IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日東電工株式会社の特許一覧

<>
  • 特開-光学結像システム 図1
  • 特開-光学結像システム 図2
  • 特開-光学結像システム 図3
  • 特開-光学結像システム 図4
  • 特開-光学結像システム 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024033572
(43)【公開日】2024-03-13
(54)【発明の名称】光学結像システム
(51)【国際特許分類】
   G02B 30/56 20200101AFI20240306BHJP
   G02B 5/30 20060101ALI20240306BHJP
   G02B 5/136 20060101ALI20240306BHJP
   G02B 5/00 20060101ALI20240306BHJP
【FI】
G02B30/56
G02B5/30
G02B5/136
G02B5/00 Z
【審査請求】未請求
【請求項の数】14
【出願形態】OL
(21)【出願番号】P 2022137227
(22)【出願日】2022-08-30
(71)【出願人】
【識別番号】000003964
【氏名又は名称】日東電工株式会社
(74)【代理人】
【識別番号】100122471
【弁理士】
【氏名又は名称】籾井 孝文
(72)【発明者】
【氏名】真島 彩佳
【テーマコード(参考)】
2H042
2H149
2H199
【Fターム(参考)】
2H042AA02
2H042AA04
2H042AA20
2H042AA26
2H042AA28
2H042EA11
2H042EA15
2H149AA01
2H149AA20
2H149AB01
2H149BA02
2H149BA04
2H149DA02
2H149FC07
2H149FC10
2H149FD05
2H199BA32
2H199BA63
2H199BB10
2H199BB12
2H199BB15
2H199BB20
2H199BB52
2H199BB59
(57)【要約】
【課題】明所においても優れた視認性を有する空中画像を形成できる光学結像システムを提供すること。
【解決手段】本発明の実施形態による光学結像システムは、光源と;該光源からの光が入射される第1偏光子と;該第1偏光子に対して該光源の反対側に位置し、空中に画像を結像可能な空中結像装置と;を備えている。該空中結像装置は、画像表示パネルと;該画像表示パネルよりも上記光源の近くに位置している第2偏光子とを備え、第1偏光子の第1透過軸方向と第2偏光子の第2透過軸方向とは交差している。
【選択図】図1
【特許請求の範囲】
【請求項1】
光源と、
前記光源からの光が入射される第1偏光子と、
前記第1偏光子に対して前記光源の反対側に位置し、空中に画像を結像可能な空中結像装置と、を備え、
前記空中結像装置は、
画像表示パネルと、
前記画像表示パネルよりも前記光源の近くに位置する第2偏光子と、を備え、
前記第1偏光子の第1透過軸方向と前記第2偏光子の第2透過軸方向とは交差している、光学結像システム。
【請求項2】
前記第1透過軸方向と前記第2透過軸方向とがなす角度は、60°以上90°以下である、請求項1に記載の光学結像システム。
【請求項3】
前記第2偏光子は、反射型偏光子であって、
前記空中結像装置は、
前記反射型偏光子によって反射された光を前記反射型偏光子に向けて再帰反射可能な再帰反射シートと、
前記再帰反射シートと前記反射型偏光子との間に設けられる位相差フィルムであって、面内位相差Re(550)が100nm以上200nm以下である位相差フィルムと、をさらに備える、請求項1に記載の光学結像システム。
【請求項4】
前記空中結像装置は、前記画像表示パネルと前記反射型偏光子との間に設けられる第3偏光子をさらに備え、
前記第3偏光子の第3透過軸方向と前記第2透過軸方向とは実質的に直交している、請求項3に記載の光学結像システム。
【請求項5】
前記空中結像装置が形成する空中画像の中心を通り前記空中画像と直交する方向と、前記空中画像の中心および前記光源の光出射面の中心を結ぶ仮想線分とがなす極角は、0°以上90°以下である、請求項3または4に記載の光学結像システム。
【請求項6】
前記空中結像装置が形成する空中画像の中心を通る前記画像表示パネルの厚み方向と、前記空中画像の中心および前記光源の光出射面の中心を結ぶ仮想線分とがなす方位角は、0°以上40°以下である、請求項3または4に記載の光学結像システム。
【請求項7】
前記空中結像装置は、前記第2偏光子に対して前記光源の反対側に位置しているクロスミラーアレイ型光学素子であって、前記画像表示パネルに表示される画像に応じた光を再帰透過可能なクロスミラーアレイ型光学素子をさらに備える、請求項1に記載の光学結像システム。
【請求項8】
前記空中結像装置は、前記画像表示パネルと前記クロスミラーアレイ型光学素子との間に設けられる第3偏光子をさらに備え、
前記第3偏光子の第3透過軸方向と前記第2透過軸方向とは実質的に平行である、請求項7に記載の光学結像システム。
【請求項9】
前記空中結像装置が形成する空中画像の中心を通り前記空中画像と直交する方向と、前記空中画像の中心および前記光源の光出射面の中心を結ぶ仮想線分とがなす極角は、50°以上100°以下である、請求項7または8に記載の光学結像システム。
【請求項10】
前記空中結像装置が形成する空中画像の中心を通る前記画像表示パネルの厚み方向と、前記空中画像の中心および前記光源の光出射面の中心を結ぶ仮想線分とがなす方位角は、0°以上50°以下である、請求項7または8に記載の光学結像システム。
【請求項11】
前記空中結像装置は、前記第2偏光子に対して前記光源の反対側に位置している2面コーナーリフレクタアレイ型光学素子であって、前記画像表示パネルに表示される画像に応じた光を再帰透過可能である2面コーナーリフレクタアレイ型光学素子をさらに備える、請求項1に記載の光学結像システム。
【請求項12】
前記空中結像装置は、前記画像表示パネルと前記2面コーナーリフレクタアレイ型光学素子との間に設けられる第3偏光子をさらに備え、
前記第3偏光子の第3透過軸方向と前記第2透過軸方向とは実質的に平行である、請求項11に記載の光学結像システム。
【請求項13】
