送又はイオン拡散は、電荷のバランスを取るために必要に応じて、弱酸のアニオンが細孔中に移動するように起こる。その結果、主要導電種(ヒドロニウムイオン)の濃度は、ヒドロニウムイオン、酸アニオン、及び非解離酸の間の平衡が形成される際に減少して、導電不良種が形成される。導電種の濃度の低下は、電解液中での比較的高い電圧降下をもたらし、これにより内部の更なる陽極酸化が妨害され、一方で連続した高導電率の領域における高い化成電圧に対してはより厚い酸化物層が外側に蓄積する。好適な弱酸塩としては、例えば、ホウ酸、ボロン酸、酢酸、シュウ酸、乳酸、アジピン酸などのアンモニウム塩又はアルカリ金属塩(例えばナトリウム、カリウムなど)を挙げることができる。特に好適な塩としては、四ホウ酸ナトリウム及び五ホウ酸アンモニウムが挙げられる。かかる電解液は、通常は、25℃の温度で求めて約0.1~約20mS/cm、幾つかの態様においては約0.5~約10mS/cm、幾つかの態様においては約1~約5mS/cmの導電率を有する。
【0023】
所望の場合には、所望の誘電体厚さを達成するために、陽極酸化の各段階を1回又は複数回繰り返すことができる。更に、陽極は、第1及び/又は第2段階の後に、電解液を除去するために他の溶媒(例えば水)ですすぐか又は洗浄することもできる。
【0024】
C.固体電解質:
上記で示したように、固体電解質は誘電体の上に配され、一般にキャパシタアセンブリのための陰極として機能する。固体電解質としては、導電性ポリマー(例えば、ポリピロール類、ポリチオフェン類、ポリアニリン類等)、二酸化マンガンなどのような当該技術において公知の材料を挙げることができる。しかしながら、通常は、固体電解質は外因性導電性(extrinsically conductive)及び/又は固有導電性(intrinsically conductive)のポリマー粒子を含む1以上の層を含む。かかる粒子を用いる1つの利益は、これらによって、従来のin-situ重合プロセス中に生成する、イオン移動のために高電界下で絶縁破壊
を引き起こす可能性があるイオン種(例えばFe2+又はFe3+)の存在を最小にすることができることである。而して、導電性ポリマーをin-situ重合によるのではなく予め
重合された(pre-polymerized)粒子として施すことによって、得られるキャパシタは比較
的高い「絶縁破壊電圧」を示すことができる。所望の場合には、固体電解質は1以上の層から形成することができる。複数の層を用いる場合には、1以上の層にin-situ重合によ
って形成された導電性ポリマーを含ませることができる。しかしながら、本発明者らは、非常に高い絶縁破壊電圧を達成することが望ましい場合には、固体電解質を主として上記に記載の導電性粒子から形成し、一般にin-situ重合によって形成された導電性ポリマー
は含めないことを見出した。用いる層の数に関係なく、得られる固体電解質は、通常は、約1マイクロメートル(μm)~約200μm、幾つかの態様においては約2μm~約50μm、幾つかの態様においては約5μm~約30μmの全厚さを有する。
【0025】
固体電解質において用いるのにはチオフェンポリマーが特に好適である。例えば、幾つかの態様においては、次式(III):
【0026】
【化1】
【0027】
(式中、
は、線状又は分岐の、C~C18アルキル基(例えば、メチル、エチル、n-若しくはイソプロピル、n-、イソ-、sec-、又はtert-ブチル、n-ペンチル、1-メチルブチル、2-メチルブチル、3-メチルブチル、1-エチルプロピル、1,1-ジメチルプロピル、1,2-ジメチルプロピル、2,2-ジメチルプロピル、n-ヘキシル、n-ヘプチル、n-オクチル、2-エチルヘキシル、n-ノニル、n-デシル、n-ウンデシル、n-ドデシル、n-トリデシル、n-テトラデシル、n-ヘキサデシル、n-オクタデシル等);C~C12シクロアルキル基(例えば、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル、シクロデシル等);C~C14アリール基(例えば、フェニル、ナフチル等);C~C18アラルキル基(例えば、ベンジル、o-、m-、p-トリル、2,3-、2,4-、2,5-、2,6-、3,4-、3,5-キシリル、メシチル等)であり;
qは、0~8、幾つかの態様においては0~2、一態様においては0の整数である)
の繰り返し単位を有する「外因性」導電性チオフェンポリマーを、固体電解質において用いることができる。1つの特定の態様においては、「q」は0であり、ポリマーはポリ(3,4-エチレンジオキシチオフェン)である。かかるポリマーを形成するのに好適なモノマーの1つの商業的に好適な例は、HeraeusからClevios(登録商標)Mの名称で入手で
きる3,4-エチレンジオキシチオフェンである。
【0028】
式(III)のポリマーは、一般に、ポリマーに共有結合していない別の対イオンの存在を通常は必要とする点で「外因性」導電性であるとみなされる。対イオンは、導電性ポリマーの電荷を中和するモノマー又はポリマーアニオンであってよい。ポリマーアニオンは、例えばポリマーカルボン酸(例えばポリアクリル酸、ポリメタクリル酸、ポリマレイン酸等);ポリマースルホン酸(例えばポリスチレンスルホン酸(PSS)、ポリビニルスルホン酸等);などのアニオンであってよい。酸はまた、ビニルカルボン酸及びビニルスルホン酸と、アクリル酸エステル及びスチレンのような他の重合性モノマーとのコポリマーのようなコポリマーであってもよい。更に、好適なモノマーアニオンとしては、例えば、C~C20アルカンスルホン酸(例えばドデカンスルホン酸);脂肪族ペルフルオロスルホン酸(例えばトリフルオロメタンスルホン酸、ペルフルオロブタンスルホン酸、又はペルフルオロオクタンスルホン酸);脂肪族C~C20カルボン酸(例えば2-エチルヘキシルカルボン酸);脂肪族ペルフルオロカルボン酸(例えばトリフルオロ酢酸又はペルフルオロオクタン酸);場合によってC~C20アルキル基によって置換されている芳香族スルホン酸(例えばベンゼンスルホン酸、o-トルエンスルホン酸、p-トルエンスルホン酸、又はドデシルベンゼンスルホン酸);シクロアルカンスルホン酸(例えばカンファースルホン酸、又はテトラフルオロボレート、ヘキサフルオロホスフェート、ペルクロレート、ヘキサフルオロアンチモネート、ヘキサフルオロアルセネート、又はヘキサクロロアンチモネート);などのアニオンが挙げられる。特に好適な対アニオンは、ポリマーカルボン酸又はスルホン酸(例えばポリスチレンスルホン酸(PSS))のようなポリマーアニオンである。かかるポリマーアニオンの分子量は、通常は、約1,000~約2,000,000、幾つかの態様においては約2,000~約500,000の範囲である。
【0029】
また、ポリマーに共有結合しているアニオンによって少なくとも部分的に補償(compensate)されている主鎖上に配置されている正電荷を有する固有導電性ポリマーを用いることもできる。例えば、好適な固有導電性チオフェンポリマーの1つの例は、次式(IV):
【0030】
【化2】
【0031】
(式中、
Rは(CH-O-(CHであり;
aは、0~10、幾つかの態様においては0~6、幾つかの態様においては1~4(例えば1)であり;
bは、1~18、幾つかの態様においては1~10、幾つかの態様においては2~6(例えば、2、3、4、又は5)であり;
Zは、SO 、C(O)O、BF 、CFSO 、SbF 、N(SOCF 、C 、ClO 等のようなアニオンであり;
Xは、水素、アルカリ金属(例えば、リチウム、ナトリウム、ルビジウム、セシウム、又はカリウム)、アンモニウム等のようなカチオンである)
の繰り返し単位を有していてよい。
【0032】
1つの特定の態様においては、式(IV)におけるZはスルホネートイオンであって、固有導電性ポリマーは次式(V):
【0033】
【化3】
【0034】
(式中、R及びXは上記に規定した通りである)
