(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024031962
(43)【公開日】2024-03-07
(54)【発明の名称】誘導型角度位置センサ
(51)【国際特許分類】
G01D 5/20 20060101AFI20240229BHJP
【FI】
G01D5/20 110D
【審査請求】未請求
【請求項の数】5
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2023137019
(22)【出願日】2023-08-25
(31)【優先権主張番号】17/822,604
(32)【優先日】2022-08-26
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】300057230
【氏名又は名称】セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー
(74)【代理人】
【識別番号】110002077
【氏名又は名称】園田・小林弁理士法人
(72)【発明者】
【氏名】ベルタン, ジャック ジャン
【テーマコード(参考)】
2F077
【Fターム(参考)】
2F077CC02
2F077FF03
2F077FF16
(57)【要約】 (修正有)
【課題】レシーバコイルが、高分解能測定設計にとって妥当なものよりも小さくなる回路特徴を有する誘導型角度位置センサを提供する。
【解決手段】3相構成などにおいて複数のレシーバコイルが使用されるとき、及び複数のレシーバコイルの各々がツイストループ構成にあるときに、ロータコイル及びレシーバコイルに対して異なる空間周波数を利用する。レシーバコイルの空間周波数は、ロータコイルよりも小さく保たれ得る。この条件では、角度位置センサの基本周波数は、空間周波数の最小公倍数にシフトされ、誘導型角度位置センサの角度分解能を高くし、一方、レシーバコイルの回路特徴は、妥当なサイズに維持される。
【選択図】
図9
【特許請求の範囲】
【請求項1】
誘導型角度位置センサであって、
第1の平面に位置する励磁コイルであって、前記励磁コイルは、前記励磁コイルの中心において前記第1の平面と交差する対称軸の周りに円形形状を有する、励磁コイルと、
前記対称軸を中心とした第1の位数の第1の回転対称を有するロータコイルであって、前記ロータコイルは、エアギャップによって前記第1の平面から分離された第2の平面に位置し、かつ前記対称軸の周りを回転するように構成されており、前記ロータコイルは、励磁子-ロータ間誘導結合を通じて、前記励磁コイルから励磁信号を受信するように構成されている、ロータコイルと、
前記対称軸を中心とした第2の位数の第2の回転対称を有するレシーバコイルであって、前記レシーバコイルは、前記第1の平面内に位置し、かつ前記ロータコイルが回転するにつれて正弦波状に変化するロータ-レシーバ間誘導結合に基づいて受信信号を生成するように構成されており、前記第1の位数及び前記第2の位数は、異なる、レシーバコイルと、
を備える、誘導型角度位置センサ。
【請求項2】
前記ロータコイルの前記第1の回転対称の前記第1の位数は、前記レシーバコイルの前記第2の回転対称の前記第2の位数の倍数であり、
前記受信信号の基本周波数の周期は、360度÷前記第1の位数と前記第2の位数との最小公倍数である、前記ロータコイルの回転範囲に対応する、請求項1に記載の誘導型角度位置センサ。
【請求項3】
位置センサシステムであって、
誘導型角度位置センサであって、
第1の平面に位置する励磁コイルであって、前記励磁コイルは、前記励磁コイルの中心において前記第1の平面と交差する対称軸の周りに円形形状を有する、励磁コイルと、
前記対称軸を中心とした第1の位数の第1の回転対称を有するロータコイルであって、前記ロータコイルは、エアギャップによって前記第1の平面から分離された第2の平面に位置し、かつ前記対称軸の周りを回転するように構成されており、前記ロータコイルは、励磁子-ロータ間誘導結合を通じて、前記励磁コイルから励磁信号を受信するように構成されている、ロータコイルと、
複数の受信信号を生成するように構成された複数のレシーバコイルであって、前記複数のレシーバコイルの各々は、前記対称軸を中心とした前記第1の位数よりも小さい第2の位数の第2の回転対称を有し、前記複数のレシーバコイルは、複数の受信信号を生成するように構成されている、複数のレシーバコイルと、を含む、誘導型角度位置センサと、
前記励磁コイルに接続されており、かつ前記励磁信号を生成するように構成されており、かつ前記複数のレシーバコイルから前記複数の受信信号を受信するように更に構成されている、トランシーバ回路であって、前記複数の受信信号は、前記第1の位数及び前記第2の位数の倍数である基本周波数を有する、トランシーバ回路と、
前記複数の受信信号に基づいて角度測定値を計算するように構成された角度計算モジュールと、
を備える、位置センサシステム。
【請求項4】
前記ロータコイルは、第1のローブ比を有する第1の巻線と、第2のローブ比を有する第2の巻線と、を含む、多重巻線のロータコイルである、請求項3に記載の位置センサシステム。
【請求項5】
角度を測定するための方法であって、
第1の平面に位置する励磁コイルを使用して第1の磁場を生成することであって、前記励磁コイルは、対称軸を中心として対称である、生成することと、
ロータコイルを、前記対称軸を中心として前記角度まで回転させることであって、前記ロータコイルは、前記第1の平面に平行で、かつエアギャップによって前記第1の平面から分離された第2の平面にあり、前記ロータコイルは、第1の空間周波数を有する、回転させることと、
前記第1の磁場を前記励磁コイルから前記ロータコイルに結合して、前記ロータコイル内に電流を生成することと、
前記ロータコイル内の前記電流によって生成された第2の磁場を前記第1の平面においてレシーバコイルに結合することであって、前記レシーバコイルは、第2の空間周波数を有する、結合することと、
前記ロータコイルの角度に対応する振幅を有する受信信号を前記レシーバコイルから受信することと、
前記角度を測定するために、前記レシーバコイルからの前記受信信号を正弦波信号と比較することであって、前記正弦波信号は、前記第1の空間周波数と前記第2の空間周波数との最小公倍数に対応する基本周波数を有する、比較することと、
を含む、方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、2022年8月26日に出願された米国特許出願第17/822,604号の優先権を主張する。
【0002】
本開示は、位置センサに関し、より具体的には、低分解能回路で高い角度分解能を提供することができる誘導型角度位置センサに関する。
【背景技術】
【0003】
自動車、ロボットなど、動きを必要とする多くの用途は、直線位置又は角度位置(例えば、ペダル角度、アーム角度など)の測定を必要とする。誘導型位置センサは、厳しい環境条件に耐えながら正確な測定を提供することができるので、そのような用途に望ましい。これらのセンサの分解能を増加させることは望ましくあり得るが、高分解能回路に必要とされる製造コストの対応する増加によって制限される可能性がある。