前記空中結像装置が形成する空中画像の中心を通り前記空中画像と直交する方向と、前記空中画像の中心および前記光源の光出射面の中心を結ぶ仮想線分とがなす極角は、60°以上110°以下である、請求項11または12に記載の光学結像システム。
【請求項14】
前記空中結像装置が形成する空中画像の中心を通る前記画像表示パネルの厚み方向と、前記空中画像の中心および前記光源の光出射面の中心を結ぶ仮想線分とがなす方位角は、10°以上60°以下である、請求項11または12に記載の光学結像システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光学結像システムに関する。
【背景技術】
【0002】
近年、各種産業分野において空中に画像を表示する空中画像表示技術の適用が検討されており、特に空中浮遊ディスプレイが期待されている。そのような空中画像表示技術として空中結像方式が知られており、例えば、一方側の面に垂直に多数かつ帯状の平面光反射部を一定のピッチで並べて形成した第1および第2の光制御パネルを備え、第1および第2の光制御パネルのそれぞれの一面側を平面光反射部が直交するように向かい合わせた、光学結像装置が提案されている(例えば、特許文献1)。このような光学結像装置では、第1および第2の光制御パネルに入射した入射光が再帰透過して、空中で実像を結像する。しかし、特許文献1に記載の光学結像装置を明所において使用すると、空中画像の視認性が不十分となる場合がある。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2012-155345号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、明所においても、優れた視認性を有する空中画像を形成できる光学結像システムを提供することにある。
【課題を解決するための手段】
【0005】
[1]本発明の実施形態による光学結像システムは、光源と、第1偏光子と、空中結像装置と、を備えている。該第1偏光子は、該光源からの光が入射される。該空中結像装置は、空中に画像を結像可能である。該空中結像装置は、上記第1偏光子に対して上記光源の反対側に位置している。該空中結像装置は、画像表示パネルと、第2偏光子と、を備えている。該第2偏光子は、上記画像表示パネルよりも上記光源の近くに位置している。上記第1偏光子の第1透過軸方向と上記第2偏光子の第2透過軸方向とは、互いに交差している。
[2]上記[1]に記載の光学結像システムにおいて、上記第1透過軸方向と上記第2透過軸方向とがなす角度は、60°以上90°以下であってもよい。
[3]上記[1]または[2]に記載の光学結像システムにおいて、上記第2偏光子は、反射型偏光子であってもよい。上記空中結像装置は、再帰反射シートと、位相差フィルムとをさらに備えていてもよい。再帰反射シートは、反射型偏光子によって反射された光を、反射型偏光子に向けて再帰反射可能である。位相差フィルムは、再帰反射シートと反射型偏光子との間に設けられている。位相差フィルムの面内位相差Re(550)は100nm以上200nm以下である。
[4]上記[3]に記載の光学結像システムにおいて、上記空中結像装置は、第3偏光子をさらに備えていてもよい。第3偏光板は、上記画像表示パネルと上記反射型偏光子との間に設けられている。上記第3偏光子の第3透過軸方向と上記第2透過軸方向とは実質的に直交している。
[5]上記[3]または[4]に記載の光学結像システムにおいて、上記空中結像装置が形成する空中画像の中心を通り該空中画像と直交する方向と、上記空中画像の中心および上記光源の光出射面の中心を結ぶ仮想線分とがなす極角は、0°以上90°以下であってもよい。
[6]上記[3]から[5]のいずれかに記載の光学結像システムにおいて、上記空中結像装置が形成する空中画像の中心を通る上記画像表示パネルの厚み方向と、上記空中画像の中心および上記光源の光出射面の中心を結ぶ仮想線分とがなす方位角は、0°以上40°以下であってもよい。
[7]上記[1]または[2]に記載の光学結像システムにおいて、上記空中結像装置は、クロスミラーアレイ型光学素子をさらに備えていてもよい。クロスミラーアレイ型光学素子は、画像表示パネルに表示される画像に応じた光を再帰透過可能である。クロスミラーアレイ型光学素子は、上記第2偏光子に対して上記光源の反対側に位置している。
[8]上記[7]に記載の光学結像システムにおいて、上記空中結像装置は、第3偏光子をさらに備えていてもよい。第3偏光子は、上記画像表示パネルと上記クロスミラーアレイ型光学素子との間に設けられる。上記第3偏光子の第3透過軸方向と上記第2透過軸方向とは実質的に平行である。
[9]上記[7]または[8]に記載の光学結像システムにおいて、上記空中結像装置が形成する空中画像の中心を通り該空中画像と直交する方向と、上記空中画像の中心および上記光源の光出射面の中心を結ぶ仮想線分とがなす極角は、50°以上100°以下であってもよい。
[10]上記[7]から[9]のいずれかに記載の光学結像システムにおいて、上記空中結像装置が形成する空中画像の中心を通る上記画像表示パネルの厚み方向と、上記空中画像の中心および上記光源の光出射面の中心を結ぶ仮想線分とがなす方位角は、0°以上50°以下であってもよい。
[11]上記[1]または[2]に記載の光学結像システムにおいて、上記空中結像装置は、2面コーナーリフレクタアレイ型光学素子をさらに備えていてもよい。2面コーナーリフレクタアレイ型光学素子は、画像表示パネルに表示される画像に応じた光を再帰透過可能である。2面コーナーリフレクタアレイ型光学素子は、上記第2偏光子に対して上記光源の反対側に位置している。
[12]上記[11]に記載の光学結像システムにおいて、上記空中結像装置は、第3偏光子をさらに備えていてもよい。上記第3偏光子の第3透過軸方向と上記第2透過軸方向とは実質的に平行である。
[13]上記[11]または[12]に記載の光学結像システムにおいて、上記空中結像装置が形成する空中画像の中心を通り該空中画像と直交する方向と、上記空中画像の中心および上記光源の光出射面の中心を結ぶ仮想線分とがなす極角は、60°以上110°以下であってもよい。
[14]上記[13]に記載の光学結像システムにおいて、上記空中結像装置が形成する空中画像の中心を通る上記画像表示パネルの厚み方向と、上記空中画像の中心および上記光源の光出射面の中心を結ぶ仮想線分とがなす方位角は、10°以上60°以下であってもよい。