の繰り返し単位を含む。式(IV)又は(V)において、aは好ましくは1であり、bは好ましくは3又は4である。更に、Xは好ましくはナトリウム又はカリウムである。
【0035】
所望の場合には、ポリマーは他のタイプの繰り返し単位を含むコポリマーであってよい。かかる態様においては、式(IV)の繰り返し単位は、通常はコポリマー中の繰り返し単位の全量の約50モル%以上、幾つかの態様においては約75モル%~約99モル%、幾つかの態様においては約85モル%~約95モル%を構成する。勿論、ポリマーは、100モル%の式(IV)の繰り返し単位を含む点でホモポリマーであってもよい。かかるホモポリマーの具体例としては、ポリ(4-(2,3-ジヒドロチエノ-[3,4-b][1,4]ジオキシン-2-イルメトキシ)-1-ブタンスルホン酸,塩)、及びポリ(4-(2,3-ジヒドロチエノ-[3,4-b][1,4]ジオキシン-2-イルメトキシ)-1-プロパンスルホン酸,塩)が挙げられる。
【0036】
ポリマーの特定の性質に関係なく、得られる導電性ポリマー粒子は、通常は、約1~約80ナノメートル、幾つかの態様においては約2~約70ナノメートル、幾つかの態様に
おいては約3~約60ナノメートルの平均径(例えば直径)を有する。粒子の直径は、超遠心分離、レーザー回折等のような公知の技術を用いて求めることができる。更に、粒子の形状を変化させることができる。例えば1つの特定の態様においては、粒子は球状の形状である。しかしながら、プレート、ロッド、ディスク、バー、チューブ、不規則形状等のような他の形状も本発明によって意図されることを理解すべきである。
【0037】
必ずしも必須ではないが、導電性ポリマー粒子は分散液の形態で施すことができる。分散液中の導電性ポリマーの濃度は、分散液の所望の粘度、及び分散液をキャパシタ素子に施す特定の方法に応じて変化させることができる。しかしながら、通常はポリマーは、分散液の約0.1~約10重量%、幾つかの態様においては約0.4~5重量%、幾つかの態様においては約0.5~約4重量%を構成する。分散液にはまた、得られる固体電解質の全体的な特性を向上させるための1以上の成分を含ませることもできる。例えば、分散液にバインダーを含ませて、ポリマー層の接着性を更に高め、また分散液内における粒子の安定性も増加させることができる。バインダーは、ポリビニルアルコール、ポリビニルピロリドン、ポリ塩化ビニル、ポリ酢酸ビニル、ポリビニルブチレート、ポリアクリル酸エステル、ポリアクリル酸アミド、ポリメタクリル酸エステル、ポリメタクリル酸アミド、ポリアクリロニトリル、スチレン/アクリル酸エステル、酢酸ビニル/アクリル酸エステル及びエチレン/酢酸ビニルコポリマー、ポリブタジエン、ポリイソプレン、ポリスチレン、ポリエーテル、ポリエステル、ポリカーボネート、ポリウレタン、ポリアミド、ポリイミド、ポリスルホン、メラミンホルムアルデヒド樹脂、エポキシド樹脂、シリコーン樹脂又はセルロースのような有機的性質のものであってよい。バインダーの接着能力を増大させるために架橋剤を用いることもできる。かかる架橋剤としては、例えば、メラミン化合物、マスクドイソシアネート又は架橋性ポリマー、例えばポリウレタン、ポリアクリレート、又はポリオレフィンを挙げることができ、その後の架橋を含めることができる。また、層を陽極に施す能力を促進させるために、分散剤を用いることもできる。好適な分散剤としては、脂肪族アルコール(例えば、メタノール、エタノール、i-プロパノール、及びブタノール)、脂肪族ケトン(例えば、アセトン及びメチルエチルケトン)、脂肪族カルボン酸エステル(例えば、酢酸エチル及び酢酸ブチル)、芳香族炭化水素(例えば、トルエン及びキシレン)、脂肪族炭化水素(例えば、ヘキサン、ヘプタン、及びシクロヘキサン)、塩素化炭化水素(例えば、ジクロロメタン及びジクロロエタン)、脂肪族ニトリル(例えばアセトニトリル)、脂肪族スルホキシド及びスルホン(例えば、ジメチルスルホキシド及びスルホラン)、脂肪族カルボン酸アミド(例えば、メチルアセトアミド、ジメチルアセトアミド及びジメチルホルムアミド)、脂肪族及び芳香脂肪族エーテル(例えば、ジエチルエーテル及びアニソール)、水、及び任意の上記の溶媒の混合物のような溶媒が挙げられる。特に好適な分散剤は水である。
【0038】
上述したものに加えて、更に他の成分を分散液中で用いることもできる。例えば、約10ナノメートル~約100マイクロメートル、幾つかの態様においては約50ナノメートル~約50マイクロメートル、幾つかの態様においては約100ナノメートル~約30マイクロメートルの寸法を有する通常のフィラーを用いることができる。かかるフィラーの例としては、炭酸カルシウム、シリケート、シリカ、硫酸カルシウム又はバリウム、水酸化アルミニウム、ガラス繊維又はガラス球、木粉、セルロース粉末、カーボンブラック、導電性ポリマー等が挙げられる。フィラーは、粉末形態で分散液中に導入することができるが、繊維のような他の形態で存在させることもできる。
【0039】
イオン性又は非イオン性界面活性剤のような表面活性物質を分散液中で用いることもできる。更に、有機官能性シラン又はそれらの加水分解物、例えば、3-グリシドキシプロピルトリアルコキシシラン、3-アミノプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、ビニルトリメトキシシラン又はオクチルトリエトキシシランのような接着剤を用いることができる
。分散液にはまた、エーテル基含有化合物(例えばテトラヒドロフラン)、ラクトン基含有化合物(例えば、γ-ブチロラクトン又はγ-バレロラクトン)、アミド又はラクタム基含有化合物(例えば、カプロラクタム、N-メチルカプロラクタム、N,N-ジメチルアセトアミド、N-メチルアセトアミド、N,N-ジメチルホルムアミド(DMF)、N-メチルホルムアミド、N-メチルホルムアニリド、N-メチルピロリドン(NMP)、N-オクチルピロリドン、又はピロリドン)、スルホン及びスルホキシド(例えば、スルホラン(テトラメチレンスルホン)又はジメチルスルホキシド(DMSO))、糖又は糖誘導体(例えば、サッカロース、グルコース、フルクトース、又はラクトース)、糖アルコール(例えば、ソルビトール又はマンニトール)、フラン誘導体(例えば、2-フランカルボン酸又は3-フランカルボン酸)、アルコール(例えば、エチレングリコール、グリセロール、ジ-又はトリエチレングリコール)のような、導電性を増加させる添加剤を含ませることもできる。
【0040】
分散液は、スピン被覆、含浸、流し込み、滴下適用、注入、噴霧、ドクターブレード塗布、ブラシ塗布、印刷(例えば、インクジェット、スクリーン、又はパッド印刷)、又は浸漬などによる種々の公知の技術を用いて施すことができる。分散液の粘度は、通常は、約0.1~約100,000mPas(100s-1の剪断速度で測定)、幾つかの態様においては約1~約10,000mPas、幾つかの態様においては約10~約1,500mPas、幾つかの態様においては約100~約1000mPasである。
【0041】
i.内側層:
固体電解質は、一般に1以上の「内側」導電性ポリマー層から形成される。この文脈における「内側」という用語は、誘電体の上に直接か又は他の層(例えばプレコート層)を介して配されている1以上の層を指す。1つ又は複数の内側層を用いることができる。例えば、固体電解質は、通常は2~30、幾つかの態様においては4~20、幾つかの態様においては約5~15の内側層(例えば10の層)を含む。1つ又は複数の内側層には、例えば、上記に記載したような固有導電性及び/又は外因性導電性のポリマー粒子を含ませることができる。例えば、かかる粒子は、1つ又は複数の内側層の約50重量%以上、幾つかの態様においては約70重量%以上、幾つかの態様においては約90重量%以上(例えば約100重量%)を構成することができる。別の態様においては、1つ又は複数の内側層にin-situ重合された導電性ポリマーを含ませることができる。かかる態様におい
ては、in-situ重合されたポリマーは、1つ又は複数の内側層の約50重量%以上、幾つ
