(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024034338
(43)【公開日】2024-03-13
(54)【発明の名称】測距装置
(51)【国際特許分類】
G01S 7/481 20060101AFI20240306BHJP
G01C 3/06 20060101ALI20240306BHJP
【FI】
G01S7/481 A
G01C3/06 120Q
G01C3/06 140
【審査請求】未請求
【請求項の数】5
【出願形態】OL
(21)【出願番号】P 2022138517
(22)【出願日】2022-08-31
(71)【出願人】
【識別番号】000006220
【氏名又は名称】ミツミ電機株式会社
(74)【代理人】
【識別番号】100107766
【弁理士】
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【弁理士】
【氏名又は名称】伊東 忠彦
(72)【発明者】
【氏名】田中 豊樹
(72)【発明者】
【氏名】西山 隆彦
(72)【発明者】
【氏名】山田 健介
(72)【発明者】
【氏名】木村 祐司
【テーマコード(参考)】
2F112
5J084
【Fターム(参考)】
2F112AD01
2F112BA03
2F112CA12
2F112DA04
2F112DA08
2F112DA09
2F112DA11
2F112DA15
2F112DA21
2F112DA25
2F112DA28
2F112EA05
2F112GA01
5J084AA05
5J084AA10
5J084AD01
5J084AD02
5J084BA04
5J084BA35
5J084BA36
5J084BA38
5J084BA40
5J084BA50
5J084BB02
5J084BB04
5J084BB15
5J084BB24
5J084BB25
5J084BB26
5J084CA03
5J084CA07
5J084DA01
5J084EA07
(57)【要約】 (修正有)
【課題】測定可能な距離の範囲を広く確保可能な測距装置を提供すること。
【解決手段】本測距装置(100)は、物体(200)との間の距離を測定する測距装置であって、照射部(120)と、照射部からの光(L2)が物体により反射または散乱された光である戻り光(R)を透過する第2レンズ(7)と、第2レンズを透過した戻り光(R)に基づいて受光情報を出力する受光部(8)と、受光部からの受光情報(S)に基づき、物体との間の距離情報を出力する出力部と、を有し、第1レンズ(4)は、予め定められた、測定可能な最大距離離れた物体の位置において、照射部(120)により照射される光(L2)の直径が最小になるように、発光部(3)からの光(LO)の広がり角βを規定し、第2レンズの焦点距離をf、1つの前記受光部の有効径をdとすると、第2レンズのd/fはベータより小さい。
【選択図】
図4
【特許請求の範囲】
【請求項1】
物体との間の距離を測定する測距装置であって、
発光部からの光を透過する第1レンズと、
前記第1レンズを透過した光を前記物体に照射する照射部と、
前記照射部からの光が前記物体により反射または散乱された光である戻り光を透過する第2レンズと、
前記第2レンズを透過した前記戻り光に基づいて受光情報を出力する受光部と、
前記受光部からの前記受光情報に基づき、前記物体との間の距離情報を出力する出力部と、を有し、
前記第1レンズは、予め定められた、測定可能な最大距離離れた前記物体の位置において、前記照射部により照射される光の直径が最小になるように、前記発光部からの光の広がり角βを規定し、
前記第2レンズの焦点距離をf、1つの前記受光部の有効径をdとすると、前記第2レンズは、以下の式(1)を充足する、測距装置。
【数1】
【請求項2】
前記第2レンズの有効径をφとすると、前記第2レンズによる結像において、次の式(2)および式(3)により表される第1距離Laに位置する前記物体に対して焦点が合う、請求項1に記載の測距装置。
【数2】
【数3】
【請求項3】
前記第1レンズを透過した光を複数に分割する光分割部材を有し、
前記照射部は、前記光分割部材により分割された複数の光を前記物体に照射し、
前記受光部は、前記光分割部材により分割された複数の光それぞれと対をなす複数の受光部を含み、前記第2レンズを透過した複数の前記戻り光に基づいて、前記複数の受光部それぞれによる前記受光情報を出力する、請求項2に記載の測距装置。
【請求項4】
前記光分割部材は回折格子であり、
前記複数の受光部のうち隣り合う前記受光部同士の間隔をp、前記回折格子による回折角をγとすると、前記第2レンズによる結像において、次の式(5)、式(6)および式(7)により表される第3距離Lcよりも遠方に位置する前記物体に対する前記距離情報の演算処理は、近距離に位置する前記物体に対する前記距離情報の演算処理とは異なる、請求項3に記載の測距装置。
【数5】
【数6】
【数7】
【請求項5】
前記照射部は、少なくとも1つの方向に走査される光を前記物体に照射する、請求項1または請求項2に記載の測距装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、測距装置に関する。
【背景技術】
【0002】
従来、物体との間の距離を測定する測距装置が知られている。このような測距装置は、ロボットや、自動車、飛行体等の移動体に搭載され、移動体の周囲に存在する物体を認識する用途等において使用される。
【0003】
上記測距装置には、投受光部と、投受光部から投光された光を走査させる第1偏向機構および第2偏向機構と、を備え、投光された光の投光時期と、該光の物体による反射光の受光時期との時間差から、物体との間の距離を測定するものが開示されている(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
測距装置では、測定可能な距離の範囲に広く確保することが求められる。
【0006】
本発明は、測定可能な距離の範囲を広く確保可能な測距装置を提供することを目的とする。
【課題を解決するための手段】
【0007】
本測距装置(100)は、物体(200)との間の距離を測定する測距装置であって、発光部(3)からの光(L0)を透過する第1レンズ(4)と、第1レンズ(4)を透過した光(L2)を物体(200)に照射する照射部(120)と、照射部(120)からの光(L2)が物体(200)により反射または散乱された光である戻り光(R)を透過する第2レンズ(7)と、第2レンズ(7)を透過した戻り光(R)に基づいて受光情報を出力する受光部(8)と、受光部(8)からの受光情報(S)に基づき、物体(200)との間の距離情報(Dt)を出力する出力部(405)と、を有し、第1レンズ(4)は、予め定められた、測定可能な最大距離(Lx)離れた物体(200)の位置において、照射部(120)により照射される光(L2)の直径が最小になるように、発光部(3)からの光(L0)の広がり角βを規定し、第2レンズ(7)の焦点距離をf、1つの前記受光部の有効径をdとすると、第2レンズ(7)は以下の式(1)を充足する。
【0008】
【0009】
なお、上記括弧内の参照符号は、理解を容易にするために付したものであり、一例にすぎず、図示の態様に限定されるものではない。
【発明の効果】
【0010】
本発明によれば、測定可能な距離の範囲を広く確保可能な測距装置を提供できる。
【図面の簡単な説明】
【0011】
【
図1】実施形態に係る測距装置の全体構成を例示する斜視図である。
【
図2】
図1の測距装置における発光部および受光部周辺を例示する斜視図である。
【
図3】
図1の測距装置における照射部を例示する斜視図である。
【
図4】実施形態に係る測距装置の構成例のブロック図である。
【
図5】光分割部材による光分割例を示す図であり、
図5(a)は光分割部材の側面図、
図5(b)は光分割部材の斜視図、
図5(c)は光分割部材の正面図である。
【
図6】実施形態に係る測距装置の同期検出部の構成例の図である。
【
図7】実施形態に係る測距装置における走査光の照射例の図である。
【
図8】比較例に係る物体の距離と戻り光直径との関係例の図である。
【
図9】実施形態に係る物体の距離と戻り光直径との関係例の図である。
