IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社トヨタプロダクションエンジニアリングの特許一覧

<>
  • 特開-表面検査装置及び表面検査方法 図1
  • 特開-表面検査装置及び表面検査方法 図2
  • 特開-表面検査装置及び表面検査方法 図3
  • 特開-表面検査装置及び表面検査方法 図4
  • 特開-表面検査装置及び表面検査方法 図5
  • 特開-表面検査装置及び表面検査方法 図6
  • 特開-表面検査装置及び表面検査方法 図7
  • 特開-表面検査装置及び表面検査方法 図8
  • 特開-表面検査装置及び表面検査方法 図9
  • 特開-表面検査装置及び表面検査方法 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024033867
(43)【公開日】2024-03-13
(54)【発明の名称】表面検査装置及び表面検査方法
(51)【国際特許分類】
   G01N 21/88 20060101AFI20240306BHJP
【FI】
G01N21/88 Z
【審査請求】未請求
【請求項の数】9
【出願形態】OL
(21)【出願番号】P 2022137749
(22)【出願日】2022-08-31
(71)【出願人】
【識別番号】515086908
【氏名又は名称】株式会社トヨタプロダクションエンジニアリング
(74)【代理人】
【識別番号】100114306
【弁理士】
【氏名又は名称】中辻 史郎
(74)【代理人】
【識別番号】100148655
【弁理士】
【氏名又は名称】諏訪 淳一
(72)【発明者】
【氏名】石田 雄貴
【テーマコード(参考)】
2G051
【Fターム(参考)】
2G051AA90
2G051AB07
2G051EA08
2G051ED01
(57)【要約】
【課題】フライス加工による平面出しを行う場合に、加工表面に生じた加工痕の影響を低減しつつ、加工表面の打痕等の傷を検出することを課題とする。
【解決手段】表面検査装置10は、撮像部20により物体100の表面Sを撮像した物体表面画像101及び回転中心画像データ14aに基づいて、物体表面画像101の任意点Pnから回転半径r±許容誤差δの範囲内に回転中心VCiが存在するか否かを検索し、存在する場合には、任意点Pnから回転中心VCiへのベクトル方向を特定し、任意点Pnの方向ベクトルを算定する。そして、任意点Pnにおける加工痕SMに起因する明度勾配角度を算出し、明度勾配角度と方向ベクトルのベクトル角度が所定の範囲内の場合に、任意点Pnの画素値を補正し周囲の平均値となるように構成した。
【選択図】図1
【特許請求の範囲】
【請求項1】
所定の回転軸に取り付けた切削工具を回転させつつ切削加工した物体の表面を撮像する撮像部により撮像された物体表面画像を用いて所定の物体の表面の検査を行う表面検査装置における表面検査方法であって、
前記物体表面画像を形成する任意の第1の画素に対して影響を及ぼす前記切削工具の回転中心の移動軌跡上の第2の画素を特定する第1の特定工程と、
前記第1の特定工程により特定された前記第1の画素における複数の明度勾配のうち、前記切削工具の回転中心の移動軌跡上の第2の画素への方向ベクトルの明度勾配を特定する第2の特定工程と、
前記第2の特定工程により特定された勾配角度に基づいて、前記物体表面画像を形成する各画素の画素値を補正する補正工程と
を含むことを特徴とする表面検査方法。
【請求項2】
前記補正工程により前記物体表面画像が補正された補正画像に基づいて、前記物体の表面に形成された前記加工痕以外に起因する傷の検査を行う検査工程をさらに含むことを特徴とする請求項1に記載の表面検査方法。
【請求項3】
前記切削工具は、
所定の回転体の円周上に複数の刃が取り付けられ、前記所定の回転軸を中心として回転可能に形成された正面フライス又は物体の表面を研磨する研磨ブラシであることを特徴とする請求項1に記載の表面検査方法。
【請求項4】
前記第1の特定工程は、
前記切削工具の回転中心の移動軌跡をなす画素に対して所定の画素値が付与された移動軌跡画像を用いて、前記物体表面画像を形成する第1の画素に対して影響を及ぼす前記切削工具の回転中心の移動軌跡上の前記第2の画素を特定することを特徴とする請求項1に記載の表面検査方法。
【請求項5】
前記補正工程は、
前記第2の特定工程により特定された明度勾配の勾配角度をなす前記物体表面画像上の第1の画素の画素値を補正することを特徴とする請求項4に記載の表面検査方法。
【請求項6】
前記補正工程は、
前記第2の特定工程により特定された明度勾配の勾配角度をなす前記物体表面画像上の第1の画素の画素値を下げることを特徴とする請求項5に記載の表面検査方法。
