(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024030943
(43)【公開日】2024-03-07
(54)【発明の名称】サーミスタ素子及びその製造方法
(51)【国際特許分類】
H01C 7/04 20060101AFI20240229BHJP
H01C 17/28 20060101ALI20240229BHJP
H01C 17/00 20060101ALI20240229BHJP
【FI】
H01C7/04
H01C17/28
H01C17/00 100
【審査請求】未請求
【請求項の数】11
【出願形態】OL
(21)【出願番号】P 2022134195
(22)【出願日】2022-08-25
(71)【出願人】
【識別番号】000006264
【氏名又は名称】三菱マテリアル株式会社
(74)【代理人】
【識別番号】100120396
【弁理士】
【氏名又は名称】杉浦 秀幸
(72)【発明者】
【氏名】米澤 岳洋
(72)【発明者】
【氏名】細川 雄亮
(72)【発明者】
【氏名】藤原 和崇
(72)【発明者】
【氏名】岩城 典明
(72)【発明者】
【氏名】若菜 翔太
(72)【発明者】
【氏名】佐藤 博樹
【テーマコード(参考)】
5E032
5E034
【Fターム(参考)】
5E032BA23
5E032BB08
5E032CA02
5E032CC06
5E032CC11
5E032CC14
5E034BA09
5E034BB01
5E034BC01
5E034DA02
5E034DB01
5E034DC03
5E034DC05
5E034DC09
5E034DE08
(57)【要約】
【課題】 高温でも安定して存在できる導電性中間層を備えたサーミスタ素子及びその製造方法を提供すること。
【解決手段】 結晶構造がペロブスカイト型の酸化物サーミスタ材料を含むサーミスタ素体2と、サーミスタ素体の上に形成された導電性中間層3と、導電性中間層の上に形成された電極層4とを備え、導電性中間層が、Mnを含む複合酸化物である。このサーミスタ素子の製造方法では、サーミスタ素体上にMnを含む複合酸化物の導電性中間層を形成する中間層形成工程と、導電性中間層の上に電極層を形成する電極層形成工程とを有し、中間層形成工程で、Mn含有分散液をサーミスタ素体の上に塗布し、乾燥させて仮中間層を形成し、電極層形成工程で、Ptを含んだPtペーストを仮中間の層上に塗布し焼成して、電極層を形成すると共に仮中間層を導電性中間層とする。
【選択図】
図1
【特許請求の範囲】
【請求項1】
結晶構造がペロブスカイト型の酸化物サーミスタ材料を含むサーミスタ素体と、
前記サーミスタ素体の上に形成された導電性中間層と、
前記導電性中間層の上に形成された電極層とを備え、
前記導電性中間層が、Mnを含む複合酸化物であることを特徴とするサーミスタ素子。
【請求項2】
請求項1に記載のサーミスタ素子において、
前記複合酸化物が、さらにYを含むことを特徴とするサーミスタ素子。
【請求項3】
請求項1又は2に記載のサーミスタ素子において、
前記複合酸化物が、さらにCa,Sr,Ba,Laのうち1種又は2種以上を含むことを特徴とするサーミスタ素子。
【請求項4】
請求項1又は2に記載のサーミスタ素子において、
前記電極層が、Ptを含有していることを特徴とするサーミスタ素子。
【請求項5】
請求項1に記載のサーミスタ素子において、
前記導電性中間層の中の全ての金属原子に対する前記Mnの含有割合をCMnとしたとき、0at.%<CMn≦60at.%であることを特徴とするサーミスタ素子。
【請求項6】
請求項2に記載のサーミスタ素子において、
前記導電性中間層の中の全ての金属原子に対する前記Yの含有割合をCYとしたとき、0at.%<CY≦60at.%であることを特徴とするサーミスタ素子。
【請求項7】
請求項3に記載のサーミスタ素子において、
前記導電性中間層が、Ca,Sr,Ba,Laのうち1種又は2種以上を、全ての金属原子に対する含有割合として0.1at.%以上含むことを特徴とするサーミスタ素子。
【請求項8】
結晶構造がペロブスカイト型のサーミスタ材料を含むサーミスタ素体の上にMnを含む複合酸化物の導電性中間層を形成する中間層形成工程と、
前記導電性中間層の上に電極層を形成する電極層形成工程とを有し、
前記中間層形成工程で、Mnを含んだ粉末と有機溶媒と分散剤とを含有したMn含有分散液を前記サーミスタ素体の上に塗布し、前記Mn含有分散液を乾燥させて仮中間層を形成し、