【
図10】隣り合う受光部同士の間隔を例示する図である。
【
図11】実施形態に係る測距装置の制御部のハードウェア構成例の図である。
【
図12】実施形態に係る測距装置の制御部の機能構成例のブロック図である。
【
図13】実施形態に係る測距装置の制御部による処理例のフロー図である。
【発明を実施するための形態】
【0012】
以下、図面を参照して発明を実施するための形態について説明する。各図面において、同一の構成部分には同一符号を付し、重複した説明を適宜省略する。
【0013】
以下に示す実施形態は、本発明の技術思想を具体化するための測距装置を例示するものであって、本発明を以下に示す実施形態に限定するものではない。以下に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り、本発明の範囲をそれのみに限定する趣旨ではなく、例示することを意図したものである。また図面が示す部材の大きさや位置関係等は、説明を明確にするため、誇張している場合がある。
【0014】
以下に示す図でX軸、Y軸およびZ軸により方向を示す場合があるが、Z軸に沿うZ方向は、実施形態に係る測距装置が備える第2駆動体の回転軸である第2軸に沿う方向を示す。X軸に沿うX方向は、Z方向に交差する方向を示す。Y軸に沿うY方向は、X軸およびZ軸の両方に交差する方向を示す。
【0015】
また、X方向で矢印が向いている方向を+X方向、+X方向の反対方向を-X方向と表記し、Y方向で矢印が向いている方向を+Y方向、+Y方向の反対方向を-Y方向と表記し、Z方向で矢印が向いている方向を+Z方向、+Z方向の反対方向を-Z方向と表記する。但し、これらは測距装置の使用時における向きを制限するものではなく、測距装置は任意の向きに配置可能である。
【0016】
[第1実施形態]
以下、サービスロボットに搭載され、サービスロボットの進行方向または周囲に存在する物体との間の距離をTOF(Time of Flight)方式で測定する測距装置を一例として、実施形態を説明する。
【0017】
サービスロボットとは、工場内での資材運搬、接客施設での商品運搬および案内業務、施設内警備、或いは清掃等の主に役務の目的で使用される自律移動型の移動体をいう。移動体とは移動可能な物体をいう。サービスロボットに搭載される測距装置は、サービスロボットの進行方向または周囲に存在する物体を検出したり、サービスロボットが動作する施設の施設内地図等を作成したりするために使用される。
【0018】
<測距装置100の構成例>
(全体構成)
図1から
図3を参照して、実施形態に係る測距装置100の構成の一例を説明する。
図1は、測距装置100の全体構成を例示する斜視図である。
図2は、測距装置100における発光部および受光部の周辺を例示する斜視図である。
図3は測距装置100における照射部120を例示する斜視図である。
【0019】
測距装置100は、物体との間の距離を測定する。
図1から
図3に示すように、測距装置100は、照射部120と、台部1と、保持部2と、発光部3と、第1レンズ4と、穴あきミラー6と、第2レンズ7と、5つの受光部8と、イケール9と、を有する。
【0020】
照射部120は、走査される光を物体に照射する。本実施形態では、照射部120は、回転反射体5と、回転ステージ10と、を含む。照射部120は、第1方向および第1方向と交差する第2方向に走査される光を物体に照射する。本実施形態では、第1方向は、A1周り(
図1の配置の場合は垂直方向)に対応する。第1方向については、別途
図10を用いて説明においても述べる。第2方向は、A2周り(同じく
図1の配置の場合は水平方向)に対応する方向である。
【0021】
台部1は、保持部2と回転ステージ10が設けられた平板状の部材である。台部1は、-Z方向側の面上における相互に異なる領域に、保持部2と回転ステージ10とを固定している。回転ステージ10は、台部1の+Y方向側の領域にネジ部材等により固定されている。保持部2は、台部1における回転ステージ10の-Y方向側の領域に、結合部材11を介してネジ部材等により固定されている。
【0022】
台部1は、その材質に特段の制限はないが、回転ステージ10は重量が大きい場合があるため、金属材料等の剛性が高い材料を含んで構成されることが好ましい。台部1は、平板状の部材に限られず、回転ステージ10と保持部2を設置可能であれば如何なるものであってもよい。例えばサービスロボットの筐体に保持部2と回転ステージ10が設置される場合には、サービスロボットの筐体が台部に対応する。
【0023】
保持部2は、天井パネル21と背面パネル22とが結合して構成された部材である。天井パネル21および背面パネル22は、それぞれ平板状の部材である。天井パネル21および背面パネル22は、その材質に特段の制限はなく、例えば金属材料または樹脂材料等を適用可能である。
【0024】
天井パネル21の+Z方向側の面には、発光部3、第1レンズ4および穴あきミラー6が設けられている。背面パネル22の+Y方向側の面には、第2レンズ7および5つの受光部8が設けられている。
【0025】
発光部3は、光を発する。例えば、発光部3は、LD(Laser Diode:半導体レーザ)である。発光部3は、パルス光であるレーザ光L0を+Z方向側に発する。但し、発光部は、LED(light emitting diode:発光ダイオード)等であってもよい。レーザ光L0の波長は、近赤外波長領域等の非可視の波長領域のレーザ光であると、人間にレーザ光を視認させずに測距可能な点において好適である。
【0026】
第1レンズ4は、ガラス材料または樹脂材料を含んで構成される。第1レンズ4は、レーザ光L0を略コリメート(略平行化)する。第1レンズ4は必須の構成部ではない。但し、測距装置100は、第1レンズ4を有することにより、発光部3から発せられたレーザ光L0の広がりを抑制でき、光利用効率を向上させることができる。
【0027】
第1レンズ4によりコリメートされたレーザ光L0は、光分割部材41に入射する。光分割部材41は、発光部3からのレーザ光L0を複数に分割する。光分割部材41は、例えば回折格子である。光分割部材41は、レーザ光L0を5つの分割光L1に分割する。5つの分割光L1は、穴あきミラー6に設けられた貫通孔61を通過した後、回転反射体5に入射する。分割光L1の数は、複数であれば、要求される空間分解能等に応じて適宜選択可能である。なお、光分割部材41により得られる5つの分割光L1の詳細については、別途
図5を参照して述べる。
【0028】
回転反射体5は、6つの光反射面51を有する。回転反射体5は、回転により光反射面51の角度を変化させることによって走査される5つの分割光L1を物体に照射する。
図1における走査光L2は、光反射面51による分割光L1の反射光であり、走査される光に対応する。換言すると、照射部120は、光分割部材41により分割された5つの分割光L1それぞれが走査される光である5つの走査光L2を物体に照射できる。
【0029】
図1では、図を簡素化するため、5つの分割光L1のうちの1つのみと、5つの走査光L2のうちの1つのみと、を表示している。また
図1は、5つの走査光L2のうちの1つを、任意のタイミングに+Y方向側に照射される1つのレーザビームとして表示している。
【0030】
回転反射体5は、例えばポリゴンミラーである。ポリゴンミラーは回転多面鏡である。第1軸A1に沿う方向から視た回転反射体5の形状は略正六角形である。回転反射体5は、正六角形の各辺に対応する外周面に6つの光反射面51を有する。回転反射体5は、アルミニウム等の金属材料で形成した略正六角柱状の部材の外周面を、切削または鏡面研磨することにより製作できる。但し、回転反射体5は、金属材料または樹脂材料等で形成された回転体の外周面にアルミニウム等を鏡面蒸着することにより製作されてもよい。
【0031】
光反射面51の数は、6つに限定されず、1以上であればよい。光反射面51の数に応じて、回転反射体5による光の走査角度範囲が異なる。例えば、光反射面51の数が多いほど走査角度範囲は狭くなり、光反射面51の数が少ないほど走査角度範囲は広くなる。光反射面51の数は、要求される走査角度範囲に応じて適宜決定可能である。
【0032】