【請求項7】
所定の回転軸に取り付けた切削工具を回転させつつ切削加工した物体の表面を撮像する撮像部により撮像された物体表面画像を用いて所定の物体の表面の検査を行う表面検査装置における表面検査方法であって、
前記切削工具の回転中心の移動軌跡上の第2の画素が影響を及ぼす第1の画素を特定する第1の特定工程と、
前記第1の特定工程により特定された前記第1の画素における複数の明度勾配のうち、前記切削工具の回転中心の移動軌跡上の第2の画素から前記第1の画素への方向ベクトルの明度勾配を特定する第2の特定工程と、
前記第2の特定工程により特定された勾配角度に基づいて、前記物体表面画像を形成する各画素の画素値を補正する補正工程と
を含むことを特徴とする表面検査方法。
【請求項8】
所定の回転軸に取り付けた切削工具を回転させつつ切削加工した物体の表面を撮像する撮像部により撮像された物体表面画像を用いて所定の物体の表面の検査を行う表面検査装置であって、
前記物体表面画像を形成する任意の第1の画素に対して影響を及ぼす前記切削工具の回転中心の移動軌跡上の第2の画素を特定する第1の特定手段と、
前記第1の特定手段により特定された第1の画素における複数の明度勾配のうち、前記切削工具の回転中心の移動軌跡上の第2の画素への方向ベクトルの明度勾配を特定する第2の特定手段と、
前記第2の特定手段により特定された勾配角度に基づいて、前記物体表面画像を形成する各画素の画素値を補正する補正手段と
を備えたことを特徴とする表面検査装置。
【請求項9】
所定の回転軸に取り付けた切削工具を回転させつつ切削加工した物体の表面を撮像する撮像部により撮像された物体表面画像を用いて所定の物体の表面の検査を行う表面検査装置であって、
前記切削工具の回転中心の移動軌跡上の第2の画素が影響を及ぼす第1の画素を特定する第1の特定手段と、
前記第1の特定手段により特定された前記第1の画素における複数の明度勾配のうち、前記切削工具の回転中心の移動軌跡上の第2の画素から前記第1の画素への方向ベクトルの明度勾配を特定する第2の特定手段と、
前記第2の特定手段により特定された勾配角度に基づいて、前記物体表面画像を形成する各画素の画素値を補正する補正手段と
を備えたことを特徴とする表面検査装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、フライス加工による平面出しを行う場合に、加工表面に生じた加工痕の影響を低減しつつ、加工表面の打痕等の傷を検出することができる表面検査装置及び表面検査方法に関する。
【背景技術】
【0002】
従来、物体の表面に存在する傷を研削痕と分離して検出する表面検査方法が知られている。例えば、特許文献1には、物体表面を撮像した画像の画素ごとに、X軸方向の微分値とY軸方向の微分値を成分とするベクトルを算出し、各画素のベクトルのX軸に対する角度の度数を計測して度数の高い角度に直角な方向を研削痕の延伸方向であると特定し、画像データの各画素のうちの度数の高い角度のベクトルの画素の輝度値を弱める補正を行うか、又は、度数の高くない角度のベクトルの画素の輝度値を高める補正を行う技術が開示されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2012-008018号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、上記特許文献1のものは、各画素のベクトルの角度の度数が高くなったならば、この画素が研削痕ではなく傷に起因するものであったとしても、研削痕の延伸方向であると特定されてしまい輝度値が補正されてしまう。その結果、研削痕以外の傷が研削痕とみなして除去されるという問題点が生ずる。
【0005】
本発明は、上記の問題点(課題)を解決するためになされたものであり、フライス加工による平面出しを行う場合に、加工表面に生じた加工痕の影響を低減しつつ、加工表面の打痕等の傷を検出することができる表面検査装置及び表面検査方法を提供することを目的とする。
【課題を解決するための手段】
【0006】
上述した課題を解決し、目的を達成するため、本発明は、所定の回転軸に取り付けた切削工具を回転させつつ切削加工した物体の表面を撮像する撮像部により撮像された物体表面画像を用いて所定の物体の表面の検査を行う表面検査装置における表面検査方法であって、前記物体表面画像を形成する任意の第1の画素に対して影響を及ぼす前記切削工具の回転中心の移動軌跡上の第2の画素を特定する第1の特定工程と、前記第1の画素における複数の明度勾配のうち、前記切削工具の回転中心の移動軌跡上の第2の画素への方向ベクトルの明度勾配を特定する第2の特定工程と、前記第2の特定工程により特定された勾配角度に基づいて、前記物体表面画像を形成する各画素の画素値を補正する補正工程とを含むことを特徴とする。