前記電極層形成工程で、Ptを含んだPtペーストを前記仮中間層の上に塗布し、前記Ptペーストを焼成して、前記電極層を形成すると共に前記仮中間層を前記導電性中間層とすることを特徴とするサーミスタ素子の製造方法。
【請求項9】
請求項8のサーミスタ素子の製造方法において、
前記Mn含有分散液が、さらにYを含んでいることを特徴とするサーミスタ素子の製造方法。
【請求項10】
請求項8又は9のサーミスタ素子の製造方法において、
前記Mn含有分散液が、さらにCa,Sr,Ba,Laのうち1種又は2種以上を含んでいることを特徴とするサーミスタ素子の製造方法。
【請求項11】
結晶構造がペロブスカイト型のサーミスタ材料を含むサーミスタ素体の上にMnを含む複合酸化物の導電性中間層を形成すると共に前記導電性中間層の上に電極層を形成する中間層電極層形成工程を有し、
前記中間層電極層形成工程で、MnとPtとを含んだMn含有Ptペーストを前記サーミスタ素体の上に塗布し、前記Mn含有Ptペーストを焼成して、前記導電性中間層及び前記電極層を形成することを特徴とするサーミスタ素子の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、温度センサや電子機器の保護回路などに好適なサーミスタ素子及びその製造方法に関する。
【背景技術】
【0002】
地球温暖化対策の一環として、近年のEV市場の急激な拡大に伴って、高速充電化や、モーターの高出力化、これらに伴うIGBTパワーモジュールの駆動温度の高温化に伴って、その温度をモニタリングするサーミスタにもより高温での動作が要求されている。
現在最も一般的に用いられているサーミスタ材料であるMnやCoなどをベースとしたスピネル構造のサーミスタ材料では、サーミスタの温度計数であるB定数が3000~4000程度と大きい。
【0003】
そのため、スピネル構造のサーミスタ材料では、温度に対する抵抗値の変化が大きすぎ、低温に合わせた特性では高温で抵抗値が下がりすぎることで正確な温度が検出できない。また、高温に合わせた特性では低温での抵抗値が高すぎて正確な温度検知ができない課題がある。
そこで、特許文献1のように、B定数の小さいペロブスカイト系のサーミスタ材料を用い、絶縁材料との複合構造とすることで低B定数と抵抗値の調整を可能にすることが提案されている。
【0004】
しかし、絶縁材料とサーミスタ材料の複合構造となっていることで、電極界面に露出するサーミスタ材料が少なく、電極との電気的接触が減ってしまう問題がある。
特に、一般的に用いられる貴金属ペーストを印刷、焼き付ける方法ではガラスフリットが用いられており、溶融したガラスフリットがサーミスタ素体と電極の間に介在することで密着性を担保する一方で、電極とサーミスタ素体との直接の接点は非常にわずかである。
このように、電気的接点が少ない構造同士の接合では良好な電気的特性を得ることはできない。この問題に対して、特許文献2のようにサーミスタ素体と電極との界面に、導電性の中間層を形成することが有効と考えられる。この特許文献2のサーミスタ素子では、導電性の中間層が、電気的に互いに接触したRuO2粒による凝集構造を有し、凝集構造の隙間にSiO2が介在している。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特許第4183666号公報
【特許文献2】特許第6365603号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
上記従来の技術には、以下の課題が残されている。
すなわち、上記特許文献2に記載されているサーミスタ素子では、RuO2が900℃程度で昇華してしまい、Ptペースト等の貴金属ペーストを用い高温での焼き付けが必要なPt電極等の貴金属電極では使用することが困難であった。
【0007】
本発明は、前述の課題に鑑みてなされたもので、高温でも安定して存在できる導電性中間層を備えたサーミスタ素子及びその製造方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明は、前記課題を解決するために以下の構成を採用した。すなわち、第1の発明に係るサーミスタ素子では、結晶構造がペロブスカイト型の酸化物サーミスタ材料を含むサーミスタ素体と、前記サーミスタ素体の上に形成された導電性中間層と、前記導電性中間層の上に形成された電極層とを備え、前記導電性中間層が、Mnを含む複合酸化物であることを特徴とする。
【0009】