回転反射体5には、回転反射体5の中心軸と回転軸が略一致するように第1軸モータが取り付けられている。回転反射体5は、第1軸モータを駆動源にして第1軸A1周りに回転する。5つの分割光L1は、第1軸A1を中心にした円の円周方向に走査されるということもできる。回転反射体5の回転方向は一定である。例えば、回転反射体5は
図1における第1軸回転方向A11に沿って連続回転する。但し、回転反射体5は、第1軸回転方向A11とは反対方向に連続回転してもよい。
【0033】
図1において、ある時刻における、測距装置100の+Y方向側に物体が存在すると、5つの走査光L2が物体で反射または散乱された戻り光が測距装置100に向けて-Y方向側に戻される。戻り光は、再び回転反射体5の光反射面51に入射し、光反射面51により-Z方向側に反射される。-Z方向側に反射された戻り光のうち、穴あきミラー6のミラー面に入射した戻り光は、このミラー面により-Y方向側に反射され、5つの受光部8に到達する。本実施形態では、5つの分割光L1が反射される光反射面51と戻り光が反射される光反射面51は同じ面である。なお、
図1の状態における時刻とは別の時刻における照射部120のA2軸周りの回転位置よび回転反射体5のA1周りの回転位置によっては、走査光L2が物体を照射する方向は、+Y方向に限らない。しかしながら、照射光が物体で反射されて測距装置100に向けて戻され、光反射面51に入射し、-Z方向に反射される点は、
図1の状態における時刻とは別の時刻においても同様である。
【0034】
穴あきミラー6は、走査光L2が物体で反射または散乱された戻り光を偏向させる光偏向部である。穴あきミラー6は貫通孔61を含む。貫通孔61は、発光部3が発する光を通過させる開口である。貫通孔61は、穴あきミラー6におけるミラー面が設けられた領域の一部に形成されている。穴あきミラー6に入射する光のうち、このミラー面に入射する光は反射され、貫通孔61に入射する光は貫通孔61を通過する。
【0035】
穴あきミラー6は、第1レンズ4によりコリメートされたレーザ光L0を、貫通孔61を通して通過させる。また穴あきミラー6は、走査光L2が物体で反射または散乱された戻り光を、ミラー面により5つの受光部8に向けて反射する。穴あきミラー6のミラー面により反射された戻り光は、第2レンズ7により集光され、5つの受光部8に入射する。
【0036】
光偏向部の開口は、貫通孔に限らず、光偏向部におけるミラー面の一部に設けられた透明な領域であってもよい。また、光偏向部としてビームスプリッターやハーフミラー等を用いることもできる。
【0037】
5つの受光部8は、照射部120から照射された5つの走査光L2が物体により反射または散乱された戻り光に基づいて、5つの走査光L2それぞれの走査角度ごとでの受光情報を出力する。「走査角度ごと」は、「単位時間当たりに走査光が走査される角度ごと」を意味する。
【0038】
5つの受光部8は、光分割部材41により分割された5つの分割光L1それぞれと対をなす、受光部81から受光部85を含む。受光部81から受光部85のそれぞれは、5つの分割光L1のうち対をなす走査光L2が、物体により反射または散乱された戻り光に基づき、5つの走査光L2それぞれの走査角度ごとでの受光情報を出力する。
【0039】
受光部81から受光部85のそれぞれは、例えばAPD(Avalanche Photodiode:アバランシェフォトダイオード)である。APDは、アバランシェ増倍と呼ばれる現象を利用して受光感度を向上させたフォトダイオードの一種である。但し、受光部81から受光部85のそれぞれは、フォトダイオード(Photodiode)や光電子増倍管等であってもよい。
【0040】
イケール9は、屈曲部を含む部材である。イケール9は、回転反射体5を支持する。イケール9は、-Z方向側の面が回転ステージ10の載置面101に接触し、ネジ部材等により載置面101上に固定されている。イケール9は、基板91を介し、底面に交差する+X方向側の面に回転反射体5を支持する。イケール9の材質に特段の制限はないが、剛性を高く確保するために、金属等の高剛性の材料を含んで構成されることが好ましい。
【0041】
回転ステージ10は、回転反射体5を支持しつつ、自身が回転可能である。回転ステージ10は、イケール9を第2軸A2周りに回転させることにより、回転反射体5を第2軸A2周りに回転させる。回転反射体5による5つの走査光L2は、回転ステージ10の回転によって、第2方向に走査される。5つの走査光L2は、第2軸A2を中心にした円の円周方向に走査されるということもできる。
【0042】
回転ステージ10は、台部1上において、保持部2が設けられた領域とは異なる領域に設けられている。従って回転ステージ10が回転しても、保持部2、並びに保持部2が保持する発光部3および5つの受光部8はそれぞれ不動であり、台部1に固定された状態が維持される。
【0043】
図3に示すように、回転ステージ10は、載置面101と、ベアリング102と、マグネット103と、モータコア104と、を有する。
【0044】
載置面101は、第2軸A2に略直交し、第2軸A2周りに回転可能な面である。載置面101はイケール9を載置する。ベアリング102は、載置面101の回転を滑らかにする部材である。ベアリング102には、ボールベアリングまたはクロスローラベアリング等を適用してもよい。
【0045】
マグネット103は永久磁石からなる。モータコア104はモータを構成するステータの鉄心に該当する部材である。マグネット103とモータコア104とを含んでモータが構成されている。電流に応じてマグネット103が回転することにより、ベアリング102を介して載置面101が回転する。
【0046】
回転ステージ10の回転方向は、一定であり、例えば
図1における第2軸回転方向A21に対応する。但し、回転ステージ10は、第2軸回転方向A21とは反対方向に連続回転してもよい。
【0047】
測距装置100は、レーザ光L0の光軸と第2軸A2とが同軸になるように構成されている。レーザ光L0の光軸は、レーザ光L0の伝搬方向に沿うレーザ光L0の中心を通る軸を意味する。また同軸とは、複数の軸が略一致していることを意味する。
【0048】
走査光L2は、回転反射体5の回転により第1軸A1と交差する方向に走査されるとともに、回転ステージ10の回転により第2軸A2と交差する方向に走査される。第2軸A2と交差する方向は、例えば重力方向に略直交する水平方向である。第1軸A1は、第2軸A2に対して傾いて配置されればよい。
【0049】
測距装置100は、発光部3、回転反射体5、5つの受光部8または回転ステージ10等の構成部の一部または全部を覆うための外装カバーを備えてもよい。外装カバーを備えると、測距装置100の内部へのゴミや埃等の侵入を防ぎ、回転反射体5等にゴミや埃等が付着することを防止できる。また回転反射体5や回転ステージ10が高速回転すると、回転に伴う風切り音が大きくなる場合がある。外装カバーを設けることにより音が周囲に伝わることを抑制できる。外装カバーの材質には、金属または樹脂材料等を適用可能である。
【0050】
一方、外装カバーを設けると、外装カバーにおける走査光L2が出射する出射窓以外の部分が走査光L2を遮るため、走査角度範囲が制限され、測距装置100による物体200の検出範囲または測距範囲が制限される場合がある。走査光L2の波長に対して光透過性を有する透明な樹脂材料で外装カバーを構成すると、このような走査角度範囲の制限を緩和できる。
【0051】
図4は、測距装置100の構成を例示するブロック図である。なお、
図4における実線で示した矢印は光の流れを示し、破線で示した矢印は電気信号の流れを示している。
図4に示すように、測距装置100は、受発光部110と、照射部120と、出射窓130と、制御部140と、を有する。
【0052】
照射部120は、回転反射体5と、回転ステージ10と、駆動制御部150と、を有する。照射部120は、駆動制御部150により、回転反射体5および回転ステージ10それぞれの回転を制御することによって、5つの走査光L2を物体200に照射する。
【0053】