【発明の効果】
【0006】
本発明の実施形態によれば、明所においても、優れた視認性を有する空中画像を形成できる。
【図面の簡単な説明】
【0007】
図1図1は、本発明の1つの実施形態による光学結像システムを説明する概略構成図である。
図2図2は、本発明の別の実施形態による光学結像システムを説明する概略構成図である。
図3図3は、図1の光学結像システムにおける極角および方位角を説明するための概略斜視図である。
図4図4は、図3の光学結像システムにおける極角を説明するための概略側面図である。
図5図5は、図3の光学結像システムにおける方位角を説明するための概略平面図である。
【発明を実施するための形態】
【0008】
以下、図面を参照して本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。また、図面は説明をより明確にするため、実施の形態に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。
【0009】
(用語および記号の定義)
本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
(3)角度
本明細書において角度に言及するときは、当該角度は基準方向に対して時計回りおよび反時計回りの両方を包含する。したがって、例えば「45°」は±45°を意味する。
(4)実質的に直交または平行
本明細書において「実質的に直交」および「略直交」という表現は、2つの方向のなす角度が90°±7°である場合を包含し、好ましくは90°±5°であり、さらに好ましくは90°±3°である。「実質的に平行」および「略平行」という表現は、2つの方向のなす角度が0°±7°である場合を包含し、好ましくは0°±5°であり、さらに好ましくは0°±3°である。さらに、本明細書において単に「直交」または「平行」というときは、実質的に直交または実質的に平行な状態を含み得るものとする。
【0010】
A.光学結像システムの概略
図1は、本発明の1つの実施形態による光学結像システムを説明する概略構成図である。図示例の光学結像システム100は、光源3と、第1偏光子1と、空中結像装置2とを備えている。第1偏光子1には、光源3からの光が入射される。空中結像装置2は、空中に画像(空中画像I)を結像可能である。空中結像装置2は、第1偏光子1に対して光源3の反対側に位置している。空中結像装置2は、画像表示パネル22と、第2偏光子21とを備えている。第2偏光子21は、画像表示パネル22よりも光源3の近くに位置している。第1偏光子1の第1透過軸方向Xと第2偏光子21の第2透過軸方向Yとは、互いに交差している(図5参照)。
光源が空中結像装置の配置空間を照らす明所では、光源からの光が空中結像装置の内部に入り込む場合がある。この場合、空中結像装置の内部に侵入した外光が乱反射することにより、空中結像装置が形成する空中画像の視認性が低下するおそれがある。これに対して、本発明の1つの実施形態によれば、第1偏光子の第1透過軸方向と第2偏光子の第2透過軸方向とが交差しているので、第1偏光子を透過した直線偏光が、第2偏光子によって遮られる。そのため、光源からの光が空中結像装置の内部に侵入することを抑制できる。その結果、上記光学結像システムは、光源が照らす明所においても、優れた視認性を有する空中画像を形成できる。
【0011】
光源3は、空中結像装置2を配置する空間を照らす。1つの実施形態において、光源3は、空中結像装置2が配置される部屋に設けられる。光源3は、代表的には、部屋の天井に設けられる。光源は、任意の適切な光源を採用し得る。光源として、例えば、白熱電球、蛍光灯、発光ダイオード(LED)、有機エレクトロルミネセンス(有機EL)ライト、無機エレクトロルミネセンス(無機EL)ライトが挙げられる。光源は、太陽光を室内に取り込む窓であってもよい。光源の照度は、特に制限されないが、第2偏光板上において、例えば50lx以上2000lx以下である。
【0012】
光源3は、空中結像装置2に対して、任意の適切な位置に配置され得る。光源3の光出射面3aの中心は、好ましくは、空中結像装置2が形成する空中画像Iの中心を通り空中画像Iと直交する方向D1に対して画像表示パネル22と反対側に位置する(図4参照)。
空中画像Iの中心を通り空中画像Iと直交する方向D1と、空中画像Iの中心および光源3の光出射面3aの中心を結ぶ仮想線分Lとがなす極角θは、代表的には0°以上120°以下、好ましくは1°以上110°以下である(図4参照)。
空中画像Iの中心を通る画像表示パネル22の厚み方向D2と、上記仮想線分Lとがなす方位角θは、代表的には0°以上180°以下であり、好ましく0°以上89°以下である(図5参照)。
【0013】
第1偏光子1は、代表的には、光源3の光出射面3aの全体を覆うように配置されている。これによって、光源から出射する光を第1偏光子に確実に入射できるので、第2偏光子に到達する光を、安定して、第1透過軸方向に応じた直線偏光(第1直線偏光)とできる。そのため、外光が空中結像装置の内部に侵入することをより抑制できる。
【0014】
1つの実施形態において、第1偏光子は、吸収型偏光子である。光学結像システム100は、第1偏光子としての吸収型偏光子を含む第1偏光板を備えていてもよい。第1偏光板は、代表的には、吸収型偏光子に加えて保護層を備えている。なお、第1偏光子は、反射型偏光子であってもよい。吸収型偏光子、保護層および反射型偏光子については後で詳述する。
【0015】
第1偏光子の第1透過軸方向Xと第2偏光子の第2透過軸方向Yとがなす角度は、例えば60°以上、好ましくは70°以上、より好ましくは80°以上である(図5参照)。第1透過軸方向と第2透過軸方向とは、とりわけ好ましくは、実質的に直交している。第1透過軸方向と第2透過軸方向とがこのように交差していれば、外光が空中結像装置の内部に侵入することをより一層抑制できる。
【0016】
A-1.再帰反射型結像装置
1つの実施形態において、空中結像装置2は、再帰反射型結像装置2aである。再帰反射型結像装置2aは、画像表示パネル22と;第2偏光子の一例としての反射型偏光子21aと;再帰反射シート23と;位相差フィルム24と;を備えている。図示例において、画像表示パネル22と、反射型偏光子21aと、再帰反射シート23とは、側面視略三角形状に配置されており、反射型偏光子21aが、画像表示パネル22および再帰反射シート23よりも光源3の近くに配置されている。
