(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024035229
(43)【公開日】2024-03-13
(54)【発明の名称】圧力センサ及び当該圧力センサを用いた流体監視センサモジュール
(51)【国際特許分類】
G01L 19/06 20060101AFI20240306BHJP
G01L 9/04 20060101ALI20240306BHJP
H01L 29/84 20060101ALI20240306BHJP
【FI】
G01L19/06 A
G01L9/04
H01L29/84 B
【審査請求】未請求
【請求項の数】8
【出願形態】OL
(21)【出願番号】P 2023142604
(22)【出願日】2023-09-01
(31)【優先権主張番号】P 2022139557
(32)【優先日】2022-09-01
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2023067620
(32)【優先日】2023-04-18
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000173795
【氏名又は名称】公益財団法人電磁材料研究所
(71)【出願人】
【識別番号】501415752
【氏名又は名称】日本ファインセラミックス株式会社
(74)【代理人】
【識別番号】110000800
【氏名又は名称】デロイトトーマツ弁理士法人
(72)【発明者】
【氏名】丹羽 英二
(72)【発明者】
【氏名】水尾 仙人
(72)【発明者】
【氏名】皆川 直祐
【テーマコード(参考)】
2F055
4M112
【Fターム(参考)】
2F055AA01
2F055AA31
2F055CC02
2F055DD01
2F055EE15
2F055FF11
2F055FF38
2F055GG11
4M112AA01
4M112BA01
4M112CA01
4M112CA03
4M112CA11
4M112CA16
4M112CA28
4M112CA31
4M112EA11
4M112FA02
(57)【要約】
【課題】本発明は、従来の圧力センサよりも向上した優れた圧力分解能かつ優れた測定精度を有するとともに、反応性の高い流体に対する安定度も備え、出力に対して、入力が線形的となる圧力センサ及び当該圧力センサを用いた流体監視センサモジュールを提供する。
【解決手段】圧力センサは、外部空間に対して密閉された内部空間を有する基部10と、基部10の内部空間11を画定する壁部のうち一の壁部が相対的に肉薄になる肉薄部12の外部空間と接する方の面に取り付けられた第1導電性部材21と、を備える。第1導電性部材21は、第1導電性部材21を取り付けた肉薄部12の法線と直交する面方向について等方的ゲージ率を有する薄膜により構成されている。また、圧力に対する出力値のフルスケール誤差が3%以下である。
【選択図】
図1
【特許請求の範囲】
【請求項1】
外部空間に対して密閉された内部空間を有する基部と、
前記基部の前記内部空間を画定する壁部のうち一の壁部が相対的に肉薄になる肉薄部の外部空間と接する方の面に取り付けられた第1導電性部材と、を備え、
前記第1導電性部材が、前記第1導電性部材を取り付けた肉薄部の法線と直交する面方向について等方的ゲージ率を有する薄膜により構成され、
圧力に対する出力値のフルスケール誤差が3%以下であることを特徴とする
圧力センサ。
【請求項2】
請求項1に記載の圧力センサであって、
前記肉薄部の形状が略円板状であり、
前記肉薄部の厚さをtとし、前記肉薄部の直径をaとし、前記肉薄部のヤング率をEとし、圧力を測定するために設定された測定範囲の最大値をPMAXとしたときにおける、(a2・(PMAX))/(E・t2)が9.61×10‐3未満となることを特徴とする
圧力センサ。
【請求項3】
請求項2に記載の圧力センサであって、
前記肉薄部がジルコニアからなり、前記肉薄部の厚さが0.05mm以上であり、前記肉薄部の直径が2mm以上4mm以下であることを特徴とする
圧力センサ。
【請求項4】
請求項1に記載の圧力センサであって、
水素ガス雰囲気下で用いられることを特徴とする圧力センサ。
【請求項5】
請求項1~4にいずれか記載の圧力センサの前記第1導電性部材が設けられる面において、第2導電性部材が前記肉薄部を囲む周の一部または全部に連続的または非連続的に設けられることを特徴とする
流体監視センサモジュール。
【請求項6】
請求項5に記載の流体監視センサモジュールであって、
前記第1導電性部材がCr基薄膜またはCr-N薄膜により構成されていることを特徴とする
流体監視センサモジュール。
【請求項7】
請求項5に記載の流体監視センサモジュールであって、
前記第2導電性部材がNi薄膜により構成されていることを特徴とする
流体監視センサモジュール。
【請求項8】
請求項5に記載の流体監視センサモジュールであって、
水素ガス雰囲気下で用いられることを特徴とする流体監視センサモジュール。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、流体の圧力を高精度に測定する圧力センサに関し、反応性の高い流体、特に水素ガス雰囲気中の高感度圧力測定に好適な圧力センサに関する。また、本発明は、該圧力センサを用いた流体監視センサモジュールに関する。
【背景技術】
【0002】
近時、家庭用燃料電池の普及、燃料電池自動車の出現、およびそれにともなう水素ステーションの建設等、水素エネルギー社会の実現に向けた動きが加速しつつある。これらの水素を貯蔵し輸送するにあたって用いられる水素吸蔵合金に吸蔵する水素の量は印加する水素の圧力を変数として単調増加する。したがって、印加した水素の圧力を正確に計測することで、水素吸蔵合金に吸蔵した水素の量を正確に計測できる。
【0003】
しかし、水素をはじめとする反応性の高い流体は化学的活性が高いため、圧力センサの受感部と反応し、センサの精度および感度を低下させる。このことから、反応性の高い流体に対して化学的に安定である圧力センサの開発が求められている。さらに、水素エネルギー社会の実現に向けて、利便性を高めるために、圧力センサを小型にすることも求められている。
【0004】
特許文献1では、水素気体用の圧力センサが開示され、該センサはSi半導体からなる凹部を有する第1の半導体基板とSi酸化物によって接合して形成した第2の半導体基板を備えている。また、該センサは第1の半導体基板と第2の半導体基板によって形成された、基準圧力室とダイアフラムによって、圧力を測定する。
【0005】
特許文献2では、圧力センサを取り付けた水素気体用の流体部品が開示されている。該流体部品によれば、透過してくる水素気体を系外に排出する通気孔を有するため、水素気体がダイアフラムを透過してセンサ素子に気泡を発生させることにより生じる圧力誤差を抑制する。係る構造によりセンサ素子の水素脆化ひいては変形が防止される。
【0006】
これに対して、特許文献3では、水素ガス環境下で水素の影響を受けることなく安定して計測できるCrとNを主成分とする薄膜を含むひずみゲージおよびセラミックス基板を用いたひずみセンサが提案されている。また、特許文献4では、CrとNを主成分とする薄膜からなる起歪体を用いない圧力センサが提案されている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特許第6425794号公報
【特許文献2】特開2010-266425号公報
【特許文献3】特開2018-151204号公報