かの態様においては約70重量%以上、幾つかの態様においては約90重量%以上(例えば約100重量%)を構成することができる。
【0042】
ii.外側層:
固体電解質にはまた、1つ又は複数の内側層の上に配されて、異なる材料から形成される1以上の随意的な「外側」導電性ポリマー層を含ませることもできる。例えば、1つ又は複数の外側層に外因性導電性ポリマー粒子を含ませることができる。1つの特定の態様においては、1つ又は複数の外側層は、外因性導電性ポリマー粒子がそれぞれの外側層の約50重量%以上、幾つかの態様においては約70重量%以上、幾つかの態様においては約90重量%以上(例えば100重量%)を構成するという点で、主としてかかる外因性導電性ポリマー粒子から形成される。1つ又は複数の外側層を用いることができる。例えば、固体電解質には、2~30、幾つかの態様においては4~20、幾つかの態様においては約5~15の外側層を含ませることができ、これらのそれぞれは、場合によっては外因性導電性ポリマー粒子の分散液から形成することができる。
【0043】
D.外側ポリマー被覆:
また、固体電解質の上に外側ポリマー被覆を配することもできる。外側ポリマー被覆は、一般に上記に記載のような予め重合された導電性ポリマー粒子(例えば、外因性導電性
ポリマー粒子の分散液)から形成される1以上の層を含む。外側被覆は、キャパシタ体のエッジ領域中に更に浸透して、誘電体に対する接着を増加させて、より機械的に堅牢な部品を与えることができ、これにより等価直列抵抗及びリーク電流を減少させることができる。一般に、陽極体の内部に含浸させるのではなく、エッジの被覆度を向上させることを意図しているので、外側被覆において用いられる粒子は、通常は固体電解質において用いられるものよりも大きな寸法を有する。例えば、固体電解質の任意の分散液において用いられる粒子の平均寸法に対する、外側ポリマー被覆において用いられる粒子の平均寸法の比率は、通常は約1.5~約30、幾つかの態様においては約2~約20、幾つかの態様においては約5~約15である。例えば、外側被覆の分散液中で用いられる粒子は、約80~約500ナノメートル、幾つかの態様においては約90~約250ナノメートル、幾つかの態様においては約100~約200ナノメートルの平均寸法を有していてよい。
【0044】
所望の場合には、外側ポリマー被覆において架橋剤を用いて、固体電解質に対する接着度を増大させることができる。通常は、架橋剤は外側被覆において用いる分散液を施す前に施す。好適な架橋剤は、例えば、Merkerらの米国特許公開2007/0064376に記載されており、例えば、アミン(例えば、ジアミン、トリアミン、オリゴマーアミン、ポリアミン等);多価金属カチオン、例えば、Mg、Al、Ca、Fe、Cr、Mn、Ba、Ti、Co、Ni、Cu、Ru、Ce、又はZnの塩又は化合物、ホスホニウム化合物、スルホニウム化合物等が挙げられる。特に好適な例としては、例えば、1,4-ジアミノシクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、エチレンジアミン、1,6-ヘキサンジアミン、1,7-ヘプタンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン、1,12-ドデカンジアミン、N,N-ジメチルエチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラメチル-1,4-ブタンジアミン等、並びにこれらの混合物が挙げられる。
【0045】
架橋剤は、通常は、そのpHが25℃において求めて1~10、幾つかの態様においては2~7、幾つかの態様においては3~6である溶液又は分散液から施される。酸性化合物を用いて所望のpHレベルの達成を助けることができる。架橋剤のための溶媒又は分散剤の例としては、水、又は有機溶媒、例えばアルコール、ケトン、カルボン酸エステル等が挙げられる。架橋剤は、スピン被覆、含浸、流延、滴下適用、噴霧適用、蒸着、スパッタリング、昇華、ナイフ被覆、塗装又は印刷、例えばインクジェット、スクリーン、又はパッド印刷のような任意の公知のプロセスによってキャパシタ体に施すことができる。施したら、ポリマー分散液を施す前に架橋剤を乾燥することができる。次に、所望の厚さが達成されるまでこのプロセスを繰り返すことができる。例えば、架橋剤及び分散液の層を含む外側ポリマー被覆全体の全厚さは、約1~約50μm、幾つかの態様においては約2~約40μm、幾つかの態様においては約5~約20μmの範囲であってよい。
【0046】
E.陰極被覆:
所望の場合には、キャパシタ素子はまた、固体電解質及び他の随意的な層(例えば外側ポリマー被覆)の上に配される陰極被覆を用いることもできる。陰極被覆には、樹脂状ポリマーマトリクス内に分散されている複数の導電性金属粒子を含む金属粒子層を含ませることができる。粒子は、通常は層の約50重量%~約99重量%、幾つかの態様においては約60重量%~約98重量%、幾つかの態様においては約70重量%~約95重量%を構成し、一方で樹脂状ポリマーマトリクスは、通常は層の約1重量%~約50重量%、幾つかの態様においては約2重量%~約40重量%、幾つかの態様においては約5重量%~約30重量%を構成する。
【0047】
導電性金属粒子は、銅、ニッケル、銀、ニッケル、亜鉛、スズ、鉛、銅、アルミニウム、モリブデン、チタン、鉄、ジルコニウム、マグネシウム等のような種々の異なる金属、
並びにこれらの合金から形成することができる。銀がかかる層において用いるのに特に好適な導電性金属である。金属粒子は、しばしば、約0.01~約50マイクロメートル、幾つかの態様においては約0.1~約40マイクロメートル、幾つかの態様においては約1~約30マイクロメートルの平均径のような比較的小さい寸法を有する。通常は1つのみの金属粒子層を用いるが、所望の場合には複数の層を用いることができることを理解すべきである。かかる1つ又は複数の層の合計厚さは、約1μm~約500μm、幾つかの態様においては約5μm~約200μm、幾つかの態様においては約10μm~約100μmの範囲内である。
【0048】
樹脂状ポリマーマトリクスは、通常は本質的に熱可塑性又は熱硬化性であってよいポリマーを含む。しかしながら、通常は、ポリマーは、銀イオンのエレクトロマイグレーションに対するバリヤとして作用することができ、また陰極被覆における水吸着の程度を最小にするように比較的少量の極性基を含むように選択される。この点に関し、本発明者らは、ポリビニルブチラール、ポリビニルホルマール等のようなビニルアセタールポリマーがこの目的のために特に好適であることを見出した。例えば、ポリビニルブチラールは、ポリビニルアルコールをアルデヒド(例えばブチルアルデヒド)と反応させることによって形成することができる。この反応は通常は完全ではないので、ポリビニルブチラールは一般的に残留ヒドロキシル含量を有する。しかしながら、この含量を最小にすることによって、ポリマーはより低い程度の強極性基を有することができる(これを有していないと高い程度の湿分吸着が引き起こされ、且つ銀イオンの移動が引き起こされる)。例えば、ポリビニルアセタール中の残留ヒドロキシル含量は、約35モル%以下、幾つかの態様においては約30モル%以下、幾つかの態様においては約10モル%~約25モル%にすることができる。かかるポリマーの1つの商業的に入手できる例は、Sekisui Chemical Co., Ltd.から「BH-S」(ポリビニルブチラール)の名称で入手できる。
【0049】