駆動制御部150は、第1軸モータ151と、第2軸モータ152と、同期検出部153と、回転制御部402と、給電部155と、を有する。駆動制御部150は、同期検出部153から出力される回転反射体5の回転周期に対応する同期信号Snに基づき、回転制御部402により、第2軸モータ152による回転を制御する。
【0054】
同期検出部153は、第1軸エンコーダ531と、周期光発光部532と、周期光受光部533と、を有する。同期検出部153は、第1軸エンコーダ531から出力される第1角度検出信号En1に基づいて周期光発光部532に発光させ、周期光発光部532からの光を受光した周期光受光部533により同期信号Snを出力させる。第1角度検出信号En1は、回転反射体5の回転角度の検出信号である。
【0055】
周期光発光部532は、例えばLED等を含んで構成され、第1角度検出信号En1に基づき、例えば第1軸エンコーダ531が回転反射体5の回転原点に対応する角度を検出したタイミングにパルス光Opを発する。
【0056】
周期光受光部533は、フォトダイオード(Photo Diode)等を含んで構成され、周期光発光部532により発生されたパルス光Opを受光したタイミングに、第2軸ドライバ基板173を介して同期信号Snを回転制御部402に出力する。
【0057】
給電部155は、発電コイル551と、給電コイル552と、を有する。給電部155は、電磁誘導により第1軸モータ151等に非接触で給電する。なお、給電とは電力を供給することをいう。
【0058】
発電コイル551は、電磁誘導により逆起電力を発生し、第1軸モータ151、第1軸エンコーダ531および第1軸ドライバ基板163のそれぞれに給電可能なコイルである。給電コイル552は、発電コイル551に対向配置され、第2軸ドライバ基板173から流れる電流に応じて、電磁誘導により発電コイル551に逆起電力を発生させるコイルである。給電コイル552に電流を流すと、電磁誘導により非接触で発電コイル551に逆起電力が発生する。
【0059】
本実施形態では、給電部155が電磁誘導により非接触給電する構成を例示するが、これに限定されるものではない。例えば給電部155は、回転接点により給電することもできる。回転接点とは、回転体に配置された金属製リングとブラシを介して、回転体に電気的に接続する構成をいう。このような回転接点を用いて、外部から第1軸モータ151等に給電することもできる。
【0060】
基板91には、回転反射体5、第1軸モータ151、第1軸エンコーダ531、第1軸ドライバ基板163、周期光発光部532および発電コイル551等が設けられている。回転ステージ10には、第2軸モータ152、第2軸エンコーダ172、第2軸ドライバ基板173、周期光受光部533、給電コイル552等が設けられている。
【0061】
第1軸モータ151は、回転反射体5を第1軸A1周りに回転させる。第1軸モータ151には、DC(Direct Current)モータまたはAC(Alternating Current)モータ等を適用できる。
【0062】
第1軸エンコーダ531は、第1角度検出信号En1を出力する。第1軸エンコーダ531は、例えばロータリエンコーダである。
【0063】
第1軸ドライバ基板163は、第1軸モータ151に駆動信号を供給する電気回路等を含む基板である。第1軸ドライバ基板163は、第1角度検出信号En1に基づき、回転反射体5が所定の第1周波数(回転数)により回転するように制御できる。なお、第1周波数は、第1軸ドライバ基板163により制御されるため、回転制御部402の制御対象ではない。
【0064】
第1軸ドライバ基板163は、給電部155による給電が開始された場合に、第1軸モータ151により回転反射体5の回転を開始させ、給電部155による給電が停止された場合に、第1軸モータ151により回転反射体5の回転を停止させる。
【0065】
第2軸モータ152は、DCモータ、ACモータまたはステッピングモータ等の各種モータにより構成できる。第2軸エンコーダ172は、ロータリエンコーダ等により構成され、回転ステージ10の回転角度を検出する。
【0066】
第2軸ドライバ基板173は、第2軸モータ152に駆動信号を供給する電気回路等を含む実装基板である。第2軸ドライバ基板173は、回転制御部402からの第2軸制御信号Dr2に基づき、回転ステージ10を回転させる。また、第2軸ドライバ基板173は、第2軸エンコーダ172により検出された回転ステージ10の第2角度検出信号En2を回転制御部402に出力する。
【0067】
回転制御部402は、第2角度検出信号En2に基づき、回転ステージ10の回転を制御する。ここで、回転ステージ10の回転数である第2周波数は、回転制御部402の制御対象である。
【0068】
受発光部110は、発光部基板111と、発光ブロック112と、穴あきミラー6と、穴あきミラーホルダ62と、受光ブロック113と、受光部基板114と、を含む。
【0069】
発光部基板111は、制御部140からの発光制御信号Dr1に応じて発光部3を発光させる電気回路を含む実装基板である。
【0070】
発光ブロック112は、発光部3と、発光部ホルダ31と、第1レンズ4と、第1レンズホルダ40と、を含む。発光部ホルダ31は発光部3を保持する部材である。第1レンズホルダ40は第1レンズ4を保持する部材である。穴あきミラーホルダ62は、穴あきミラー6を保持する部材である。
【0071】
受光ブロック113は、第2レンズ7と、第2レンズホルダ71と、5つの受光部8と、受光部ホルダ80と、を含む。第2レンズホルダ71は第2レンズ7を保持する部材である。受光部ホルダ80は5つの受光部8を保持する部材である。
【0072】
受光部基板114は、受光情報Sを、制御部140に出力する電気回路を含む実装基板である。受光情報Sは、例えば受光部8が受光した光強度に応じた電気信号である。受光部基板114は、トランスインピーダンスアンプおよびオペアンプ等を含む。受光部基板114は、トランスインピーダンスアンプおよびオペアンプ等により受光情報Sを増幅処理することにより、受光情報Sを、後段の制御部140によるデータ処理が可能な状態にすることができる。
【0073】
制御部140は、電気回路または電子回路等を有する制御回路基板を含む。制御部140は、例えば背面パネル22等に設置される。この制御回路基板は、回転反射体5および回転ステージ10が回転しても動かない。
【0074】
制御部140は、受発光部110および照射部120のそれぞれに電気的に接続しており、信号およびデータを相互に送受可能である。また制御部140は、サービスロボットを制御可能な外部装置300に通信可能に接続している。本実施形態では、回転制御部402は、制御部140内に設けられているが、制御部140の外部に設けられていてもよい。
【0075】
制御部140は、例えば外部装置300からの測距制御信号Ctに応じて発光制御信号Dr1を出力し、発光部基板111を介して発光部3を発光させる。5つの分割光L1それぞれが走査される5つの走査光L2は、出射窓130を透過して、測距装置100から外部に向けて照射される。
【0076】
出射窓130は、レーザ光L0の波長に対して光透過性を有するガラス材料または樹脂材料を含んで構成されている。出射窓130は、測距装置100が装置全体を覆う不透明な外装カバーを備える場合に、走査光L2を透過して出射させる窓として機能する。
【0077】
走査光L2が物体200により反射または散乱された5つの戻り光Rは、出射窓130を透過して回転反射体5の光反射面51に入射する。5つの戻り光Rは、光反射面51により反射され、穴あきミラー6のミラー面により5つの受光部8に向けて反射される。
【0078】
5つの戻り光Rは、第2レンズ7により集光されながら5つの受光部8にそれぞれ入射する。5つの受光部8は、5つの戻り光Rに基づいて、5つの走査光L2の走査角度ごとでの受光情報Sを出力する。5つの走査光L2に対応する5つの受光情報Sは、受光部基板114を介して制御部140に出力される。
【0079】
制御部140は、受光情報Sに基づき、物体200までの距離を示す距離情報Dtを演算により取得する。制御部140は、距離情報Dtを外部装置300に出力する。
【0080】
測距装置100は、例えば、サービスロボットが搭載するバッテリから供給される電力により駆動される。但し、測距装置100は、測距装置100自身が搭載するバッテリから電力供給されてもよい。またサービスロボットの動作範囲が広くない場合等には、商用電源からケーブルを用いて給電されるようにしてもよい。