【特許文献4】特許第6850642号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかし、特許文献1に開示される圧力センサは、ピエゾ抵抗およびSi酸化膜を水素脆化から抑制する観点から、Si3N4などの水素気体に対しての保護膜を必要とし、構造や製造方法が複雑となり、センサの自由度ひいては流体部品の自由度が低下する。
【0009】
また、特許文献2に開示される圧力センサは、水素気体の排気用の通気孔から水素気体が外部に漏洩するので、一定の危険性を有する。また、通気孔の存在は、水素の浸透を完全には抑制できず、ひずみゲージおよびダイアフラムが水素脆化する可能性がある。
【0010】
特許文献3に開示されているひずみセンサは、水素脆化の影響を低減できる。該ひずみセンサに用いられる、CrとNを主成分とする薄膜からなる特許文献4のような起歪体を用いないタイプの圧力センサは、1MPa以上の圧力に対して圧力を安定的に測定できる一方、1MPa以下の低い圧力に対しては感度が低いため、細かい圧力の変動を計測できないという問題点がある。
【0011】
図24によると、水素ガスが0.1~1.0MPaの間で印加するときに、水素吸蔵量が大幅に変化するので、圧力センサを水素貯蔵合金の水素吸蔵量計測のために用いる場合、該区間の圧力を高精度かつ高感度で検出する必要がある。しかし、水素ガスのように活性がある物質に対して、従来のひずみセンサ用の合金や半導体を受感部に用いると、水素脆化により、センサの性能が著しく低下する。また、一般的な圧力センサと同様に、水素ガス容器壁等、水素と外部とを隔てる箇所に金属製ダイアフラム式圧力センサが設置される場合、ダイアフラムを成す薄い隔膜を通して水素が透過したり、隔膜が水素劣化して耐久性が低下したり、破裂したりする危険性があるという問題点がある。
【0012】
また、細かい圧力の変動をとらえるために、起歪体の厚さを薄くする場合、ひずみと圧力の関係において、線形的影響よりも、非線形的影響が大きくなり、センサとして用いる場合、センサ出力(電圧、電気抵抗値など)がセンサ入力(圧力、ひずみなど)に対して非線形となり、センサの自由度が損なわれるという問題点がある。
【0013】
かかる問題に鑑みて、本発明は、従来の圧力センサよりも向上した優れた圧力分解能かつ優れた測定精度を有するとともに、反応性の高い流体を含めた、様々な流体に対する安定度も備え、出力が入力に対して線形となるような小型可能かつ自由度の高い圧力センサおよび当該圧力センサを用いた流体監視センサモジュールを提供することを目的とする。
【課題を解決するための手段】
【0014】
(1)本発明の圧力センサは、
外部空間に対して密閉された内部空間を有する基部と、
前記基部の前記内部空間を画定する壁部のうち一の壁部が相対的に肉薄になる肉薄部の外部空間と接する方の面に取り付けられた第1導電性部材と、を備え、
前記第1導電性部材が、前記第1導電性部材を取り付けた肉薄部の法線と直交する面方向について等方的ゲージ率を有する薄膜により構成され、
圧力に対する出力値のフルスケール誤差が3%以下であることを特徴とする。
【0015】
かかる構成によれば、基部が有する内部空間の圧力が任意に調整されるので、基部の外部空間と当該内部空間との圧力差の範囲が、起歪体として機能する当該基部の肉薄部に適当なひずみを生じさせる観点から適当に制御される。これにより、肉薄部のうち基部の外部空間に面した外側面に形成された導電性部材の、当該肉薄部のひずみに応じた信号の出力強度の向上が図られ、ひいては基部の外部空間の圧力の測定精度及び分解能の向上が図られる。さらに、導電性部材が等方的ゲージ率を有しているので、当該導電性部材が非等方的に形成されていたとしても、さまざまな形態の起歪体(肉薄部)のひずみに対して出力信号の強度が十分に確保される。よって、基部の肉薄部の外部空間と接する方の面に取り付けられる導電性部材の形成の自由度の向上が図られる。また、肉薄部の直径および厚さが調整されるので、第1導電性部材の出力は圧力に対して、優れた線形性を有する。
【0016】
また、かかる構成によれば、フルスケール誤差が3%以下であるので、第1導電性部材の出力は圧力に対して、優れた線形性を有する。このため、圧力センサとして出力が入力に対して線形となるので、センサとしての自由度が向上する。
【0017】
(2)また、(1)の圧力センサによれば、
前記肉薄部の形状が略円板状であり、
前記肉薄部の厚さをtとし、前記肉薄部の直径をaとし、前記肉薄部のヤング率をEとし、圧力を測定するために設定された測定範囲の最大値をPMAXとしたときにおける、(a2・(PMAX))/(E・t2)が9.61×10‐3未満となることが好ましい。
【0018】
(3)また、(1)または(2)の圧力センサによれば、
前記肉薄部がジルコニアからなり、前記肉薄部の厚さが0.05mm以上であり、前記肉薄部の直径が2mm以上4mm以下であることが好ましい。
【0019】
(4)また、(1)~(3)のいずれかの圧力センサは、
水素ガス雰囲気下で用いられることが好ましい。
【0020】
(5)本発明の流体監視センサモジュールは、
(1)~(4)のいずれか記載の圧力センサの前記第1導電性部材が設けられる面において、第2導電性部材が前記肉薄部を囲む周の一部または全部に連続的または非連続的に設けられることを特徴とする。
【0021】
かかる構成によれば、第2導電性部材が第1導電性部材と同じ面に設けられている。このため、第2導電性部材が第1導電性部材とは異なる範囲(例えば、第1導電性部材よりも高い範囲)の圧力または異なる物理量(例えば温度)を測定できる。このため第1導電性部材が計測できない範囲の圧力を第2導電性部材が優れた線形性を維持しつつ測定することができる。また、第2導電性部材が温度を測定する場合、温度変化に伴う肉薄部の微小な圧力変動を測定することができ、圧力を高分解能に測定することができる。また、圧力および温度の両方測定できるので、流体の状態を正確に把握することができる。
【0022】
(6)また、(5)の流体監視センサモジュールによれば、
前記第1導電性部材がCr基薄膜またはCr-N薄膜により構成されていることが好ましい。
【0023】
かかる構成によれば、Cr基薄膜またはCr-N薄膜からなる第1導電性部材が用いられるので、高感度であり、外部空間に存在する流体が水素ガスであり、圧力差が1MPaの圧力を外部空間の圧力として印加しても、水素の影響を受けることなく、水素ガス雰囲気中で圧力が測定される。したがって、反応性が高い流体の圧力センサとして好適である。
【0024】
(7)また、(5)または(6)の流体監視センサモジュールによれば、
前記第2導電性部材がNi薄膜により構成されていることが好ましい。
【0025】
かかる構成によれば、第2導電性部材がNi薄膜により構成されている。このため、熱電対およびサーミスタなどと比較して、Ni薄膜は温度に対して優れた線形性を有する出力を提供し、内部空間の圧力が維持され、外部空間の圧力が高精度かつ高感度に測定することができる。
【0026】
(8)また、(5)~(7)のいずれかの流体監視センサモジュールによれば、水素ガス雰囲気下で用いられることが好ましい。
【図面の簡単な説明】
【0027】
【
図1】本発明の第1の実施形態に係る流体監視センサモジュールの概略構成を示す上面図である。
【
図2】
図1に示した本発明の第1の実施形態に係る流体監視センサモジュールのII-II線に沿った断面などを示す図である。
【
図3】大変形の影響を加えた構造解析で求めた肉薄部のひずみと印加圧力との関係を示した図である。
【
図4】
図3の0.1MPaにおけるひずみ量を9倍した値をXとし、