【発明の概要】
【0004】
いくつかの態様では、本明細書において説明される技術は、誘導型角度位置センサに関し、誘導型角度位置センサは、第1の平面に位置する励磁コイルであって、励磁コイルは、励磁コイルの中心において第1の平面と交差する対称軸の周りに円形形状を有する、励磁コイルと、対称軸を中心とした第1の位数の第1の回転対称を有するロータコイルであって、ロータコイルは、エアギャップによって第1の平面から分離された第2の平面に位置し、かつ対称軸の周りを回転するように構成されており、ロータコイルは、励磁子-ロータ間誘導結合を通じて、励磁コイルから励磁信号を受信するように構成されている、ロータコイルと、対称軸を中心とした第2の位数の第2の回転対称を有するレシーバコイルであって、レシーバコイルは、第1の平面内に位置し、かつロータコイルが回転するにつれて正弦波状に変化するロータ-レシーバ間誘導結合に基づいて受信信号を生成するように構成されており、第1の位数及び第2の位数は、異なる、レシーバコイルと、を含む。
【0005】
いくつかの態様では、本明細書において説明される技術は、誘導型角度位置センサに関し、第2の位数は、第1の位数よりも小さい。
【0006】
いくつかの態様では、本明細書において説明される技術は、誘導型角度位置センサに関し、受信信号は、第1の位数及び第2の位数との最小公倍数である基本周波数を有する。
【0007】
いくつかの態様では、本明細書において説明される技術は、誘導型角度位置センサに関し、基本周波数の周期は、360度÷第1の位数及び第2の位数との最小公倍数である、ロータコイルの回転範囲に対応する。
【0008】
いくつかの態様では、本明細書において説明される技術は、誘導型角度位置センサに関し、ロータコイルの第1の回転対称の第1の位数は、レシーバコイルの第2の回転対称の第2の位数の倍数である。
【0009】
いくつかの態様では、本明細書において説明される技術は、誘導型角度位置センサに関し、レシーバコイルは、ツイストループ構成にある。
【0010】
いくつかの態様では、本明細書において説明される技術は、誘導型角度位置センサに関し、レシーバコイルは第1のレシーバコイルであり、誘導型角度位置センサは、第1のレシーバコイルに対して対称軸を中心に120度に位置決めされるツイストループ構成の第2のレシーバコイルと、第1のレシーバコイルに対して対称軸を中心に240度に位置決めされるツイストループ構成の第3のレシーバコイルと、を更に含む。
【0011】
いくつかの態様では、本明細書において説明される技術は、誘導型角度位置センサに関し、レシーバコイルは、プリント回路基板を通るビアにおいてプリント回路基板の上面上とプリント回路基板の下面上との間で交互になるトレースを含む。
【0012】
いくつかの態様では、本明細書において説明される技術は、誘導型角度位置センサに関し、ロータコイル及びレシーバコイルは、励磁コイルの内部の外側にある。
【0013】
いくつかの態様では、本明細書において説明される技術は、誘導型角度位置センサに関し、ロータコイルは、第1のローブ比を有する第1の巻線と、第2のローブ比を有する第2の巻線と、を含む、多重巻線ロータコイルである。
【0014】
いくつかの態様では、本明細書において説明される技術は、位置センサシステムに関し、位置センサシステは、誘導型角度位置センサであって、第1の平面に位置する励磁コイルであって、励磁コイルは、励磁コイルの中心において第1の平面と交差する対称軸の周りに円形形状を有する、励磁コイルと、対称軸を中心とした第1の位数の第1の回転対称を有するロータコイルであって、ロータコイルは、エアギャップによって第1の平面から分離された第2の平面に位置し、かつ対称軸の周りを回転するように構成されており、ロータコイルは、励磁子-ロータ間誘導結合を通じて、励磁コイルから励磁信号を受信するように構成されている、ロータコイルと、複数の受信信号を生成するように構成された複数のレシーバコイルであって、複数のレシーバコイルの各々は、対称軸を中心とした第1の位数よりも小さい第2の位数の第2の回転対称を有し、複数のレシーバコイルは、複数の受信信号を生成するように構成された複数のレシーバコイルと、を含む、誘導型角度位置センサと、励磁コイルに接続されており、かつ励磁信号を生成するように構成されており、かつ複数のレシーバコイルから複数の受信信号を受信するように更に構成されている、トランシーバ回路であって、複数の受信信号は、第1の位数及び第2の位数の倍数である基本周波数を有する、トランシーバ回路と、複数の受信信号に基づいて角度測定値を計算するように構成された角度計算モジュールと、を含む。
【0015】
いくつかの態様では、本明細書において説明される技術は、位置センサシステムに関し、基本周波数は、第1の位数及び第2の位数の最小公倍数である。
【0016】
いくつかの態様では、本明細書において説明される技術は、位置センサシステムに関し、複数のレシーバコイルは各々、ツイストループ構成にある。
【0017】
いくつかの態様では、本明細書において説明される技術は、位置センサシステムに関し、複数のレシーバコイルは、第1のレシーバコイル、第2のレシーバコイル、及び第3のレシーバコイルが対称軸を中心として互いに120度の角度で配置された3相構成で配置された第1のレシーバコイル、第2のレシーバコイル、及び第3のレシーバコイルを含む。
【0018】
いくつかの態様では、本明細書において説明される技術は、位置センサシステムに関し、位置センサシステムは、第1のレシーバコイルからの第1の受信信号、第2のレシーバコイルからの第2の受信信号、及び第3のレシーバコイルからの第3の受信信号を一対の直交信号に変換するように構成された処理モジュールを更に含む。
【0019】
いくつかの態様では、本明細書において説明される技術は、位置センサシステムに関し、ロータコイルは、第1の回転対称に対応する第1の角度周期を有し、複数のレシーバコイルは各々、第2の回転対称に対応する第2の角度周期を有し、角度測定値は、第1の角度周期及び第2の角度周期よりも小さい分解能を有する。
【0020】
いくつかの態様では、本明細書において説明される技術は、位置センサシステムに関し、ロータコイルは、第1のローブ比を有する第1の巻線と、第2のローブ比を有する第2の巻線と、を含む、多重巻線ロータコイルである。
【0021】
いくつかの態様では、本明細書において説明される技術は、角度を測定するための方法に関し、当該方法は、第1の平面に位置する励磁コイルを使用して第1の磁場を生成することであって、励磁コイルは、対称軸を中心として対称である、生成することと、ロータコイルを、対称軸を中心として角度まで回転させることであって、ロータコイルは、第1の平面に平行で、かつエアギャップによって第1の平面から分離された第2の平面にあり、ロータコイルは、第1の空間周波数を有する、回転させることと、第1の磁場を励磁コイルからロータコイルに結合して、ロータコイル内に電流を生成することと、ロータコイル内の電流によって生成された第2の磁場を第1の平面においてレシーバコイルに結合することであって、レシーバコイルは、第2の空間周波数を有する、結合することと、ロータコイルの角度に対応する振幅を有する受信信号をレシーバコイルから受信することと、角度を測定するために、レシーバコイルからの受信信号を正弦波信号と比較することであって、正弦波信号は、第1の空間周波数と第2の空間周波数との最小公倍数に対応する基本周波数を有する、比較することと、を含む。