陰極被覆を形成するためには、通常は、導電性ペーストをキャパシタに、固体電解質の上に重ねて施す。一般にペースト中で1種類以上の有機溶媒を用いる。一般に、グリコール(例えば、プロピレングリコール、ブチレングリコール、トリエチレングリコール、ヘキシレングリコール、ポリエチレングリコール、エトキシジグリコール、及びジプロピレングリコール);グリコールエーテル(例えば、メチルグリコールエーテル、エチルグリコールエーテル、及びイソプロピルグリコールエーテル);エーテル(例えば、ジエチルエーテル及びテトラヒドロフラン);アルコール(例えば、ベンジルアルコール、メタノール、エタノール、n-プロパノール、イソ-プロパノール、及びブタノール);トリグリセリド;ケトン(例えば、アセトン、メチルエチルケトン、及びメチルイソブチルケトン);エステル(例えば、酢酸エチル、酢酸ブチル、ジエチレングリコールエーテルアセテート、及びメトキシプロピルアセテート);アミド(例えば、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルカプリル/カプリン脂肪酸アミド及びN-アルキルピロリドン);ニトリル(例えば、アセトニトリル、プロピオンニトリル、ブチロニトリル、及びベンゾニトリル);スルホキシド又はスルホン(例えば、ジメチルスルホキシド(DMSO)及びスルホラン);等、並びにこれらの混合物のような種々の異なる有機溶媒を用いることができる。1種類又は複数の有機溶媒は、通常は、ペーストの約10重量%~約70重量%、幾つかの態様においては約20重量%~約65重量%、幾つかの態様においては約30重量%~約60重量%を構成する。通常は、金属粒子は、ペーストの約10重量%~約60重量%、幾つかの態様においては約20重量%~約45重量%、幾つかの態様においては約25重量%~約40重量%を構成し、樹脂状ポリマーマトリクスは、ペーストの約0.1重量%~約20重量%、幾つかの態様においては約0.2重量%~約10重量%、幾つかの態様においては約0.5重量%~約8重量%を構成する。
【0050】
ペーストは比較的低い粘度を有していてよく、これによりそれを容易に取り扱ってキャパシタ素子に施すことが可能になる。粘度は、例えば、Brookfield DV-1粘度計(コーン
プレート)などを用いて10rpmの速度及び25℃の温度で運転して測定して、約50~約3,000センチポアズ、幾つかの態様においては100~約2,000センチポアズ、幾つかの態様においては約200~約1,000センチポアズの範囲であってよい。所望の場合には、ペースト中で増粘剤又は他の粘度調整剤を用いて粘度を増加又は減少させることができる。更に、施すペーストの厚さは比較的薄くてもよく、これでもなお所望の特性を達成することができる。例えば、ペーストの厚さは、約0.01~約50マイクロメートル、幾つかの態様においては約0.5~約30マイクロメートル、幾つかの態様においては約1~約25マイクロメートルであってよい。施したら、金属ペーストを場合によっては乾燥して、有機溶媒のような幾つかの成分を除去することができる。例えば、乾燥は、約20℃~約150℃、幾つかの態様においては約50℃~約140℃、幾つかの態様においては約80℃~約130℃の温度で行うことができる。
【0051】
F.他の成分:
所望の場合には、当該技術において公知の他の層をキャパシタに含ませることもできる。例えば、幾つかの態様においては、炭素層(例えばグラファイト)を固体電解質と銀層との間に配置して、これによって銀層と固体電解質との接触を更に制限することを助けることができる。更に、幾つかの態様においては、下記においてより詳細に記載するように、誘電体の上に配され、有機金属化合物を含むプレコート層を用いることができる。
【0052】
II.終端:
キャパシタ素子が形成されたら、キャパシタアセンブリに終端を与えることができる。例えば、それにキャパシタ素子の陽極リードが電気的に接続される陽極終端、及びそれにキャパシタ素子の陰極が電気的に接続される陰極終端をキャパシタアセンブリに含ませることができる。導電性金属(例えば、銅、ニッケル、銀、ニッケル、亜鉛、スズ、パラジウム、鉛、銅、アルミニウム、モリブデン、チタン、鉄、ジルコニウム、マグネシウム、及びこれらの合金)のような任意の導電性材料を用いて終端を形成することができる。特に好適な導電性金属としては、例えば、銅、銅合金(例えば、銅-ジルコニウム、銅-マグネシウム、銅-亜鉛、又は銅-鉄)、ニッケル、及びニッケル合金(例えばニッケル-鉄)が挙げられる。終端の厚さは、一般的にキャパシタの厚さを最小にするように選択される。例えば、終端の厚さは、約0.05~約1ミリメートル、幾つかの態様においては約0.05~約0.5ミリメートル、及び約0.07~約0.2ミリメートルの範囲であってよい。一つの代表的な導電性材料は、Wieland(ドイツ)から入手できる銅-鉄合金
の金属プレートである。所望の場合には、終端の表面は、当該技術において公知なように、最終部品を回路基板へ実装することができるのを確実にするために、ニッケル、銀、金、スズ等で電気めっきすることができる。一つの特定の態様においては、終端の両方の表面をそれぞれニッケル及び銀フラッシュでめっきし、一方で、実装面もスズはんだ層でめっきする。
【0053】
終端を形成するのに用いる特定の材料にかかわらず、陽極終端の少なくとも一部は第1の被覆を含み、陰極終端の少なくとも一部は第2の被覆を含む。第1の被覆は同じか又は異なる材料から形成することができる。これにかかわらず、第1及び第2の被覆は両方とも有機金属化合物を含み、これは次の一般式:
【0054】
【化4】
【0055】
(式中、
Mは、ケイ素、チタンなどのような有機金属原子であり;
、R、及びRは、独立して、アルキル(例えば、メチル、エチル、プロピル等)、又はヒドロキシアルキル(例えば、ヒドロキシメチル、ヒドロキシエチル、ヒドロキシプロピル等)であり、R、R、及びRの少なくとも1つはヒドロキシアルキルであり;
nは、0~8、幾つかの態様においては1~6、幾つかの態様においては2~4(例えば3)の整数であり;そして
Xは、グリシジル、グリシジルオキシ、メルカプト、アミノ、ビニル等のような有機又は無機官能基である)
を有していてよい。
【0056】
幾つかの態様においては、R、R、及びRはヒドロキシアルキル(例えばOCH)であってよい。しかしながら他の態様においては、Rはアルキル(例えばCH)であってよく、R及びRはヒドロキシアルキル(例えばOCH)であってよい。
【0057】
更に、幾つかの態様においては、Mはケイ素であってよく、有機金属化合物はアルコキシシランのような有機シラン化合物である。好適なアルコキシシランとしては、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルメチルジエトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルメチルジエトキシシラン、グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、グリシドキシメチルトリプロポキシシラン、グリシドキシメチルトリブトキシシラン、β-グリシドキシエチルトリメトキシシラン、β-グリシドキシエチルトリエトキシシラン、β-グリシドキシエチルトリプロポキシシラン、β-グリシドキシエチルトリブトキシシラン、β-グリシドキシエチルトリメトキシシラン、α-グリシドキシエチルトリエトキシシラン、α-グリシドキシエチルトリプロポキシシラン、α-グリシドキシエチルトリブトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリプロポキシシラン、γ-グリシドキシプロピルトリブトキシシラン、β-グリシドキシプロピルトリメトキシシラン、β-グリシドキシプロピルトリエトキシシラン、β-グリシドキシプロピルトリプロポキシシラン、α-グリシドキシプロピルトリブトキシシラン、α-グリシドキシプロピルトリメトキシシラン、α-グリシドキシプロピルトリエトキシシラン、α-グリシドキシプロピルトリプロポキシシラン、α-グリシドキシプロピルトリブトキシシラン、γ-グリシドキシブチルトリメトキシシラン、δ-グリシドキシブチルトリエトキシシラン、δ-グリシドキシブチルトリプロポキシシラン、δ-グリシドキシブチルトリブトキシシラン、δ-グリシドキシブチルトリメトキシシラン、γ-グリシドキシブチルトリエトキシシラン、γ-グリシドキシブチルトリプロポキシシラン、γ-プロポキシブチルトリブトキシシラン、δ-グリシドキシブチルトリメトキシシラン、δ-グリシドキシブチルトリエトキシシラン、δ-グリシドキシブチルトリプロポキシシラン、α-グリシドキシブチルトリメトキシシラン、α-グリシドキシブチルトリエトキシシラン、α-グリシドキシブチルトリプロポキシシラン、α-グリシドキシブチルトリブトキシシラン、(3,4-エポキシシクロヘキシル)-メチルトリメトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリエトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリプロポキシシラン、(3,4-エポキシシクロヘキシル)メチルトリブトキシシラン、(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、(3,4-エポキシシクロヘキシル)エチルトリプロポキシシラ