このサーミスタ素子では、導電性中間層が、Mn(マンガン)を含む複合酸化物であるので、Mnを含む複合酸化物の結晶構造がペロブスカイト型のサーミスタ素体に近いことにより、導電性中間層の密着性が向上すると共に、導電性中間層が高温でも安定して存在することができる。特に、導電性中間層が、Mnを含有していることで、貴金属で形成された電極層との高い密着性を得ることができると共に、高温での焼き付けが必要な貴金属等で電極層を形成する場合でも、焼き付け後も安定して存在することができる。また、サーミスタ素体を構成する酸化物サーミスタ材料が、Mnを含む酸化物を含有している場合、Mnを含む複合酸化物である導電性中間層との密着性がより向上する。
なお、複合酸化物とは、2種類以上の元素(または酸化数の異なる同元素)の酸化物として表記される物質を示す。
【0010】
第2の発明に係るサーミスタ素子では、第1の発明において、前記複合酸化物が、さらにYを含むことを特徴とする。
すなわち、このサーミスタ素子では、複合酸化物が、さらにY(イットリウム)を含むので、MnとYとが反応して複合酸化物となることで、より高い導電性を得ることができる。また、サーミスタ素体を構成する酸化物サーミスタ材料が、Yを含む酸化物を含有している場合、Yを含む導電性中間層との密着性がより向上する。
【0011】
第3の発明に係るサーミスタ素子では、第1又は第2の発明において、前記複合酸化物が、さらにCa,Sr,Ba,Laのうち1種又は2種以上を含むことを特徴とする。
すなわち、このサーミスタ素子では、複合酸化物が、さらにCa(カルシウム),Sr(ストロンチウム),Ba(バリウム),La(ランタン)のうち1種又は2種以上を含むので、複合酸化物中のYとCa,Sr,Ba,Laのうち少なくとも一種類とが置換することで、Laの場合は格子の歪みが減少することで電子の移動度が向上し、Ca,Sr,Baの場合はキャリアが増加することにより高い導電性を得ることができる。
【0012】
第4の発明に係るサーミスタ素子では、第1から第3の発明のいずれかにおいて、前記電極層が、Ptを含有していることを特徴とする。
すなわち、このサーミスタ素子では、電極層がPtを含有しているPt電極、すなわち高温で焼き付けして形成されたPtの電極層でも、導電性中間層との良好な密着性を得ることができる。また、Ptで形成された電極層は、Ptが拡散し難く、サーミスタ特性の変化が少ないと共に、はんだ食われが少ないことで、はんだ付けしても電極の密着性が保たれる。
【0013】
第5の発明に係るサーミスタ素子では、第1から第4の発明のいずれかにおいて、前記導電性中間層の中の全ての金属原子に対する前記Mnの含有割合をCMnとしたとき、0at.%<CMn≦60at.%であることを特徴とする。
すなわち、このサーミスタ素子では、導電性中間層の中の全ての金属原子に対するMnの含有割合をCMnとしたとき、0at.%<CMn≦60at.%であるので、良好な密着性を得ることができる。
【0014】
第6の発明に係るサーミスタ素子では、第2の発明において、前記導電性中間層の中の全ての金属原子に対する前記Yの含有割合をCYとしたとき、0at.%<CY≦60at.%であることを特徴とする。
すなわち、このサーミスタ素子では、導電性中間層の中の全ての金属原子に対する前記Yの含有割合をCYとしたとき、0at.%<CY≦60at.%であるので、Mnとの複合酸化物を形成し良好な導電性を得ることができる。
【0015】
第7の発明に係るサーミスタ素子では、第3の発明において、前記導電性中間層が、Ca,Sr,Ba,Laのうち1種又は2種以上を、全ての金属原子に対する含有割合として0.1at.%以上含むことを特徴とする。
すなわち、このサーミスタ素子では、導電性中間層が、Ca,Sr,Ba,Laのうち1種又は2種以上を、全ての金属原子に対する含有割合として0.1at.%以上含むので、良好な導電性を得ることができる。
【0016】
第8の発明に係るサーミスタ素子の製造方法では、結晶構造がペロブスカイト型のサーミスタ材料を含むサーミスタ素体の上にMnを含む複合酸化物の導電性中間層を形成する中間層形成工程と、前記導電性中間層の上に電極層を形成する電極層形成工程とを有し、前記中間層形成工程で、Mnを含んだ粉末と有機溶媒と分散剤とを含有したMn含有分散液を前記サーミスタ素体の上に塗布し、前記Mn含有分散液を乾燥させて仮中間層を形成し、前記電極層形成工程で、Ptを含んだPtペーストを前記仮中間層の上に塗布し、前記Ptペーストを焼成して、前記電極層を形成すると共に前記仮中間層を前記導電性中間層とすることを特徴とする。
