IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 横河電機株式会社の特許一覧

<>
  • 特開-細胞培養システム、及び細胞培養方法 図1
  • 特開-細胞培養システム、及び細胞培養方法 図2
  • 特開-細胞培養システム、及び細胞培養方法 図3
  • 特開-細胞培養システム、及び細胞培養方法 図4
  • 特開-細胞培養システム、及び細胞培養方法 図5
  • 特開-細胞培養システム、及び細胞培養方法 図6
  • 特開-細胞培養システム、及び細胞培養方法 図7
  • 特開-細胞培養システム、及び細胞培養方法 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024030410
(43)【公開日】2024-03-07
(54)【発明の名称】細胞培養システム、及び細胞培養方法
(51)【国際特許分類】
   C12M 3/02 20060101AFI20240229BHJP
   C12M 1/00 20060101ALI20240229BHJP
   C12M 3/00 20060101ALI20240229BHJP
   C12N 5/07 20100101ALI20240229BHJP
   C12N 5/071 20100101ALI20240229BHJP
   C12N 5/10 20060101ALI20240229BHJP
【FI】
C12M3/02
C12M1/00 D
C12M3/00 Z
C12N5/07
C12N5/071
C12N5/10
【審査請求】未請求
【請求項の数】11
【出願形態】OL
(21)【出願番号】P 2022133288
(22)【出願日】2022-08-24
(71)【出願人】
【識別番号】000006507
【氏名又は名称】横河電機株式会社
(74)【代理人】
【識別番号】110002572
【氏名又は名称】弁理士法人平木国際特許事務所
(72)【発明者】
【氏名】生田目 哲志
(72)【発明者】
【氏名】中村 幸弘
(72)【発明者】
【氏名】栗原 暢人
(72)【発明者】
【氏名】榊 歩夢
【テーマコード(参考)】
4B029
4B065
【Fターム(参考)】
4B029AA02
4B029BB11
4B029CC01
4B029DA03
4B029DB01
4B029DF03
4B029DF04
4B029DF05
4B065AA91X
4B065AB01
4B065AC14
4B065BA01
4B065BC02
4B065BC03
4B065BC12
4B065BC13
4B065BC14
4B065CA25
4B065CA44
(57)【要約】
【課題】灌流培養においてバッチ間にバラつきが生じた場合でも、安定した運転を実行することを可能にする。
【解決手段】この細胞培養システムは、細胞を培養するための培養槽と、前記培養槽における細胞の培養に関する各種情報を処理する情報処理システムと、前記培養槽による培養工程を制御するコントローラとを備える。前記情報処理システムは、細胞の培養工程を構成する複数のステップの各々について、そのステップにおける運転条件を記憶すると共に、次のステップへ移行するためのステップ移行条件を記憶し、一のステップの実行時において前記ステップ移行条件が満たされた場合に、次のステップの運転条件を設定する。
【選択図】図1
【特許請求の範囲】
【請求項1】
細胞を培養するための培養槽と、
前記培養槽における細胞の培養に関する各種情報を処理する情報処理システムと、
前記培養槽による培養工程を制御するコントローラと
を備え、
前記情報処理システムは、
細胞の培養工程を構成する複数のステップの各々について、そのステップにおける運転条件を記憶すると共に、次のステップへ移行するためのステップ移行条件を記憶し、
一のステップの実行時において前記ステップ移行条件が満たされた場合に、次のステップの運転条件を設定する
ことを特徴とする細胞培養システム。
【請求項2】
前記培養槽に設置されて前記培養槽の中の培養液の状態を計測するインラインセンサを更に備える、請求項1に記載の細胞培養システム。
【請求項3】
前記培養槽からサンプリングされた前記培養液をオフラインで計測する分析装置を更に備え、