【0007】
また、本発明は、上記発明において、前記補正工程により前記物体表面画像が補正された補正画像に基づいて、前記物体の表面に形成された前記加工痕以外に起因する傷の検査を行う検査工程をさらに含むことを特徴とする。
【0008】
また、本発明は、上記発明において、前記切削工具は、所定の回転体の円周上に複数の刃が取り付けられ、前記所定の回転軸を中心として回転可能に形成された正面フライス又は物体の表面を研磨する研磨ブラシであることを特徴とする。
【0009】
また、本発明は、上記発明において、前記第1の特定工程は、前記切削工具の回転中心の移動軌跡をなす画素に対して所定の画素値が付与された移動軌跡画像を用いて、前記物体表面画像を形成する第1の画素に対して影響を及ぼす前記切削工具の回転中心の移動軌跡上の前記第2の画素を特定することを特徴とする。
【0010】
また、本発明は、上記発明において、前記補正工程は、前記第2の特定工程により特定された明度勾配の勾配角度をなす前記物体表面画像上の第1の画素の画素値を補正することを特徴とする。
【0011】
また、本発明は、上記発明において、前記補正工程は、前記第2の特定工程により特定された明度勾配の勾配角度をなす前記物体表面画像上の第1の画素の画素値を下げることを特徴とする。
【0012】
また、本発明は、所定の回転軸に取り付けた切削工具を回転させつつ切削加工した物体の表面を撮像する撮像部により撮像された物体表面画像を用いて所定の物体の表面の検査を行う表面検査装置における表面検査方法であって、前記切削工具の回転中心の移動軌跡上の第2の画素が影響を及ぼす第1の画素を特定する第1の特定工程と、前記第1の特定工程により特定された前記第1の画素における複数の明度勾配のうち、該第1の画素から前記第2の画素への方向の明度勾配の勾配角度を特定する第2の特定工程と、前記第2の特定工程により特定された勾配角度に基づいて、前記物体表面画像を形成する各画素の画素値を補正する補正工程とを含むことを特徴とする。
【0013】
また、本発明は、所定の回転軸に取り付けた切削工具を回転させつつ切削加工した物体の表面を撮像する撮像部により撮像された物体表面画像を用いて所定の物体の表面の検査を行う表面検査装置であって、前記物体表面画像を形成する任意の第1の画素に対して影響を及ぼす前記切削工具の回転中心の移動軌跡上の第2の画素を特定する第1の特定手段と、前記第1の特定手段により特定された前記第1の画素における複数の明度勾配のうち、該第1の画素から前記第2の画素への方向の明度勾配の勾配角度を特定する第2の特定手段と、前記第2の特定手段により特定された勾配角度に基づいて、前記物体表面画像を形成する各画素の画素値を補正する補正手段とを備えたことを特徴とする
【0014】
また、本発明は、所定の回転軸に取り付けた切削工具を回転させつつ切削加工した物体の表面を撮像する撮像部により撮像された物体表面画像を用いて所定の物体の表面の検査を行う表面検査装置における表面検査装置であって、前記切削工具の回転中心の移動軌跡上の第2の画素が影響を及ぼす第1の画素を特定する第1の特定手段と、前記第1の特定手段により特定された前記第1の画素における複数の明度勾配のうち、該第1の画素から前記第2の画素への方向の明度勾配の勾配角度を特定する第2の特定手段と、前記第2の特定手段により特定された勾配角度に基づいて、前記物体表面画像を形成する各画素の画素値を補正する補正手段とを備えたことを特徴とする。
【発明の効果】
【0015】
本発明によれば、フライス加工による平面出しを行う場合に、加工表面に生じた加工痕の影響を低減しつつ、加工表面の打痕等の傷を検出することができる。
【図面の簡単な説明】
【0016】
図1図1は、実施形態1に係る表面検査装置の構成を示す機能ブロック図である。
図2図2は、任意点Pnから回転中心を特定する処理を説明するための説明図である。
図3図3は、方向ベクトルの算定を説明するための説明図である。
図4図4は、図1に示した表面検査装置の処理手順を示すフローチャートである。
図5図5は、図4に示した補正処理の処理手順を示すフローチャートである。
図6図6は、図1に示した表面検査装置の物体表面画像及び処理済画像の一例を示す図である。
図7図7は、実施形態2に係る表面検査装置の構成を示す機能ブロック図である。
図8図8は、回転中心から任意点の座標を特定する処理について説明する説明図である。
図9図9は、方向ベクトルの算定を説明するための説明図である。
図10図10は、図7に示した表面検査装置の処理手順を示すフローチャートである。
【発明を実施するための形態】
【0017】