すなわち、このサーミスタ素子の製造方法では、中間層形成工程で、Mnを含んだ粉末と有機溶媒と分散剤とを含有したMn含有分散液をサーミスタ素体の上に塗布し、Mn含有分散液を乾燥させて仮中間層を形成し、電極層形成工程で、Ptを含んだPtペーストを仮中間層の上に塗布し、Ptペーストを焼成して、電極層を形成すると共に仮中間層を導電性中間層とするので、焼成時の高温で仮中間層のMnとサーミスタ素体のサーミスタ材料とを反応させてMnを含んだ複合酸化物の導電性中間層とすることができる。
【0017】
第9の発明に係るサーミスタ素子の製造方法では、第8の発明において、前記Mn含有分散液が、さらにYを含んでいることを特徴とする。
すなわち、このサーミスタ素子の製造方法では、Mn含有分散液が、さらにYを含んでいるので、焼成時にMnとYとが反応と同時に焼結、または、MnとYの複合酸化物粒子が焼結した複合酸化物の導電性中間層を得ることができる。
【0018】
第10の発明に係るサーミスタ素子の製造方法では、第8又は第9の発明において、前記Mn含有分散液が、さらにCa,Sr,Ba,Laのうち1種又は2種以上を含んでいることを特徴とする。
すなわち、このサーミスタ素子の製造方法では、Mn含有分散液が、さらにCa,Sr,Ba,Laのうち1種又は2種以上を含んでいるので、焼成時にMnとCa,Sr,Ba,Laのうち1種又は2種以上、または、MnとYとCa,Sr,Ba,Laのうち1種又は2種以上とが反応と同時に焼結、または、MnとCa,Sr,Ba,Laのうち1種又は2種以上、または、MnとYとCa,Sr,Ba,Laのうち1種又は2種以上の複合酸化物粒子が焼結した複合酸化物の導電性中間層を得ることができる。
【0019】
第11の発明に係るサーミスタ素子の製造方法では、結晶構造がペロブスカイト型のサーミスタ材料を含むサーミスタ素体の上にMnを含む複合酸化物の導電性中間層を形成すると共に前記導電性中間層の上に電極層を形成する中間層電極層形成工程を有し、前記中間層電極層形成工程で、MnとPtとを含んだMn含有Ptペーストを前記サーミスタ素体の上に塗布し、前記Mn含有Ptペーストを焼成して、前記導電性中間層及び前記電極層を形成することを特徴とする。
すなわち、このサーミスタ素子の製造方法では、中間層電極層形成工程で、MnとPtとを含んだMn含有Ptペーストをサーミスタ素体の上に塗布し、Mn含有Ptペーストを焼成して、導電性中間層及び電極層を形成するので、焼成時の高温でMn含有Ptペースト中のMnがサーミスタ素体側に拡散して導電性中間層を形成すると共に、残ったPtが電極層を形成することができる。
【発明の効果】
【0020】
本発明によれば、以下の効果を奏する。
すなわち、本発明に係るサーミスタ素子及びその製造方法によれば、導電性中間層が、Mnを含む複合酸化物であるので、Mnを含む複合酸化物の結晶構造がペロブスカイト型のサーミスタ素体に近いことにより、導電性中間層の密着性が向上すると共に、導電性中間層が高温でも安定して存在することができる。
したがって、高温で焼き付けが必要なPt等の電極層を使用することができると共に、密着性が良好で高い信頼性を有したサーミスタ素子が得られる。
【図面の簡単な説明】
【0021】
【
図1】本発明に係るサーミスタ素子及びその製造方法の一実施形態において、サーミスタ素子を示す断面図である。
【
図2】本実施形態において、サーミスタ素子の製造方法を工程順に示す断面図である。
【
図3】本実施形態において、サーミスタ素子の別の製造方法を工程順に示す断面図である。
【
図4】本発明に係るサーミスタ素子及びその製造方法の実施例4において、サーミスタ素子の断面を示すSEM画像である。
【
図5】本発明の実施例4において、サーミスタ素子の断面におけるLaの組成分布画像である。
【
図6】本発明の実施例4において、サーミスタ素子の断面におけるYの組成分布画像である。
【
図7】本発明の実施例4において、サーミスタ素子の断面におけるMnの組成分布画像である。
【
図8】本発明の実施例4において、サーミスタ素子の断面におけるCaの組成分布画像である。
【
図9】本発明に係るサーミスタ素子及びその製造方法の実施例5において、サーミスタ素子の断面を示すSEM画像である。
【
図10】本発明の実施例5において、サーミスタ素子の断面におけるMnの組成分布画像である。
【
図11】本発明の実施例5において、サーミスタ素子の断面におけるLaの組成分布画像である。
【
図12】本発明の実施例5において、サーミスタ素子の断面におけるYの組成分布画像である。
【
図13】本発明の実施例5において、サーミスタ素子の断面におけるCaの組成分布画像である。
【発明を実施するための形態】
【0022】