【0022】
いくつかの態様では、本明細書において説明される技術は、角度を測定するための方法に関し、レシーバコイルの第2の空間周波数は、ロータコイルの第1の空間周波数よりも小さい。
【0023】
いくつかの態様では、本明細書において説明される技術は、角度を測定するための方法に関し、角度のセンサ分解能は、第1の空間周波数に対応する第1の分解能又は第2の空間周波数に対応する第2の分解能よりも高い。
【0024】
いくつかの態様では、本明細書において説明される技術は、角度を測定するための方法に関し、ロータコイルは、第1のローブ比を有する第1の巻線と、第2のローブ比を有する第2の巻線と、を含む、多重巻線ロータコイルである。
【0025】
前述の例解的な概要、並びに本開示の他の例示的な目的及び/又は利点、並びにそれらが達成される様式は、以下の詳細な説明及びその添付図面内で更に説明される。
【図面の簡単な説明】
【0026】
【
図1】特定の実施形態による誘導型角度位置センサの(先行技術の)概略図である。
【
図2】本開示の可能な実装形態による角度計算の例を例解する。
【
図3】本開示の可能な実装形態による位置センサシステムを概略図である。
【
図4】特定の実施形態による誘導型角度位置センサの(先行技術の)概略図である。
【
図5】ロータコイルが回転されるときに、異なるエアギャップに対して、
図4の誘導型角度位置センサによって生成される信号の高調波成分(すなわち、高調波歪み)のグラフである。
【
図6】本開示の可能な実装形態による誘導型角度位置センサの概略図である。
【
図7】ロータコイルが回転されるときに、異なるエアギャップに対して、
図6の誘導型角度位置センサによって生成される信号の高調波成分(すなわち、高調波歪み)のグラフである。
【
図8】本開示の可能な実装形態による誘導型角度位置センサのための多重巻線ロータコイルを概略的に例解する。
【
図9】本開示の可能な実装形態による誘導型角度位置センサを例解する。
【
図10】ロータコイルが回転されるときに、
図9の誘導型角度位置センサによって生成される信号の高調波成分(すなわち、高調波歪み)のグラフである。
【
図11】本開示の可能な実装形態による角度を測定するための方法のフローチャートである。
【0027】
図面の構成要素は、必ずしも互いに対して一定の縮尺ではない。複数の図面を通して、同様の参照番号は対応する部分を示す。
【発明を実施するための形態】
【0028】
誘導型角度位置センサは、3個の基本コイル、すなわち、励磁子コイル(すなわち、励磁コイル)、ステータコイル(すなわち、レシーバコイル)、及びターゲットコイル(すなわち、ロータコイル)を含むことができる。ロータコイルは、可動部に物理的に取り付けられ得、励磁コイル及びレシーバコイルは、固定位置にある。ロータコイルが動くと、ロータコイルとレシーバコイルとの間の誘導結合の変化を感知し、可動部の位置の対応する変化にマッピングすることができる。実際には、これらの基本コイルの各々は、性能を改善するためにより複雑にされ得る。これらの改善は、漂遊誘導結合を軽減すること、角度測定値から曖昧さを除去すること、高調波歪みを低減すること、及び分解能を増加させることを含み得る。
【0029】
性能を改善するために追加される複雑さは、費用効率の高い様式で製造することが困難であり得るコイルを必要とする可能性がある。例えば、トレース幅、トレース分離、ビアサイズ(例えば、直径)は、標準的な製造技術には小さすぎることがある。本開示は、標準的な製造技術に対して妥当なサイズを維持しながら、誘導型位置センサの性能を改善する技術を説明する。特に、本開示は、回路サイズ及び複雑さが低減された、誘導型角度位置センサの分解能を増加させるための技術を説明する。本開示は、ロータ設計が高調波歪みを低減する、高分解能、低複雑度の誘導型角度位置センサの可能な実装形態を更に開示する。
【0030】
図1は、基本的な誘導型角度位置センサを例解する。誘導型角度位置センサ100は、励磁コイル110を含む。励磁コイル110は静止しており、交流電源(すなわち、AC電源112)に結合することができる。AC源112は、電磁スペクトルのメガヘルツ(megahertz、MHz)範囲内であり得る周波数(例えば、無線周波数(radio frequency、RF))で励磁信号を生成するように構成されている。励磁コイル110は、平面状であり、第1の平面を画定する。励磁コイル110内の電流は、第1の平面を横断する励磁(磁場)場を生成することができる。励磁コイルは、励磁コイルの中心に位置し、励磁コイルの平面を横断する対称軸105を中心に実質的に対称である円形形状を有する。例えば、励磁コイルは、複数の巻きを有する螺旋であり得る。螺旋は、リング(又は環)を形成し得、他のコイルは、図示されるようにリング(又は環)内に、又はリング(若しくは環)の外側に位置し得る。
【0031】
誘導型角度位置センサ100は、ロータコイル120(すなわち、ターゲットコイル)を更に含む。ロータコイルは平面状であり、エアギャップ121(d)によって第1の平面から分離される第2の平面を画定する。励磁コイル110とロータコイル120との間の誘導結合(すなわち、励磁子-ロータ間誘導結合)は、角度(θ)とは無関係であるが、エアギャップ121の関数である。例えば、励磁子-ロータ間誘導結合は、エアギャップ121が大きくなるにつれて減少する。
【0032】
ロータコイル120は、平面状で移動可能であり得、ロータコイルの中心でロータコイルの平面と交差する対称軸105を中心として角度123(θ)まで回転され得る。ロータコイル120は、繰り返す(すなわち、回転対称を有する)角度(θ)依存性を有するパターンを形成する。パターンは、複数のローブを含み、
図1に示されるように、ロータコイルは、軸105を中心に規則的に位置決めされた4個のローブを有する。各ローブは、正の部分(すなわち正ローブ124)と、逆の部分(すなわち逆ローブ125)と、を含む、周期122を有する。
図1に示される正ローブは、対称軸105から第1の半径にあるロータコイルの部分として定義され、逆ローブは、対称軸105から第2の半径にあるロータコイルの部分であり、第1の半径は第2の半径よりも大きい。言い換えれば、ロータコイルは、対称軸105を中心に回転対称であり得、回転対称の位数は、ローブ(すなわち、周期)の数に対応し得る。例えば、ロータコイル120は、第4の位数の回転対称(すなわち、4回対称)を有する。
【0033】
ロータコイル120は、励磁子-ロータ間誘導結合(すなわち、結合)を通じて、励磁コイル110から励磁信号を受信するように構成されている。励磁コイルから結合された磁場は、ロータコイル120に流れる電流を誘導することができ、これは次に、励磁信号に対応する二次磁場を生成し得る。
【0034】