ン、(3,4-エポキシシクロヘキシル)エチルトリブトキシシラン、(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、(3,4-エポキシシクロヘキシル)プロピルトリエトキシシラン、(3,4-エポキシシクロヘキシル)プロピルトリプロポキシシラン、(3,4-エポキシシクロヘキシル)プロピルトリブトキシシラン(3,4-エポキシシクロヘキシル)ブチルトリメトキシシラン、(3,4-エポキシシクロヘキシル)ブチルトリエトキシシラン、(3,4-エポキシシクロヘキシル)ブチルトリプロポキシシラン、(3,4-エポキシシクロヘキシル)ブチルトリブトキシシランなどを挙げることができる。
【0058】
第1及び第2の被覆をそれらのそれぞれの終端に施す特定の方法は、所望のように変化させることができる。1つの特定の態様においては、有機金属化合物を有機溶媒中に溶解して溶液を形成し、これを次に終端上に被覆することができる。好適な被覆技術としては、例えば、スクリーン印刷、浸漬、電気泳動被覆、噴霧等を挙げることができる。有機溶媒は変化させることができるが、通常は、メタノール、エタノール等のようなアルコールである。有機金属化合物は、溶液の約0.1重量%~約10重量%、幾つかの態様においては約0.2重量%~約8重量%、幾つかの態様においては約0.5重量%~約5重量%を構成することができる。溶媒はまた、溶液の約90重量%~約99.9重量%、幾つかの態様においては約92重量%~約99.8重量%、幾つかの態様においては約95重量%~約99.5重量%を構成することができる。与えられた終端上の被覆の特定の位置も所望のように変化させることができる。通常は、ケーシング材料と接触する終端(例えば、陽極終端及び/又は陰極終端)の少なくとも1つの表面に被覆を含ませることが望まし
い。例えば、終端の上面、下面、及び/又は縁部に被覆を含ませることができる。被覆は、終端の全表面をカバーすることができ、或いはそれはパターン状に施すことができる。本発明の特定の態様においては、陽極終端のそれぞれの表面が第1の被覆を含み、陰極終端のそれぞれの表面が第2の被覆を含む。施したら、次に被覆を硬化させて、終端への所望の程度の接着を確実にすることができる。硬化は、ケーシング材料を施すプロセスの前、その後、及び/又はその間に行うことができる。通常は、硬化プロセスは、約50℃~約250℃、幾つかの態様においては約80℃~約200℃、幾つかの態様においては約100℃~約150℃の温度のような比較的高い温度で行う。
【0059】
図1を参照すると、キャパシタアセンブリ30の一態様が、キャパシタ素子33と電気的に接続されている陽極終端62及び陰極終端72を含むものとして示されている。陰極終端72はキャパシタ素子33のいずれの表面とも電気的に接触させてよいが、示されている態様における陰極終端72は、導電性接着剤を介して下面39と電気的に接触している。より具体的には、陰極終端72は、キャパシタ素子33の下面39と電気的に接触していて、それと概して平行である第1の部品73を含む。陰極終端72にはまた、第1の部品73に対して実質的に垂直で、キャパシタ素子33の背面38と電気的に接触している第2の部品74を含ませることもできる。また、陽極終端62は、第2の部品64に対して実質的に垂直に配置されている第1の部品63を含む。第1の部品63は、キャパシタ素子33の下面39と電気的に接触していて、概してそれと平行である。第2の部品64は、陽極リード16を支持する領域51を含む。上記で議論したように、陽極終端62の少なくとも一部(例えば第1の部品63及び/又は第2の部品64)は第1の被覆(図示せず)を含み、陰極終端72の少なくとも一部(例えば第1の部品73及び/又は第2の部品73)は第2の被覆(図示せず)を含む。
【0060】
一般に、種々の方法を用いて終端を取り付けることができる。例えば一態様においては、まず陽極終端62の第2の部品64を、図1において示されている位置まで上方向に屈曲させる。その後、キャパシタ素子33の下面39が接着剤と接触し、陽極リード16が領域51によって受容されるように、陰極終端72上にキャパシタ素子33を配置する。所望の場合には、プラスチックパッド又はテープのような絶縁材料(図示せず)を、キャ
パシタ素子33の下面39と、陽極終端62の第1の部品63との間に配置して、陽極終端と陰極終端を電気的に絶縁することができる。次に、機械的溶接、レーザー溶接、導電性接着剤等のような当該技術において公知の任意の技術を用いて、陽極リード16を領域51に電気的に接続する。例えば、レーザーを用いて陽極リード16を陽極終端62に溶接することができる。レーザーは、一般に誘導放出によって光子を放出することができるレーザー媒体、及びレーザー媒体の元素を励起するエネルギー源を含む共振器を含む。好適なレーザーの1つのタイプは、レーザー媒体が、ネオジム(Nd)がドープされたアルミニウム・イットリウム・ガーネット(YAG)から構成されるものである。励起された粒子はネオジムイオン:Nd3+である。エネルギー源によってレーザー媒体に連続エネルギーを与えて連続レーザービームを放出させるか、或いは放出エネルギーを与えてパルスレーザービームを放出させることができる。陽極リード16を陽極終端62に電気的に接続したら、次に導電性接着剤を硬化させることができる。例えば、ヒートプレスを用いて熱及び圧力を加えて、電解キャパシタ素子33が接着剤によって陰極終端72に適切に接着するのを確実にすることができる。
【0061】
III.ケーシング材料:
キャパシタ素子は、一般に、陽極終端及び陰極終端の少なくとも一部が回路基板上に実装するために露出されるようにケーシング材料で封入する。例えば、図1において示されるように、キャパシタ素子33は、陽極終端62の一部及び陰極終端72の一部が露出されるようにケーシング材料28内に封入することができる。
【0062】
幾つかの態様においては、ケーシング材料に、1種類以上の無機酸化物フィラー、及び場合によっては共反応物質(硬化剤)と架橋させた1種類以上のエポキシ樹脂を含む樹脂状材料を含むエポキシ組成物を含ませることができる。ケーシング材料の全体的な耐湿性を向上させることを促進するために、無機酸化物フィラーの含量は、組成物の約75重量%以上、幾つかの態様においては約76重量%以上、幾つかの態様においては約77重量%~約90重量%のような高いレベルに維持する。無機酸化物フィラーの性質は、シリカ、アルミナ、ジルコニア、酸化マグネシウム、鉄酸化物(例えば、黄色オキシ水酸化鉄(iron hydroxide oxide yellow))、チタン酸化物(例えば二酸化チタン)、亜鉛酸化物(