前記情報処理システムは、前記インラインセンサの測定値と、前記分析装置のオフライン分析値とを比較して、その結果に従って前記インラインセンサを校正する
ことを特徴とする、請求項2に記載の細胞培養システム。
【請求項4】
前記ステップ移行条件は、前記インラインセンサの測定値又は出力値と設定値との関係に係る条件である、請求項2又は3に記載の細胞培養システム。
【請求項5】
前記コントローラは、
前記ステップ移行条件を満たすための待ち時間が経過した場合において、前記ステップ移行条件に係るステップを中断するよう制御を実行する、請求項1に記載の細胞培養システム。
【請求項6】
前記コントローラは、前記ステップを中断する制御が実行された後、オペレータによる手動操作に従い、前記ステップの中止または復帰を選択する、請求項5に記載の細胞培養システム。
【請求項7】
細胞を培養するための培養槽を備える細胞培養システムにおける細胞培養方法において、
細胞の培養工程を構成する複数のステップの各々について、そのステップにおける運転条件を記憶すると共に、次のステップへ移行するためのステップ移行条件を記憶する工程と、
一のステップの実行時において前記ステップ移行条件が満たされた場合に、次のステップの運転条件を設定する工程と
を備える、細胞培養方法。
【請求項8】
前記培養槽に設置されて前記培養槽の中の培養液の状態を計測するインラインセンサの測定値と、前記培養槽からサンプリングされた前記培養液をオフラインで計測する分析装置の分析値とを比較して、その結果に従って前記インラインセンサを校正する工程を更に備える、請求項7に記載の細胞培養方法。
【請求項9】
前記ステップ移行条件は、前記インラインセンサの測定値又は出力値と設定値との関係に係る条件である、請求項8に記載の細胞培養方法。
【請求項10】
前記ステップ移行条件を満たすための待ち時間が経過した場合において、前記ステップ移行条件に係るステップを中断するよう制御を実行する、請求項7に記載の細胞培養方法。
【請求項11】
前記ステップを中断する制御が実行された後、オペレータによる手動操作に従い、前記ステップの中止または復帰を選択する、請求項10に記載の細胞培養方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、細胞培養システム、及び細胞培養方法に関する。
【背景技術】
【0002】
バイオ医薬品の生産は、生物反応により目的物質を生産する培養工程と、そこで発生した夾雑物を取り除き、目的物質の純度を上げる精製工程から構成される。バイオ医薬品を代表する抗体医薬品の培養工程では、主にCHO細胞などの動物細胞が多く用いられる。しかし、動物細胞は培養環境の影響を受けやすく、環境が適切に維持されないと目的生産物の収量及び品質に影響を及ぼす。
【0003】
培養環境の悪化の要因としては、攪拌・ガス通気による力学的応力、栄養素や酸素の枯渇、細胞により産生される乳酸やアンモニアといった老廃物の蓄積などが挙げられる。従って、培養液中の溶存酸素濃度、pH、温度、攪拌速度などの基本的な環境因子の制御を行いつつ、培養中に細胞が要求する物質を補填する製造方法が用いられている。培養中の補填物質は、培地中に含まれる栄養成分の他、増強剤と呼ばれる細胞の増殖速度または生産速度を向上させる物質を含む。
【0004】
培養中に物質を補填する培養方法には、連続培養(Continuous Culture)、灌流培養(Perfusion Culture)、流加培養(Fed-Bach Culture)がある。連続培養は、培養中に細胞を含む培養液の一部を抜き取り、抜き取った量に相当する培養液を新たに投入しながら培養する方法である。
【0005】
灌流培養は、培養中に細胞を分離した液体成分のみを一部抜き取り、抜き取った量に相当する培養液を新たに投入しながら培養する方法である。特に抗体医薬品の生産においては、灌流培養は細胞を高密度に維持し易いため、時間当たりの生産速度を高く保つ事ができ、多くの研究報告がなされている。
【0006】