誘導型角度位置センサ100は、ロータコイル120とレシーバコイルとの間の誘導結合(すなわち、結合)を通じて、ロータコイル120の二次磁場を受信するように構成された複数のレシーバコイルを更に含む。複数のレシーバコイルは、各々が平面状であり、励磁コイル110とほぼ同じ(例えば、±1000ミクロンの)平面(すなわち、第1の平面)内にある。したがって、ロータコイル120とレシーバコイルとの間の結合(すなわち、ロータ-レシーバ間誘導結合)は、エアギャップ121(d)の関数であり得る。例えば、より大きいエアギャップは、より小さいエアギャップよりも少ない結合を有し得る。複数のレシーバコイルは、ロータコイル120の動き(すなわち、回転)に対して静止している。
【0035】
図1に示されるように、誘導型角度位置センサ100は、第1のレシーバコイル130及び第2のレシーバコイル140を含む。図示されるように、第1のレシーバコイル130は、ロータコイル120のパターンと実質的に同じである第1のパターンを形成する。同様に、第2のレシーバコイル140は、ロータコイル120のパターンと実質的に同じである第2のパターンを形成する。言い換えれば、第1のレシーバコイル130の第1のパターンは、第2のレシーバコイル140の第2のパターンと実質的に同じである。図示されるように、第1のレシーバコイル130及び第2のレシーバコイル140は、対称軸105を中心に回転対称の周期122、4分の1の角度シフトを有する。言い換えれば、レシーバコイルは、互いに対して空間的に回転され得る。
【0036】
ロータコイル120が軸105を中心として回転すると、ロータコイル120と第1のレシーバコイル130との間の誘導結合が変化する。例えば、ロータコイル120と第1のレシーバコイル130との間の誘導結合は、パターン(すなわち、正ローブ及び逆ローブ)が同列に並ぶ角度において最大であり得る。逆に、ロータコイル120と第1のレシーバコイル130との間の誘導結合は、ロータコイル120の逆ローブ125が第1のレシーバコイル130の正ローブ124と同列に並ぶ角度において最小であり得る。
【0037】
第1のレシーバコイル130によって受信される信号は、ロータコイルの角度(θ)に従って正弦波状に変化する第1の受信信号を生成し得る。
図1に示される実装形態では、第1の受信信号は、ロータコイル120の完全な1回転中に4回繰り返し得る。例えば、
図1に示されるように、回転対称の周期122(すなわち、90度)に対応する角度範囲にわたってロータを回転させることは、第1の受信信号の1つの電気周期に対応し得る。言い換えれば、第1の受信信号は、回転対称の位数(すなわち、4)に対応する空間周波数(すなわち、周波数)を有し得る。同様に、第2のレシーバコイル140は、正弦波状に変化し、ロータコイル120の完全な1回転中に4回繰り返す第2の受信信号を生成し得る。第1の受信信号及び第2の受信信号は、同じ周波数を有し得るが、それらの空間オフセットに起因して、互いに対して電気的に位相シフトされ得る。
【0038】
第1の受信信号と第2の受信信号との間の電気的位相シフト(例えば、電気的に90°)は、レシーバコイル間の角度シフト(例えば、機械的に22.5°)に対応する。第1の受信信号及び第2の受信信号は、直角位相であり得、したがって、第1の受信信号は、角度の正弦(すなわち、SIN(θ))に対応し、第2の受信信号は、角度の余弦(すなわち、COS(θ))に対応する。したがって、角度(θ)測定値は、以下の式に示されるように、受信信号の逆正接として計算することができる。この逆正接計算手法は、第1の受信信号及び第2の受信信号に共通の振幅変化が相殺されるので、望ましくあり得る。
【数1】
【0039】
図2は、本開示の可能な実装形態による角度計算の例を例解する。角度計算は、第1のコイル230からの余弦信号(con(θ))及び第2のコイル240からの正弦信号(sin(θ))を使用する、逆正接(すなわち、アークタンジェント)計算210を含む。逆正接計算210は、レシーバコイルの周期の数に従って繰り返す角度信号220を出力することができる。
図2は、ロータコイルの1回転分(すなわち、360°)の、角度信号振幅対角度(θ)のグラフを含む。測定250について角度(θ)を測定することは、どの角度範囲(すなわち、どの周期)に測定250が対応するかを最初に判定することを必要とし得る。図示されるように、測定は、第2の周期に対応し、これは、90度~180度のロータコイル角度(すなわち、90°<θ≦180°)を表す。次に、測定値250の角度は、測定値250の値及び角度信号220に基づいて、90度~180度で補間することによって判定される。言い換えれば、角度計算の周期判定部分は、測定値の最上位ビット(most significant bit、MSB)に対応し、角度計算の補間部分は、測定値の最下位ビット(least significant bit、LSB)に対応する。
【0040】
周期の数(すなわち、回転対称の位数)を増加させることは、角度の測定をより正確にすることができるが、特に、信号性能を改善する(例えば、高調波を低減する)ために追加の特徴が含まれるとき、より複雑な(例えば、より高密度の)回路を必要とする。例えば、高分解能誘導型角度位置センサは、2つのセンサの直径が等しい場合、低分解能誘導型角度位置センサよりも狭いトレース幅、狭いトレース間隔、及び小さいビアを必要とし得る。本開示によって解決される1つの技術的問題は、所与の精度の角度測定のためのレシーバコイルの周期の数(すなわち、ローブの数)を低減することである。これは、誘導型角度位置センサ100の製造コストを低減するという技術的効果を有し得る。
【0041】
図2に示される角度計算手法は、2つのレシーバコイルを使用する。実際には、より多くのレシーバコイルが使用され得る。例えば、4個のレシーバコイルは、差分(すなわち、プラス/マイナス)余弦信号及び差分(すなわち、プラス/マイナス)正弦信号を生成することができ、これは、角度を計算するための逆正接計算手法において使用することができる。別の可能な実装形態では、3個のレシーバコイルからの信号が、角度を計算するための逆正接計算アプローチに必要である、正弦信号(SIN(θ))及び余弦信号(COS(θ))を取得するために処理され得る。以下では、3レシーバコイルの実装形態について詳細に検討する。
【0042】
図3は、本開示の可能な実装形態による、3個のレシーバコイルを有する誘導型角度位置センサ301を含む位置センサシステム300の概略図である。誘導型角度位置センサ301は、励磁信号(例えば、4MHz)で(例えば、差動的に)駆動される励磁コイル310を含む。誘導型角度位置センサ301は、励磁信号を受信するように構成されたロータコイル320を更に含む。言い換えれば、励磁コイルは、ロータコイルに結合されて、ロータコイルにAC電流を誘導する(すなわち、生成する)。誘導型角度位置センサ301は、図示されるように、3相構成で配置された第1のレシーバコイル330、第2のレシーバコイル340、及び第3のレシーバコイル350を更に含む。各レシーバコイルは、ロータコイルから変調された励磁信号を受信するように構成されており、変調は、ロータコイルと各レシーバコイルとの間の角度に依存する。位置センサシステム300は、送受信機回路(すなわち、トランシーバ回路360)を更に含む。トランシーバ回路360は、励磁コイル310を差動的に駆動するドライバを含むことができ、各コイルからの誘導電圧信号を増幅するように構成された増幅器を更に含み得る。位置センサシステム300は、3個のレシーバコイルからの受信信号(すなわち、3相信号)を直交信号(すなわち、sin(θ)、cosθ))に変換するように構成された処理モジュール370を更に含み得る。可能な実装形態では、処理モジュールは、クラーク変換を実行して3相信号から正弦信号(sin(θ))及び余弦信号(cos(θ))を生成するように構成されている。位置センサシステム300は、