図3の0.9MPaにおけるひずみ量Yとしたときにおける測定誤差(Y-X)/Xおよび肉薄部の厚さの関係を示した図である。
【
図5】印加圧力が0.9MPaにおける肉薄部のヤング率と、直径と、厚さと、ひずみとの関係を示した図である。
【
図6】印加圧力が0.1MPaにおける肉薄部のヤング率と、直径と、厚さと、ひずみとの関係を示した図である。
【
図7】実施例1の流体監視センサモジュールの圧力センサに変動する圧力を印加した際の外部空間の圧力と第1導電性部材の抵抗値の時系列変動を示す図である。
【
図8】実施例1の流体監視センサモジュールの圧力センサに変動しない圧力を印加した際の外部空間の圧力と第1導電性部材の抵抗値の時系列変動を示す図である。
【
図9】実施例1の流体監視センサモジュールの圧力センサにおける、第1導電性部材の抵抗値と外部空間の圧力との関係を示す図である。
【
図10】実施例1の流体監視センサモジュールの温度センサにおける、第2導電性部材の抵抗値と外部空間の温度との関係を示す図である。
【
図11】実施例1の流体監視センサモジュールの温度センサについて、圧力変動における、第2導電性部材によって測定された温度変動と、熱電対によって測定した温度変動との比較を示した図である。
【
図12】実施例1の流体監視センサモジュールの温度センサにおける、変動しない圧力を印加した際の第2導電性部材によって測定された温度変動と、熱電対によって測定した温度変動との比較を示した図である。
【
図13】実施例5の圧力センサにおける、第1導電性部材の抵抗値と外部空間の圧力との関係を示す図である。
【
図14】比較例1の肉薄部のひずみと印加圧力の関係を示す図である。
【
図15】比較例2の肉薄部のひずみと印加圧力の関係を示す図である。
【
図16】外部空間(圧力容器内)に水素ガスを導入した際の圧力の時系列変動及び実施例3で構成された流体監視センサモジュールの圧力センサの第1導電性部材の抵抗値の時系列変動を示す図である。
【
図17】PCT装置および実施例3を用いた際の、水素印加圧力の飽和値と水素貯蔵量の関係を表す図である。
【
図18】
図17の実施例3を用いた際の、水素印加圧力と水素貯蔵量の関係に補正を施した図である。
【
図19】水素ガス印加実験2におけるPCT装置の圧力センサの電圧値の時系列変動を示した図である。
【
図20】水素ガス印加実験2における圧力容器内の流体監視センサモジュールの第1導電性部材21の抵抗値の時系列変動を示した図である。
【
図21】
図19の電圧値に基づいて計測されたPCT装置の圧力センサによって測定された圧力および
図20の抵抗値に基づいて計測された圧力容器内の流体監視センサモジュールによって測定された圧力の時系列変動を示した図である。
【
図22】水素ガス印加実験2におけるPCT装置の温度センサによって計測された温度の時系列変動を示した図である。
【
図23】、水素ガス印加実験2における圧力容器内の流体監視センサモジュールの第2導電性部材の抵抗値に基づいて測定された温度の時系列変動を示した図である。
【
図24】標準的な水素貯蔵合金を用いた際の、水素印加圧力の飽和値と水素貯蔵量の関係を表す図である。
【発明を実施するための形態】
【0028】
本発明の実施形態は下記の説明及び図において説明される。
図1は本発明の第1の実施形態としての流体監視センサモジュールの上面図を示す図である。また、
図2は本発明の第1の実施形態に係る流体監視センサモジュールの断面図を示す図である。本発明の流体監視センサモジュールは内部空間11を有した基部10と、基部10の肉薄部12の外部空間側の面に取り付けられた第1導電性部材21および第2導電性部材22を備えている。流体監視センサモジュールの構成要素の位置および姿勢の説明のため、肉薄部12の幾何重心を極点とする3次元円筒座標系(r、θ、Z)を用いる。
【0029】
基部10は外部空間に対して密閉された内部空間11を有するように構成されている。基部10の外郭形状は四角柱として構成されるが、これに限られない。基部10の外郭形状は円柱、三角柱、その他の多角形柱及び測定装置に対して最適な形状となる任意の形状であってもよい。また、圧力測定装置として様々な回路に適用するために、それぞれの回路及び測定装置に倣った最適な形状を有してもよい。内部空間11の形状は円柱として、構成されるが、これに限られない。内部空間11の形状は円柱、円錐台、角錐台、円錐、角錐、四角柱、その他の多角柱及び測定装置に対して最適な形状となる任意の形状であってもよい。また、内部空間11及び基部10の外郭形状が異なっていても同じであってもよい。その他、基部10の厚さ、構造、および設置方法は、変形を誘起させず、内部空間11の圧力を保持できるように選択されてもよい。
【0030】
基部10は内部空間11を画定する壁部のうち一の壁部が相対的に肉薄になる肉薄部12を備えるように構成されている。肉薄部12は基部10と一体に構成されているが、これに限られず、肉薄部12は基部10に対して着脱可能に取り付けられてもよい。この場合、肉薄部12は内部空間11を外部空間に対して密閉させるように取り付けられる。肉薄部12を基部10に取り付ける方法として、接着剤を用いた接着、ネジを用いた螺着、および吸引器を用いた吸着など内部空間11を外部空間に対して密閉させることができる取り付け機構により取り付けられる。
【0031】
内部空間11は内部空間の圧力を一定の圧力に保つように構成されている。内部空間11には予め既知の圧力を有する流体が導入される。内部空間の圧力は、肉薄部12が取り付けられる前に、変圧可能なグローブボックス内にて調整された圧力下で任意の圧力に選択される。また、この時、グローブボックス内の流体も任意に選択されることで、内部空間の流体が任意に選択される。流体の例として、空気や窒素などが用いられるが、気体にかかわらず、オイルなどの液体も用いられる。また、内部空間11は外部空間に対して密閉されることで該圧力を保持するが、これに限られない。内部空間11の圧力を一定に保つために、外部空間に配置される圧力調整機構を基部10の内部空間11に連通させてもよい。圧力調整機構として、真空吸引装置または高圧ガス供給装置、高圧流体供給装置などが用いられる。
【0032】
肉薄部12が着脱可能な場合、肉薄部12は、肉薄部12の幾何重心を極点Oとし、Z方向を厚さ方向とし、一対の主面としてr-θ平面に略平行な一対の主面として、外部空間と接する第1の面111および第1の面111の反対側で内部空間11と接する第2の面112を有するように形成されている。肉薄部12の形状は矩形又は円形、楕円形、三角形、その他の多角形及び測定装置に対して最適な形状となる任意の形状から選択され、内部空間11を外部空間から密閉するような構造を有するように形成される。この時、肉薄部12の極点0及び内部空間11のz軸射影の幾何重心がr-θ平面上で一致していてもよいし、一致しなくてもよい。第2の面112には、極点0を中心に肉薄部12の全周を連続的に基部10に取り付ける取り付け機構が備えられている。
【0033】
基部10は、反応性の高い流体中での使用を考慮すると、化学的に影響を受けないで、化学的に安定し、大圧力を印加しても変形せずに、内部空間11の圧力を一定に保持できるセラミックス、特にジルコニアにより構成されていることが好ましい。セラミックスの場合、第1導電性部材21および第2導電性部材22に電気的な影響を与えないため、絶縁膜も不要となる。本実施形態では、基部10として、ジルコニアを用いているが、これに限らない。基部10として、絶縁層を形成した金属、ポリイミド等の樹脂、またはジルコニア以外のセラミックスなどその他測定装置に対して最適な部材を用いてもよい。また、肉薄部12の材質は基部10と同じ材質であってもよいし、別の材質であってもよい。特に、肉薄部12はスケール誤差を低減する観点から、後述する条件を満たすヤング率を有する材質であることが好ましい。