灌流培養による培養開始時には、培養槽に培地と細胞が入れられ、培養槽の温度、pH、溶存酸素量(DO)が適切に管理されることで細胞増殖が進行する。細胞がある程度増殖した段階(2日目~3日目)で培地が培養槽に連続的に供給され、供給量と同量の除細胞液(ハーベスト液)が回収される。供給量と回収量が同量のため、培養槽内の培養液体積は一定に保たれる。また、細胞はTFF(tangential flow filtration)やATF(alternating tangential flow filtration)と呼ばれる除細胞装置のフィルタ作用により培養槽内に留まるため、灌流が開始された後も培養槽内で増殖を続ける。
【0007】
培養槽中の細胞の数が一定の密度以上に増殖すると、先に述べた溶存酸素量(DO)の制御や栄養成分の調整が難しくなり、培養環境を悪化させる事に繋がる。そのため、一般的には細胞密度を適切な範囲に抑えるために、目標値以上に増殖した時点から、培養液を抜き取ることで増え過ぎた分の細胞を培養槽の外に排出する手段(ブリード)を講じられる。
【0008】
通常、灌流率(1日当たりに培養液体積に対する培地投入量の割合)は1~3VVD程度、排出されるブリード液量は0.2~0.5VVD程度であり、4週間~12週間程度運転される。また、主要な栄養素であるグルコースは、不足分を別途流加する事により適切な濃度に保たれる。
【0009】
このように、灌流培養においては、温度、pH、溶存酸素量(DO)などに加え、
(i)培地の供給量
(ii)培養液量
(iii)細胞密度
(iv)グルコース濃度
等も制御する必要がある。それぞれには細胞種によって適切な管理幅があるため、その制御は容易ではない。制御が適切に実行されない場合、細胞活性の低下による収率の減少やリカバリーのための追加の操作などが必要となり、最悪の場合はバッチロスとなり、培養した細胞を廃棄する必要が生じることもあり得る。
【0010】
細胞培養を利用した物質生産では、生産量確保を目的に最終的に培養が実施される容量までスケールアップが行われる。灌流培養は細胞の高密度化が可能なため、小容量での生産が可能ではあるが、細胞融解時点(数十mL)から条件検討スケール(~数L)、生産スケール(~数百L)まで数段階のスケールアップが必要になる。つまり、所望のスケールでの培養が開始される時点において、既にその前段階にいくつかのマニュアルでの培養操作(凍結、融解、フラスコ培養など)が行われており、それらの影響を受けた状態の細胞がスケールアップに使用される。
【0011】
スケールアップの複数の段階において完全に同一な細胞状態で培養が開始できるとは限らない。さらに、培養開始時点の細胞密度の調整についても、ある程度の誤差(±10%程度)を含んだ細胞計数の結果に基づいているため、初期播種密度はばらつきを持つ。そのような状況で培養を開始するため、細胞増殖やその他培養の各種パラメータはバッチ間で細胞増殖やその他の培養のパラメータに関しある程度のばらつきを有する。生物プロセスに由来する各バッチ間のばらつきを抑制する事は容易ではない。
【先行技術文献】
【特許文献】
【0012】
【特許文献1】国際公開第2020/252442号
【特許文献2】米国特許出願公開第2019/0153381号明細書
【発明の概要】
【発明が解決しようとする課題】
【0013】
本発明は、灌流培養においてバッチ間にバラつきが生じた場合でも、安定した運転を実行することを可能にする細胞培養システム、及び細胞培養方法を提供するものである。
【課題を解決するための手段】
【0014】
本発明に係る細胞培養システムは、細胞を培養するための培養槽と、前記培養槽における細胞の培養に関する各種情報を処理する情報処理システムと、前記培養槽による培養工程を制御するコントローラとを備える。前記情報処理システムは、細胞の培養工程を構成する複数のステップの各々について、そのステップにおける運転条件を記憶すると共に、次のステップへ移行するためのステップ移行条件を記憶し、一のステップの実行時において前記ステップ移行条件が満たされた場合に、次のステップの運転条件を設定する。
【0015】
本発明に係る細胞培養方法は、細胞を培養するための培養槽を備える細胞培養システムにおける細胞培養方法において、細胞の培養工程を構成する複数のステップの各々について、そのステップにおける運転条件を記憶すると共に、次のステップへ移行するためのステップ移行条件を記憶する工程と、一のステップの実行時において前記ステップ移行条件が満たされた場合に、次のステップの運転条件を設定する工程とを備える。
【発明の効果】