図2に関連して説明したように、直交信号に基づいて角度を判定するように構成された角度計算モジュール380を更に含み得る。
【0043】
レシーバコイルは、レシーバコイルとトランシーバ回路360との間の接続によって引き起こされ得る寄生インダクタンスを含む。第1のレシーバコイル330は第1の寄生インダクタンス331を含み、第2のレシーバコイル340は第2の寄生インダクタンス341を含み、第3のレシーバコイル350は第3の寄生インダクタンス351を含む。寄生インダクタンスは、誘導結合を通じて、励磁コイルから励磁信号を受信することができる。レシーバコイルの誘導電圧信号(すなわち、受信信号)は、以下の式によって与えられ得る。
【数2】
【0044】
これらの式において、振幅(A)は、エアギャップ121(d)及び励磁信号の振幅に依存する。オフセットB1、B2、及びB3は、ロータコイル位置に依存しない寄生電圧である。実際には、これらの寄生電圧(B1、B2、B3)は、追加のコイル(図示せず)によってシステム内で補償することができる。角度(θ)は、ロータコイルと特定のレシーバ(すなわち、ステータ)コイルとの間の角度(度)である。
【0045】
第2のレシーバコイル340の誘導電圧信号は、第1のレシーバコイル330の誘導電圧信号に対して、それらの相対位置に起因して120度の位相シフトを有する。第3のレシーバコイル350の誘導電圧信号は、第1のレシーバコイル330の誘導電圧信号に対して、それらの相対位置に起因して240度の位相シフトを有する。
【0046】
位置センサシステム300によって判定される角度測定の精度は、誘導電圧信号が上記の式によって与えられる完全な正弦波にどれだけ良好に一致するかに依存し得る。実際には、誘導電圧信号は、完全な正弦波ではない。不完全な正弦波は、正弦波信号におけるより多くの歪みに対応するより高い振幅の高調波成分を有する高調波の和として特徴付けられ得る。したがって、誘導型角度位置センサ301からのこれらの高調波成分の振幅を低減することは、位置センサシステム300によって判定される角度測定の精度を増加させることに役立ち得る。
【0047】
図4は、特定の実施形態による誘導型角度位置センサの概略図である。誘導型角度位置センサは、コイルの中心にある対称軸440を中心に対称であり、外径(すなわち、直径450)に対応する全体サイズを有する。誘導型角度位置センサ400は、ロータコイル420及びレシーバコイル430(すなわち、ステータコイル)によって画定される環の内側に位置する励磁コイル410を含む。しかしながら、他の可能な実装形態では、励磁コイルは環の外側にあり得る。明確にするために、1つのレシーバコイル430のみが示されている。
【0048】
励磁コイル410及びレシーバコイル430は、第1のプリント回路基板(printed circuit board、PCB)上に配置することができ、ロータコイル420は、第2のプリント回路基板上に配置することができ、それらの間にエアギャップがある。エアギャップは、1ミリメートル未満(例えば、100ミクロン(μm))であり得る。高調波歪みの振幅はエアギャップに反比例し得るので、より小さいエアギャップを有するセンサは、より大きいエアギャップを有するセンサよりも多くの高調波歪みを有する。
【0049】
ロータコイル420は、40度の周期で等しいサイズ(すなわち、ローブ比=50/50)の9個の正ローブ及び9個の逆ローブを含み、一方、レシーバコイル430は、40度の周期で等しいサイズの9個の正ローブ及び9個の逆ローブを含む。言い換えれば、ロータコイル及びレシーバコイルは各々、位数9の回転対称(すなわち、9回対称)を有する。この構成では、ロータコイル420の機械的回転の40度の変化は、周期的正弦波信号において360度の変化を生成することができる。したがって、誘導型角度位置センサ400の基本周波数は9であり、誘導型角度位置センサ400の分解能はこの40度の周期に基づく。
【0050】
レシーバコイル430は、環の周りを反時計回り方向に第1の経路431をたどる第1のループと、環の円周の周りを時計回り方向に第2の経路432をたどる第2のループと、を含む、ツイストループ構成にある。第1のループ及び第2のループは、第1のループが第1のPCBの最上層上にある一方で、第2のループが第1のPCBの最下層上にあることを可能にするビアによって短絡することを防止され、逆もまた同様である。例えば、第1のループは、各ローブ周期の前半の間、第1のPCBの最上層上にあり、各ローブ周期の後半の間、最下層上にあることができる。逆に、第2のループは、各ローブ周期の前半の間、第1のPCBの最下層上にあり、各ローブ周期の後半の間、最上層上にあることができる。最上層と最下層との間の遷移は、第1のPCBを通るビア(例えば、めっきスルーホール、ピンなど)を使用して実装され得る。
【0051】
ツイストループ構成は、レシーバコイルが主として(例えば、全て)コイル420から信号を受信するように、励磁コイル410から結合される信号を実質的に殺相するようにレシーバコイル430を構成する。ツイストペアが、反対の(巻き)方向の隣接ループを有する円周の周りに一連のループを生成するので、相殺が生じる。例えば、ツイストペアの第1のループは、反時計回り方向433を有し得、第1のループに隣接するツイストペアの第2のループは、時計回り方向434を有し得る。加えて、レシーバコイル430のツイストループ構成は、誘導電圧信号における偶数次高調波を実質的に除去する。
【0052】
上述したように、1つのレシーバコイルのみが
図4に示されている。実際には、誘導型角度位置センサ400は、3個のレシーバコイル(すなわち、3相レシーバコイル)を含み得、各々が、第1のPCB上の、他の2つのレシーバコイルの位置から120度(すなわち、±120°)回転して(すなわち、対称軸を中心に)シフトされた位置(すなわち、固定位置)に配置される。更に、3相レシーバコイルの各々は、ツイストループ構成を有する。3個のレシーバコイルを実装するのに必要な回路は、コイルの対称が増加するにつれて複雑になる可能性がある。例えば、対称が増加するにつれて、トレース幅、ビア直径、及びトレース間隔は非常に小さくなる。
【0053】
図5は、ロータコイルが回転されるときに、
図4の誘導型角度位置センサ400によって生成される信号の高調波成分(すなわち、高調波歪み)のグラフである。
図5に示されるように、誘導型角度位置センサ400の基本周波数501は、9サイクル/回転(すなわち、F