以下に、本発明に係る表面検査装置及び表面検査方法の実施形態を図面に基づいて詳細に説明する。本実施形態では、円周端の複数の位置に刃を取り付けた回転体を、回転軸を中心として回転させる切削工具を用いて、物体の正面フライスを行う場合について説明する。
【0018】
[実施形態1]
<表面検査装置10の構成>
まず、本実施形態1に係る表面検査装置10の構成について説明する。図1は、実施形態1に係る表面検査装置10の構成を示す機能ブロック図である。図1に示すように、表面検査装置10は、表示部11、入力部12、記憶部14、制御部15及び撮像部20を有する。
【0019】
表示部11は、各種情報を表示する液晶ディスプレイなどの表示デバイスである。入力部12は、マウスやキーボードなどの入力デバイスである。
【0020】
記憶部14は、ハードディスク装置や不揮発性メモリなどの記憶デバイスであり、回転中心画像データ14aと、画像データ14bとを記憶する。回転中心画像データ14aは、切削工具の回転中心VCiの座標と、該切削工具の回転中心VCiの軌跡である回転中心軌跡Lとを示す画像データである。画像データ14bは、撮像部20で物体100の表面を撮像した画像データである。なお、回転中心画像データ14a内の画素と、画像データ14bの画素とは、物体表面の同じ位置を指すように対応付けられるものとする。
【0021】
制御部15は、表面検査装置10の全体を制御する制御部であり、画像取得処理部15a、回転中心座標特定部15b、方向ベクトル算定部15c、明度勾配角度特定部15d、補正処理部15e及び傷検出部15fを有する。実際には、これらのプログラムをCPUにロードして実行することにより、画像取得処理部15a、回転中心座標特定部15b、方向ベクトル算定部15c、明度勾配角度特定部15d、補正処理部15e及び傷検出部15fにそれぞれ対応するプロセスを実行させることになる。
【0022】
画像取得処理部15aは、撮像部20を制御して物体100の表面Sの物体表面画像を撮像させ、撮像された物体100の表面Sの物体表面画像を取得する処理部である。画像データ14bを形成する画素に対応する物体表面の位置は、回転中心画像データ14aを形成する物体表面の位置と対応付けられる。このように、画像データ14bは、あらかじめ記憶部14に記憶された回転中心画像データ14aが示す物体表面の同じ領域になるよう、位置合わせ、拡大縮小、回転、歪み補正などが行われる。
【0023】
回転中心座標特定部15bは、画像データ14bの任意の画素の座標位置(以下、「任意点Pn」と言う)に加工痕が生じた場合に、この加工痕をもたらした切削工具の回転中心VCiの座標を特定する処理部である。すなわち、かかる画像データ14bの任意点Pnに対応する物体表面の位置が切削工具により切削された場合には、必ず任意点Pnから所定の距離離れた位置に切削工具の回転中心VCiが存在したはずである。このため、任意点Pnから所定の距離離れた位置に存在した切削工具の回転中心VCiの座標を特定する。なお、任意点Pnから所定の距離離れた位置に存在した切削工具の回転中心VCiが存在せず、かつ、この任意点Pnの画素値が例えば低下しているような場合には、この任意点Pnに生じた傷は加工痕ではないことが分かる。
【0024】
具体的には、回転中心座標特定部15bは、回転中心画像データ14aの任意点Pnから、回転半径r±許容誤差δの範囲内に切削工具の回転中心VCiが存在するかを調べ、回転中心VCiが存在する場合には、回転中心VCiの座標を特定し、任意点Pnからの回転中心VCiへのベクトル角度θCを算定する処理を行う。
【0025】
方向ベクトル算定部15cは、回転中心座標特定部15bにより特定された回転中心VCiの座標から任意点Pnへの方向ベクトルを算定する処理を行う。例えば、切削工具に設けられた刃により傷つけられた物体表面の箇所の明度が低下する場合には、回転中心VCiから任意点Pnに向けた方向に明度が低下する勾配が発生する。ここで、方向ベクトルは、任意点Pnにおける加工痕の向きに直交した向きを示すベクトルである。
【0026】
明度勾配角度特定部15dは、撮像部20により撮像された物体表面画像の任意点Pnの画素に微分オペレータを適用して任意点Pn周りの複数の明度勾配を算定し、方向ベクトル算定部15cで算定した方向ベクトルを含む所定の角度範囲内に明度勾配角度が入るか否かを特定する処理部である。この微分オペレータとしては、Sobel又はRobertsなどの1次微分のオペレータ、2次微分オペレータ等を用いることができる。例えば、X軸方向のSobel微分オペレータを適用してX軸方向の明度勾配VXを生成するとともに、Y軸方向のSobel微分オペレータを適用してY軸方向の明度勾配VYを生成する。
【0027】