【0016】
本発明に係る細胞培養システムおよび方法によれば、灌流培養においてバッチ間にバラつきが生じた場合でも、安定した運転を実行することが可能になる。
【図面の簡単な説明】
【0017】
図1】実施の形態に係る細胞培養システム1の全体構成を説明する概略図である。
図2】情報処理システム20の詳細を説明する概略図である。
図3】実施の形態の細胞培養システム1の動作を説明するフローチャートである。
図4】実施の形態の細胞培養システム1の動作を説明するフローチャートである。
図5】ステップ移行条件の例を説明するグラフである。
図6】本実施の形態の効果を説明するグラフである。
図7】本実施の形態の効果を説明するグラフである。
図8】本実施の形態の効果を説明するグラフである。
【発明を実施するための形態】
【0018】
以下、添付図面を参照して本実施形態について説明する。添付図面では、機能的に同じ要素は同じ番号で表示される場合もある。なお、添付図面は本開示の原理に則った実施形態と実装例を示しているが、これらは本開示の理解のためのものであり、決して本開示を限定的に解釈するために用いられるものではない。本明細書の記述は典型的な例示に過ぎず、本開示の特許請求の範囲又は適用例を如何なる意味においても限定するものではない。本実施形態では、当業者が本開示を実施するのに十分詳細にその説明がなされているが、他の実装・形態も可能で、本開示の技術的思想の範囲と精神を逸脱することなく構成・構造の変更や多様な要素の置き換えが可能であることを理解する必要がある。従って、以降の記述をこれに限定して解釈してはならない。
【0019】
図1を参照して、実施の形態に係る細胞培養システム1の全体構成を説明する。この細胞培養システム1は、培養液を内部に格納する培養槽10と、この培養槽10における細胞の培養に関する各種情報を処理する情報処理システム20とを備える。本システム1は、灌流培養を適用することで細胞の培養を行うためのシステムである。このシステム1は更に、例えば、培養コントローラ21、誘電分光計22、近赤外/赤外/ラマン分光計23、分析装置24、除細胞装置32、フローセル33等を備える。
【0020】
情報処理システム20は、図2に示すように、細胞培養システム1のスケジュール運転を実行するため、レシピを実行するレシピ機能を有する。また、スケジュール運転を行う場合における各種制御パラメータを調整する機能、得られたデータを統合するデータ統合(校正)機能、得られたデータ等を表示するための画面表示(トレンド表示)を調整する機能を有する。情報処理システム20は、インラインセンサ11~13及び分析装置24からの情報を取得するとともに、取得された情報に従い培養コントローラ21とともにシステム1を制御する。
【0021】
培養槽10は、培地と細胞を内部に供給されて細胞を培養するための容器である。培養槽10に細胞と培地が供給されて、培養液の温度、pH、溶存酸素量(DO)が適切に管理されることで細胞増殖が進行する。細胞がある程度増殖した段階(例えば2日目~3日目)で培地が培養槽10に連続的に供給され、供給量と同量の除細胞液(ハーベスト液)が回収されることで、灌流培養が実行される。ハーベスト液の回収は、除細胞装置32により細胞を除去して培養槽10内に維持しつつ、細胞が除去されたハーベスト液をフローセル33及びポンプを介して外部に排出することにより行われ得る。
【0022】
灌流培養においては、供給量と回収量が同量のため、培養槽10内の培養液体積は一定に保たれる。培養槽10は、培地やグルコース、アルカリ(Base)をポンプP1~P3を介して供給される。その供給量は、後述する情報処理システム20及び培養コントローラ21により制御される。供給される培養液の供給量(体積)は、例えば重量計(スケール)により計測され得る。
【0023】
灌流培養による培養開始時には、培養槽10に培地と細胞が入れられ、培養槽10の温度、pH、溶存酸素量(DO)が適切に管理されることで細胞増殖が進行する。培養槽10中で細胞がある程度増殖した段階(2日目~3日目)で、培地が培養槽10に連続的に供給され、供給量と同量の除細胞液(ハーベスト液)が培養槽10からフローセル33、ポンプP5を介して回収される。灌流培養では、培養槽10への供給量と回収量が同量のため、培養槽10内の培養液体積は一定に保たれる。また、細胞はTFF(tangential flow filtration)やATF(alternating tangential flow filtration)と呼ばれる除細胞装置32のフィルタ作用により培養槽10内に留まるため、灌流が開始された後も培養槽10内で細胞の増殖が続けられる。