以下、本発明に係るサーミスタ素子及びその製造方法の一実施形態を、
図1から
図3を参照しながら説明する。なお、以下の説明に用いる各図面では、各部材を認識可能又は認識容易な大きさとするために必要に応じて縮尺を適宜変更している。
【0023】
本実施形態のサーミスタ素子1は、
図1から
図3に示すように、結晶構造がペロブスカイト型の酸化物サーミスタ材料を含むサーミスタ素体2、サーミスタ素体2上に形成された導電性中間層3と、導電性中間層3上に形成された電極層4とを備えている。
上記導電性中間層3は、Mnを含む複合酸化物である。
【0024】
また、上記複合酸化物は、さらにY(イットリウム)を含むことが好ましい。
さらに、複合酸化物は、さらにCa,Sr,Ba,Laのうち1種又は2種以上を含むことがより好ましい。
上記電極層4は、Ptを含有している。すなわち、電極層4は、Ptペーストを焼き付けたPt電極である。
【0025】
なお、導電性中間層3の中の全ての金属原子に対するMnの含有割合をCMnとしたとき、0at.%<CMn≦60at.%であることが好ましい。
また、導電性中間層3の中の全ての金属原子に対するYの含有割合をCYとしたとき、0at.%<CY≦60at.%であることが好ましい。
さらに、導電性中間層3は、Ca,Sr,Ba,Laのうち1種又は2種以上を、全ての金属原子に対する含有割合として0.1at.%以上含むことが好ましい。Ca,Sr,Ba,Laの含有割合は特に制限はないが、10at.%以下であってもよい。
なお、導電性中間層3は、サーミスタ素体2と電極層4との間の全面に配置されていなくてもよく、導電性中間層3は非連続に複数の箇所にあってもよい。
【0026】
なお、導電性中間層3の厚さは、0.1~3μmであることが好ましい。
また、本実施形態のサーミスタ素子1のB定数は、例えば1500~4000Kの範囲である。
さらに、本実施形態のサーミスタ素子1の抵抗率は、例えば100~106Ωcmの範囲である。
【0027】
本実施形態のサーミスタ素子1の製造方法は、
図2に示すように、結晶構造がペロブスカイト型のサーミスタ材料を含むサーミスタ素体2の上にMnを含む複合酸化物の導電性中間層3を形成する中間層形成工程と、導電性中間層3の上に電極層4を形成する電極層形成工程とを有している。
上記中間層形成工程では、Mnを含んだ粉末と有機溶媒と分散剤とを含有したMn含有分散液をサーミスタ素体2の上に塗布し、
図2の(a)に示すように、Mn含有分散液を乾燥させて仮中間層3aを形成する。
【0028】
上記電極層形成工程では、
図2の(b)に示すように、Ptを含んだPtペーストを仮中間層3aの上に塗布し、Ptペーストを焼成して、
図2の(c)に示すように、電極層4を形成すると共に仮中間層3aを導電性中間層3とする。
なお、上記Mn含有分散液は、さらにYを含んでいることが好ましい。
また、Mn含有分散液は、さらにCa,Sr,Ba,Laのうち1種又は2種以上含んでいることがより好ましい。これらはMn化合物と反応して、Mnとの複合酸化物を形成するため、それぞれの酸化物や炭酸塩などでもよいが、反応時に異常粒成長を起こすこともあるため、Mnとの複合酸化物となっていることが好ましい。
【0029】
上記サーミスタ素体2は、例えば、各種金属酸化物からなる基材と、焼結促進材及び電気特性調整剤としての炭酸カルシウム(CaCO3)とを出発原料として、各金属が所定のモル比となるように各材料を秤量し、これらの材料を混合、乾燥後で仮焼成を行ったのち、バインダを混合したものを板状に成型し、焼成して得られる。
【0030】
上記Mn含有分散液は、例えば、少なくともMnを含む材料を所定のモル比となるように秤量し、焼成してできた粉末をエタノール等の有機溶剤と分散剤とを混ぜた後、ペイントシェーカなどの分散機によって分散処理して作製する。
すなわち、Mnの他にY,Ca,Sr,Ba,Laのうち1種又は2種以上の粉末を含有させる場合は、これら各種金属が所定のモル比になるように秤量し、焼成してできた粉末を有機溶剤と分散剤とを混合、分散して作製する。
上記電極層4は、例えば、Ptペーストを印刷により塗布し、焼成することで作製する。なお、この焼成の焼き付け温度が高い程、電極層4と導電性中間層3との界面に生じるボイドは減少する。
【0031】
また、本実施形態のサーミスタ素子1の別の製造方法は、
図3に示すように、結晶構造がペロブスカイト型のサーミスタ材料を含むサーミスタ素体2の上にMnを含む複合酸化物の導電性中間層3を形成すると共に導電性中間層3上に電極層4を形成する中間層電極層形成工程を有している。