【0081】
(光分割部材41による光分割例)
図5は、光分割部材41による光分割の一例を示す図である。
図5(a)は光分割部材41の側面図、
図5(b)は光分割部材41を-Z方向側から視た斜視図、
図5(c)は光分割部材41を+Z方向側から視た正面図である。
【0082】
光分割部材41は、平面視において略円形状を有し、レーザ光L0の波長に対して光透過性を有する平板状の部材である。光分割部材41の-Z方向側の面、+Z方向の面、またはその両方には、周期構造が形成されている。光分割部材41は、入射されるレーザ光L0を、周期構造を用いて回折させることによって、複数の光束に分割する。
【0083】
光分割部材41は、レーザ光L0を分割光L11から分割光L15を含む5つの分割光L1に分割する。分割光L11は、光分割部材41の0次光(透過光)である。分割光L12から分割光L15は1次回折光である。
【0084】
分割光L11から分割光L15は、伝搬方向が相互に異なる平行光束である。分割光L11から分割光L15は、照射部120により走査される。分割光L11から分割光L15のそれぞれと対をなす5つの走査光L2は、それぞれ照射領域における異なる位置に照射される。
【0085】
図5(a)に示す光分割部材41による分割角度情報θLは、2.1度以上であってもよい。分割角度情報θLとは、光分割部材41により分割された5つの分割光L1それぞれの、伝搬方向に沿う中心軸同士がなす角度をいう。光分割部材41として回折格子を用いた場合には、分割角度情報θLは、回折格子による回折光の、伝搬方向に沿う中心軸同士がなす角度である回折角に対応する。
【0086】
ここで、規格であるIEC60825-1では、レーザ光出射する機器から100mm離れた位置において、直径7mmの受光面を有するセンサにより検出した場合の光強度によってレーザ光に対する安全性を規定している。分割角度情報θLを2.1度以上とすると、測距装置100から100mm離れた位置の直径7mmの受光面内に、光分割部材41により分割した5つの分割光L1のうち3つ以下が入射する状態になる。これにより、測距装置100は、IEC60825-1の規定に準拠しやすくなる。
【0087】
人の目の瞳径および焦点距離に基づくと、5つの分割光L1のうちの同一直線上に並ぶ3つが並行して人の目に入射し得る角度は、±2.0度よりも小さい角度である。本実施形態では、光分割部材41による分割角度情報θLを2.1度以上とすることにより、5つの分割光L1のうちの同一直線上の3つ以上が並行して人の目に入射することを防止し、人の目に対する安全性を意味するアイセーフを実現できる。また、本実施形態では、2.1度以上において分割角度情報θLをできるだけ小さくすることにより、アイセーフを実現しつつ、測距の空間分解能を向上させることができる。
【0088】
なお、本実施形態では、光分割部材41の平面視形状は、円形状に限らず、矩形状、楕円形状、多角形状等であってもよい。また、光分割部材41の中央を透過する分割光L11と、4つの対角方向に分割される分割光L12から分割光L15が得られる構成を例示したが、レーザ光L0が分割される方向は対角方向に限定されず、適宜選択可能である。
【0089】
(同期検出部153の構成例)
図6は、同期検出部153の構成を例示する図である。
図6は、回転ステージ10をYZ平面により切断した状態を模式的に示している。
【0090】
図6に示すように、回転ステージ10は、回転可能な回転部10aと、回転しない固定部10bと、を含んで構成される。周期光発光部532は、回転部10aにおける載置面101に設けられた発光基板532aに実装される。周期光受光部533は、固定部10bに設けられた受光基板533aに実装される。
【0091】
周期光発光部532は、発光基板532aに入力される第1角度検出信号En1に応じて、周期光発光部532に対向配置された周期光受光部533に向けてパルス光Opを発する。周期光受光部533によるパルス光Opの受光信号は、受光基板533aにより二値信号に変換され、同期信号Snとして回転制御部402に出力される。
【0092】
(第1レンズ4および第2レンズ7の作用)
測距装置100では、
図2等に示した第1レンズ4による走査光L2の広がり角に応じて、走査光L2の物体200による戻り光Rのうち、第2レンズの有効径内に戻る光量(以下戻り光量という)、および、受光部8により受光可能な光量(以下、受光光量という)が変化する。また、
図2等に示した第2レンズ7におけるレンズ直径、焦点距離、バックフォーカス等の仕様に応じて、第2レンズの有効径内に戻る光量が変化するとともに、受光部8の受光面内に到達する光量が変化し、戻り光量および受光光量が変化する。また、測距装置100に対して近距離にある物体200からの戻り光Rの戻り光量および受光光量と比較して、測距装置100に対して遠距離、例えば予め定められた測定可能な最大距離Lx(以下、最大距離Lxという)離れた位置にある物体200からの戻り光Rの戻り光量および受光光量のほうが小さい。
【0093】
本実施形態では、第1レンズ4および第2レンズ7の作用により、戻り光Rの戻り光量に対する受光光量を高く確保可能な物体200の距離の範囲を広くする。これにより、本実施形態では、測距装置100によって測定可能な距離の範囲を広く確保することができる。
【0094】
まず、第1レンズ4の作用について説明する。
図7は、測距装置100における走査光L2の照射を例示する図である。
【0095】
図7に示すように、本実施形態では、測定可能な最大距離Lx離れた位置において、走査光L2の直径Dxが小さくなるように、測距装置100における第1レンズ4による広がり角βを規定する。第1レンズ4による広がり角βは、例えば第1レンズ4の焦点距離を選択することにより規定できる。
【0096】
測距装置100により測定可能な物体200との間の距離は制限があるため、測定可能な最大距離Lxは、例えば測距装置100の仕様または用途等に応じて予め定められる。最大距離Lxは、例えば30mである。
【0097】
本実施形態では、第1レンズ4によって走査光L2の広がり角βを規定することにより、最大距離Lx離れた位置にある物体200からの戻り光Rの戻り光量を大きくすることができる。
【0098】
次に、第2レンズ7の作用について説明する。
【0099】
まず比較例に係る第2レンズの作用について説明する。
図8は、比較例に係る物体までの距離と、受光部の位置での戻り光の直径と、の関係を例示する図である。比較例では、最大距離Lx離れた位置にある物体からの戻り光Rの直径は、受光部8X上において最小になるように、第2レンズの仕様およびフォーカス調整状態が定められる。なお、受光部8Xは、実施形態に係る受光部8と同じ機能を有するものとする。
【0100】
図8の上段に示した横軸は、測距装置からの距離を表している。該横軸において、矢印が向く方向に進むほど、距離は長くなる。距離0は測距装置の位置に対応する距離である。最大距離Lxは、測距装置により測定可能な最も長い距離である。
【0101】
図8の下段に示した図は、5つの受光部8X上それぞれに対応する5つの戻り光Rを表している。戻り光Rxは、最大距離Lxにある物体からの戻り光である。戻り光R2は、距離L2Xにある物体からの戻り光である。戻り光R1は、距離L1Xにある物体からの戻り光である。戻り光R0は、距離0にある物体からの戻り光である。各距離同士の長さの関係は、Lx>L2>L1>0である。また戻り光量の関係はRx<R2<R1<R0である。
【0102】
戻り光Rxの直径が、他の戻り光R2、戻り光R1、戻り光R0の各直径と比較して最も小さくなるように第2レンズのフォーカス調整がされている状態にある。換言すると、戻り光Rxは、他の戻り光と比較して、受光部8Xの位置において最も集束している。1つの戻り光Rxの直径は、1つの受光部8Xの直径よりも小さいため、1つの受光部8Xは、1つの戻り光Rxの光量をほぼ全て受光可能である。これにより戻り光Rxの戻り光量は、他の戻り光R2、戻り光R1および戻り光R0それぞれの戻り光量と比較して、より大きな割合を受光部8内に捕捉することが可能となる。