【0024】
培養槽10中の細胞の増殖が進み、細胞の密度が一定値にまで増加すると、先に述べた溶存酸素量(DO)の制御や栄養成分の調整が難しくなり、培養環境を悪化させる虞が高まる。そのため、培養槽10中の細胞密度を適切な範囲に抑えるために、目標値以上に増殖した時点から、培養液を培養槽10から抜き取り、これにより増え過ぎた細胞を培養槽10の外に排出する手段(ブリード)を講じられる。すなわち、ポンプP4の動作により、培養槽10中の培養液が適宜抜き取られ、外部に排出される。
【0025】
後述するように、培養槽10内の細胞は除細胞装置32のフィルタ作用により培養槽10内に留まるため、灌流が開始された後も培養槽10内で増殖を続ける。このような灌流培養のための制御が、情報処理システム20が収集した各種情報に従って、培養コントローラ21により実行される。
【0026】
培養コントローラ21は、培養槽10の培養液の状態を監視して、灌流培養工程に関する各種制御(各種ポンプ、モータ等の動作、温度制御等)を実行し、培養槽10における供給量、回収量、通気量、灌流率等を制御する。また、培養コントローラ21は、情報処理システム20から各種情報を受け取って制御信号に反映させると共に、制御の状況を情報処理システム20に送信する。
【0027】
情報処理システム20は、コンピュータと、コンピュータにおいて読出し可能なソフトウェアとにより構成され得る。情報処理システム20は、灌流培養のスケジュールを管理する機能、得られたデータを統合する機能の他、各制御ループを設計する機能を備え得る。なお、図1の例では、各部の個別制御を培養コントローラ21が担当し、上位の統合制御を情報処理システム20が担当する方式を説明するが、各部の個別制御の一部又は全部を情報処理システム20が担当する方式とすることも可能である。また、情報処理システム20は、ユーザインターフェースとしてプロセスパラメータの設定画面やトレンド表示機能、データ保管・出力機能なども備え得る。
【0028】
誘電分光計22は、培養液中に挿入された電極12の間を流れる電流に従って培養液の誘電率を計測し、これにより培養液中の細胞の数、生存率等を計測する。近赤外/赤外/ラマン分光計23は、培養液中に挿入された受発光センサ13により、培養液に対し各種測定光(近赤外光、赤外光、単色光)を照射して、培養液を透過又は反射した光の近赤外スペクトル、赤外スペクトル、ラマンスペクトル等を測定し、例えば培養液中のグルコースや乳酸、アンモニア、各種アミノ酸など、細胞の栄養や代謝の成分を計測可能な装置である。
【0029】
分析装置24は、例えば高速液体クロマトグラフ装置(HPLC)、細胞培養分析装置等であり、例えば1日に1回程度の間隔でサンプリング装置31からサンプリングされた培養液の成分をオフラインで(培養槽10から離れて)分析する装置である。
【0030】
培養槽10には、培養液に浸漬され、細胞の培養の実行中における培養液の状態を計測するためのインラインセンサ11~13が設置されている。また、培養槽10には、培養液を攪拌するための攪拌装置15も設けられている。攪拌装置15は、図示しないモータからの駆動力により動作可能とされ、当該モータは、例えば培養コントローラ21からの制御信号に従って動作し得る。
【0031】
インラインセンサ11~13は、一例として、培養液のpH、溶存酸素量(DO)、温度、ガス分圧(酸素の分圧、二酸化炭素の分圧など)、浸透圧、栄養成分、代謝成分、目的生産物濃度などの基本的な物理/化学パラメータを測定して測定信号を培養コントローラ21に供給するセンサ11と、誘電分光計22の電極12と、近赤外/赤外/ラマン分光計23の受発光センサ13とを含み得る。
【0032】
誘電分光計22、近赤外/赤外/ラマン分光計23による測定においては、通常は、予め目的の成分濃度を調整した溶液を用いて検量モデルを構築しておき、培養槽10に浸漬したセンサやフローセルなどから取得された吸光スペクトル、散乱スペクトルを検量モデルに従って目的の成分濃度に変換することで測定が実行される。