【0017】
画像表示パネル22として、任意の適切な画像表示パネルを採用し得る。画像表示パネル22として、例えば、液晶表示パネル、有機EL表示パネルが挙げられる。画像表示パネルが液晶表示パネルである場合、図示しないが、再帰反射型結像装置は、液晶表示パネルの背面に光源(バックライト)および導光板を備えている。
【0018】
反射型偏光子21aは、第2透過軸方向に応じた第2直線偏光を透過し、第2直線偏光以外の光を反射する。
反射型偏光子21aと画像表示パネル22とがなす角度は、例えば45°±30°以内、好ましくは45°±15°以内、より好ましくは45°±5°以内である。
なお、図示しないが、反射型偏光子21aの光源側の表面には、吸収型偏光子が配置されていてもよい。この場合、反射型偏光子の透過軸と吸収型偏光子の透過軸とは、実質的に平行である。
【0019】
再帰反射シート23は、反射型偏光子21aによって反射された光を、反射型偏光子21aに向けて再帰反射(反射型偏光子からの光を入射方向と逆向きの方向に反射)可能である。再帰反射シート23として、任意の適切な構成を採用し得る。再帰反射シートとして、例えば、ビーズタイプ、プリズムタイプが挙げられる。
再帰反射シート23と画像表示パネル22とがなす角度は、例えば90°±30°以内、好ましくは90°±15°以内、より好ましくは90°±5°以内である。
【0020】
位相差フィルム24は、再帰反射シート23と反射型偏光子21aとの間に配置されている。位相差フィルム24は、代表的には、再帰反射シート23における反射型偏光子側の表面に設けられている。位相差フィルム24は、目的に応じて任意の適切な光学的特性および/または機械的特性を有する位相差フィルムで構成され得る。位相差フィルム24は、代表的には、nx>ny≧nzの屈折率を有する。なお、ここで「ny=nz」はnyとnzが完全に等しい場合だけではなく、実質的に等しい場合を包含する。
位相差フィルム24は、いわゆるλ/4板として機能する。位相差フィルム24の面内位相差Re(550)は、例えば100nm~200nmであり、好ましくは130nm~150nmである。
位相差フィルム24の厚みは、λ/4板として適切な機能を有するように、設定される。位相差フィルム24の厚みは、例えば20~100μm、好ましくは20~60μm、より好ましくは30~50μmである。
位相差フィルム24の遅相軸と反射型偏光子21aの反射軸とのなす角度は、例えば40°~50°であり、好ましくは42°~48°であり、より好ましくは44°~46°であり、特に好ましくは約45°である。
【0021】
再帰反射型結像装置2aは、好ましくは、第3偏光子28をさらに備えている。第3偏光子28は、画像表示パネル22と反射型偏光子21aとの間に設けられている。第3偏光子28は、代表的には、吸収型偏光子である。再帰反射型結像装置2aは、第3偏光子としての吸収型偏光子を含む第3偏光板を備えていてもよい。第3偏光板は、代表的には、吸収型偏光子に加えて保護層を備えている。第3偏光板を含む第3偏光板は、代表的には、画像表示パネル22における反射型偏光子側の表面に貼り付けられている。第3偏光子28には、画像表示パネル22に表示される画像に応じた光が入射される。第3偏光子28は、第3透過軸方向に応じた第3直線偏光のみを透過する。第3偏光子28の第3透過軸方向と反射型偏光子21aの第2透過軸方向とは実質的に直交している。つまり、第2直線偏光の偏光方向と、第3直線偏光の偏光方向とは実質的に直交している。再帰反射型結像装置が第3偏光子を備えていると、空中画像の視認性のさらなる向上を図ることができる。
【0022】
次に、再帰反射型結像装置における空中画像の形成について説明する。
図示例の再帰反射型結像装置2aでは、画像表示パネル22に表示される画像に応じた光が、まず、第3偏光子28に入射される。第3偏光子28は、入射された光のうち第3直線偏光(代表的にはs偏光)のみを透過する。その後、反射型偏光子21aは、第3偏光子28を透過した第3直線偏光を、再帰反射シート23に向けて反射する。反射型偏光子21aで反射された第3直線偏光は、再帰反射シート23に到達する前、および、再帰反射シート23によって再帰反射された後に、λ/4板として機能する位相差フィルム24を通過する。これによって、第3直線偏光の偏光方向が略90°回転する。つまり、第3直線偏光が第2直線偏光となる。その後、第2直線偏光は、反射型偏光子21aを透過して、反射型偏光子21aに対して画像表示パネル22と面対称な位置で結像する。これによって、空中画像Iが形成される。
【0023】
再帰反射型結像装置2aを備える光学結像システム100において、空中画像Iの中心を通り空中画像Iと直交する方向D1と、空中画像Iの中心および光源3の光出射面3aの中心を結ぶ仮想線分Lとがなす極角θは、好ましくは0°以上、より好ましくは5°以上であり、好ましくは90°以下、より好ましくは50°以下、さらに好ましくは40°以下、とりわけ好ましくは30°以下、特に好ましくは20°以下、最も好ましくは10°以下である(図4参照)。
再帰反射型結像装置2aを備える光学結像システム100において、空中画像Iの中心を通る画像表示パネル22の厚み方向D2と、上記仮想線分Lとがなす方位角θは、好ましく0°以上であり、好ましくは40°以下、より好ましくは30°以下、さらに好ましくは20°以下、とりわけ好ましくは10°以下、特に好ましくは5°以下である(図5参照)。
極角θおよび/または方位角θが上記範囲であると、再帰反射型結像装置を備える光学結像システムにおいて、空中画像の視認性の向上をより一層図ることができる。
なお、再帰反射型結像装置2aでは、代表的には、方位角θが厚み方向D2に対する時計回りおよび反時計回りのいずれの角度であっても、同様に空中画像の視認性が向上され得る。
【0024】
A-2.再帰透過型結像装置
図2に示すように、1つの実施形態において、空中結像装置2は、再帰透過型結像装置2bである。再帰透過型結像装置2bは、上記した画像表示パネル22と;再帰透過型光学素子26と;第2偏光子の一例としての吸収型偏光子21bと;を備えている。図示例において、画像表示パネル22と、再帰透過型光学素子26とは、側面視略楔形状に配置されており、支持部材25によって支持されている。