【0103】
距離L2Xの位置では、1つの戻り光R2は、距離の短縮に伴って戻り光Rxよりも広がる。但し、1つの戻り光R2の直径は、1つの受光部8Xの直径と略同じであるため、1つの受光部8Xは、1つの戻り光R2の光量をほぼ全て受光可能である。これにより戻り光R2の受光の割合は、戻り光Rxの受光の割合と同程度に大きくなる。
【0104】
距離L1Xの位置では、1つの戻り光R1は、距離の短縮に伴って戻り光R2よりも広がる。1つの戻り光R1の直径は、1つの受光部8Xの直径よりも大きい。このため、1つの受光部8Xは、1つの戻り光R1のうち、受光部8Xの受光面に到達した戻り光R1を受光でき、受光部8Xの受光面に到達しない戻り光R1、換言すると受光部8Xからはみ出した戻り光R1を受光できない。これにより、戻り光R1の受光の割合は、戻り光Rxおよび戻り光R2の各受光の割合と比較して小さくなる。
【0105】
距離0の位置では、1つの戻り光R0は、距離の短縮に伴って戻り光R1よりも広がる。1つの戻り光R0の直径は、1つの戻り光R1の直径よりも大きくなる。これにより、戻り光R0の受光の割合は、戻り光R1の受光の割合よりも小さくなる。
【0106】
距離0の位置では、1つの受光部8Xに対し、隣接する受光部8Xに対応する戻り光R0が到達する。これにより、複数の戻り光R0が1つの受光部8Xにより受光される現象であるクロストークが発生する。
図8において、複数のクロストーク領域Crは、クロストークにより複数の戻り光R0同士が1つの受光部8X上において重なる領域を表している。クロストークは、測距装置による測距精度を低下させる。
【0107】
図8の上段において白抜き矢印で示した範囲QX3では、1つの受光部8Xにより1つの戻り光Rをほぼ全て受光できるため、測距装置による測距精度を高く確保可能となる。
【0108】
範囲QX2では、1つの受光部8Xによる戻り光Rの受光の割合の減少に伴い、範囲QX3と比較して、測距装置による受光の割合は低下する。但し、範囲QX3と比べて近距離であるために戻り光Rの絶対的な戻り光量は大きいことから測距精度の低下の影響は小さく、また、範囲QX2では、クロストークは発生しないため、クロストークによる測距精度の低下は生じない。
【0109】
範囲QX1では、1つの受光部8Xによる戻り光Rの受光光量の減少に伴い、範囲QX2と比較して、測距装置による受光の割合は低下する。但し、範囲QX2と比べて近距離であるために戻り光Rの絶対的な戻り光量は大きい点では測距精度の低下の影響は小さいが、範囲QX1では、クロストークが発生するため、該クロストークによる測距精度が低下する。
【0110】
比較例では、戻り光Rの受光の割合を高く確保することによって測距装置による測距精度を高く確保可能な測定範囲は、範囲QX3に対応する。
【0111】
比較例では、複数の戻り光R同士のクロストークを抑制することによって測距装置による測距精度を高く確保可能な測定範囲は、範囲QX3と範囲QX2の和に対応する。
【0112】
次に、本実施形態に係る第2レンズ7の作用について説明する。本実施形態では、第2レンズ7の焦点距離をf、1つの受光部8の有効径をdとすると、第2レンズ7は、以下の式(1)を充足する。
【0113】
【0114】
また、本実施形態では、第2レンズ7の有効径をφとすると、第2レンズ7による結像において、次の式(2)および式(3)により表される第1距離Laに位置する物体に対して焦点が合う。ここで、第1距離Laに位置する物体とは、物体における最も測距装置に近い部分が第1距離Laに位置する物体を意味する。
【0115】
【0116】
【0117】
図9は、本実施形態に係る物体の距離と、受光部8の位置での戻り光Rの直径と、の関係を例示する図である。
【0118】
図9の上段に示した横軸は、測距装置からの距離を表している。該横軸において、矢印が向く方向に進むほど、距離は長くなる。距離0は、測距装置の位置に対応する距離である。最大距離Lxは、測距装置により測定可能な最も長い距離である。
【0119】
図9の下段に示した図は、5つの受光部8上それぞれに対応する5つの戻り光Rを表している。戻り光Rxは、最大距離Lxにある物体からの戻り光である。戻り光Raは、第1距離Laにある物体からの戻り光である。戻り光Rbは、第2距離Lbにある物体からの戻り光である。戻り光Rcは、第3距離Lcにある物体からの戻り光である。戻り光R0は、距離0にある物体からの戻り光である。各距離同士の長さの関係は、Lx>La>Lb>Lc>0である。また戻り光量の関係はRx<Ra<Rb<Rc<R0である。
【0120】
1つの戻り光Rxの直径は、1つの受光部8の直径と略同じである。1つの受光部8は、1つの戻り光Rxの光量をほぼ全て受光可能である。これにより、1つの戻り光Rxの受光光量は、他の戻り光Rb、戻り光Rc、戻り光R0と比較してより大きな割合を受光部8内に捕捉していることになる。
【0121】
第1距離Laの位置では、1つの戻り光Raは、距離の短縮に伴って1つの戻り光Rxよりも集束する。1つの戻り光Raの直径は、他の戻り光Rx、戻り光Rb、戻り光Rc、戻り光R0の各直径と比較して最も小さい。換言すると、戻り光Raは、他の戻り光と比較して、受光部8の位置において最も集束している。1つの戻り光Raの直径は、1つの受光部8の直径よりも小さいため、1つの受光部8は、1つの戻り光Raの光量をほぼ全て受光可能である。これにより戻り光Raの受光光量は、戻り光Rxの受光光量と同程度に大きくなる。
【0122】
第2距離Lbの位置では、1つの戻り光Rbは、距離の短縮に伴って戻り光Raよりも広がる。1つの戻り光Rbの直径は、受光部8の直径と略同じである。1つの受光部8は、1つの戻り光Rbの光量をほぼ全て受光可能である。これにより戻り光Rbの受光の割合は、戻り光Raの受光の割合と同程度に大きくなる。
【0123】
第3距離Lcの位置では、1つの戻り光Rcは、距離の短縮に伴って戻り光Rbよりも広がる。1つの戻り光Rcの直径は、1つの受光部8の直径よりも大きい。このため、1つの受光部8は、1つの戻り光Rcのうち、受光部8の受光面に到達した戻り光Rcを受光でき、受光部8の受光面に到達しない戻り光Rc、換言すると受光部8からはみ出した戻り光Rcを受光できない。これにより戻り光Rcの受光の割合は、他の戻り光Rx、戻り光Raおよび戻り光Rbの各受光の割合と比較して小さくなる。
【0124】
距離0の位置では、1つの戻り光R0は、距離の短縮に伴って戻り光Rcよりも広がる。1つの戻り光R0の直径は、1つの戻り光Rcの直径よりも大きくなる。これにより戻り光R0の受光の割合は、戻り光Rcの受光の割合よりも小さくなる。
【0125】
距離0の位置では、1つの受光部8に対し、隣接する受光部8に対応する戻り光R0が到達し、クロストークが発生する。
図9における複数のクロストーク領域Crは、クロストークにより複数の戻り光R0同士が1つの受光部8上において重なる領域を表している。
【0126】
本実施形態では、戻り光Rの受光光量を高く確保することによって測距精度を高く確保可能な測定範囲は、範囲Q3に対応する。範囲Q3は、比較例に係る範囲QX3よりも広い。
【0127】
本実施形態では、複数の戻り光R同士のクロストークを抑制することによって測距精度を高く確保可能な測定範囲は、範囲Q3および範囲Q2の和に対応する。範囲Q3および範囲Q2の和は、比較例に係る範囲QX3および範囲QX2の和よりも広い。
【0128】
例えば、最大距離Lxを30mと設定した場合に、第2レンズ7による結像において、焦点が合うようにする物体までの距離を意味するフォーカス距離を5mとすると、範囲Q3は、30mから1.5mまでの範囲にすることができる。また範囲Q2は1.5mから0.6mまでの範囲にすることができる。
【0129】
測距装置では、物体までの距離が遠距離から近距離の全ての範囲において、戻り光の受光の割合を高く確保し、またクロストークを防止することは不可能である。第2レンズによる結像において所定距離に位置する物体に対して焦点が合うようにしても、物体との間の距離が所定距離からずれると戻り光が広がるため、戻り光の受光の割合が減少し、またクロストークが発生するからである。
【0130】