FUND=9サイクル/回転)であり、これは、ロータ/ステータの回転対称の位数に対応する。基本周波数の振幅は、0デシベル(すなわち、0dB)の振幅に正規化される。ロータコイルの回転はまた、基本周波数の高調波を生成する。誘導電圧信号の周波数成分(すなわち、周波数)は、以下の式によって与えられ得る。
【数3】
【0054】
上式において、Mは高調波の次数である。レシーバコイルのツイストペア構成のため、奇数次数のみが含まれる。より高次の周波数成分(すなわち、M=3、5、7、...)は、基本周波数振幅と比較して、常に減少する振幅を有することができる。この例における最高振幅高調波は、27の周波数を有し、基本周波数(すなわち、9サイクル/回転)よりも振幅が低い(例えば、-12dB低い)。したがって、本明細書において定義される高調波抑制502は、基本周波数の振幅と最高振幅高調波との間の差であり得る(例えば、12dB)。様々なエアギャップ(例えば、ギャップ1=100μm、ギャップ2=200μm、ギャップ3=300μm、ギャップ4=400μ)に対する高調波が描かれており、エアギャップが大きくなるにつれて高調波の減少率が増加するが、高調波抑制502は、最大振幅高調波周波数(すなわち、27)に対してほぼ同じ(例えば、5dBの範囲内)であることを示す。
【0055】
誘導型角度位置センサの分解能は、ロータとレシーバコイルとの組み合わせの基本周波数に対応し得る。ロータコイルの回転対称の位数がレシーバコイルの回転対称の位数に等しいとき、基本周波数(すなわち、全ての高調波の最低周波数)は、2つのコイルの対称の位数(すなわち、対称)である。言い換えれば、両方のコイルの対称を増加させることにより、角度測定の分解能を増加させることができる。レシーバコイルの回転対称の位数と同じであるロータコイルの回転対称の位数を有する誘導型角度位置センサを用いて増加された分解能要件を満たすことは、特に3相レシーバコイルの場合、回路の複雑さを犠牲にすることになる。言い換えれば、分解能を増加させるために両方のコイルの対称を増加させることは、制限に直面し得る。本開示は、これらの制限を回避するための技術を説明する。
【0056】
本開示は、ロータコイルの回転対称の位数がレシーバコイルの回転対称の位数と異なる誘導型角度位置センサを説明する。この場合、両方のコイルによって共有されるより高次の高調波は、コイル組み合わせの基本周波数に効果的になり得る。共有されるより高次の高調波は、レシーバの対称が低く保たれている間であっても、角度測定の増加された分解能を提供する。更に、任意の低減された測定振幅は、より高次のモードの高調波抑制がより大きくなり得るため、より小さいオフセットで補償され得る。以下の表1は、異なるロータコイルとレシーバコイルの構成に対する高調波を例解する。表1に示される例は、本開示の原理を理解することに役立つことができ、限定することを意図していない。
【表1】
【0057】
表1は、外径(すなわち、直径450)に対応する同じ全体サイズを有する3個の誘導型角度センサを含む。表1に示されるように、第1の誘導型角度位置センサ(すなわち、センサ1)は、ロータ/レシーバコイル9回対称を有する。この対称の組み合わせは、1回転当たり9サイクル(サイクル/回転)の基本周波数及び40度の角度周期に対応し(例えば、
図2参照)、角度周期は、360度÷対称である、ロータコイルの回転の範囲に対応する。第2の誘導型角度位置センサ(すなわち、センサ2)は、ロータ/レシーバコイル21回対称を有する。この対称の組み合わせは、21サイクル/回転の基本周波数及び17度の角度周期に対応する。言い換えれば、ロータコイル及びレシーバコイルの対称を共に9サイクル/回転から21サイクル/回転に増加させると、角度周期を40度~17度に低減することができる。第1の誘導型角度位置センサは、63サイクル/回転の周波数及び5.7度の角度周期を有する7次モードを有し、第2の誘導型角度位置センサは、63サイクル/回転の周波数及び5.7度の角度周期を有する3次モードを有する。
【0058】
表1に示されるように、第3の角度位置センサ(すなわち、センサ3)は、のロータコイル21回対称及びレシーバコイル9回対称を有する。この対称の組み合わせの場合、第1及び第2の角度位置センサの共有高次モード(すなわち、63サイクル/回転)は、第3の誘導型角度位置センサにおいて励磁される第1のモードとなる。したがって、第3の角度位置センサは、有効63回対称、5.7度の角度周期に対応する63サイクル/回転の基本周波数を有する。第3の角度位置センサの分解能は、レシーバコイルの対称を増加させることなく、第1の角度位置センサよりも高い。更に、第3の角度位置センサの分解能は、レシーバコイルの対称が低い第2の角度位置センサよりも高い。
【0059】
図6は、本開示の可能な実装形態による誘導型角度位置センサを例解する。誘導型角度位置センサ600は、コイルの中心にある対称軸640を中心に対称であり、外径(すなわち、直径450)に対応する全体サイズを有する。誘導型角度位置センサ600は、ロータコイル620及びレシーバコイル630(すなわち、ステータコイル)によって画定される環の内側に位置する励磁コイル610を含む。明確にするために、1つのレシーバコイル630のみが示されているが、実際には、複数のレシーバコイルが使用され得、各レシーバコイルは、他のレシーバコイル(例えば、3相レシーバコイル)に対して角度シフトして配置される。
【0060】
励磁コイル610及びレシーバコイル630は、第1のプリント回路基板(PCB)上に配置することができ、ロータコイル620は、第2のプリント回路基板上に配置することができ、それらの間にエアギャップ(d)がある。エアギャップは、1ミリメートル未満(例えば、100ミクロン(μm))であり得る。
【0061】
ロータコイル420は、17度の周期で等しいサイズ(すなわち、ローブ比=50/50)の21個の正ローブ及び21個の逆ローブを含み、一方、レシーバコイル430は、40度の周期で等しいサイズの9個の正ローブ及び9個の逆ローブを含む。言い換えれば、ロータコイル620は、位数21の回転対称を有し、レシーバコイルは、位数9の回転対称(すなわち、9回対称)を有する。この構成では、ロータコイル420の機械的回転の5.7度の変化は、周期的正弦波信号において360度の変化を生成することができる。したがって、誘導型角度位置センサ600の基本周波数は、63サイクル/回転であり、誘導型角度位置センサ600の分解能は、この5.7度の周期に基づく。
【0062】
レシーバコイル630は、環の周りを反時計回り方向に第1の経路をたどる第1のループと、環の円周の周りを時計回り方向に第2の経路をたどる第2のループと、を含む、ツイストループ構成にある。第1のループ及び第2のループは、第1のループが第1のPCBの最上層上にある一方で、第2のループが第1のPCBの最下層上にあることを可能にするビアによって短絡することを防止され、逆もまた同様である。例えば、第1のループは、各ローブ周期の前半の間、第1のPCBの最上層上にあり、各ローブ周期の後半の間、最下層上にあることができる。逆に、第2のループは、各ローブ周期の前半の間、第1のPCBの最下層上にあり、各ローブ周期の後半の間、最上層上にあることができる。最上層と最下層との間の遷移は、第1のPCBを通るビア(例えば、めっきスルーホール、ピンなど)を使用して実装され得る。