【0034】
第1導電性部材21および第2導電性部材22のそれぞれに、物理的接触の影響を低減するため、または、反応性の高い流体への影響をさらに抑制するために、保護膜を設けてもよい。保護膜としては、二酸化ケイ素(SiO2)を用いることが好ましいが、これに限定されず、酸化アルミニウム(Al2O3)、窒化アルミニウム(AlN)、窒化ケイ素(Si3N4)など当業者にとって、通常使用しうるものが用いられてもよい。
【0035】
内部空間の圧力と外部空間の圧力の差が大きい場合、肉薄部12に大変形に伴う変形(ひずみと応力との間に生じる非線形的な変形)が生じる。大変形によって第1導電性部材21の入力に対する出力が非線形的となり、フルスケール誤差(非直線性)も大きくなる。圧力センサのフルスケール誤差は、理想的には設定された圧力の測定範囲内で0であることが好ましいが、実在の物質を用いるので、0.01%以上となる場合がある。したがって、後段で詳述するように、本発明では、圧力センサのフルスケール誤差が設定される圧力の測定範囲内で、好ましくは3%以下、より好ましくは2.7%以下、さらに好ましくは2%以下とするのが良い。そして、当該設定される圧力の測定範囲において圧力センサのフルスケール誤差が所定値以下となるように、設定された圧力の測定範囲の最大圧力において発生するひずみが所定の数値以下、すなわち大変形の影響を無視できるほどの範囲にするように、肉薄部12の材質および形状を設定することが好ましい。
【0036】
図3は、肉薄部12の材質がジルコニア(ヤング率210GPa)であり肉薄部12の形状が略円板状である場合における、大変形の影響を加えた構造解析で求めた肉薄部12のひずみと印加圧力(0MPa以上0.9Mpa以下)との関係を示した図である。
図3において、肉薄部12の直径は2mmである。
図5を参照するに、肉薄部12の厚さが0.04mm以下だと明白に直線性が悪いことが明らかとなった。
【0037】
図4は、
図3におけるひずみと印加圧力との間の測定誤差および肉薄部12の厚さの関係を示した図である。ここで、測定誤差の計算にあたり、
図3の0.1MPaにおけるひずみ量を9倍した値を理論値Xとし、
図3の0.9MPaにおけるひずみ量を実験値Yとしたうえで、測定誤差を(Y-X)/Xとして計算した。なお、測定誤差の計算において、理論値Xを(P
2/(P
1+ΔP))・ε(P
1+ΔP)とし、実験値Yをε(P
2)として計算できる。ここで、P
1は、圧力の測定範囲の最小値であり、P
2は圧力の測定範囲の最大値であり、ΔPは圧力センサの分解能である。なお、ひずみεは圧力Pの関数である。一般的に、測定誤差が10%を超えると、圧力の値が1割変化するので測定装置として用いる際の利便性が悪くなる。後述する表1の通り肉薄部12の直径が2mmで厚さが0.04mmの場合のフルスケール誤差は5.06%である。このことから、直線性が良好な状態からひずみ量が増加する場合に約5%以上のフルスケール誤差は測定誤差を増大させて測定精度を大幅に悪化させることになる。よって、後述する表1における灰色で囲まれた数値は約(小数点1桁目で四捨五入して)5%以上の不良な条件ということになる。一方、灰色で囲まれていない数値は測定誤差が余裕をもって10%未満となることから、それらの範囲としてフルスケール誤差が約(小数点1桁目で四捨五入して)3%以下であれば十分にセンサとして、機能させることができる。したがって、フルスケール誤差が3%以下であることが好ましい。
【0038】
表1は、肉薄部12の材質がジルコニア(ヤング率210GPa)であり肉薄部12の形状が略円板状である場合における、大変形の影響を加えた構造解析で求めた肉薄部12のひずみと印加圧力(0MPa以上0.9Mpa以下)との間のフルスケール誤差(単位は%)を示した表であり、表2は肉薄部12の材質がジルコニア(ヤング率210GPa)であった場合の、肉薄部12に設定された測定範囲の最大圧力である0.9MPaの圧力を印加した際に発生する肉薄部12のひずみ量に関する表である。すなわち、表1において、設定された圧力(印加圧力(内部空間における圧力と外部空間における圧力との差))の測定範囲は、0MPa以上0.9Mpa以下である。
【0039】
【0040】
【0041】
肉薄部12の厚さが薄く、肉薄部12の直径が長いほど、大変形の影響を受け、印加圧力に対する出力としてのひずみの非線形性が上昇する。したがって、肉薄部12の厚さおよび直径は大変形の影響をうけない、かつ、1MPa程度の圧力においても十分にひずみを発生させる範囲に設定される。表1および表2で示される数値のうち、灰色が付された欄に記載された数値は、本発明の数値範囲から外れた数値範囲(0MPa以上0.9MPa以下の範囲内においてフルスケール誤差が3%超)である。このような条件を満たすために、0MPa以上0.9MPa以下を測定範囲として圧力センサを用い、肉薄部12が略円板状のジルコニアである場合、肉薄部12の厚さは好ましくは0.05mm以上、より好ましくは0.07mm以上1.0mm以下であり、さらに好ましくは、0.08mm以上0.1mm以下となり、肉薄部12の直径は好ましくは4mm以下、より好ましくは2mm以上4mm以下、さらに好ましくは3mmとなる。
【0042】
また、表2を参照すると、設定された測定範囲における最大圧力において発生する肉薄部12に発生するひずみの絶対量が0.00173以上になると、圧力センサのフルスケール誤差が3%を超すことが明らかとなった。すなわち、大変形の影響を抑制するためには、肉薄部12に発生するひずみの絶対量が好ましくは0.00173未満、より好ましくは0.00151以下、さらに好ましくは0.00148以下である。
【0043】
一般的に、肉薄部12の形状が略円板状である場合、肉薄部12に発生するひずみは以下の式(1)を満たす。ここで、εは肉薄部12に発生するひずみであって、Pは印加圧力であって、tは肉薄部12の厚さであって、aは肉薄部12の直径であって、Eは肉薄部12のヤング率であって、αは定数である。
【0044】
ε=αP(a2/(E・t2)) ・・・(1)
【0045】
図5には、式(1)に基づいて計算された、様々な物質の肉薄部12のヤング率と、直径と、厚さと、ひずみ量の絶対値との関係を示した図が示される。ここで、αは構造解析により求められ、上記実施形態においては0.18である。Pには圧力を測定するために設定された測定範囲の最大値であり例として0.9MPaを代入した。
図5Aは、ヤング率が10GPaの図であり、
図5Bはヤング率が210GPaの図であり、
図5Cはヤング率が500GPaの図である。
図6には、式(1)に基づいて計算された、様々な物質の肉薄部12のヤング率と、直径と、厚さと、ひずみ量の絶対値との関係を示した図が示される。ここで、αは構造解析により求められ、上記実施形態においては0.18である。Pには圧力を測定するために設定された測定範囲の最大値であり、例として0.1MPaを代入した。
図6Aは、ヤング率が10GPaの図であり、
図6Bはヤング率が210GPaの図であり、
図6Cはヤング率が500GPaの図である。前述するように、大変形の影響を抑制し、フルスケール誤差を低減する観点からは、圧力を測定するために設定された測定範囲の最大値の圧力において肉薄部12に発生するひずみの絶対量が好ましくは0.00173未満、より好ましくは0.00151以下、さらに好ましくは0.00148以下である。