そして、明度勾配角度特定部15dは、X軸方向の明度勾配VXとY軸方向の明度勾配VYの比を算定し、算定された明度勾配の比のデータの逆正接関数(tan-1(VX/VY))を算定することにより、明度勾配角度を算定する。その後、明度勾配角度特定部15dは、算定した明度勾配角度が方向ベクトル算定部15cで算定した方向ベクトルを含む所定の角度範囲内に入るか否かを判定する。また、明度勾配角度特定部15dは、算定した明度勾配角度が方向ベクトル算定部15cで算定した方向ベクトルの逆ベクトル方向を含む所定の角度範囲内に入るか否かも判定する。
【0028】
補正処理部15eは、明度勾配角度特定部15dの判定が、算定した明度勾配角度が方向ベクトル算定部15cで算定した方向ベクトルを含む所定の角度範囲内に入っている場合に、画像データ14bの任意点Pnの画素値を周囲の平均値に下げる補正処理を行う。また、明度勾配角度特定部15dの判定が、算定した明度勾配角度が方向ベクトル算定部15cで算定した方向ベクトルを含む所定の角度範囲内に入っていない場合には、補正処理を行わない。
【0029】
また、補正処理部15eは、明度勾配角度特定部15dの判定が、算定した明度勾配角度が方向ベクトル算定部15cで算定した方向ベクトルの逆ベクトル方向を含む所定の角度範囲内に入っている場合に、画像データ14bの任意点Pnの画素値を周囲の平均値に下げる補正処理を行う。また、明度勾配角度特定部15dの判定が、算定した明度勾配角度が方向ベクトル算定部15cで算定した方向ベクトルの逆ベクトル方向を含む所定の角度範囲内に入っていない場合には、補正処理を行わない。その結果、画像データ14bから加工痕が低減される。
【0030】
傷検出部15fは、補正処理部15eにより補正された画像データ14bから傷に関する情報を検出する処理部である。例えば、深層学習、機械学習などにより教師有学習させた学習済モデルを用いて傷の発生確率を出力させ、この傷の発生確率に係数を掛けて傷スコアを出力することができる。また、テンプレートマッチング又は線分追跡技術を用いて、所定長以上の傷を検出することもできる。
【0031】
<回転中心VCiを特定する処理>
次に、任意点Pnから回転中心VCiを特定する処理について説明する。図2は、任意点Pnから回転中心VCiを特定する処理を説明するための説明図である。ここでは、画像データ14bと回転中心画像データ14aとを重畳した状態を図示している。物体表面画像101は、撮像部20で撮像された画像であり、ここに切削工具の回転中心VCiの座標と該切削工具の回転中心VCiの軌跡(回転中心軌跡L)をオーバーラップさせている。
【0032】
まず、任意点Pnを中心として回転半径r±許容誤差δの範囲内に、回転中心VCiが存在するか否かを判定する。かかる判定を行う場合には、円のテンプレートの中心を任意点Pnとし、円内に存在する回転中心VCiの座標を特定すればよい。
【0033】
このようにして、回転中心VCiの座標を特定したならば、任意点Pnから回転中心VCiに向かう回転中心ベクトルCVを求め、この回転中心ベクトルCVとX軸とのなすベクトル角度θCを算定する。なお、任意点Pnから回転半径r±許容誤差δの範囲内に複数の回転中心VCiが存在する場合には、それぞれの回転中心VCiの座標を特定し、それぞれの回転中心ベクトルCVのベクトル角度θCnを算定する。
【0034】
<任意点Pnにおける方向ベクトル>
次に、任意点Pnにおける方向ベクトルBVの算定について説明する。図3は、方向ベクトルBVの算定を説明するための説明図である。ここでは、切削工具の刃により任意点Pnに生じた加工痕のベクトルを加工痕ベクトルSVと表記することとする。
【0035】
図3(a)に示すように、任意点Pnにおける加工痕ベクトルSVは、任意点Pnから回転中心座標に向かう回転中心ベクトルCVと直交する。そして、加工痕ベクトルSVに対する方向ベクトルBVは、加工痕ベクトルSVと直交するため、結果的に方向ベクトルBVは、回転中心ベクトルCVの逆ベクトル(回転中心ベクトルCVのベクトル角度θCの180度位相が異なる)となる。
【0036】
図3(b)に示すように、任意点Pnの周辺の表面の形状を模式的に表わすと、加工痕ベクトルSV上の任意点Pnが加工痕として抉られた底部にあり、その回りが加工痕ベクトルSVに沿って盛り上がる。すなわち、画像が256階調の白黒濃淡画像であり、白画素ほど画素値が高くなる場合に、加工痕となる画素の画素値が低くなるならば、任意点Pnの画素値が低くなり、回転中心VCiに向かうほど画素値が高くなる。このため、任意点Pnの方向ベクトルBVは、回転中心VCiより任意点Pnに向かうベクトルとなり、その方向は、回転中心ベクトルCVの逆ベクトル方向となる。
【0037】