【0063】
図7は、表1の第3の誘導型角度位置センサによって生成される信号の高調波成分(すなわち、高調波歪み)のグラフである。
図7に示されるように、誘導型角度位置センサの基本周波数701は、ロータ周波数(すなわち、21)及びステータ周波数(すなわち、9)の最小公倍数(least common multiple、LCM)である高調波にあり、この例では、63サイクル/回転(すなわち、1(LCM)=63)であり、0デシベル(すなわち、0dB)の振幅に正規化される。ロータコイルの回転はまた、基本周波数の高調波を生成する。次に高次の高調波(すなわち、3(LCM)=189)は、189サイクル/回転の周波数であり、これは、126サイクル/回転の第1の高調波周波数帯域幅(すなわち、帯域幅703)によって基本周波数から十分に分離される。この例における最高振幅高調波は、189サイクル/回転の周波数を有し、高調波抑制702に等しい量(例えば、19dB)だけ基本周波数よりも低い。様々なエアギャップ(例えば、ギャップ1=100μm、ギャップ2=200μm、ギャップ3=300μm、ギャップ4=400μ)に対する高調波が描かれており、各々の高調波抑制が広い範囲(例えば、22dBの範囲内)にわたって拡散されることを示す。高次高調波は、複数のロータ巻線を使用して相殺され、更に抑制され得る。言い換えれば、角度位置センサのロータコイルは、多重巻線ロータコイルとして実装され得る。
【0064】
図8は、本開示の可能な実装形態による誘導型角度位置センサのための多重巻線ロータコイルを例解する。多重巻線ロータコイル800は、第1のロータ巻線810及び第2のロータ巻線820を含む。第1のロータ巻線810及び第2のロータ巻線820は、隣接するトレースであり得る(すなわち、交差しない、重なり合わない)。例えば、第1のロータ巻線810及び第2のロータ巻線820は、PCBの層(例えば、表面)上の2つの連続トレースであり得る。第1のロータ巻線810及び第2のロータ巻線820は、対称軸840を中心に外半径831及び内半径832を有する環を画定し得る。第1のロータ巻線810及び第2のロータ巻線820は、回転対称の同じ周波数(すなわち、位数)を有し得る。図示されるように、第1のロータ巻線810及び第2のロータ巻線820は、21サイクル/回転の周波数を有し、各サイクルは、ほぼ外側半径831である半径における正ローブと、ほぼ内側半径832である半径における逆ローブと、を含む。
【0065】
ローブ比は、逆ローブであるサイクルの第2の部分(例えば、第2のパーセンテージ)に対する、正ローブであるサイクルの第1の部分(例えば、第1のパーセンテージ)として定義され得る。図示されるように、第1のロータ巻線810は、第1のローブ比を有し、第2のロータ巻線820は、第2のローブ比を有し、第1のローブ比は、第2のローブ比とは異なる。
図8に示される実装形態では、第1のロータ巻線810は、サイクルの60%である第1の正ローブ部分811と、サイクルの40%である第1の逆ローブ部分821と、を有する。したがって、第1のローブ比は、60/40である。第2のロータ巻線820は、サイクルの40%である第2の正ローブ部分821と、サイクルの60%である第2の逆ローブ部分822と、を有する。したがって、第2ローブ比は、40/60である。ローブ比は、異なる実装形態において変化し得る。一般に、巻線のローブ比は、1つの巻線が重なり合うことなく別の巻線内に収まることができるように、異なり得る。多重巻線ロータコイル800は、多重巻線ロータに/から結合される磁場の相殺を通して、5次(M=5)及び7次(M=7)の高調波を低減することができる。例えば、5次高調波は、40/60ローブ比を有する両方のロータによって相殺することができ、7次高調波は、一方のロータコイルを他方のロータコイルに対してシフトさせる(すなわち、回転させる)ことによって相殺することができ、その結果、ロータコイルのレシーバコイルへの組み合わせられた結合は、7次高調波を含まない。
【0066】
図9は、本開示の可能な実装形態による誘導型角度位置センサを例解する。誘導型角度位置センサ900は、コイルの中心にある対称軸940を中心に対称であり、外径(すなわち、直径950)に対応する全体サイズを有する。
図9に示す実装形態の直径950は、38ミリメートルである。誘導型角度位置センサ900は、レシーバコイル930(すなわち、ステータコイル)によって画定される環の内側に位置する励磁コイル910を含む。励磁コイル910は、第1の平面を画定する。励磁コイル910及びレシーバコイル930は、ほぼ同じ平面内にある。
【0067】
誘導型角度位置センサ900は、対称軸940を中心に(例えば、レシーバコイル930の上方で)回転するように構成されているロータコイルを含む。ロータコイル920は、第2の平面において実質的に平面状である。第1の平面及び第2の平面は、100ミクロンであるエアギャップによって分離される。ロータコイル920は、第1のロータ巻線及び第2のロータ巻線を有する多重巻線ロータコイルとして実装される。第1ロータ巻線は、第2ロータ巻線の第2ローブ比とは異なる第1ローブ比を有する。図示される実装形態では、第1のロータ巻線は60/40の第1のローブ比を有し、第2のロータ巻線は40/60の第2のローブ比を有する。第1のロータ巻線及び第2のロータ巻線は、同じ数の正/逆ローブ(すなわち、周波数、対称)を有する。図示される実装形態では、ロータ対称は21である(すなわち、21個の正ローブ、21個の逆ローブ)。多重巻線ロータコイルは、誘導型角度位置センサ900の応答において5次及び7次高調波を減衰させる(例えば、相殺する)ように構成されている。
【0068】
誘導型角度位置センサのレシーバコイル930は、3個のレシーバコイルを含む3相レシーバコイルとして実装される。各レシーバコイルは、同じ数の正/逆ローブ(すなわち、周波数、対称)を有する。3個のレシーバコイルの各々は、ツイストペアとして配置された2つのループを含む。図示される実装形態では、第1のループは9の周波数(すなわち対称)を有し、第2のループは9の周波数(すなわち対称)を有する。したがって、3個のレシーバコイルは各々、対称軸を中心に完全な回転において合計54個のループに対して合計18個のループを有する。各ループは2つのビアを含むので、
図9に示すツイストループ構成の3相レシーバコイルは、108個のビアを含む。3個のレシーバコイルは、コイル間で120度回転して空間的に配置される。レシーバコイル930は、ツイストループ構成の結果として、偶数次高調波(すなわち、2次、4次、6次など)を相殺するように構成されている。レシーバコイル930は、3相構成の結果として、3次、9次、15次高調波を相殺するように構成されている。
【0069】
図10は、
図9の誘導型角度位置センサによって生成される信号の高調波成分(すなわち、高調波歪み)のグラフである。
図10に示されるように、誘導型角度位置センサの基本周波数1001は、63サイクル/回転(すなわち、F