図5および
図6のそれぞれには、ひずみが多くとも0.00148となる例を示している。すなわち、
図5および
図6のそれぞれの図において、直径と、厚さとは、ヤング率および測定範囲の最大圧力に依存され、図で表示される、ε=0.00148以下となる範囲をとることが最も好ましい。
【0046】
すなわち、肉薄部12の形状が略円板である場合、測定範囲内においてフルスケール誤差を3%以下とするために、肉薄部12の厚さをtとし、肉薄部12の直径をaとし、肉薄部12のヤング率をEとし、圧力を測定するために設定された測定範囲の最大値をPMAXとしたときにおける、(a2・(PMAX))/(E・t2)が、好ましくは9.61×10-3未満、より好ましくは8.39×10‐3以下、さらに好ましくは8.22×10-3以下となるのが良い。また、肉薄部12の形状が略円板状である場合、測定範囲内において適切に測定するほどのひずみを発生させる観点から、(a2・(PMAX))/(E・t2)が、好ましくは1.0×10-10以上、より好ましくは5.56×10-9以上、さらに好ましくは1.0×10-9以上となるのが良い。
【0047】
また、肉薄部12の形状は、印加圧力に対して、対称的なひずみを発生させる観点から、略円板状であることが好ましく、上記実施形態では、略円板状の形状についての説明をしたが、これに限らず、略円板状ではなくとも、肉薄部12のヤング率および肉薄部12の第1の面111を構成する2軸のうちいずれかの軸に関する断面二次モーメントが大変形およびフルスケール誤差を抑制する観点から調整されてよく、任意の材質および任意の形状を採用することができる。
【0048】
第1の面111には、第1導電性部材21が肉薄部12の一部または全体を覆うように水平姿勢となるように取り付けられ、第2導電性部材22が肉薄部12を囲む周の一部または全部を連続的または非連続的に水平姿勢となるように取り付けられる。この時、第1導電性部材21および第2導電性部材22のそれぞれのz軸射影の幾何重心が、r-θ平面上で極点0と一致してもよいが、これに限られない。また、第1導電性部材21の形状は矩形によって構成される薄膜であるが、これに限られず、第2導電性部材22の形状は略コの字状、であるが、これに限られない。第1導電性部材21の形状は円形または楕円形、扇形、三角形、その他の多角形並びにこれら形状の輪郭線に沿った線状または帯状の形状及び測定装置に対して最適な形状となる任意の形状から選択され構成されてもよいし、第2導電性部材22の形状は円環形または楕円環形、多角形の環形状並びにこれら環形状の一部が欠落した形状および測定装置に対して最適な形状となる任意の形状から選択され構成されてもよい。また、第1導電性部材21は、特許第6874045号公報のような配置パターンをとってもよい。
【0049】
第1導電性部材21は、ゲージ率(ゲージ率3以上)について、肉薄部12の法線と直交する面方向において、等方的ゲージ率を有しており、例えば、特許文献1に記載されているCrおよび不可避不純物からなるCr薄膜、または、Cr、Nおよび不可避不純物からなるCr-N薄膜により構成されている。Cr-N薄膜は、例えば、一般式Cr1 0 0-xNxで表され、組成比xは原子%で0.0001≦x≦30である。
【0050】
また、第1導電性部材21は、一般式Cr1 0 0-xMnx(xは原子%であり、0.1≦x≦34である)または一般式Cr1 0 0-xAlx(xは原子%であり、4≦x≦25である)で表されるCr基薄膜により構成されていてもよい。第1導電性部材21は、一般式Cr1 0 0-x-yAlxNy(x、yは原子%であり、4≦x≦25、0.1≦y≦20である。)で表されるCr基薄膜により構成されていてもよい。Cr-N薄膜は、抵抗温度係数(TCR)が極めて小さいため(<±50ppm/℃)、温度変化に対して安定であるため、圧力感度及び圧力測定精度は温度に依存しない。
【0051】
第1導電性部材21を構成する、Cr薄膜およびCr-N薄膜を含むCr基薄膜を成膜する手法は特に限定されないが、Cr基薄膜またはCr-N薄膜の形成が可能な合金を原料とした蒸着法、CrターゲットまたはCr-N薄膜の形成が可能な合金ターゲット、複合ターゲットまたは多元ターゲットを用いたスパッタリング法、Cr-N薄膜の場合は、窒素ガスを含む成膜雰囲気を用いた反応性スパッタリング法、上記薄膜の形成が可能な原料を用いた気相輸送法、もしくはめっきを含む液相法等により成膜してもよい。また、このような薄膜を形成する際に、マスク法などを用いて所望の形状の薄膜を形成してもよいし、薄膜を形成した後、ドライエッチング(プラズマエッチング、スパッタエッチング等)、化学エッチング(腐食法)、リフトオフ法、レーザトリミング法などのエッチングまたはトリミング加工などを施すことにより測定装置に対して最適な形状に加工してもよい。さらに、Cr薄膜およびCr-N薄膜を含むCr基薄膜は成膜したままで使用してもよいが、大気中、非酸化性ガス中、還元性ガス中または真空中で180℃以上1000℃以下の温度の加熱処理を行うことが好ましい。
【0052】
また、基部10のz軸射影、肉薄部12および第1導電性部材21の形状は、極点Oを通る第1の面111の垂線に平行な軸線(z軸)を基準とする回転対称性または極点Oを通る第1の面111に垂直な平面(例えば、r-z平面)を基準とする鏡像対称性を有してもよい。
【0053】
本発明の流体監視センサモジュールの圧力センサ(第1導電性部材21)を圧力測定装置として使用する場合には、本発明の第1導電性部材21による圧力センサをハンダまたはワイヤーボンディングで配線接続し、4端子法で測定するがこれに限られない。測定装置の構成にとって最適な回路として構成される。
【0054】
以上のような構成の流体監視センサモジュールによれば、第1導電性部材21を構成するCr基薄膜またはCr-N薄膜の電気抵抗値がダイアフラム方式で測定されるので、圧力に対する感度が大きく、流体の圧力を高感度に検出することができる。また、Cr薄膜およびCr-N薄膜を含むCr基薄膜の横感度を利用した導電性部材の周方向配置や局部配置によってダイアフラムの隔膜の幅(面積)を小さくすることができ、構造が極めて簡易的であるため、流体監視センサモジュールを小型化でき、小型容器内に内蔵可能で、その容器内の圧力の微変動を測定する。このため、従来に無い簡便な構造からなる、高感度、高精度かつ小型化可能な流体監視センサモジュールを実現する。さらに、流体監視センサモジュールを構成する部材が反応性の高い流体の影響を受けずに圧力測定することができるので、反応性の高い流体、特に水素ガス雰囲気中における流体監視センサモジュールとして好適である。また、Cr薄膜およびCr-N薄膜を含むCr基薄膜は、反応性に高い流体に対して、安定的であるため、保護膜を使用しなくてもよい。したがって、生産の自由度などを向上しうることができる。
【0055】
第2導電性部材22は、第1導電性部材21と同じ素材(Cr薄膜およびCr-N薄膜を含むCr基薄膜)を用いることができる。この場合、上記と同様の製法によって製造されることが好ましい。このような、第2導電性部材22は、肉薄部12とは別の領域に配置されるので、特許第6850642号のように、高圧力域(1MPa以上)の圧力センサとして、利用することができ、制御装置などによって第1導電性部材21および第2導電性部材22のうちどの出力を代表するかを制御することで、広範囲の圧力を計測できる。
【0056】