【0033】
培養槽10による細胞の培養中に測定される上記に例示した各種パラメータは、通常1日に1回程度、培養液をサンプリングして、分析装置24により測定され得る。なお、培養槽10内の細胞密度は、培養液の染色を行った上で培養液を撮像し、その画像を解析して計数を行うことにより算出することができる。また、栄養/代謝成分については酵素センサなどを利用することができる。
【0034】
培養槽10の環境を維持するため、インラインセンサ11~13で測定された幾つかのパラメータについては、培養コントローラ21を介して情報処理システム20へのフィードバック制御が行われる。フィードバックが行われることにより、当該パラメータが適切な管理幅内に制御される。一般的には、単入力・単出力(SISO)によりパラメータ毎に独立して制御される事が多いが、各パラメータは相互に干渉している事も多く、このため多入力・多出力(MIMO)により安定化を図ることも可能である。
【0035】
次に、図3のフローチャートを参照して、細胞培養システム1による灌流培養における動作を説明する。ここでは、1つのバッチが、複数のステップを含んでいるものとして説明をする。
【0036】
まず、情報処理システム20において、灌流培養の実施のためのレシピファイルを含むソフトウェアを読み込み、情報処理システム20にインストールする(ステップS11)。当該ソフトウェアは、外部からインストールする代わりに、情報処理システム20において直接入力された後、保存されてもよい。レシピファイルには、複数のステップの各々の運転条件(培養条件、制御条件)及び次ステップへの移行条件が規定されており、ステップS12では、最初のステップ1についての運転条件が設定(記憶)される。
【0037】
レシピ実行操作を行うと、レシピ上に記載されているステップの運転条件が順次設定され、最初は順序が一番若い「ステップ1」の運転条件が設定され、灌流培養の動作が開始される。ここで、培養液の温度やpHなどの個別の測定項目について個別制御の開始/停止が当該ステップに関し設定されている場合(ステップS13のYES)、後述する個別制御のシーケンスが実行される(ステップS14)。一方、個別の測定項目について個別制御の開始/停止操作が当該ステップに関し設定されていない場合には(ステップS13のNO)、個別制御のシーケンスは行われず、ステップS15へ移行する。
【0038】
ステップS15では、運転条件を設定したステップの実行に関し、オペレータに確認すべき項目があるか否かが判定される。確認項目が無い場合(NO)には、ステップS17に移行する。確認項目がある場合には(YES)、オペレータに対し、図示しないディスプレイ等を介して、確認項目に関するメッセージを出力し、規定時間以内にオペレータがその確認項目を承認するかどうかが判定される(ステップS16)。
【0039】
ステップS16において、規定時間以内にオペレータの承認があった場合には(ステップS16のYES)、ステップS17に移行する。承認が無い場合には(NO)、ステップS21に移行する。
【0040】
ステップS17では、現在実行中のステップに関し、次のステップに移行するステップ移行条件が成立しているか否かが判定される。ステップ移行条件が成立していれば(YES)、ステップS18に移行し、成立していなければ、所定の待ち時間が経過するまで、ステップ移行条件の成立を待つ(ステップS20)。所定の待ち時間の間にステップ移行条件が成立しない場合には(ステップS20のYES)、中断モードに移行し、そのステップの実行は中断(中断時の培養状態は維持)される(ステップS21)。その後、オペレータによる手動操作により、当該ステップへ復帰するか、または培養を中止するかが選択される(ステップS22)。
【0041】
ステップS17にてステップ移行条件が成立したと判定された場合(YES)、ステップS18では、培養工程が終了したか否かが判定される。終了していなければ(NO)、ステップS23に移行し、次のステップの運転条件が設定され、以下、同様の手順が繰り返される。一方、培養工程が終了していれば(YES)、その培養工程の実績に関するデータを収集し、その収集された情報を情報処理システム20に送信する。以上により、一のバッチでの培養工程は終了する。