例えば、オキシ水酸化ホウ素亜鉛(boron zinc hydroxide oxide))、銅酸化物、ゼオライト、シリケート、クレイ(例えばスメクタイトクレイ)等、及び複合体(例えばアルミナ被覆シリカ粒子)、並びにこれらの混合物のように変化してよい。しかしながら、用いる特定のフィラーにかかわらず、無機酸化物フィラーの全部ではないにしても相当部分は通常はシリカガラスの形態であり、これによって、その高い純度及び比較的単純な化学形態のためにケーシング材料の耐湿性が更に向上すると考えられる。シリカガラスは、例えば、組成物中で用いるフィラーの全重量の約30重量%以上、幾つかの態様においては約35重量%~約90重量%、幾つかの態様においては約40重量%~約80重量%、並びに全組成物の約20重量%~約70重量%、幾つかの態様においては約25重量%~約65重量%、幾つかの態様においては約30重量%~約60重量%を構成していてよい。勿論、石英、ヒュームドシリカ、クリストバライト等のような他の形態のシリカを、シリカガラスと組み合わせて用いることもできる。
【0063】
樹脂材料は、通常は組成物の約0.5重量%~約25重量%、幾つかの態様においては約1重量%~約24重量%、幾つかの態様においては約10重量%~約23重量%を構成する。一般的に言えば、任意の種々の異なるタイプのエポキシ樹脂を本発明において用いることができる。好適なエポキシ樹脂の例としては、例えば、ビスフェノールAタイプのエポキシ樹脂、ビスフェノールFタイプのエポキシ樹脂、フェノールノボラックタイプのエポキシ樹脂、オルトクレゾールノボラックタイプのエポキシ樹脂、臭素化エポキシ樹脂及びビフェニルタイプのエポキシ樹脂、環状脂肪族エポキシ樹脂、グリシジルエステルタイプのエポキシ樹脂、グリシジルアミンタイプのエポキシ樹脂、クレゾールノボラックタ
イプのエポキシ樹脂、ナフタレンタイプのエポキシ樹脂、フェノールアラルキルタイプのエポキシ樹脂、シクロペンタジエンタイプのエポキシ樹脂、複素環式エポキシ樹脂等が挙げられる。しかしながら、所望の程度の耐湿性を与えることを促進するためには、フェノールノボラック樹脂のグリシジルエーテルであるエポキシフェノールノボラック(EPN)樹脂を用いることが特に望ましい。これらの樹脂は、例えばフェノール類を酸触媒の存在下で過剰のホルムアルデヒドと反応させてフェノールノボラック樹脂を生成させることによって製造することができる。次に、フェノールノボラック樹脂を水酸化ナトリウムの存在下でエピクロロヒドリンと反応させることによって、ノボラックエポキシ樹脂を製造する。ノボラックタイプのエポキシ樹脂の具体例としては、フェノール-ノボラックエポキシ樹脂、クレゾール-ノボラックエポキシ樹脂、ナフトール-ノボラックエポキシ樹脂、ナフトール-フェノール共縮合ノボラックエポキシ樹脂、ナフトール-クレゾール共縮合ノボラックエポキシ樹脂、臭素化フェノール-ノボラックエポキシ樹脂等が挙げられる。選択される樹脂のタイプにかかわらず、得られるフェノールノボラックエポキシ樹脂は、通常は2より多いオキシラン基を有し、これを用いて高い架橋密度を有する硬化被覆組成物を製造することができ、これは耐湿性を増大させるために特に好適である可能性がある。1つのかかるフェノールノボラックエポキシ樹脂は、ポリ[(フェニルグリシジルエーテル)-co-ホルムアルデヒド]である。他の好適な樹脂は、HuntsmanからARALDITEの商品名(例えば、GY289、EPN1183、EP1179、EPN1139、及びEPN1138)で商業的に入手できる。
【0064】
示したように、エポキシ樹脂は、場合によって共反応物(硬化剤)と架橋させて組成物の機械的特性を更に向上させ、また上述したようにその全体的な耐湿性も増大させることができる。かかる共反応物の例としては、例えば、ポリアミド、アミドアミン(例えば、アミノベンズアミド、アミノベンズアニリド、及びアミノベンゼンスルホンアミドのような芳香族アミドアミン)、芳香族ジアミン(例えば、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等)、アミノベンゾエート(例えば、トリメチレングリコールジ-p-アミノベンゾエート、及びネオペンチルグリコールジ-p-アミノベンゾエート)、脂肪族アミン(例えば、トリエチレンテトラミン、イソホロンジアミン)、脂環式アミン(例えばイソホロンジアミン)、イミダゾール誘導体、グアニジン類(例えばテトラメチルグアニジン)、カルボン酸無水物(例えばメチルヘキサヒドロフタル酸無水物)、カルボン酸ヒドラジド(例えばアジピン酸ヒドラジド)、フェノール-ノボラック樹脂(例えば、フェノールノボラック、クレゾールノボラック等)、カルボン酸アミド等、並びにこれらの組合せを挙げることができる。フェノール-ノボラック樹脂が本発明において用いるために特に好適である可能性がある。
【0065】
上記した成分とは別に、光開始剤、粘度調整剤、懸濁助剤、顔料、応力低減剤、カップリング剤(例えばシランカップリング剤)、安定剤等のような更に他の添加剤を、ケーシングを形成するのに用いるエポキシ組成物中で用いることもできることを理解すべきである。用いる場合には、かかる添加剤は通常は全組成物の約0.1~約20重量%を構成する。
【0066】
ケーシング材料をキャパシタ体に施す特定の方法は、所望に応じて変化させることができる。1つの特定の態様においては、キャパシタ素子を金型内に配置し、ケーシング材料をキャパシタ素子に施して、それが金型によって画定される空間を占めて、陽極終端及び陰極終端の少なくとも一部が露出されるようにする。ケーシング材料は、最初は単一又は複数の組成物の形態で提供することができる。例えば、第1の組成物にエポキシ樹脂を含ませることができ、第2の組成物に共反応物を含ませることができる。これにかかわらず、それを施したらケーシング材料を加熱するか又は周囲温度において放置して、エポキシ樹脂が共反応物と架橋するようにして、それによってエポキシ組成物を硬化させてケースの所望の形状に固化させることができる。例えば、組成物を、約15℃~約150℃、幾
つかの態様においては約20℃~約120℃、幾つかの態様においては約25℃~約100℃の温度に加熱することができる。
【0067】
決して必須ではないが、ケーシング材料の全部又は一部を被覆する湿分バリヤ層を用いることもできる。湿分バリヤ層は、一般に、シリコーン、フルオロポリマー等のような疎水性エラストマーから形成される。シリコーンエラストマーが本発明の湿分バリヤ層において用いるために特に好適である。かかるエラストマーは、通常は、次の一般式:
【0068】
【化5】
【0069】
(式中、
xは1より大きい整数であり;
、R、R、R、R、R、R、及びRは、独立して、通常は1~約20個の炭素原子を含む一価の基、例えばアルキル基(例えば、メチル、エチル、プロピル、ペンチル、オクチル、ウンデシル、オクタデシル等);アルコキシ基(例えば、メトキシ、エトキシ、プロポキシ等);カルボキシアルキル基(例えばアセチル);シクロアルキル基(例えばシクロヘキシル);アルケニル基(例えば、ビニル、アリル、ブテニル、ヘキセニル等);アリール基(例えば、フェニル、トリル、キシリル、ベンジル、2-フェニルエチル等);及びハロゲン化炭化水素基(例えば、3,3,3-トリフルオロプロピル、3-クロロプロピル、ジクロロフェニル等)である)
を有するもののようなポリオルガノシロキサンから誘導される。かかるポリオルガノシロキサンの例としては、例えば、ポリジメチルシロキサン(PDMS)、ポリメチルハイドロジェンシロキサン、ジメチルジフェニルポリシロキサン、ジメチル/メチルフェニルポリシロキサン、ポリメチルフェニルシロキサン、メチルフェニル/ジメチルシロキサン、ビニルジメチル末端ポリジメチルシロキサン、ビニルメチル/ジメチルポリシロキサン、ビニルジメチル末端ビニルメチル/ジメチルポリシロキサン、ジビニルメチル末端ポリジメチルシロキサン、ビニルフェニルメチル末端ポリジメチルシロキサン、ジメチルヒドロ末端ポリジメチルシロキサン、メチルヒドロ/ジメチルポリシロキサン、メチルヒドロ末端メチルオクチルポリシロキサン、メチルヒドロ/フェニルメチルポリシロキサン、フルオロ変性ポリシロキサン等を挙げることができる。エラストマーを形成するために、触媒硬化(例えば白金触媒)、室温加硫、湿分硬化等などによる任意の種々の公知の技術を用いてポリオルガノシロキサンを架橋させることができる。式:Si-OR(式中、Rは、H、アルキル(例えばメチル)、アルケニル、カルボキシアルキル(例えばアセチル)である)を有するアルコキシシランなどのような架橋剤を用いることができる。