また、第2導電性部材22は、圧力以外の流体の物理量を計測できるセンサとなりうる部材を用いてもよい。例えば、第2導電性部材22は温度を測定するための部材である。このような部材としては温度変化に対する抵抗変化(抵抗温度係数)が大きい材料が適しており、例えばNi薄膜、Pt薄膜などが用いられてもよい。
【0057】
第2導電性部材22を構成する、薄膜の製法は特に限定されないが、第2導電性部材22としてNi薄膜が用いられる場合、Ni薄膜の形成が可能なNiを原料とした蒸着法、Niターゲットを用いたスパッタリング法、上記薄膜の形成が可能な原料を用いた気相輸送法、もしくはめっきを含む液相法等により成膜してもよい。また、このような薄膜を形成する際に、マスク法などを用いて所望の形状の薄膜を形成してもよいし、薄膜を形成した後、ドライエッチング(プラズマエッチング、スパッタエッチング等)、化学エッチング(腐食法)、リフトオフ法、レーザトリミング法などのエッチングまたはトリミング加工などを施すことにより測定装置に対して最適な形状に加工してもよい。さらに、Ni薄膜は成膜したままで使用してもよいが、大気中、非酸化性ガス中、還元性ガス中または真空中で100℃以上500℃以下の温度の加熱処理を行うことが好ましい。
【0058】
なお、本発明は上記実施形態に限らず、本発明の技術的思想内で当該分野の通常の知識を有する者によってその変形や改良が可能である。例えば、上記実施形態では、活性ガス雰囲気、特に水素ガス雰囲気の圧力測定に本発明を用いた場合を示したが、これに限らず、酸素やフッ素ガス、青酸ガス、などの活性ガスに用いてもよい。また、種々の流体への化学的安定度に優れることから、腐食にも強く、大気圧測定や水中圧力測定用の長期間の間利用される圧力センサおよび該圧力センサを用いた流体監視センサモジュールにも用いることができる。
【実施例0059】
以下、本発明の実施例について説明する。表3は本発明の実施例と比較例のそれぞれを示した表である。構造体形状Aは、基部10の第1の面111が一辺4mmの正方形であり、基部の高さが3mmとして構成され、肉薄部12が0.05mmの厚さを有し、2mmの直径を有する円として構成される形状である。構造体形状Bは、基部10の第1の面111が一辺5mmの正方形であり、基部の高さが3mmとして構成され、肉薄部12が0.07mmの厚さを有し、3mmの直径を有する円として構成される形状である。構造体形状Cは、基部10の第1の面111が一辺10mmの正方形であり、基部の高さが5mmとして構成され、肉薄部12が0.03mmの厚さを有し、6mmの直径を有する円として構成される形状である。構造体形状Dは、基部10の第1の面111が一辺10mmの正方形であり、基部の高さが5mmとして構成され、肉薄部12が0.1mmの厚さを有し、6mmの直径を有する円として構成される形状である。また、実施例1~4は、第1実施形態の流体監視センサモジュールであり、Ni薄膜からなる第2導電性部材22が肉薄部12の周を囲む略コの字状に設けられ、第2導電性部材22を温度センサとして用い、4極端子法で電気的な出力を取り出した。
【0060】
【0061】
ここでは、それぞれの構造体形状の基部10に、それぞれの肉薄部12の直径に対応する直径かつ構造体形状AおよびBとしては0.5mm、構造体形状CおよびDとしては1mmの深さとなる円筒状の凹部を形成し、基部の上に、それぞれの構造体形状に示した厚さにより構成された肉薄部12を接着剤にて接着する。この時、凹部は肉薄部12によって外部空間に対して覆われて、内部空間11を形成し、内部空間11に0.1MPaの空気が導入され、内部空間11の圧力を0.1MPaに保持する。実施例1~4および比較例1、2については、肉薄部12の外部空間と接する方の面の中央に、厚さ0.1μm、ミアンダ状により構成された第1導電性部材21を配置し、その電極部分に0.5μm厚のAu/Ni/Cr積層薄膜を重ねて形成した後、そこを介して該導電性部材をハンダにて配線接続し、4端子法の回路を形成し、外部空間の圧力(印加圧力)を信号として取り出した。なお、実施例1および3については、導電性部材上にSiO
2からなる保護膜を形成した。また、実施例5および6については、複数の第1導電性部材21を特許第6874045号公報における
図12のような配置パターンをとるように設け、それぞれの第1導電性部材21の抵抗値をブリッジ法にて回路(特許第6874045号公報における
図13)を形成し、外部空間の圧力(印加圧力)を信号として取り出した。
【0062】
(実施例1)
第1の実施形態の構成で形成された流体監視センサモジュールの肉薄部12が取り外され、凹部に実際の実験環境下の大気を導入し、内部空間11の圧力を0.1MPa(実験室内の大気圧)に保持し、肉薄部12が凹部を外部空間に対して密閉するように、接着剤を用いて基部に接着された。以上のような、内部空間11の圧力を調整した流体監視センサモジュールが圧力容器内に装入されて、容器内に不可避物質を含む窒素ガスを導入した。
図7に示されているように、圧力容器内の圧力(外部空間の圧力)を0.1MPaから0.1MPaごとに上昇させて1.0MPaまで(0.1MPaの圧力容器に追加する印加圧力としては0MPaから0.1MPaごとに上昇させて0.9MPaまで)加圧させたのち、0.1MPaごとに減少させて0.1MPaまで(印加圧力としては0MPaまで)減圧し、外部空間の圧力に対する流体監視センサモジュールの出力信号(第1導電性部材21の抵抗値)を取り出した。また、流体監視センサモジュールについて圧力印加状態を長時間保持した場合の安定性を調べるために、
図8に示すように圧力を圧力容器内の圧力1.0MPa(印加圧力0.9MPa)で64時間維持させた状態で、流体監視センサモジュールの出力信号(第1導電性部材21の抵抗値)を取り出した。
【0063】
図9は
図8および
図7で示されるような圧力変動(印加圧力の変動)と第1導電性部材21の抵抗値との関係を示す図である。
図9に示すように、実施例1は特許文献4に対して、外部空間の圧力の変動に関連して、優れた感度を有することが確認された。実施例1において、外部空間の圧力が1.0MPa(印加圧力としては0.9MPa)まで印加されても、素子の断線や導電性部材20の抵抗値の急激な変化は認めらなかった。また、外部空間の圧力が1.0MPa(印加圧力で0.9MPa)までの加減圧を施した際に、第1導電性部材21の抵抗値の初期値と加減圧後の抵抗値が変化しない。さらに、外部空間の圧力が1.0MPa(印加圧力で0.9MPa)の圧力を64時間維持しても、圧力に対する抵抗値の変化は変動しないので、圧力に対するヒステリシスは確認されない。また、大変形(応力がひずみに与える非線形的な変形)の影響もないため、優れた線形性(フルスケール誤差が3%以下(表3参照))を示すことが明らかになった。また、この変化に際して、S/N(Signal/Noise)は良好である。また、測定回路に電流を0.1mAとして入力すると、その圧力感度は1mV/MPaと見積もられ、圧力センサとして、優れた分解能を有することが明らかになった。
【0064】
図10は本発明の流体監視センサモジュールの第2導電性部材22の抵抗値と温度との関係の変化を示した図である。圧力容器内の圧力(外部空間の圧力)は一般的な容器壁固定型の圧力計で測定された。
図10から明らかなように、第2導電性部材22の温度特性はほぼ線形的な変化を示した。また、S/N(Signal/Noise)は良好である。
【0065】
図11は、圧力変動と、昇圧および降圧に基づいて変動する第2導電性部材22の抵抗値によって推定される温度と熱電対によって測定された温度とを比較した図であり、