【0025】
再帰透過型光学素子26は、吸収型偏光子21bに対して光源3の反対側に位置している。再帰透過型光学素子26と画像表示パネル22とがなす角度は、例えば45°±30°以内、好ましくは45°±15°以内、より好ましくは45°±5°以内である。
【0026】
再帰透過型光学素子26は、画像表示パネル22に表示される画像に応じた光が入射される。再帰透過型光学素子26は、入射光に対して、面内方向での再帰性と法線方向への透過性を有する。すなわち、再帰透過型光学素子26は、入射光を法線方向に折り返さずに、面内方向にのみ折り返す。
【0027】
再帰透過型光学素子26として、例えば、クロスミラーアレイ型光学素子26a(以下、CMA型結像素子26aとする。)、2面コーナーリフレクタアレイ型光学素子26b(以下、DCRA型結像素子26bとする。)が挙げられる。
【0028】
CMA型結像素子26aは、任意の適切な構成を採用し得る。CMA型結像素子26aは、例えば、所定の方向に間隔を空けて互いに平行に配置される複数の第1ミラーが設けられる第1透明樹脂基板と;所定の方向に間隔を空けて互いに平行に配置される複数の第2ミラーが設けられる第2透明樹脂基板と;を備えており、第1透明樹脂基板と第2透明樹脂基板とが、第1ミラーおよび第2ミラーが互いに直交するように、積層されている。
CMA型結像素子として、例えば、特開2012-155345号公報に記載の光制御パネル、特許第6203989号に記載の光制御パネルが挙げられる。これらの公報は、その全体の記載が本明細書に参考として援用される。
【0029】
DCRA型結像素子26bは、任意の適切な構成を採用し得る。DCRA型結像素子26bは、例えば、透明樹脂基板と;透明樹脂基板上に設けられる複数の突状部と;を備えており、複数の突状部のそれぞれが、2面コーナーリフレクタを成す2面を有している。
DCRA型結像素子として、例えば、国際公開第2018/139141号公報に記載の光学素子が挙げられる。この公報は、その全体の記載が本明細書に参考として援用される。
【0030】
吸収型偏光子21bは、第2透過軸方向に応じた第2直線偏光を透過し、第2直線偏光以外の光を吸収する。再帰透過型結像装置2bは、吸収型偏光子21bを含む第2偏光板を備えていてもよい。第2偏光板は、代表的には、吸収型偏光子21bに加えて保護層を備えている。吸収型偏光子21bを含む第2偏光板は、代表的には、再帰透過型光学素子26における光源側の表面に貼り付けられている。
【0031】
再帰透過型結像装置2bは、好ましくは、上記した第3偏光子28をさらに備えている。再帰透過型結像装置2bにおいて、第3偏光子28は、画像表示パネル22と再帰透過型光学素子26(CMA型結像素子26a、DCRA型結像素子26b)との間に設けられている。第3偏光子を含む第3偏光板は、代表的には、画像表示パネル22における再帰透過型光学素子側の表面に貼り付けられている。再帰透過型結像装置2bにおいて、第3偏光子28の第3透過軸方向と第2偏光子21の第2透過軸方向とは実質的に平行である。つまり、第2直線偏光の偏光方向と、第3直線偏光の偏光方向とは実質的に平行である。再帰透過型光学素子が第3偏光子を備えていると、空中画像の視認性のさらなる向上を図ることができる。
【0032】
次に、再帰透過型結像装置における空中画像の形成について説明する。
図示例の再帰透過型結像装置では、画像表示パネル22に表示される画像に応じた光が、まず、第3偏光子28に入射される。第3偏光子28は、入射された光のうち直線偏光(代表的にはs偏光)のみを透過する。その後、再帰透過型光学素子26(CMA型結像素子26a、DCRA型結像素子26b)は、第3偏光子28を透過した直線偏光を再帰透過する。再帰透過型光学素子26を再帰透過した直線偏光は、吸収型偏光子21bを透過した後、再帰透過型光学素子26に対して画像表示パネル22と面対称な位置で結像する。これによって、空中画像Iが形成される。
【0033】
再帰透過型結像装置2bがCMA型結像素子26aを備える場合、光学結像システム100において、空中画像Iの中心を通り空中画像Iと直交する方向D1と、空中画像Iの中心および光源3の光出射面3aの中心を結ぶ仮想線分Lとがなす極角θは、好ましくは50°以上、より好ましくは55°以上、さらに好ましくは65°以上であり、好ましくは100°以下、より好ましくは90°以下、さらに好ましくは80°以下、とりわけ好ましくは75°以下である(図4参照)。
再帰透過型結像装置2bがDCRA型結像素子26bを備える場合、光学結像システム100において、空中画像Iの中心を通り空中画像Iと直交する方向D1と、空中画像Iの中心および光源3の光出射面3aの中心を結ぶ仮想線分Lとがなす極角θは、好ましくは60°以上、より好ましくは65°以上、さらに好ましくは75°以上、とりわけ好ましくは85°以上であり、好ましくは110°以下、より好ましくは100°以下、さらに好ましくは95°以下である(図4参照)。
【0034】
再帰透過型結像装置2bがCMA型結像素子26aを備える場合、光学結像システム100において、空中画像Iの中心を通る画像表示パネル22の厚み方向D2と、上記仮想線分Lとがなす方位角θは、好ましく0°以上、より好ましくは10°以上であり、好ましくは50°以下、より好ましくは40°以下、さらに好ましくは30°以下、とりわけ好ましくは25°以下である(図5参照)。
再帰透過型結像装置2bがDCRA型結像素子26bを備える場合、光学結像システム100において、空中画像Iの中心を通る画像表示パネル22の厚み方向D2と、上記仮想線分Lとがなす方位角θは、好ましく0°以上、より好ましくは5°以上、さらに好ましくは10°以上、とりわけ好ましくは15°以上であり、好ましくは60°以下、より好ましくは40°以下、さらに好ましくは30°以下、とりわけ好ましくは25°以下である(図5参照)。
極角θおよび/または方位角θが上記範囲であると、再帰透過型結像装置を備える光学結像システムにおいて、空中画像の視認性の向上をより一層図ることができる。
なお、CMA型結像素子26aを備える再帰透過型結像装置2bでは、代表的には、方位角θが厚み方向D2に対する時計回りおよび反時計回りのいずれの角度であっても、同様に空中画像の視認性が向上され得る。