<表面検査装置10の処理手順>
次に、図1に示した表面検査装置10の処理手順について説明する。図4は、図1に示した表面検査装置10の処理手順を示すフローチャートである。図4に示すように、表面検査装置10は、まず、撮像部20により撮像された物体100の表面Sの物体表面画像101を取得する(ステップS101)。
【0038】
そして、表面検査装置10は、この物体表面画像101と、切削工具の回転中心VCiの座標と該切削工具の回転中心VCiの軌跡を示す移動軌跡画像である回転中心画像との位置合わせを行うとともに、かかる物体表面画像101からノイズを除去する前処理を行う(ステップS102)。このノイズ除去処理としては、例えば公知の平滑化フィルタ、メディアンフィルタなどを適用すればよい。
【0039】
その後、ノイズが除去された物体表面画像101上の任意の画素を選択する(ステップS103)。そして、表面検査装置10は、物体表面画像101及び回転中心画像に基づいて、画像の所定の画素から回転半径r±許容誤差δの範囲内に回転中心VCiが存在するか否かを判定し、回転中心VCiが存在する場合には、回転中心VCiの座標を特定する(ステップS104)。
【0040】
表面検査装置10は、回転中心VCiの座標が特定されたか否かを判定し、回転中心VCiの座標が特定されない場合には(ステップS105;No)、次の画素を選択し(ステップS110)、ステップS104に移行する。
【0041】
これに対して、回転中心VCiの座標が特定された場合は(ステップS105;Yes)、任意点Pnから回転中心VCiの座標に向けた回転中心ベクトルCVを算定する(ステップS106)。そして、表面検査装置10は、算出された回転中心ベクトルCVに基づいて、任意点Pnの方向ベクトルBVを算定する(ステップS107)。
【0042】
その後、表面検査装置10は、選択した画素の画素値の補正処理を行い(ステップS108)、処理した画素が最後の画素であるか否かを判定する(ステップS109)。最後の画素でない場合は(ステップS109;No)、次の画素を選択し(ステップS110)、ステップS104に移行する。これに対して、最後の画素である場合には(ステップS109;Yes)、全ての画素について処理が行われた画像に基づいて、傷の検出を行い(ステップS111)、一連の処理を終了する。
【0043】
<補正処理の処理手順>
次に、補正処理について説明する。図5は、図4に示した補正処理の処理手順を示すフローチャートである。図5に示すように、表面検査装置10は、選択された画素(任意点Pn)のX軸方向の明度勾配VXを算定するとともに(ステップS201)、この画素のY軸方向の明度勾配VYを算定する(ステップS202)。
【0044】
その後、表面検査装置10は、X軸方向の明度勾配VXとY軸方向の明度勾配VYの比(VX/VY)を求め、その比の逆正接関数tan-1(VX/VY)を明度勾配角度として算定する(ステップS203)。
【0045】
そして、表面検査装置10は、算出した明度勾配角度と方向ベクトルBVのベクトル方向(ベクトル角度)を比較する(ステップS204)。算出した明度勾配角度と方向ベクトルBVのベクトル方向が所定の範囲内でない場合は(ステップS205;No)、図4のステップS109に移行する。
【0046】
これに対して、算出した明度勾配角度と方向ベクトルBVのベクトル方向が所定の範囲内である場合は(ステップS205;Yes)、画素値を周囲の平均値に補正し(ステップS206)、図4のステップS109に移行する。ここで、補正処理を行う所定の範囲は、例えば方向ベクトルBVの角度に対して±10度であり、また、方向ベクトルBVの方向とその逆ベクトルの方向を補正の対象とする。
【0047】
<物体表面画像101及び処理済画像の一例>
次に、図1に示した表面検査装置10の物体表面画像101及び処理済画像の一例について説明する。図6は、図1に示した表面検査装置10の物体表面画像101及び処理済画像の一例を示す図である。図6(a)に示すように、撮像部20により撮像された物体表面画像101は、物体100に存在する意図しない打痕などの傷と加工によって生じる加工痕との区別がつかず目視で視認することが難しい画像となる。
【0048】
これに対して、図6(a)の物体表面画像101を表面検査装置10で処理をしたならば、図6(b)に示すように、各画素で加工痕の明度勾配に補正が行われているため、加工痕が削除された処理済画像が得られる。これにより、加工痕ではない、欠陥部位P1、P2、P3及びP4が明確に視認しやすい画像が得られる。
【0049】