図12は、外部空間の圧力を1.0Mpa(印加圧力を0.9MPa)で64時間維持させた状態における、第2導電性部材22と熱電対とよって測定された温度の時系列変動を示す図である。
図11および
図12から、本発明の流体監視センサモジュールにかかる第2導電性部材22によれば、圧力の変動に伴う温度変動をとらえ、熱電対同様に温度を測定できることが明らかになった。また、
図12により、熱電対と比較して、第2導電性部材22は、温度測定時のノイズが少なく、温度および圧力に対するヒステリシスの影響も少ないため、圧力変動する流体の温度センサとして好適に利用できる。また、圧力と温度は流体の状態および基部10の状態を決めるにあたって、相互に作用しているため、温度および圧力を正確に測定することによって、圧力ひいては流体の状態を正確に測定することができる。
【0066】
実施例2~4も図示しないが、実施例1同様、圧力に対して、ひずみひいては第1導電性部材21の抵抗値は優れた線形性(フルスケール誤差が3%以下(表3参照))を示した。
【0067】
(実施例5)
図13は実施例5にかかる流体監視センサモジュールの第1導電性部材21に基づくブリッジ出力値と印加圧力との関係を示した図である。
図13から第1導電性部材21を周方向に配置したとしても、優れた線形性(フルスケール誤差が3%以下)を示すことが明らかとなった。また、この変化に際して、S/N(Signal/Noise)は良好である。図示しないが、実施例6においても実施例5同様に優れた線形性(フルスケール誤差が3%以下(表3参照))を示した。
【0068】
(比較例1)
図14は比較例1にかかる流体監視センサモジュールの肉薄部12に発生するひずみと印加圧力との関係を示した図である。比較例1は、前述の通り、肉薄部12が0.03mmの厚さを有し、6mmの直径を有する円として構成されているため、大変形の影響を受け、ひずみが印加圧力に対して、単調増加する。微小変形の線形的な変動と比較して、大変形による非線形的な変動が大きいため、比較例2のひずみひいては電気的出力値(抵抗値など)は印加圧力に対して、0~0.9MPaの範囲内のフルスケール誤差が3%超((表3参照))となり、圧力センサひいては流体監視センサモジュールとしての自由度が損なわれる。
【0069】
(比較例2)
図15は比較例2にかかる流体監視センサモジュールの肉薄部12に発生するひずみと印加圧力との関係を示した図である。比較例2は、前述の通り、肉薄部12が0.1mmの厚さを有し、6mmの直径を有する円として構成されている。したがって、比較例1に比べて、印加圧力が小さい場合(0.3MPa以下の場合)には、肉薄部12のひずみは印加圧力に対して線形的なふるまいを示すが、0.3MPa以上の場合、大変形の影響が強くなり、線形性が損なわれる。そのため、比較例2のひずみひいては電気的出力値(抵抗値)は印加圧力に対して、0~0.9MPaの範囲内のフルスケール誤差が3%超(表3参照)となり、圧力センサひいては流体監視センサモジュールとしての自由度が損なわれる。
【0070】
(水素ガス印加実験1)
実施例3の構成で形成された流体監視センサモジュールの肉薄部12が取り外され、凹部に大気を導入し、内部空間11の圧力を0.1MPa(実験室内の大気圧)に保持し、肉薄部12が凹部を外部空間に対して密閉するように、接着剤を用いて基部に接着された。以上のような、内部空間11の圧力を調整した流体監視センサモジュールが圧力容器内に装入されて、容器内に水素ガスを導入した。また、圧力容器内には、水素貯蔵合金(LaNi5合金)が含まれている。
【0071】
図16には、圧力容器に印加した圧力と、流体監視センサモジュールの第1導電性部材21の抵抗値の時系列変動を示している。なお、当該実験においては、圧力容器を40℃のウォーターバスに浸して、圧力容器内の温度を40℃に保った。本実験では、
図16に示されているように、圧力容器内の圧力(外部空間の圧力)を0MPaから1MPaまで段階的に加圧させ、その後段階的に減圧させた。それぞれの加圧または減圧動作に移行する前に、約10分間の間隔をあけた。このとき、圧力および水素貯蔵合金の水素吸蔵量を計測しているが、計測にあたり、圧力および水素貯蔵合金の水素貯蔵量を一般的なPCT(P:圧力、C:吸蔵量、T:温度)特性評価装置を用いることで計測を行っている。
【0072】
(実験結果)
図16を参照するに、水素ガスをある一定量入れると流体監視センサモジュールの第1導電性部材21の抵抗値が圧力上昇と共に変化することが分かった。また、それぞれの加圧後、約10分間放置することで水素貯蔵合金が水素を吸蔵し、容器内印加圧力を低下させ各飽和圧力に至り安定になるが、当該圧力低下分の変動も抵抗値に変化を及ぼしていることが分かった。反対に、水素ガスの印加圧力を1MPaから段階的に減少させると当該圧力の減少に伴った、抵抗値の変動も観測された。また、それぞれの減圧後、約10分間放置することで水素貯蔵合金が水素を放出し、容器内印加圧力を上昇させ各飽和圧力に至り安定になるが、当該圧力上昇分の変動も抵抗値に変化を及ぼしていることが明らかとなった。また、当該実験中に、抵抗値の変動が圧力の変動と連動し、その連動が著しく逸脱していないことから、本発明における流体監視センサモジュールは、水素ガス雰囲気中に好適に利用できる。
【0073】
したがって、本発明の流体監視センサモジュールの第1導電性部材21は水素ガスの圧力の変動を細かい範囲で取得することが明らかとなった。また、水素貯蔵合金が含まれた圧力容器内における水素ガスの圧力の変動についても取得できるので、状態方程式等を用いることで、水素貯蔵合金の吸蔵量などを計測できることが明らかとなった。
【0074】
図17は、本発明の流体監視センサモジュールの第1導電性部材21によって測定された圧力変動に基づいて計測された水素貯蔵合金の水素貯蔵量(重量比)(横軸)と水素ガスの飽和圧力(MPa)(縦軸)との関係を示している。なお、流体監視センサモジュールの第1導電性部材21における圧力は、前述した、圧力と抵抗値との関係に関する結果に基づいて算出されている。
図17には、本発明の圧力センサで求めた結果とともに、PCT装置を用いて得られた結果が同時に示されている。
図17を参照するに、本発明の流体監視センサモジュールは、既存のPCT装置と同様に水素貯蔵合金の水素貯蔵量およびその放出量を測定できることが明らかとなった。なお、本発明の流体監視センサモジュールで得られた結果は、PCT装置で得られた結果に対して、同様の挙動を示していることから明らかなように、水素ガス雰囲気下においても、正確に水素ガスの増減をとらえることができる。PCT装置で測定された圧力に対して、本発明の流体監視センサモジュールで測定された圧力は若干のずれがあるものの、これはPCT装置で測定された圧力と本発明の流体監視センサモジュールで測定された圧力の測定位置および本発明の流体監視センサモジュールの測定系における抵抗値の変動によるものである。PCT装置では、圧力容器外の圧力を測定していることから明らかなように、圧力容器内の圧力を測定している本発明の流体監視センサモジュールに対して、若干の誤差が生じている。また、本発明の流体監視センサモジュールの第1導電性部材21の抵抗値と圧力との校正時には4端子測定で測定しているところ、水素ガス印加実験1においては、測定の関係上2端子法で測定している。このとき、測定系の抵抗値の変化により若干の誤差が生じている。
【0075】
図18は、
図17の流体監視センサモジュールの圧力の時系列変動の結果に測定系の変化により生じた抵抗値変動分を加味したものである。