この中間層電極層形成工程では、MnとPtとを含んだMn含有Ptペースト4bをサーミスタ素体2の上に塗布、Mn含有Ptペースト4bを焼成して、導電性中間層3及び電極層4とを形成する。
上記Mn含有Ptペースト4bは、例えばPtペーストにMn
2O
3を添加して作製する。
【0032】
このように本実施形態のサーミスタ素子1では、導電性中間層3が、Mnを含む複合酸化物であるので、Mnを含む複合酸化物の結晶構造がペロブスカイト型のサーミスタ素体2に近いことにより、導電性中間層3とサーミスタ素体との密着性が向上すると共に、導電性中間層3が高温でも安定して存在することができる。特に、導電性中間層3が、Mnを含有していることで、貴金属で形成された電極層4との高い密着性を得ることができると共に、高温での焼き付けが必要な貴金属等で電極層4を形成する場合でも、焼き付け後も安定して存在することができる。また、サーミスタ素体2を構成する酸化物サーミスタ材料が、Mnを含む酸化物を含有していることで、Mnを含む複合酸化物である導電性中間層3との密着性がより向上する。
したがって、高温で焼き付けしてPtの電極層4を形成しても、導電性中間層3との良好な密着性を得ることができる。また、Ptで形成された電極層4は、Ptが拡散し難く、サーミスタ特性の変化が少ないと共に、はんだ食われが少ないことで、はんだ付けしても電極の密着性が保たれる。
【0033】
また、形成された中間層が、Yを含むので、熱処理時にMnとYとが反応して複合酸化物となると同時に焼結する、または、すでにYとの複合酸化物になっていたMn化合物が焼結することで、より高い導電性を得ることができる。なお、サーミスタ素体2を構成する酸化物サーミスタ材料が、Yを含む酸化物を含有していることで、Yを含む導電性中間層3との密着性がより向上する。
さらに、複合酸化物が、さらにCa,Sr,Ba,Laのうち1種又は2種以上を含むので、複合酸化物中のYとCa,Sr,Ba,Laのうち少なくとも一種類とが置換することで、Laの場合は格子の歪みが減少することで電子の移動度が向上し、Ca,Sr,Baの場合はキャリアが増加することにより高い導電性を得ることができる。
【0034】
なお、導電性中間層3の中の全ての金属原子に対するMnの含有割合をCMnとしたとき、0at.%<CMn≦60at.%であるので、良好な密着性を得ることができる。
さらに、導電性中間層3の中の全ての金属原子に対するYの含有割合をCYとしたとき、0at.%<CY≦60at.%であるので、Mnとの複合酸化物を形成し良好な導電性を得ることができる。
さらに、導電性中間層3が、Ca,Sr,Ba,Laのうち1種又は2種以上を、全ての金属原子に対する含有割合として0.1at.%以上含むので、良好な導電性を得ることができる。
【0035】
本実施形態のサーミスタ素子1の製造方法では、中間層形成工程で、Mnを含んだ粉末と有機溶媒と分散剤とを含有したMn含有分散液をサーミスタ素体2の上に塗布し、Mn含有分散液を乾燥させて仮中間層3aを形成し、電極層形成工程で、Ptを含んだPtペーストを仮中間層3aの上に塗布し、Ptペーストを焼成して、電極層4を形成すると共に仮中間層3aを導電性中間層3とするので、焼成時の高温で仮中間層3aのMnとサーミスタ素体2のサーミスタ材料とを反応させてMnを含んだ複合酸化物の導電性中間層3とすることができる。
【0036】
また、Mn含有分散液が、さらにYを含んでいるので、焼成時にMnとYとが反応した複合酸化物の導電性中間層3を得ることができる。
さらに、Mn含有分散液が、さらにCa,Sr,Ba,Laのうち1種又は2種以上を含んでいるので、焼成時にMnとCa,Sr,Ba,Laのうち1種又は2種以上、または、MnとYとCa,Sr,Ba,Laのうち1種又は2種以上とが反応と同時に焼結、または、MnとCa,Sr,Ba,Laのうち1種又は2種以上、または、MnとYとCa,Sr,Ba,Laのうち1種又は2種以上の複合酸化物粒子が焼結した複合酸化物の導電性中間層3を得ることができる。
【0037】
本実施形態のサーミスタ素子1の別の製造方法では、中間層電極層形成工程で、MnとPtとを含んだMn含有Ptペースト3bをサーミスタ素体2の上に塗布し、Mn含有Ptペースト3bを焼成して、導電性中間層3及び電極層4を形成するので、焼成時の高温でMn含有Ptペースト3b中のMnがサーミスタ素体2側に拡散して導電性中間層3を形成すると共に、残ったPtが電極層4を形成することができる。
【実施例0038】
<実施例1>