このように、本実施形態1では、表面検査装置10は、撮像部20により物体100の表面Sを撮像した物体表面画像101及び回転中心画像データ14aに基づいて、物体表面画像101の任意点Pnから回転半径r±許容誤差δの範囲内に回転中心VCiが存在するか否かを検索し、存在する場合には、任意点Pnから回転中心VCiへのベクトル方向を特定し、任意点Pnの方向ベクトルBVを算定する。そして、任意点Pnにおける加工痕SMに起因する明度勾配角度を算出し、明度勾配角度と方向ベクトルBVが所定の範囲内の場合に、任意点Pnの画素値を周囲の平均値となるように構成したので、加工痕の影響を低減しつつ、加工表面の打痕等の傷を検出することができる。
【0050】
[実施形態2]
ところで、上記実施形態1では、物体表面画像101から加工痕SMを削除するために、任意点Pnから回転中心VCiの座標を探索する場合を説明したが、本実施形態2では、回転中心VCiから加工痕SMが発生する任意点Pnを求めて、その任意点Pnにおける加工痕SMを削除する場合について説明する。なお、実施形態1と同様の部位については、同一の符号を付すこととして、その詳細な説明を省略する。
【0051】
<表面検査装置30の構成>
次に、本実施形態2に係る表面検査装置30の構成について説明する。図7は、実施形態2に係る表面検査装置30の構成を示す機能ブロック図である。図7に示すように、表面検査装置30は、表示部11、入力部12、記憶部14、制御部35及び撮像部20を有する。
【0052】
制御部35は、表面検査装置30の全体を制御する制御部であり、画像取得処理部15a、方向ベクトル算定部15c、明度勾配角度特定部15d、補正処理部15e、傷検出部15f及び任意点座標特定部35aを有する。実際には、これらのプログラムをCPUにロードして実行することにより、画像取得処理部15a、方向ベクトル算定部15c、明度勾配角度特定部15d、補正処理部15e、傷検出部15f及び任意点座標特定部35aにそれぞれ対応するプロセスを実行させることになる。
【0053】
任意点座標特定部35aは、回転中心画像データ14aの任意の回転中心VCiを中心に切削工具が加工痕をもたらす任意点の座標を特定する処理部である。すなわち、かかる回転中心画像データ14aの任意の回転中心VCiを中心に切削工具が回転した場合に、任意の回転中心VCiから所定の距離離れた位置に加工痕が生じるはずである。このため、回転中心VCiから所定の距離離れた位置の任意点Pnの座標を特定する。
【0054】
具体的には、回転中心画像データ14aの回転中心VCiから、回転半径r±許容誤差δの円周上に任意点Pnの座標を特定し、回転中心VCiから任意点Pnに向かう任意点ベクトルPVのベクトル角度θPを特定する処理を行う。
【0055】
<任意点Pnを特定する処理>
次に、回転中心VCiから任意点Pnの座標を特定する処理について説明する。図8は、回転中心VCiから任意点Pnの座標を特定する処理について説明する説明図である。ここでは、画像データ14bと回転中心画像データ14aとを重畳した状態を図示している。物体表面画像101は、撮像部20で撮像された画像であり、ここに切削工具の回転中心VCiの座標と該切削工具の回転中心VCiの軌跡をオーバーラップさせている。
【0056】
図8に示すように、画像上の所定の回転中心VCiから回転半径r±許容誤差δの範囲内の円周上の任意点Pnの座標を特定する。
【0057】
このようにして、任意点Pnの座標を特定したならば、回転中心VCiから任意点Pnに向かう任意点ベクトルPVを求め、この任意点ベクトルPVとX軸とのなすベクトル角度θPを算定する。
【0058】
<方向ベクトルBVの算定>
次に、任意点Pnにおける方向ベクトルBVの算定について説明する。図9は、方向ベクトルBVの算定を説明するための説明図である。図9に示すように、任意点Pnにおける加工痕ベクトルSVは、回転中心VCiから任意点Pnの座標に向かう任意点ベクトルPVと直交する。そして、加工痕ベクトルSVに対する方向ベクトルBVは、加工痕ベクトルSVと直交するため、結果的に方向ベクトルBVは、任意点ベクトルPVと同じ方向ベクトルとなる。
【0059】
<表面検査装置30の処理手順>
次に、表面検査装置30の処理手順について説明する。図10は、図7に示した表面検査装置30の処理手順を示すフローチャートである。図10に示すように、表面検査装置30は、まず、撮像部20により撮像された物体100の表面Sの物体表面画像101を取得する(ステップS301)。
【0060】
そして、表面検査装置30は、この物体表面画像101と、切削工具の回転中心VCiの座標と該切削工具の回転中心VCiの軌跡を示す回転中心画像との位置合わせを行うとともに、かかる物体表面画像101からノイズを除去する前処理を行う(ステップS302)。このノイズ除去処理としては、例えば公知の平滑化フィルタ、メディアンフィルタなどを適用すればよい。