本実施形態では、第1レンズ4により、走査光L2の広がり角βを規定することによって、最大距離Lx離れた位置にある物体からの戻り光Rの戻り光量を大きくする。これにより、最大距離Lx離れた位置にある物体からの戻り光Rの戻り光量および受光光量を大きくすることができ、測定可能な距離のうち、最も測距精度を確保しにくい最大距離Lx離れた位置にある物体の測距精度を確保することができる。反射率が低い物体まで測距装置により測距可能にするには、遠距離において受光光量を確保することが重要である。
【0131】
本実施形態では、第2レンズ7は上記の式(1)を充足することにより、受光部8の受光の割合を大きく確保可能な範囲Q3を広くし、測定可能な距離の範囲を広く確保することができる。また、本実施形態では、上記の式(1)を充足することにより、クロストークが発生する範囲Q1を狭くすることにより、測定可能な距離の範囲を広く確保することができる。
【0132】
本実施形態では、第2レンズ7による結像において、上記の式(2)および式(3)により表される第1距離Laに位置する物体に対して焦点が合うようにする。これにより、受光部8の受光光量を大きく確保可能な範囲Q3を広くするとともに、複数の戻り光R同士のクロストークを抑制することができ、測定可能な距離の範囲を広く確保することができる。
【0133】
また、本実施形態では、第2レンズ7による結像において、次の式(4)により表される第2距離Lbが、
図9に示した戻り光Rbの直径と受光部8直径が略等しくなる距離となる。
【0134】
【0135】
また、本実施形態では、複数の受光部8のうち隣り合う受光部8同士の間隔をp、光分割部材41による回折角をγとすると、第2レンズ7による結像において、次の式(5)、式(6)および式(7)により表される第3距離Lcが、
図9に示したクロストークの発生しない距離となる。
【0136】
【0137】
【0138】
【0139】
なお、ここで、
図10は、隣り合う受光部8同士の間隔pを例示する図である。間隔pは、隣り合う受光部8の中心同士の間隔である。間隔pは、隣り合う受光部8同士のうち、最も近い間隔である。複数の受光部8の配置は任意の配置であってもよい。
【0140】
(制御部140のハードウェア構成例)
図11は、制御部140のハードウェア構成を例示するブロック図である。制御部140は、コンピュータによって構築されており、CPU(Central Processing Unit)141と、ROM(Read Only Memory)142と、RAM(Random Access Memory)143と、FPGA(Field Programmable Gate Array)144と、HDD/SSD(Hard Disk Drive/Solid State Drive)145と、機器接続I/F(Interface)146と、通信I/F147と、を有する。これらは、システムバスAを介して相互に通信可能に接続している。
【0141】
CPU141およびFPGA144は、演算処理を含む制御処理を実行する。ROM142は、IPL(Initial Program Loader)等のCPU141の駆動に用いられるプログラムを記憶する。RAM143は、CPU141のワークエリアとして使用される。HDD/SSD145は、プログラムや測距装置100の設定情報等の各種情報を記憶する。
【0142】
機器接続I/F146は、制御部140を機器と接続するためのインターフェースである。ここでの機器は、発光部基板111、受光部基板114、同期検出部153、給電部155、第2軸エンコーダ172および第2軸ドライバ基板173等である。
【0143】
通信I/F147は、外部装置300や通信ネットワーク等とデータを通信するためのインターフェースである。通信I/F147として、イーサネットインターフェース等を適用できる。制御部140は、通信I/F147を介してインターネットに接続し、インターネットを介して外部装置300との間で通信することもできる。
【0144】
(制御部140の機能構成例)
図12は、制御部140の機能構成の一例を説明するブロック図である。制御部140は、可変部401と、回転制御部402と、発光制御部403と、距離情報取得部404と、出力部405と、を有する。回転制御部402は、第1軸回転制御部421と、第2軸回転制御部422と、停止制御部423と、を有する。
【0145】
制御部140は、可変部401、回転制御部402、発光制御部403および距離情報取得部404の各機能をFPGA144等により実現できる他、上記各機能の少なくとも一部をCPU141によって実現することもできる。また制御部140は、出力部405の機能を通信I/F147等により実現できる。
【0146】
FPGA144等により実現される各機能は、複数の回路または複数のソフトウェアによって実現されてもよい。また、FPGA144等により実現される各機能の一部は、外部装置300等の制御部140以外の構成部により実現されてもよいし、制御部140と制御部140以外の構成部との分散処理により実現されてもよい。
【0147】
可変部401は、以下の式(1)および式(2)における定数αを変更することにより、回転ステージ10の第2周波数fhを変化させる。
fh=M×fv/(N+α) ・・・(1)
0<|α|<1 ・・・(2)
式(1)において、Nは、回転ステージ10の1回転中に第1軸A1と交差する方向に走査される5つの走査光L2によって形成される走査線の数を表す。fvは第1周波数を表す。Mは、回転反射体5の一回転周期中に、第1方向に走査される5つの走査光L2によって形成される走査線の数を表す。m面の回転反射体5であればM=mである。回転反射体5に代えて揺動ミラー(往復ミラー)を用いる場合にはM=2となる。
【0148】
可変部401は、測距装置100に設けられた操作部等の外部からの設定入力情報Seに応じて定数αを変更することができる。
【0149】
第1軸回転制御部421は、給電部155に給電制御信号Stを出力し、給電部155から第1軸モータ151への給電を開始させることにより、第1軸モータ151に回転を開始させる。また第1軸回転制御部421は、給電部155に給電制御信号Stを出力し、給電部155から第1軸モータ151への給電を停止させることにより、第1軸モータ151に回転を停止させる。第1軸回転制御部421は、第1軸モータ151の回転の開始および停止のみを制御し、第1軸モータ151の回転速度等の制御は行わない。
【0150】
第2軸回転制御部422は、同期検出部153からの同期信号Snと、第2軸エンコーダ172からの第2角度検出信号En2と、に基づき、第2軸ドライバ基板173を用いて回転ステージ10の回転を制御する。
【0151】
停止制御部423は、同期検出部153から所定期間、同期信号Snが出力されない場合に、第2軸モータ152による回転ステージ10の回転を停止させる。
【0152】
発光制御部403は、発光部基板111を用いて発光部3に発光制御信号Dr1を出力することにより、発光部3の発光を制御する。また発光制御部403は、発光部3が発光した時刻に対応する発光時刻情報t1を距離情報取得部404に出力する。
【0153】
距離情報取得部404は、走査光L2が物体200により反射または散乱された後、5つの受光部8により受光される5つの戻り光Rに基づいて、物体200との間の距離情報Dtを演算により取得する。距離情報取得部404は、発光部3によりレーザ光L0が発せられた発光時刻情報t1を発光制御部403から入力する。また距離情報取得部404は、受光部基板114を介して、5つの受光部8から、5つの受光部8に対応する5つの受光情報Sを入力し、5つの受光情報Sに基づき5つの受光時刻情報t2を取得する。距離情報取得部404は、TOFの原理に基づき、以下の式(3)を演算することによって距離情報Dtを取得できる。
Dtn=c×Δtn/2 ・・・(3)
【0154】
(3)式において、nは、分割光L11から分割光L15それぞれに対応する自然数である。例えば、Dt1は分割光L11に基づき得られる距離情報、Dt2は分割光L12に基づき得られる距離情報、Dt3は分割光L13に基づき得られる距離情報、Dt4は分割光L14に基づき得られる距離情報、Dt5は分割光L15に基づき得られる距離情報である。cは光速(約3×108m/s)を表す。距離情報Dtは、複数の距離情報Dtnの総称表記である。Δtは、分割光L11から分割光L15それぞれにおける発光時刻と受光時刻との間の時間差である。