【0042】
なお、各ステップに入力された培養条件は、運転開始後も変更・追加等が可能である。また、実施中のステップより後段のステップの編集は自由に行うことができる。最終的に実行されたレシピの実績は、すべての培養工程の終了後に収集される。
【0043】
次に、図4のフローチャートを参照して、前述の個別制御の動作を説明する。図4の左側のフローチャートは、個別制御の動作の全体の流れを示しており、右側のフローは、そのうちのドリフト補正の詳細な流れを示している。
【0044】
個別制御(pH、溶存酸素量(DO)、温度、生細胞密度(VCD)、グルコース、液量、生産物濃度など)が開始されると、各インラインセンサ11~13の測定値(又は予測値)が情報処理システム20等に出力される(ステップS31)。
【0045】
続いて、インラインセンサ11~13のドリフト補正が行われる(ステップS32)。具体的には、同一パラメータ(pH、溶存酸素量(DO)、生細胞密度(VCD)、グルコース、液量、生産物濃度等)が分析装置24においてオフライン分析値として更新された場合(ステップS41のYES)、インラインセンサ11~13の測定値と、分析装置24のオフライン分析値の値とが情報処理システム20において比較される(ステップS42)。比較の結果、両者間の乖離が基準値よりも大きい場合には(ステップS43のYES)、情報処理システム20は、その剥離量に従い、インラインセンサ11~13を校正する(ステップS44)。
【0046】
ドリフト補正が終了すると、情報処理システム20は、インラインセンサ11~13の測定値に基づいて制御演算(PID制御など)を実行し(ステップS33)、培養コントローラ21に対し、ポンプP1~P5、モータ、アクチュエータ等の制御信号を出力する(ステップS34)。以上の動作が、情報処理システム20からの制御OFFの指示により、個別制御の動作が停止されるまで繰り返される(ステップS35)。
【0047】
前述したように、従来の灌流培養では、複数のバッチにおいて、マニュアル操作や細胞数計数誤差などの影響を受け、バッチ間において細胞増殖や細胞増殖に関する各種パラメータに関しばらつきが生じる。これに対し、本実施の形態の細胞培養システムにおいては、各ステップのレシピにおいて、そのステップについての運転条件と、次のステップへの移行の条件であるステップ移行条件が設定可能なため、例えば細胞培養において時間的に変動が発生したとしても、予め定めた細胞密度や通気量において次の運転条件に移行する事が可能になるため、再現性のある培養プロファイルが得られる。
【0048】
なお、ステップ移行条件は、例えば、図5に示すインラインセンサ11~13の測定値PV又は出力値MVと設定値SVとの関係に基づいて設定され得る。一例として、図5(a)、図5(d)に示すように、測定値PV又は出力値MVが設定値SVを超えた後、又は下回った後の経過時間Δtが閾値Tsを超えたか否かをステップ移行条件とすることができる。または、図5(b)に示すように、測定値PV又は出力値MVと設定値SVとの間の差が正負の閾値±ΔZを超えた後の経過時間Δtが閾値Tsを超えたか否かをステップ移行条件とすることができる。または、図5(c)、(e)に示すように、測定値PV又は出力値MVと設定値SVとの間の差が正負の閾値±ΔZ以内となった後の経過時間Δtが閾値Tsを超えたか否かをステップ移行条件とすることができる。
【0049】
図6は、生細胞密度及び灌流率に関し、インラインセンサ11~13の測定値と、分析装置24のオフライン分析値との比較の結果に従ってインラインセンサ11~13を校正した結果を示すグラフである。図6(a)は、インラインセンサ11~13による生細胞密度の測定値(A)と分析装置24のオフライン分析値(B)の比較の結果を示す。図6(b)は、灌流率に関するインラインセンサ11~13の出力値と分析装置24のオフライン分析値の比較の結果を示す。ここで、生細胞密度の設定値SVは4.0×10cells/mLに設定されている。生細胞密度が3.8×10cells/mLに達した時点で制御出力のベースとなる値が出力され、その後フィードバック制御により生細胞密度が設定値SVに維持される。
【0050】