【0061】
その後、表面検査装置30は、ノイズが除去された画面上の任意の回転中心VCiの座標を選択する(ステップS303)。そして、回転中心座標から回転半径r±許容誤差δの円周上に処理する任意点Pnの座標を特定する(ステップS304)。
【0062】
そして、表面検査装置30は、回転中心VCiから任意点Pnの座標への任意点ベクトルPVを算定する(ステップS305)、その後、任意点ベクトルPVに基づいて、方向ベクトルBVを算定し(ステップS306)、補正処理を行う(ステップS307)。表面検査装置30は、処理を行った任意点Pnが最後の任意点であるか否かを判定し、最後の任意点でない場合は(ステップS308;No)、次に任意点を選択し(ステップS309)、ステップS304に移行する。
【0063】
これに対して、処理を行った任意点Pnが最後の任意点である場合は(ステップS308;Yes)、処理を行った回転中心VCiが最後の回転中心VCiであるか否かを判定する(ステップS310)。処理を行った回転中心VCiが最後の回転中心VCiでない場合は(ステップS310;No)、次の回転中心VCiを選択し(ステップS311)、ステップS303に移行する。
【0064】
これに対して、処理を行った回転中心VCiが最後の回転中心VCiである場合は(ステップS310;Yes)、傷の検出を行い(ステップS312)、一連の処理を終了する。なお、図10の補正処理(ステップS307)については、実施形態1の図4の補正処理(ステップS108)と同様であるため説明を省略する。
【0065】
このように、本実施形態2では、表面検査装置30が、撮像部20により物体100を撮像した物体表面画像101に基づいて、回転中心VCiから回転半径r±許容誤差δの範囲内の任意点Pnの座標を特定し、回転中心VCiから任意点Pnへのベクトル方向を算出し、任意点Pnの方向ベクトルBVを特定する。そして、任意点Pnにおける加工痕SMに起因する明度勾配角度を算出し、明度勾配角度が方向ベクトルBVのベクトル角度の所定の範囲内であるならば、任意点Pnの画素値を周辺の平均値にするように構成したので、加工痕の影響を低減しつつ、加工表面の打痕等の傷を検出することができる。
【0066】
なお、上記実施形態1及び実施形態2では、切削工具の回転中心の移動軌跡は、該切削工具の回転中心の移動軌跡をなす画素に対して所定の画素値が付与された移動軌跡画像である回転中心画像データを用いた場合について説明したが、本発明はこれに限定されるものではなく、回転中心の軌跡を含む加工データであってもよい。また、回転中心の軌跡を示す座標データであってもよい。また、該切削工具の回転中心の移動軌跡をなす画素に対して所定の画素値が付与された移動軌跡画像は、ビットマップ形式又はベクター形式の画像であってもよい。
【0067】
なお、上記実施形態1及び実施形態2では、任意点Pnの明度勾配角度を求めて補正を行う場合について説明したが、線集中度フィルタを用いることもできる。また、上記実施形態1及び実施形態2では、切削工具に正面フライスを用いる場合について説明したが、本発明はこれに限定されるものではなく、切削工具に研磨ブラシを用いてもよい。
【0068】
上記の各実施形態で図示した各構成は機能概略的なものであり、必ずしも物理的に図示の構成をされていることを要しない。すなわち、各装置の分散・統合の形態は図示のものに限られず、その全部又は一部を各種の負荷や使用状況などに応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。
【産業上の利用可能性】
【0069】
本発明に係る表面検査装置及び表面検査方法は、フライス加工による平面出しを行う場合に加工表面に生じた加工痕の影響を低減しつつ、加工表面の打痕等の傷を検出する場合に適している。
【符号の説明】
【0070】
10 表面検査装置
11 表示部
12 入力部
14 記憶部
14a 回転中心画像データ
14b 画像データ
15 制御部
15a 画像取得処理部
15b 回転中心座標特定部
15c 方向ベクトル算定部
15d 補正処理部
15e 傷検出部
20 撮像部
30 表面検査装置
35 制御部
35a 任意点座標特定部
100 物体
101 物体表面画像
BV 方向ベクトル
CV 回転中心ベクトル
L 回転中心軌跡
Pn 任意点
PV 任意点ベクトル
P1,P2、P3、P4 欠陥表面
r 回転半径
S 表面
SM 加工痕
SV 加工痕ベクトル
VCi 回転中心
δ 許容誤差
θC 回転中心ベクトル角度
θP 任意点ベクトル角度
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10