【0155】
分割光L11から分割光L15は、発光部3から同時に発せられたレーザ光L0を分割したものであるため、発光時刻はいずれも等しい。一方、分割光L11から分割光L15に基づく5つの戻り光Rそれぞれの受光時刻は異なる。距離情報取得部404は、分割光L11から分割光L15それぞれに基づく距離情報Dtnを並行して演算により取得する。
【0156】
出力部405は、5つの受光部8による5つの受光情報Sに基づいて取得される物体との間の5つの距離情報Dtを外部装置300に出力する。
【0157】
測距装置100による距離測定方式は、TOF方式に限定されるものではない。例えば測距装置100は、振幅変調したレーザ光を物体に照射し、物体で反射または散乱された戻り光と照射したレーザ光との位相差に基づき、距離情報を取得する位相差検出方式等を用いてもよい。
【0158】
<制御部140による処理例>
図13は、制御部140による処理の一例を示すフローチャートである。制御部140は、測距装置100に電源が投入され、測距装置100が起動されたタイミングに
図13の処理を開始する。
【0159】
まず、ステップS141において、制御部140は、可変部401により走査線間隔またはリフレッシュレートを変更するか否かを判定する。例えば可変部401は、測距装置100の操作部を用いた、測距装置100の操作者による設定入力に基づき、走査線間隔またはリフレッシュレートを変更するか否かを判定できる。
【0160】
ステップS141において、変更しないと判定された場合には(ステップS141、NO)、制御部140は、ステップS144に処理を移行する。一方、変更すると判定された場合には(ステップS141、YES)、制御部140は、ステップS142において、可変部401により、設定入力情報Seを受け付ける。
【0161】
続いて、ステップS143において、制御部140は、可変部401により設定入力情報Seに応じて定数αを変更する。これにより、上記(1)式に応じて、第2周波数fhが変化し、走査線間隔およびリフレッシュレートが変更される。
【0162】
続いて、ステップS144において、制御部140は、第1軸回転制御部421により、給電部155から第1軸モータ151への給電を開始する。第1軸モータ151は、給電部155による給電開始に応じて回転を開始することにより、回転反射体5の回転を開始させる。
【0163】
続いて、ステップS145において、制御部140は、第2軸回転制御部422により、同期検出部153からの同期信号Snと、第2軸エンコーダ172からの第2角度検出信号En2と、に基づき、回転ステージ10の回転を開始させる。以降、回転ステージ10は、第2軸回転制御部422による制御下において回転を続ける。
【0164】
続いて、ステップS146において、制御部140は、発光制御部403により、発光部3に発光制御信号Dr1を出力することによって、発光部3にレーザ光L0を発光させる。また発光制御部403は、発光部3の発光時刻情報t1を距離情報取得部404に出力する。
【0165】
続いて、ステップS147において、制御部140は、5つの走査光L2に由来する戻り光Rに基づき5つの受光部8から出力される5つの受光情報Sを入力する。
【0166】
続いて、ステップS148において、制御部140は、距離情報取得部404により、受光情報Sに基づく戻り光Rの受光時刻情報t2と、発光部3の発光時刻情報t1と、に基づいて距離情報Dtを演算により取得する。
【0167】
続いて、ステップS149において、制御部140は、出力部405により、距離情報Dtを外部装置300に出力する。
【0168】
続いて、ステップS140において、制御部140は、停止制御部423により、同期検出部153からの同期信号Snが出力されない期間が所定の期間閾値以下であるか否かを判定する。
【0169】
ステップS140において、期間閾値以下ではないと判定された場合には(ステップS140、NO)、制御部140は、ステップS142に処理を移行する。一方、期間閾値以下であると判定された場合には(ステップS140、YES)、制御部140は、ステップS141において、測距装置100による測距を終了するか否かを判定する。例えば、制御部140は、測距装置100の操作部を用いた操作者の操作入力に基づき測距を終了するか否かを判定できる。
【0170】
ステップS141において、終了しないと判定した場合には(ステップS141、NO)、制御部140は、ステップS146以降の処理を再度行う。一方、終了すると判定した場合には(ステップS141、YES)、制御部140は、ステップS142において、第2軸回転制御部422により回転ステージ10の回転を停止させるとともに、発光制御部403により発光部3の発光を停止させる。
【0171】
続いて、ステップS143において、制御部140は、第1軸回転制御部421により、給電部155から第1軸モータ151への給電を停止させることにより、第1軸モータ151に回転を停止させる。第1軸モータ151は、給電部155による給電停止に応答して回転を停止し、回転反射体5の回転を停止させる。
【0172】
以上のようにして、制御部140は、測距装置100による測距動作を制御できる。
【0173】
以上、本発明の好ましい実施形態について詳述したが、本発明はこれらの実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形または変更が可能である。
【0174】
実施形態の説明で用いた序数、数量等の数字は、全て本発明の技術を具体的に説明するために例示するものであり、本発明は例示された数字に制限されない。また、構成要素間の接続関係は、本発明の技術を具体的に説明するために例示するものであり、本発明の機能を実現する接続関係をこれに限定するものではない。
【0175】
実施形態に係る測距装置および測距システムは、サービスロボットに限らず、自動車、飛行体等の移動体に搭載され、移動体の周囲に存在する物体を認識する用途等において使用可能である。
【符号の説明】
【0176】
1…台部、2…保持部、3…発光部、4…第1レンズ、5…回転反射体、6…穴あきミラー、7…第2レンズ、8…5つの受光部、81、82、83、84、85…受光部、9…イケール、10…回転ステージ、10a…回転部、10b…固定部、11…結合部材、21…天井パネル、22…背面パネル、31…発光部ホルダ、40…第1レンズホルダ、41…光分割部材、51…光反射面、61…貫通孔、62…穴あきミラーホルダ、71…第2レンズホルダ、90…第1方向、91…基板、100…測距装置、101…載置面、102…ベアリング、103…マグネット、104…モータコア、110…受発光部、112…発光ブロック、113…受光ブロック、114…受光部基板、120…照射部、130…出射窓、140…制御部、401…可変部、402…回転制御部、403…発光制御部、404…距離情報取得部、405…出力部、421…第1軸回転制御部、422…第2軸回転制御部、423…停止制御部、150…駆動制御部、151…第1軸モータ、152…第2軸モータ、153…同期検出部、155…給電部、163…第1軸ドライバ基板、172…第2軸エンコーダ、173…第2軸ドライバ基板、200…物体、300…外部装置、531…第1軸エンコーダ、532…周期光発光部、532a…発光基板、533…周期光受光部、533a…受光基板、551…発電コイル、552…給電コイル、A1…第1軸、A11…第1軸回転方向、A2…第2軸、A21…第2軸回転方向、L0…レーザ光、L1、L11、L12、L13、L14、L15…分割光、L2…走査光、R、Rx、Ra、Rb、Rc、R0…戻り光、Dr1…発光制御信号、Dr2…第2軸制御信号、Ct…測距制御信号、Dt…距離情報、S…受光情報、Sn…同期信号、St…給電制御信号、En1…第1角度検出信号、En2…第2角度検出信号、Op…パルス光、Lx…最大距離、Dx…直径、β…広がり角、La…第1距離、Lb…第2距離、Lc…第3距離、Cr…クロストーク領域、p…間隔