まず、市販のイットリウム酸化物(Y2O3),クロム酸化物(Cr2O3)及び炭酸マンガン(MnCO3)からなる基材と、焼結促進材及び電気特性調整剤としての炭酸カルシウム(CaCO3)とを出発原料として、Y:Cr:Mn:Caのモル比が79.5:8.5:8.5:3.5となるように各材料を秤量した。秤量したこれらの材料を湿式ボールミル混合、乾燥後1000℃で5時間仮焼成を行ったのち、バインダとしてポリビニルアルコールを1.5wt%を混合した。この粉末を一軸加圧成型によって厚さ1mmの板状に成型した。これを、1500℃で24時間焼成して得られた板材と両面研磨して、サーミスタ素体となる厚さが0.4mmのウェハを作製した。
【0039】
次に、導電性中間層材料として、Y:La:Sr:Mnのモル比が3:6:1:10となるように各材料を秤量し、1200℃で5時間焼成した。できた粉末を乳鉢で粗粉砕したのち、日油株式会社製SC-0505Kを分散剤として用い、ペイントシェーカによって20wt.%のエタノール分散液(Mn含有分散液)を作製した。この分散液をディップコートによって作製したウェハの両面に塗布、乾燥して導電性中間層を形成した。なお、この導電性中間層は、Mn,Y,La,Srの複合酸化物となっている。この後、Ptペーストを印刷によって塗布し、1300℃で焼成して電極層を形成した。さらに、この後、ダイシングによって0.5mm×0.5mmのチップ状のサーミスタ素子を得た。
この実施例1において、25℃で測定したサーミスタ素子20個の抵抗値のばらつきを示す3CV(変動係数)は4.4%であった。サーミスタ素子断面をTEM-EDSにて観察した結果、観察した5視野平均で0.1μmの導電性中間層が観察され、組成はMn:48at.%、Y:17at.%、La:31at.%、Sr:5at.%であった。
【0040】
<実施例2>
実施例1で作製したウェハ(サーミスタ素体)両面に、Mn2O3をPt(白金)に対して5wt.%添加したPtペースト(Mn含有Ptペースト)を印刷によって塗布し、1400℃で焼成して、電極層を形成すると同時に導電性中間層を形成した。なお、この導電性中間層は、Mn以外にサーミスタ素体から拡散した元素Y,Caも含む複合酸化物となっている。この後、ダイシングによって0.5mm×0.5mmのチップ状のサーミスタ素子を得た。
この実施例2において、25℃で測定したサーミスタ素子20個の抵抗値のばらつきを示す3CVは4.9%であった。素子断面をTEM-EDSにて観察した結果、観察した5視野平均で3μmの導電性中間層が観察され、組成はMn:44at.%、Y:54at.%、Ca:2at.%であった。
【0041】
<実施例3>
市販の酸化ランタン(La2O3)、クロム酸化物(Cr2O3)及び炭酸マンガン(MnCO3)からなる基材と、焼結促進材及び電気特性調整剤としての炭酸カルシウム(CaCO3)とを出発原料として、La:Cr:Mn:Caのモル比が7:6:4:3となるように各材料を秤量した。秤量したこれらの材料を湿式ボールミル混合、乾燥後1300℃で5時間仮焼成を行った。La2O3は大気中の水分と反応し、容易に水酸化物に変化することから、1000℃、2時間にて加熱後3時間以内に秤量した。仮焼成後の粉末を乳鉢で粗粉砕したのち、市販のイットリウム酸化物(Y2O3)をYがモル比でLaの2倍量になるように秤量し、湿式ボールミル混合した。その後乾燥させ、バインダとしてポリビニルアルコールを粉末の1.5wt.%を混合した。この粉末を一軸加圧成型によって厚さ1mmの板状に成型した。これを、1600℃で24時間焼成して得られた板材を両面研磨して、サーミスタ素体となる厚さが0.4mmのウェハを作製した。
【0042】
次に、導電性中間層材料として、Y:La:Ca:Mnのモル比が1:7:2:10となるように各材料を秤量し、1200℃で5時間焼成した。できた粉末を乳鉢で粗粉砕したのち、日油株式会社製SC-0505Kを分散剤としてペイントシェーカを用いて20wt.%のエタノール分散液(Mn含有分散液)を作製した。この分散液をディップコートによって作製したウェハ(サーミスタ素体)の両面に塗布、乾燥して導電性中間層を形成した。なお、この導電性中間層は、Mn,Y,La,Caの複合酸化物となっている。この後、Ptペーストを印刷によって塗布し、1300℃で焼成して電極層を形成した。さらにこの後、ダイシングによって0.5mm×0.5mmのチップ状のサーミスタ素子を得た。
この実施例3において、25℃で測定したサーミスタ素子20個の抵抗値のばらつきを示す3CVは1.3%であった。素子断面をTEM-EDSにて観察した結果、観察した5視野平均で1.2μmの中間層が観察され、組成はMn:50at.%、Y:6at.%、La:35at.%、Ca:9at.%であった。