また、DCRA型結像素子26bを備える再帰透過型結像装置2bでは、方位角θが厚み方向D2に対する時計回りおよび反時計回りのいずれの角度であっても同様に空中画像の視認性が向上されてもよく、方位角θが厚み方向D2に対する時計回りおよび反時計回りのいずれ一方(「+」および「-」のいずれか一方)の角度である場合により優れた効果を奏してもよい。
【0035】
以下、吸収型偏光子、保護層、および反射型偏光子について、より詳細に説明する。
【0036】
B.吸収型偏光子
吸収型偏光子としては、任意の適切な偏光子が採用され得る。1つの実施形態において、吸収型偏光子は、樹脂フィルムから構成される。吸収型偏光子を形成する樹脂フィルムは、単層の樹脂フィルムであってもよく、二層以上の積層体であってもよい。
【0037】
単層の樹脂フィルムから構成される偏光子の具体例としては、ポリビニルアルコール(PVA)系フィルム、部分ホルマール化PVA系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルムなどの親水性高分子フィルムに、ヨウ素や二色性染料などの二色性物質による染色処理および延伸処理が施されたもの、PVAの脱水処理物やポリ塩化ビニルの脱塩酸処理物などポリエン系配向フィルムが挙げられる。好ましくは、光学特性に優れることから、PVA系フィルムをヨウ素で染色し一軸延伸して得られた吸収型偏光子が用いられる。
【0038】
上記ヨウ素による染色は、例えば、PVA系フィルムをヨウ素水溶液に浸漬することにより行われる。上記一軸延伸の延伸倍率は、好ましくは3~7倍である。延伸は、染色処理後に行ってもよいし、染色しながら行ってもよい。また、延伸してから染色してもよい。必要に応じて、PVA系フィルムに、膨潤処理、架橋処理、洗浄処理、乾燥処理などが施される。例えば、染色の前にPVA系フィルムを水に浸漬して水洗することで、PVA系フィルム表面の汚れやブロッキング防止剤を洗浄することができるだけでなく、PVA系フィルムを膨潤させて染色ムラなどを防止することができる。
【0039】
積層体を用いて得られる吸収型偏光子の具体例としては、樹脂基材と当該樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体、あるいは、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を吸収型偏光子とすること;により作製され得る。本発明の1つの実施形態においては、好ましくは、樹脂基材の片側に、ハロゲン化物とポリビニルアルコール系樹脂とを含むポリビニルアルコール系樹脂層を形成する。延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。加えて、本発明の1つの実施形態においては、好ましくは、積層体は、長手方向に搬送しながら加熱することにより幅方向に2%以上収縮させる乾燥収縮処理に供される。代表的には、本実施形態の製造方法は、積層体に、空中補助延伸処理と染色処理と水中延伸処理と乾燥収縮処理とをこの順に施すことを含む。補助延伸を導入することにより、熱可塑性樹脂上にPVAを塗布する場合でも、PVAの結晶性を高めることが可能となり、高い光学特性を達成することが可能となる。また、同時にPVAの配向性を事前に高めることで、後の染色工程や延伸工程で水に浸漬された時に、PVAの配向性の低下や溶解などの問題を防止することができ、高い光学特性を達成することが可能になる。さらに、PVA系樹脂層を液体に浸漬した場合において、PVA系樹脂層がハロゲン化物を含まない場合に比べて、ポリビニルアルコール分子の配向の乱れ、および配向性の低下が抑制され得る。これにより、染色処理および水中延伸処理など、積層体を液体に浸漬して行う処理工程を経て得られる偏光子の光学特性を向上し得る。さらに、乾燥収縮処理により積層体を幅方向に収縮させることにより、光学特性を向上させることができる。得られた樹脂基材/吸収型偏光子の積層体はそのまま用いてもよく(すなわち、樹脂基材を偏光子の保護層としてもよく)、樹脂基材/吸収型偏光子の積層体から樹脂基材を剥離し、当該剥離面に目的に応じた任意の適切な保護層を積層して用いてもよい。このような吸収型偏光子の製造方法の詳細は、例えば特開2012-73580号公報、特許第6470455号に記載されている。これらの公報は、その全体の記載が本明細書に参考として援用される。
【0040】
本実施形態において、吸収型偏光子の厚みは、例えば1μm~80μmであり、好ましくは1μm~15μmであり、より好ましくは1μm~12μmであり、さらに好ましくは3μm~12μmであり、特に好ましくは3μm~8μmである。吸収型偏光子の厚みがこのような範囲であれば、加熱時のカールを良好に抑制することができ、および、良好な加熱時の外観耐久性が得られる。
【0041】
別の実施形態において、吸収型偏光子は、保護層に積層されるコーティング膜として構成される。
コーティング膜は、代表的には、配向させたリオトロピック液晶の固化層又は硬化層である。本明細書において「リオトロピック液晶」とは、温度や溶質(液晶化合物)の濃度を変化させることにより、等方相-液晶相の相転移を起こすものをいう。「固化層」は、軟化、溶融又は溶液状態の液晶性組成物を冷却して固まった状態のものをいい、「硬化層」は、液晶性組成物の一部又は全部が、熱、触媒、光及び/又は放射線により架橋されて、不溶不融又は難溶難融の状態となったものをいう。
【0042】
リオトロピック液晶は、好ましくは、波長400nm~780nmのいずれかの波長の光を吸収する二色性リオトロピック液晶である。このようなリオトロピック液晶として、例えば、特開2007-156322号公報に記載のリオトロピック液晶性色素、特開2012-058427号公報に記載のアゾ化合物が挙げられる。これらの公報は、その全体の記載が本明細書に参考として援用される。
【0043】
リオトロピック液晶の固化層又は硬化層は、例えば、リオトロピック液晶と溶媒(例えば、水)とを混合し、ネマチック液晶相を示す溶液を調整し、該溶液を保護層の表面に流延し、乾燥させることにより、作製し得る。
【0044】