FUND=63)であり、これは、ロータコイル対称(すなわち、21)及びレシーバコイル対称(すなわち、9)の最小公倍数(すなわち、LCM)である。グラフにおいて、基本周波数の振幅は、0デシベル(すなわち、0dB)に正規化され、高調波抑制902は、より高次の高調波の影響を効果的に除去する量(例えば、60dB)である。図示されるように、全ての高調波は、上述の相殺効果により効果的に除去される。例えば、(i)多重巻線ロータコイルは、5次及び第7次高調波を基本周波数よりも十分に低いレベルに(例えば、>60dBを下回って)低減する。(ii)3相レシーバコイルは、3次、9次、及び15次高調波を基本周波数よりも十分に低いレベルに(例えば、>60dBを下回って)低減し、(iii)各レシーバコイルのツイストループ構成は、偶数次高調波を除去する。
【0070】
この組み合わされた高調波相殺効果は、角度計算が、非常に高い精度で角度測定値を生成することに役立つ。例えば、角度計算は、63の基本周波数に対して6ビットの精度で周期を判定することができる。更に、角度計算は、高調波抑制がより高次の高調波を効果的に除去するのに十分(すなわち、高調波抑制≧60dB)であるとき、(少なくとも)10ビットの精度で補間することができる。これは、16ビット又は20秒角の角度測定精度に対応することができる。小さいサイズ(例えば、直径38mm)のセンサにおけるそのような精度は、本明細書に説明される技術なしでは実際には可能ではないであろう。例えば、本明細書において説明される技術がなければ、小さいサイズでの高い角度測定精度は、はるかに複雑で高価なPCB回路を必要とするであろう。
【0071】
図11は、角度を測定するための方法のフローチャートである。方法1100は、第1の平面上に位置する励磁コイルを使用して第1の磁場を生成するステップ1110を含む。励磁コイルは、励磁コイルの中心に位置する対称軸を中心として対称である。方法1100は、ロータコイルを、対称軸を中心として(すなわち、中心に)ある角度まで回転させるステップ1120を更に含む。ロータコイルは、第1の平面に平行であり、エアギャップによって第1の平面から分離される第2の平面に位置する。ロータコイルは、第1の空間周波数(すなわち、第1の周波数、第1の対称)を有する。方法1100は、励磁コイルからの第1の磁場をロータコイルに結合して、ロータコイルに電流を生成するステップ1130を更に含む。方法1100は、ロータコイル内の電流によって生成された第2の磁場を第1の平面においてレシーバコイルに結合1140することを更に含み、レシーバコイルは第2の空間周波数(すなわち、第2の周波数、第2の対称)を有する。本方法は更に、ロータコイルの角度に対応する振幅を有する受信信号をレシーバコイルから受信するステップ1150を含む。方法は、角度を測定するために、レシーバコイルからの受信信号を正弦波信号と比較するステップ1160を更に含む。正弦波信号は、第1の空間周波数及び第2の空間周波数の最小公倍数に対応する基本周波数を有する。
【0072】
別途定義されない限り、本明細書において使用される全ての技術用語及び科学用語は、当業者によって一般に理解されるものと同じ意味を有する。本明細書において説明される方法及び材料と同様又は同等の方法及び材料は、本開示の実施又は試験に使用することができる。本明細書及び添付の特許請求の範囲で使用される場合、単数形「a」、「an」、「the」は、文脈から別途明確に規定されない限り、複数の指示対象を含む。本明細書において使用される「含む」という用語及びその変形は、「含む」という用語及びその変形と同義的に使用され、オープンで非限定的な用語である。本明細書において使用される「任意選択的な」又は「任意選択的に」という用語は、その後に説明される特徴、事象、又は状況が生じる場合又は生じない場合があること、並びにその説明が、当該特徴、事象、又は状況が生じる場合と、それが生じない場合と、を含むことを意味する。範囲は、本明細書において、「約」1つの特定の値から、及び/又は「約」別の特定の値までとして表現され得る。そのような範囲が表現される場合、態様は、1つの特定の値から、及び/又は別の特定の値までを含む。同様に、値が先行詞「約」を使用して近似値として表される場合、特定の値が別の態様を形成することが理解されよう。各範囲の終点は、他方の終点に関して有意であり、また他方の終点とは無関係に有意であることが更に理解されるであろう。
【0073】
いくつかの実装形態は、様々な半導体処理及び/又はパッケージング技術を使用して実装され得る。いくつかの実装形態は、例えば、シリコン(Silicon、Si)、ガリウムヒ素(Gallium Arsenide、GaAs)、窒化ガリウム(Gallium Nitride、GaN)、炭化ケイ素(Silicon Carbide、SiC)、及び/又はそれらなどを含むが、それらに限定されない半導体基板と関連付けられた様々なタイプの半導体処理技術を使用して実装され得る。
【0074】
説明された実装形態の特定の特徴を、本明細書において説明されるとおりに例解してきたが、ここで、当業者は、多くの修正、代用、変更、及び、均等物を着想するであろう。それ故、添付の特許請求の範囲は、そのような修正及び変更の全てを実装形態の範囲内に収まるよう網羅することを意図することが、理解されよう。これらは、限定ではなく、単なる例示として提示されており、形態及び細部に様々な変更がなされ得ることは、理解しているはずである。本明細書において説明される装置及び/又は方法のいずれの部分も、相互に排他的な組み合わせを除き、任意の組み合わせで組み合わされ得る。本明細書において説明される実装形態は、説明される異なる実装形態の機能の様々な組み合わせ及び/又は部分組み合わせ、構成要素及び/又は特徴を含み得る。
【0075】
上述の明細書において、素子が、別の素子上にある、接続する、電気的に接続する、結合する、又は、電気的に結合すると言及される場合、素子は、他の素子上に直接あるか、接続するか、又は、結合することができるか、あるいは1つ以上の介在素子が存在し得ることが、理解されよう。一方、素子が、別の素子上に直接あるか、直接接続するか、又は、直接結合すると言及される場合、介在素子は、存在しない。本発明の詳細な説明を通じて、直接ある、直接接続する、又は、直接結合するという用語が使用されないこともあるが、直接ある、直接接続する、又は、直接結合するものとして図示される素子は、そのようなものとして言及され得る。本出願の特許請求の範囲(含まれている場合)は、本明細書において説明される、又は、図面に示される例示的な関係を述べるように補正され得る。
【0076】
本明細書において使用される際、単数形は、文脈の観点において、特定の事例を明確に示さない限り、複数形を含み得る。空間的相対性を示す用語(例えば、全体にわたって、上、上方、下、下側、下方、下位等)は、図面で示す配向に加えて、使用中、又は、操作中のデバイスの異なる配向を包含することを意図している。いくつかの実装形態では、上及び下という相対的な用語はそれぞれ、垂直方向に上及び垂直方向に下を含むことができる。いくつかの実装形態では、隣接するという用語は、横方向に隣接するか、又は、水平方向に隣接することを含むことができる。
【外国語明細書】