【0070】
疎水性であることに加えて、湿分バリヤ層を形成するために用いる材料は比較的低い弾性率及びある程度の可撓性を有することが一般に望ましく、これによってケーシングの膨張によって引き起こされる熱応力の一部を吸収することを助け、またそれを圧縮力にかけることを可能にすることもできる。材料の可撓性は、約25℃の温度において測定して約5,000キロパスカル(kPa)以下、幾つかの態様においては約1~約2,000kPa、幾つかの態様においては約2~約500kPaのような対応する低い弾性率(ヤング率)によって特徴付けることができる。この材料はまた、通常は、圧縮力にかけた際であってもその形状を保持することができるある程度の強度も有する。例えば、この材料は
、約25℃の温度において測定して約1~約5,000kPa、幾つかの態様においては約10~約2,000kPa、幾つかの態様においては約50~約1,000kPaの引張り強さを有していてよい。上述の条件を用いると、疎水性エラストマーは、キャパシタが極限条件下で機能する能力を更に向上させることができる。
【0071】
所望の可撓性及び強度の特性を達成することを促進するために、湿分バリヤ層において非導電性フィラーを用いることができる。用いる場合には、かかる添加剤は、通常は湿分バリヤ層の約0.5重量%~約30重量%、幾つかの態様においては約1重量%~約25重量%、幾つかの態様においては約2重量%~約20重量%を構成する。シリコーンエラストマーは、湿分バリヤ層の約70重量%~約99.5重量%、幾つかの態様においては約75重量%~約99重量%、幾つかの態様においては約80重量%~約98重量%を構成することができる。かかるフィラーの1つの特定の例としては、例えばシリカが挙げられる。シリカの殆どの形態はシラノール基(Si-OH)の存在によって比較的親水性の表面を含むが、場合によってはシリカを表面処理して、その表面が(CH-Si-基(式中、nは1~3の整数である)を含むようにすることができ、これにより湿分バリヤ層の疎水性が更に増大する。表面処理剤は、例えば、加水分解可能な基を有する有機ケイ素化合物モノマー、又はその部分加水分解物であってよい。かかる化合物の例としては、有機シラザン、上記に記載したシランカップリング剤等を挙げることができる。
【0072】
その独特の構造のために、得られるキャパシタアセンブリは種々の有益な特性を示すことができる。例えば、キャパシタアセンブリの損失係数(dissipation factor)を比較的低いレベルで維持することができる。損失係数は、一般的に、キャパシタにおいて発生する損失を指し、通常は理想的なキャパシタ性能のパーセントとして表される。例えば、本発明のキャパシタの損失係数は、通常は、120Hzの周波数において求めて、約1%~約25%、幾つかの態様においては約3%~約10%、幾つかの態様においては約5%~約15%である。本キャパシタアセンブリはまた、約35ボルト以上、幾つかの態様においては約50ボルト以上、幾つかの態様においては約60ボルト~約200ボルトの定格電圧のような高電圧用途において用いることができる可能性もある。例えば、本キャパシタアセンブリは、約2ボルト以上、幾つかの態様においては約5ボルト以上、幾つかの態様においては約10ボルト以上、幾つかの態様においては約10~約100ボルトのような比較的高い「絶縁破壊電圧」(キャパシタが作動しなくなる電圧)を示すことができる。更に、本キャパシタアセンブリは、比較的高いサージ電流(これも高電圧用途において通常的である)に耐えることができる可能性もある。ピークサージ電流は、例えば約100アンペア以上、幾つかの態様においては約200アンペア以上、幾つかの態様においては約300アンペア~約800アンペアであってよい。
【実施例0073】
本発明は、以下の実施例を参照してより良好に理解することができる。
試験手順:
等価直列抵抗(ESR):
等価直列抵抗は、Kelvinリードを備えたKeithley 3330精密LCZメーターを用い、2
.2ボルトのDCバイアス及び0.5ボルトのピーク・ピーク正弦波信号を用いて測定することができる。動作周波数は100kHzであってよく、温度は23℃±2℃であってよい。
【0074】
損失係数:
損失係数は、Kelvinリードを備えたKeithley 3330精密LCZメーターを用い、2.2
ボルトのDCバイアス及び0.5ボルトのピーク・ピーク正弦波信号を用いて測定することができる。動作周波数は120kHzであってよく、温度は23℃±2℃であってよい。
【0075】
キャパシタンス:
キャパシタンスは、Kelvinリードを備えたKeithley 3330精密LCZメーターを用い、
2.2ボルトのDCバイアス及び0.5ボルトのピーク・ピーク正弦波信号を用いて測定することができる。動作周波数は120Hzであってよく、温度は23℃±2℃であってよい。
【0076】
リーク電流:
リーク電流は、リーク試験メーターを用い、23℃±2℃の温度及び定格電圧(例えば16ボルト)において、最小で60秒(例えば180秒、300秒)後に測定することができる。
【0077】
湿分感受性:
湿分感受性レベル試験(J-STD-020E)は、30℃の温度及び60%の相対湿度に、24時間、48時間の間曝露した後に実施することができる(50の部品)。回収された試料においてリフロー後に、電気的パラメーター、及び光学顕微鏡を用いることによって外部クラックを記録して、その後に比較することができる。
【0078】
実施例1:
70,000μFV/gのタンタル粉末を用いて陽極試料を形成した。それぞれの陽極試料にタンタル線を埋め込み、1410℃で焼結し、プレスして5.1g/cmの密度にした。得られたペレットは5.60×3.65×0.90mmの寸法を有していた。ペレットを、85℃の温度において8.6mSの導電率を有する水/リン酸電解液中で71.0ボルトに陽極酸化して、誘電体層を形成した。このペレットを、30℃の温度において2.0mSの導電率を有する水/ホウ酸/四ホウ酸二ナトリウム中で25秒間、再び150ボルトに陽極酸化して、外側の上に堆積しているより厚い酸化物層を形成した。
【0079】
陽極を、プレコート層を用いないで直接、1.1%の固形分含量及び20mPa・sの粘度を有する分散ポリ(3,4-エチレンジオキシチオフェン)(Clevios(登録商標)K、Heraeous)中に浸漬することによって、導電性ポリマー被覆を形成した。被覆したら、部品を125℃で20分間乾燥した。このプロセスを10回繰り返した。その後、部品を、2.0%の固形分含量及び20mPa・sの粘度を有する分散ポリ(3,4-エチレンジオキシチオフェン)(Clevios(登録商標)K、Heraeus)中に浸漬した。被覆したら、
部品を125℃で20分間乾燥した。このプロセスを3回繰り返した。その後、部品を、2%の固形分含量及び160mPa・sの粘度を有する分散ポリ(3,4-エチレンジオキシチオフェン)(Clevios(登録商標)K、Heraeus)中に浸漬した。被覆したら、部品
を125℃で20分間乾燥した。このプロセスを8回繰り返した。次に、部品をグラファイト分散液中に浸漬し、乾燥した。最後に、部品を銀分散液中に浸漬し、乾燥した。このようにして47μF/35Vキャパシタの多数の部品(3000)を製造し、シリカ樹脂中に封入した。
【0080】
実施例2:
有機金属溶液の3つの層を、シリカ樹脂で封入する前のリードフレームの陽極部分及び陰極部分に施した他は、実施例1に記載のようにしてキャパシタを形成した。より詳しくは、溶液はエタノール中に(3-グリシジルオキシプロピル)トリメトキシシランを含んでいた(1.0%)。47μF/35Vキャパシタの多数の部品(3000)を形成した。湿分感受性レベル試験における電気的パラメーターのメジアンの結果を下表1に示す。湿分感受性レベル試験におけるキャパシタの上部側及び底部側からの外部クラックを下表2に示す。