このようなコーティング膜から構成される偏光子の厚みは、例えば0.1μm~20μmである。特に偏光子がリオトロピック液晶の固化層又は硬化層であると、吸収二色性に優れるために、偏光子をより薄厚化できる。リオトロピック液晶の固化層又は硬化層の厚みは、好ましくは0.1μm~10μmであり、より好ましくは5μm以下、さらに好ましくは1μm以下である。
【0045】
吸収型偏光子の単体透過率(Ts)は、例えば40.0%~46.0%であり、好ましくは41.0%~46.0%であり、より好ましくは42.0%~46.0%である。偏光子の偏光度(P)は、好ましくは97.0%以上であり、より好ましくは99.0%以上であり、さらに好ましくは99.5%以上である。
【0046】
C.保護層
保護層は、例えば、任意の適切な接着剤層(図示せず)を介して、吸収型偏光子の少なくともいずれか一方の表面に貼り合わされる。
保護層は、偏光子の保護層として使用できる任意の適切なフィルムで形成される。当該フィルムの主成分となる材料の具体例としては、ポリノルボルネン系などのシクロオレフィン(COP)系、ポリエチレンテレフタレート(PET)系などのポリエステル系、トリアセチルセルロース(TAC)などのセルロース系樹脂、ポリカーボネート(PC)系、(メタ)アクリル系、ポリビニルアルコール系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリオレフィン系、アセテート系などの透明樹脂が挙げられる。また、(メタ)アクリル系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系などの熱硬化型樹脂または紫外線硬化型樹脂なども挙げられる。なお、「(メタ)アクリル系樹脂」とは、アクリル系樹脂および/またはメタクリル系樹脂をいう。この他にも、例えば、シロキサン系ポリマーなどのガラス質系ポリマーも挙げられる。また、特開2001-343529号公報(WO01/37007)に記載のポリマーフィルムも使用できる。このフィルムの材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基ならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN-メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。当該ポリマーフィルムは、例えば、上記樹脂組成物の押出成形物であり得る。樹脂フィルムの材料は、単独でまたは組み合わせて使用できる。樹脂フィルムのなかでは、好ましくは、(メタ)アクリル系樹脂、シクロオレフィン系樹脂が挙げられる。
【0047】
保護層の厚みは、代表的には5mm以下であり、好ましくは1mm以下、より好ましくは1μm~500μm、さらに好ましくは5μm~150μmである。
【0048】
D.反射型偏光子
反射型偏光子は、代表的には、多層構造を有するフィルム(反射型偏光フィルムと称する場合がある)で構成される。多層構造は、複屈折性を有する層Aと複屈折性を実質的に有さない層Bとを交互に有する。多層構造を構成する層の総数は、50~1000であってもよい。例えば、A層のx軸方向の屈折率nxはy軸方向の屈折率nyより大きく、B層のx軸方向の屈折率nxとy軸方向の屈折率nyとは実質的に同一であり、A層とB層との屈折率差は、x軸方向において大きく、y軸方向においては実質的にゼロである。その結果、x軸方向が反射軸となり、y軸方向が透過軸となり得る。A層とB層とのx軸方向における屈折率差は、好ましくは0.2~0.3である。
【0049】
上記A層は、代表的には、延伸により複屈折性を発現する材料で構成される。このような材料としては、例えば、ナフタレンジカルボン酸ポリエステル(例えば、ポリエチレンナフタレート)、ポリカーボネートおよびアクリル系樹脂(例えば、ポリメチルメタクリレート)が挙げられる。上記B層は、代表的には、延伸しても複屈折性を実質的に発現しない材料で構成される。このような材料としては、例えば、ナフタレンジカルボン酸とテレフタル酸とのコポリエステルが挙げられる。上記多層構造は、共押出と延伸とを組み合わせて形成され得る。例えば、A層を構成する材料とB層を構成する材料とを押し出した後、多層化する(例えば、マルチプライヤーを用いて)。次いで、得られた多層積層体を延伸する。図示例のx軸方向は、延伸方向に対応し得る。
【0050】
反射型偏光フィルムの市販品として、例えば、3M社製の商品名「DBEF」、「APF」、日東電工社製の商品名「APCF」が挙げられる。
【0051】
反射型偏光子の厚みは、例えば10μm~150μmであり、好ましくは20μm~100μmであり、さらに好ましくは30μm~60μmである。
反射型偏光子(反射型偏光フィルム)の直交透過率(Tc)は、例えば0.01%~3%であり得る。反射型偏光子(反射型偏光フィルム)の単体透過率(Ts)は、例えば43%~49%であり、好ましくは45.0%~47.0%である。反射型偏光子(反射型偏光フィルム)の偏光度(P)は、例えば92.0%以上であり、好ましくは99.0%以上であり、例えば99.99%以下である。
【実施例0052】
以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。各特性の測定方法は以下の通りである。
(1)白輝度、黒輝度およびコントラストの測定
実施例および比較例の光学結像システムにおいて、画像表示パネルに白色画像および黒色画像をスライド表示させて、それらの空中画像を形成した。各空中画像の輝度を、極角0°および方位角0°の位置に配置した輝度計(TOPCON社製、SR-5000)によって測定した。また、黒色空中画像の輝度(黒輝度)に対する白色空中画像の輝度(白輝度)の比(コントラスト;白輝度/黒輝度)を算出した。さらに、極角および方位角が同じである実施例と比較例とのコントラストの比(実施例のコントラスト/比較例のコントラスト)を、改善効果として算出した。黒輝度、白輝度、コントラストおよび改善効果を表1から表3に示す。
【0053】
[調製例1]
1.吸収型偏光板の作製
熱可塑性樹脂基材として、長尺状で、Tg約75℃である、非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(厚み:100μm)を用い、樹脂基材の片面に、コロナ処理を施した。
ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(日本合成化学工業社製、商品名「ゴーセファイマー」)を9:1で混合したPVA系樹脂100質量部に、ヨウ化カリウム13質量部を添加したものを水に溶かし、PVA水溶液(塗布液)を調製した。
樹脂基材のコロナ処理面に、上記PVA水溶液を塗布して60℃で乾燥することにより、厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
得られた積層体を、130℃のオーブン内で縦方向(長手方向)に2.4倍に一軸延伸した(空中補助延伸処理)。
次いで、積層体を、液温40℃の不溶化浴(水100質量部に対して、ホウ酸を4質量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
次いで、液温30℃の染色浴(水100質量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる偏光子の単体透過率(Ts)が所望の値となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
次いで、液温40℃の架橋浴(水100質量部に対して、ヨウ化カリウムを3質量部配合し、ホウ酸を5質量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
その後、積層体を、液温70℃のホウ酸水溶液(ホウ酸濃度4重量%、ヨウ化カリウム濃度5重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
その後、積層体を液温20℃の洗浄浴(水100質量部に対して、ヨウ化カリウムを4質量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
その後、約90℃に保たれたオーブン中で乾燥しながら、表面温度が約75℃に保たれたSUS製の加熱ロールに接触させた(乾燥収縮処理)。
このようにして、樹脂基材上に厚み約5μmの偏光子を形成し、樹脂基材/吸収型偏光子の構成を有する積層体を得た。
得られた積層体の吸収型偏光子表面(樹脂基材とは反対側の面)に、保護層としてHC-TACフィルム(厚み20μm)を貼り合わせた。次いで、樹脂基材を剥離し、保護層/吸収型偏光子/の構成を有する吸収型偏光板を得た。
【0054】
<実施例1~28および比較例1~7>
まず、画像表示パネルを含むモニター(JAPANNEXT社製、JN-MD-IPS1010HDR)と、反射型偏光子(第2偏光子、日東電工社製、APCF、厚み38μm)と、再帰反射部材(日本カーバイト社製、RF-Ax)とを準備した。なお、再帰反射部材は、再帰反射シートとλ/4板とを含んでいる。次いで、モニターと反射型偏光子と再帰反射部材とを、図4に示すように側面視略三角形状に配置して、再帰反射型結像装置を作成した。
画像表示パネルと反射型偏光子とがなす角度は45°であり、再帰反射シートと反射型偏光子とがなす角度は45°であった。
また、光源(Sofirn社製、LED照明)を準備した。次いで、光源の光出射面に、調製例1で得た吸収型偏光板(第1偏光板)を、第1偏光子の第1透過軸方向と第2偏光子の第2透過軸方向とがなす角度が表1の値となるように貼り付けた。
次いで、光源を極角θおよび方位角θが表1の値となるように配置した。なお、反射型偏光子上における照度は200lxであり、空中画像の中心および光源の光出射面の中心を結ぶ仮想線分の長さは、50cmであった。
以上によって、再帰反射型結像装置を備える光学結像システムを得た。
【0055】
<実施例29~59および比較例8~16>
まず、クロスミラーアレイ型結像素子(アスカネット社製、ASKA3Dプレート)を準備して、クロスミラーアレイ型結像素子の表面に調製例1で得られた吸収型偏光板(第2偏光板)を貼り付けた。次いで、図4において、反射型偏光子に代えてクロスミラーアレイ型結像素子が配置されるように、クロスミラーアレイ型結像素子と上記したモニターとを側面視略楔形状に配置した。なお、クロスミラーアレイ型結像素子とモニターとは、光を吸収可能な黒色の布上に配置した。これによって、クロスミラーアレイ型結像素子を備える再帰透過型結像装置を作成した。画像表示パネルとクロスミラーアレイ型結像素子とがなす角度は45°であった。
また、上記した光源を準備し、光源の光出射面に、調製例1で得た吸収型偏光板(第1偏光板)を、第1偏光板の第1透過軸方向と第2偏光板の第2透過軸方向とがなす角度が表2の値となるように貼り付けた。
次いで、光源を極角θおよび方位角θが表2の値となるように配置した。なお、第2偏光板上における照度は200lxであり、空中画像の中心および光源の光出射面の中心を結ぶ仮想線分の長さは、50cmであった。
以上によって、クロスミラーアレイ型結像装置を備える光学結像システムを得た。
【0056】
<実施例60~75および比較例17~24>
クロスミラーアレイ型結像素子を2面コーナーリフレクタアレイ型結像素子(パリティ・イノベーションズ社製、パリティミラー)に変更したこと以外は、実施例29と同様にして、2面コーナーリフレクタアレイ型結像素子を備える再帰透過型結像装置を作成した。画像表示パネルと2面コーナーリフレクタアレイ型結像素子とがなす角度は45°であった。
また、上記した光源を準備し、光源の光出射面に、調製例1で得た吸収型偏光板(第1偏光板)を、第1偏光板の第1透過軸方向と第2偏光板の第2透過軸方向とがなす角度が表3の値となるように貼り付けた。
次いで、光源を極角θおよび方位角θが表3の値となるように配置した。なお、第2偏光板上における照度は200lxであり、空中画像の中心および光源の光出射面の中心を結ぶ仮想線分の長さは、50cmであった。
以上によって、2面コーナーリフレクタアレイ型結像装置を有する光学結像システムを得た。
【0057】
【表1】
【0058】
【表2】
【0059】
【表3】
【産業上の利用可能性】
【0060】
本発明の実施形態による光学結像システムは、空中画像表示技術が適用される各種産業分野に用いられ、特に空中浮遊ディスプレイに好適に用いられ得る。
【符号の説明】
【0061】
1 第1偏光子
2 空中結像装置
21 第2偏光子
22 画像表示パネル
23 再帰反射シート
24 位相差フィルム
26 再帰透過型光学素子
26a CMA型結像素子
26b DCRA型結像素子
28 第3偏光子
3 光源
図1
図2
図3
図4
図5