図18を参照するに本発明の流体監視センサモジュールの結果は、PCT装置の結果と略同一の結果を示すことが明らかとなった。したがって、本発明の流体監視センサモジュールは、PCT装置のように大型の装置を要することなく水素ガスの圧力を直接的に計測できるとともに容易に計測できるので、水素ガスの印加圧力の測定精度及び分解能の向上が図られ、水素貯蔵合金における水素吸蔵量の測定などを含む幅広い分野で適用できる。
【0076】
(水素ガス印加実験2)
実施例3の構成で形成された流体監視センサモジュールの肉薄部12が取り外され、凹部に実験室内の空気を導入し、内部空間11の圧力を0.1MPa(実験室内の大気圧)に保持し、肉薄部12が凹部を外部空間に対して密閉するように、接着剤を用いて基部に接着された。以上のような、内部空間11の圧力を調整した流体監視センサモジュールが圧力容器内に装入されて、容器内に水素ガスを導入した。また、圧力容器内には、水素貯蔵合金(LaNi5合金)が含まれている。
【0077】
なお、水素ガスを導入する当該実験においては、圧力容器を40℃のウォーターバスに浸して、圧力容器内の温度を40℃に保った。また、このとき、圧力および温度を計測しているが、計測にあたり、圧力および温度は、水素ガス印加実験1同様にPCT特性評価装置を用いることで計測が行われた。
【0078】
本実験では、PCT特性評価装置を用いて、水素ガスを導入し、圧力容器内の圧力(外部空間の圧力)を0MPaから1MPaまで段階的に加圧させ、その後段階的に減圧させた。その後同様の処理を繰り返した。また、それぞれの加圧または減圧動作に移行する前に、約10分間の間隔をあけた。
【0079】
(実験結果)
図19は、本実験におけるPCT装置の圧力センサの電圧値の時系列変動を示した図であり、
図20は、本実験における圧力容器内の流体監視センサモジュールの第1導電性部材21の抵抗値の時系列変動を示した図である。また、
図21は、
図19の電圧値および
図20の抵抗値に基づいて計測されたPCT装置の圧力センサによって測定された圧力と圧力容器内の流体監視センサモジュールによって測定された圧力の時系列変動を示した図である。
図19~
図21を参照するに、水素ガスをある一定量入れると水素ガス印加実験1同様に流体監視センサモジュールの第1導電性部材21の抵抗値が圧力上昇および圧力減少と共に変化することが分かった。また、それぞれの加圧後、約10分間放置することで水素貯蔵合金が水素を吸蔵し、容器内印加圧力を低下させ各飽和圧力に至り安定になるが、当該圧力低下分の変動も抵抗値に変化を及ぼしていることが分かった。反対に、水素ガスの印加圧力を1MPaから段階的に減少させると当該圧力の減少に伴った、抵抗値の変動も観測された。また、それぞれの減圧後、約10分間放置することで水素貯蔵合金が水素を放出し、容器内印加圧力を上昇させ各飽和圧力に至り安定になるが、当該圧力上昇分の変動も抵抗値に変化を及ぼしていることが明らかとなった。これらの結果は水素ガス印加実験1同様に、抵抗値の変動がPCT装置で測定された圧力および電圧の変動と連動し、その連動が著しく逸脱していないことから、本発明における流体監視センサモジュールは、水素ガス雰囲気中に好適に利用できることがさらに裏付けられた。
【0080】
したがって、水素ガス印加実験1同様に水素ガス印加実験2でも、本発明の流体監視センサモジュールの第1導電性部材21は水素ガスの圧力の変動を細かい範囲で取得することが明らかとなり、水素貯蔵合金が含まれた圧力容器内における水素ガスの圧力の変動についても取得できるので、状態方程式等を用いることで、水素貯蔵合金の貯蔵量などを計測できることが明らかとなった。
【0081】
図22は、本実験におけるPCT装置の温度センサによって計測された温度の時系列変動を示した図であり、
図23は、本実験における圧力容器内の流体監視センサモジュールの第2導電性部材22の抵抗値に基づいて測定された温度の時系列変動を示した図である。
図23を参照するに、水素ガスをある一定量入れると瞬間的な断熱圧縮により、流体監視センサモジュールの第2導電性部材22によって測定された温度が急激に上昇していることが分かった。また、それぞれの加圧後、約10分間放置することでウォーターバスによって容器内の熱が奪われ容器内印加温度を低下させる変動も計測された。反対に、水素ガスの印加圧力を1MPaから段階的に減少させる断熱膨張に伴った、温度の変動も観測された。また、それぞれの減圧後、約10分間放置することでウォーターバスによって容器内の熱が加えられ、容器内温度を上昇させる変動も計測された。これらの結果(断熱膨張および断熱圧縮に伴った温度変動)は、圧力容器内に水素ガスを印加させる時間と一致しており、その連動が著しく逸脱していないことから、本発明における流体監視センサモジュールは、温度測定においても水素ガス雰囲気中に好適に利用できることが分かった。
【0082】
一方で、
図22に示されるようにPCT装置で測定される温度は、圧力容器内で測定される温度と比べて、大きく異なるものとなった。これは、温度の伝達速度(すなわち水素ガス中の熱伝導)が圧力の伝達速度(すなわち音速)よりもはるかに低いことに起因している。今回のPCT装置では、圧力センサおよび温度センサは圧力容器内に直接挿入されず水素ガスの導入路に挿入されている。そのため、PCT装置では圧力容器内の温度を直接計測できず、ウォーターバスの温度が40℃であるのに対してPCT装置で測定された温度は27℃~29℃の間を遷移している。また、温度の伝達速度が圧力の伝達速度に比べて低いことから、温度を直接計測することが困難なため、PCT装置では、圧力容器をウォーターバスに含浸させることで、圧力容器内の温度を一定に保持する。一方で、本発明の流体監視センサモジュールによれば、ウォーターバスの温度とほぼ一致する温度が測定された。40℃よりもやや高い温度となっているのは、ウォーターバスの制御精度の問題または容器外の制御と容器内の測定といった点からの系統誤差による測定誤差であると考えられる。後者の場合、初期温度を40℃と見積もった後に流体監視センサモジュールによって温度を測定したため、急激な温度変化が伴っているが、これも系統誤差により、温度が一定の温度高く見積もられているため、グラフ上で、初期値から急激に上昇したものと考えられる。系統誤差による影響を校正すれば、すなわち、グラフ全体にー1.7℃程度の補正を加えれば、おおむね、ウォーターバスの温度に一致し、断熱膨張または断熱圧縮による温度変動をとらえられることを明らかにした。
【0083】
このため、本発明の流体監視センサモジュールは、目的とする箇所の水素の圧力および温度を水素ガスに直接接触させた状態で確実に測定できる。また、目的とする箇所の温度が詳細に測定されることから、当該測定された温度を圧力センサのための校正に使用できるため、従来の物と比べて、水素ガスの圧力をさらに精度よく計測でき、水素ガスの状態を監視できる。さらに、PCT装置のような装置を必要とせずに水素ガスの状態を計測できるため、測定の自由度が大幅に上昇する。
【0084】
以上のことから、本発明の圧力センサおよび流体監視センサモジュールは、圧力に対して、優れた線形性を有する出力を得ることができるので、センサ出力(電圧、電気抵抗値など)がセンサ入力(圧力)に対して線形となり、センサの自由度が向上する。また、従来の圧力センサよりも優れた圧力分解能かつ優れた測定精度を有するとともに、反応性の高い流体を含めた、様々な流体に対する安定度も備える圧力センサおよび流体監視センサモジュールを実現する。
10;基部、11;内部空間、12;肉薄部、111;第1の面、112;第2の面、21;第1導電性部材(Cr基薄膜またはCr―N薄膜)、22;第2導電性部材(Ni薄膜)、O;極点