【0043】
<実施例4>
実施例3で作製したウェハ(サーミスタ素体)両面に、Mn
2O
3をPtに対して1wt.%添加したPtペースト(Mn含有Ptペースト)を印刷によって塗布し、1300℃で焼成して電極層を形成すると同時に導電性中間層を形成した。なお、この導電性中間層は、Mn以外にサーミスタ素体から拡散した元素Y,La,Caも含む複合酸化物となっている。この後、ダイシングによって0.5mm×0.5mmのチップ状のサーミスタ素子を得た。
この実施例4において、25℃で測定したサーミスタ素子20個の抵抗値のばらつきを示す3CVは3.8%であった。素子断面をTEM-EDSにて観察した結果、観察した5視野平均で0.5μmの導電性中間層が観察され、組成はMn:47at.%、Y:52at.%、La:1at.%であった。
この実施例4において、サーミスタ素子の断面を示すSEM画像を
図4に示す。
また、この実施例4において、サーミスタ素子の断面におけるLa,Y,Mn,Caの各組成分布画像を
図5~
図8に示す。
【0044】
<実施例5>
実施例3で作製したウェハ両面に、Mn
2O
3をPtに対して1wt.%添加したPtペースト(Mn含有Ptペースト)を印刷によって塗布し、1400℃で焼成して電極層を形成すると同時に導電性中間層を形成した。なお、この導電性中間層は、Mn以外にサーミスタ素体から拡散した元素Y,La,Caも含む複合酸化物となっている。この後、ダイシングによって0.5mm×0.5mmのチップ状のサーミスタ素子を得た。
この実施例5において、25℃で測定したサーミスタ素子20個の抵抗値のばらつきを示す3CVは2.5%であった。素子断面をTEM-EDSにて観察した結果、観察した5視野平均で0.7μmの中間層が観察され、組成はMn:43at.%、Y:46at.%、La:6at.%、Ca:1at.%、Cr:4at.%であった。
この実施例5において、サーミスタ素子の断面を示すSEM画像を
図9に示す。
また、この実施例5において、サーミスタ素子の断面におけるMn,La,Y,Caの各組成分布画像を
図10~
図13に示す。
【0045】
<実施例6>
導電性中間層材料として、Y:La:Ba:Mnのモル比が2:7:1:10となるように各材料を秤量し、1200℃で5時間焼成した。できた粉末を乳鉢で粗粉砕したのち、日油株式会社製SC-0505Kを分散剤としてペイントシェーカを用いて20wt.%のエタノール分散液(Mn含有分散液)を作製した。この分散液をディップコートによって、実施例3で作製したウェハ両面に塗布、乾燥して導電性中間層を形成した。なお、この導電性中間層は、Mn,Y,La,Caの複合酸化物となっている。この後、Ptペーストを印刷によって塗布し、1300℃で焼成して電極層を形成した。さらにこの後、ダイシングによって0.5mm×0.5mmのチップ状のサーミスタ素子を得た。
この実施例6において、25℃で測定したサーミスタ素子20個の抵抗値のばらつきを示す3CVは1.8%であった。素子断面をTEM-EDSにて観察した結果、観察した5視野平均で0.8μmの中間層が観察され、組成はMn:48at.%、Y:11at.%、La:34at.%、Ba:4at.%、Cr:4at.%であった。
【0046】
<比較例1>
実施例1で作製したウェハ(サーミスタ素体)に中間層を形成しなかったこと以外実施例1と同様にサーミスタ素子を作製した。
この比較例1において、25℃で測定したサーミスタチップ20個の抵抗値のばらつきを示す3CVは7.8%であった。
【0047】
これらの本発明の各実施例及び比較例について、中間層組成,中間層形成方法及び抵抗値ばらつき(3CV)について評価した結果を、表1に示す。
【0048】
【0049】
これらの評価結果から、比較例1では、抵抗値ばらつき(3CV)が7.8%と大きいのに対し、本発明の実施例はいずれも4.9%以下と小さいことが分かる。このように本発明の実施例では、Ptペースト又はMn含有Ptペーストの焼き付けが可能であり、また導電性中間層の密着性が向上して高い導電性を有していることが分かる。
なお、実施例2,4及び5では、導電性中間層組成にY,La,Caが含まれているが、これは焼成時にサーミスタ素体からY,La,Caが導電性中間層に熱拡散したものである。
【0050】
本発明の技術範囲は上記実施形態および上記実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。