【0081】
【表1】
【0082】
【表2】
【0083】
本発明のこれら及び他の修正及び変更は、当業者によって、本発明の精神及び範囲から逸脱することなく実施することができる。更に、種々の態様の複数の形態は、全体的又は部分的の両方で交換することができることを理解すべきである。更に、当業者であれば、上記の記載はほんの一例にすぎず、添付の特許請求の範囲において更に記載される発明を限定することは意図しないことを認識するであろう。
図1
【手続補正書】
【提出日】2024-01-19
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
焼結多孔質陽極体、前記陽極体の上に配されている誘電体、及び前記誘電体の上に配されている固体電解質を含む固体電解キャパシタ素子;
前記陽極体と電気的に接続されている陽極終端、ここで前記陽極終端の少なくとも一部の上に有機金属化合物を含む第1の被覆が配置されている;
前記固体電解質と電気的に接続されている陰極終端、ここで前記陰極終端の少なくとも一部の上に有機金属化合物を含む第2の被覆が配置されている;及び
前記キャパシタ素子を収容し、前記陽極終端及び前記陰極終端の実装面を露出した状態にしているケーシング材料;
を含むキャパシタアセンブリ。
【手続補正2】
【補正対象書類名】明細書
【補正対象項目名】0083
【補正方法】変更
【補正の内容】
【0083】
本発明のこれら及び他の修正及び変更は、当業者によって、本発明の精神及び範囲から逸脱することなく実施することができる。更に、種々の態様の複数の形態は、全体的又は部分的の両方で交換することができることを理解すべきである。更に、当業者であれば、上記の記載はほんの一例にすぎず、添付の特許請求の範囲において更に記載される発明を限定することは意図しないことを認識するであろう。
以下に、出願時の特許請求の範囲の記載を示す。
[請求項1]
焼結多孔質陽極体、前記陽極体の上に配されている誘電体、及び前記誘電体の上に配されている固体電解質を含む固体電解キャパシタ素子;
前記陽極体と電気的に接続されている陽極終端、ここで前記陽極終端の少なくとも一部
の上に有機金属化合物を含む第1の被覆が配置されている;
前記固体電解質と電気的に接続されている陰極終端、ここで前記陰極終端の少なくとも一部の上に有機金属化合物を含む第2の被覆が配置されている;及び
前記キャパシタ素子を収容し、前記陽極終端及び前記陰極終端の実装面を露出した状態にしているケーシング材料;
を含むキャパシタアセンブリ。
[請求項2]
前記第1の被覆の前記有機金属化合物、前記第2の被覆の前記有機金属化合物、又は両方が、次の一般式:
【化1】


(式中、
Mは有機金属原子であり;
、R、及びRは、独立して、アルキル又はヒドロキシアルキルであり、R、R、及びRの少なくとも1つはヒドロキシアルキルであり;
nは、0~8の整数であり;
Xは、有機又は無機官能基である)
を有する、請求項1に記載のキャパシタアセンブリ。
[請求項3]
Mがケイ素である、請求項2に記載のキャパシタアセンブリ。
[請求項4]
前記ヒドロキシアルキルがOCHである、請求項3に記載のキャパシタアセンブリ。[請求項5]
、R、及びRがヒドロキシアルキルである、請求項2に記載のキャパシタアセンブリ。
[請求項6]
前記有機金属化合物が、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルメチルジエトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルメチルジエトキシシラン、グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、グリシドキシメチルトリプロポキシシラン、グリシドキシメチルトリブトキシシラン、β-グリシドキシエチルトリメトキシシラン、β-グリシドキシエチルトリエトキシシラン、β-グリシドキシエチルトリプロポキシシラン、β-グリシドキシエチルトリブトキシシラン、β-グリシドキシエチルトリメトキシシラン、α-グリシドキシエチルトリエトキシシラン、α-グリシドキシエチルトリプロポキシシラン、α-グリシドキシエチルトリブトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリプロポキシシラン、γ-グリシドキシプロピルトリブトキシシラン、β-グリシドキシプロピルトリメトキシシラン、β-グリシドキシプロピルトリエトキシシラン、β-グリシドキシプロピ
ルトリプロポキシシラン、α-グリシドキシプロピルトリブトキシシラン、α-グリシドキシプロピルトリメトキシシラン、α-グリシドキシプロピルトリエトキシシラン、α-グリシドキシプロピルトリプロポキシシラン、α-グリシドキシプロピルトリブトキシシラン、γ-グリシドキシブチルトリメトキシシラン、δ-グリシドキシブチルトリエトキシシラン、δ-グリシドキシブチルトリプロポキシシラン、δ-グリシドキシブチルトリブトキシシラン、δ-グリシドキシブチルトリメトキシシラン、γ-グリシドキシブチルトリエトキシシラン、γ-グリシドキシブチルトリプロポキシシラン、γ-プロポキシブチルトリブトキシシラン、δ-グリシドキシブチルトリメトキシシラン、δ-グリシドキシブチルトリエトキシシラン、δ-グリシドキシブチルトリプロポキシシラン、α-グリシドキシブチルトリメトキシシラン、α-グリシドキシブチルトリエトキシシラン、α-グリシドキシブチルトリプロポキシシラン、α-グリシドキシブチルトリブトキシシラン、又はこれらの組合せである、請求項1に記載のキャパシタアセンブリ。
[請求項7]
前記陽極終端のそれぞれの表面が第1の被覆を含む、請求項1に記載のキャパシタアセンブリ。
[請求項8]
前記陰極終端のそれぞれの表面が第2の被覆を含む、請求項1に記載のキャパシタアセンブリ。
[請求項9]
前記キャパシタ素子が、前記固体電解質の上に配されている金属粒子層を含む陰極被覆を更に含み、前記金属粒子層は樹脂状ポリマーマトリクス内に分散されている複数の導電性金属粒子を含む、請求項1に記載のキャパシタアセンブリ。
[請求項10]
前記陽極体がタンタルを含み、前記誘電体が五酸化タンタルを含む、請求項1に記載のキャパシタアセンブリ。
[請求項11]
前記固体電解質が複数の導電性ポリマー粒子を含む、請求項1に記載のキャパシタアセンブリ。
[請求項12]
前記導電性ポリマー粒子が、次式(III):
【化2】


(式中、
は、線状又は分岐の、C~C18アルキル基、C~C12シクロアルキル基、C~C14アリール基,C~C18アラルキル基、又はこれらの組合せであり;
qは0~8の整数である)
の繰り返し単位を有する外因性導電性ポリマーを含む、請求項11に記載のキャパシタアセンブリ。
[請求項13]
前記外因性導電性ポリマーがポリ(3,4-エチレンジオキシチオフェン)である、請求項12に記載のキャパシタアセンブリ。
[請求項14]
前記粒子がポリマー対イオンも含む、請求項12に記載のキャパシタアセンブリ。
[請求項15]
前記導電性ポリマー粒子が、次式(IV):
【化3】


(式中、
Rは(CH-O-(CHであり;
aは、0~10であり;
bは、1~18であり;
Zはアニオンであり;
Xはカチオンである)
の繰り返し単位を有する固有導電性ポリマーを含む、請求項11に記載のキャパシタアセンブリ。
[請求項16]
前記固体電解質の上に配されており、予め重合された導電性ポリマー粒子及び架橋剤を含む外側ポリマー被覆を更に含む、請求項1に記載のキャパシタアセンブリ。
[請求項17]
前記キャパシタが約40%以上の相対湿度を有する雰囲気と接触する、請求項1に記載のキャパシタアセンブリ。
[請求項18]
ケーシング材料の少なくとも一部を被覆する湿分バリヤ層を更に含む、請求項1に記載のキャパシタアセンブリ。
[請求項19]
前記湿分バリヤ層がシリコーンエラストマーを含む、請求項18に記載のキャパシタアセンブリ。
【外国語明細書】