A、Bの制御開始点を合わせて表示したのが図6(c)、図6(d)である。バッチ間により増殖などのばらつきが発生しているが、基準値(SV)に達した後は測定値PV、出力値MV共に一定の再現性を示したプロファイルが得られている。
【0051】
図7は、グルコース濃度、及びグルコース供給速度に関し、インラインセンサ11~13の測定値と、分析装置24のオフライン分析値との比較の結果に従ってインラインセンサ11~13を校正した結果を示すグラフである。図7(a)は、インラインセンサ11~13によるグルコース濃度の測定値(A)と分析装置24のオフライン分析値(B)の比較の結果を示す。図7(b)は、グルコース供給速度に関するインラインセンサ11~13の出力値と分析装置24のオフライン分析値の比較の結果を示す。
【0052】
A、Bの制御開始点を合わせて表示したのが図7(c)、図7(d)であり、図6の場合と同様に、一定の再現性を示したプロファイルが得られている。
【0053】
このように、インラインセンサ11~13の利用によりリアルタイムの観測値が得られる事と、レシピ機能により柔軟な移行条件が設定できる事で、手動操作では困難なバッチ間のばらつきに対応し所望の培養プロファイルを得る事が可能になる。
【0054】
これに加え、インラインセンサ11~13及びその値を利用するフィードバック制御系(フィードフォワードとの併用も含む)を構築する事で、細胞の数やグルコース濃度など、最終製品の収量や品質に影響するプロセスパラメータを管理幅内に制御する事が可能になる。インラインセンサ11~13を利用する事でデータ点数が増加するため、フィードバック制御系の構築は容易になる一方、培養環境の変動に起因した予測値のドリフトが課題になる事もある。この点、本実施の形態ではオフライン分析値を利用する事で定期的にドリフトをキャンセルすることができる。また、スケジュール運転により、例えば灌流率など培養槽10の滞留時間に影響するパラメータが変更される場合、グルコースなど各成分濃度の制御ループにおけるプロセスゲインは変化し、従って例えばPID制御などの比例ゲインや積分時間などの適正値は変化する。そこで、本実施の形態のようにステップ毎に適した制御パラメータを設定できる構成であれば、制御安定性が増す。
【0055】
また、本実施形態によれば、シーケンシャルな条件検討が可能になり、迅速なプロセス最適化、及びプロセスの理解が可能になる。すなわち、バッチ培養やフェドバッチ培養は培養槽内の状況が刻々と変化するのに対し、灌流培養のように連続した培養方法では、一定の範囲で定常状態が存在する(疑似定常状態)。パラメータの最適化を行おうとする場合、非定常なバッチ培養では1回の培養期間を通して1つのパラメータを変化させることが基本であるため、多大な工数が必要になる。
【0056】
これに対して、灌流培養では疑似定常状態が存在するので、培養中に複数パラメータの最適化を行うことができる。図8に示すように、本実施の形態では、定常状態を構築後に各種制御パラメータ(pH、溶存酸素量、温度、攪拌速度、グルコース濃度、灌流率、細胞密度など)を適切なタイミングで個別に変化させ、各比速度への影響を把握することができる。このようなシーケンシャルな条件出しにおいては、各培養条件に移行する際の制御の動特性、安定性が再現性の確保のためにはきわめて重要となる。
【0057】
なお、本発明は、上記の実施例に限定されるものではなく、様々な変形が可能である。例えば、上記の実施例は、本発明を分かりやすく説明するために詳細に説明したものであり、本発明は、必ずしも説明した全ての構成を備える態様に限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能である。また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、削除したり、他の構成を追加・置換したりすることが可能である。
【符号の説明】
【0058】
10…培養槽、 11~13…インラインセンサ、 15…攪拌装置、 P1~P5…
ポンプ、 20…情報処理システム、 21…培養コントローラ、 22…誘電分光計、 23…近赤外/赤外/ラマン分光計、 24…分析装置、 32…除細胞装置、 33…フローセル

図1
図2
図3
図4
図5
図6
図7
図8