(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024035243
(43)【公開日】2024-03-13
(54)【発明の名称】機械的に合金化された粉末原料
(51)【国際特許分類】
B22F 9/14 20060101AFI20240306BHJP
B22F 1/14 20220101ALI20240306BHJP
B22F 1/00 20220101ALI20240306BHJP
B22F 1/065 20220101ALI20240306BHJP
B22F 3/02 20060101ALI20240306BHJP
B22F 3/15 20060101ALI20240306BHJP
B22F 10/00 20210101ALI20240306BHJP
B33Y 70/00 20200101ALI20240306BHJP
B33Y 40/10 20200101ALI20240306BHJP
B22F 9/04 20060101ALI20240306BHJP
B22F 1/142 20220101ALI20240306BHJP
C22C 30/00 20060101ALN20240306BHJP
【FI】
B22F9/14 Z
B22F1/14 400
B22F1/00 R
B22F1/065
B22F3/02 S
B22F3/15 M
B22F10/00
B33Y70/00
B33Y40/10
B22F9/04 C
B22F1/142
C22C30/00
【審査請求】有
【請求項の数】1
【出願形態】OL
(21)【出願番号】P 2023212164
(22)【出願日】2023-12-15
(62)【分割の表示】P 2021564470の分割
【原出願日】2020-04-29
(31)【優先権主張番号】62/840,607
(32)【優先日】2019-04-30
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】515084719
【氏名又は名称】シックスケー インコーポレイテッド
(74)【代理人】
【識別番号】110002860
【氏名又は名称】弁理士法人秀和特許事務所
(72)【発明者】
【氏名】バドウェ,スニル バルチャンドラ
(72)【発明者】
【氏名】レジダル,マッカルーフ
(72)【発明者】
【氏名】トゥルケッティ,スコット
【テーマコード(参考)】
4K017
4K018
【Fターム(参考)】
4K017AA04
4K017BA01
4K017BA03
4K017BA04
4K017BA05
4K017BA06
4K017BA07
4K017BA10
4K017CA01
4K017EA04
4K017EF02
4K017FA01
4K017FA03
4K017FA23
4K017FB02
4K018AA40
4K018BA20
4K018BB03
4K018BC06
4K018BC16
4K018CA29
4K018EA11
(57)【要約】
【課題】機械的に合金化された原料から球状化された粉末を製造する。
【解決手段】機械的に合金化された粉末原料、および、マイクロ波プラズマ加工を使用して当該原料を球状化するための方法の実施形態を本明細書において開示する。球状化された粉末は、金属射出成形プロセス、熱間静水圧加工、および付加製造において使用され得る。いくつかの実施形態において、機械的粉砕、例えば、ボールミルは、マイクロ波プラズマ加工のための高エントロピー合金を調製するのに使用され得る。
【選択図】
図2
【特許請求の範囲】
【請求項1】
機械的に合金化された原料から球状化された粉末を製造するための方法であって:
少なくとも5つの元素粉末を機械的に粉砕して前記少なくとも5つの元素粉末を機械的に合金化することによって、機械的に合金化された粉末原料を調製する工程;
前記機械的に合金化された粉末原料を、マイクロ波プラズマトーチ、前記マイクロ波プラズマトーチのプラズマプルーム、および/または前記マイクロ波プラズマトーチの排気装置に導入する工程;ならびに
前記機械的に合金化された粉末原料を、前記マイクロ波プラズマトーチ、前記マイクロ波プラズマトーチの前記プラズマプルーム、および/または前記マイクロ波プラズマトーチの前記排気装置内で少なくとも部分的に溶融および球状化して、球状化された粉末を形成する工程
を含む、方法。
【請求項2】
前記球状化された粉末が、金属射出成形プロセス、熱間静水圧加工、および/または付加製造における使用のために少なくとも部分的に溶融および球状化される、請求項1に記載の方法。
【請求項3】
前記球状化された粉末が、熱間静水圧加工における使用のために少なくとも部分的に溶融および球状化される、請求項1に記載の方法。
【請求項4】
前記球状化された粉末が、付加製造における使用のために少なくとも部分的に溶融および球状化される、請求項1に記載の方法。
【請求項5】
前記機械的に合金化された粉末原料が、ボールミルによって機械的に粉砕される、請求項1~4のいずれか一項に記載の方法。
【請求項6】
前記機械的に合金化された粉末原料が、Ti、Zr、Nb、Ta、Feを含む、請求項1~5のいずれか一項に記載の方法。
【請求項7】
前記機械的に合金化された粉末原料が、Al、Fe、V、Siを含む、請求項1~5のいずれか一項に記載の方法。
【請求項8】
前記機械的に合金化された粉末原料が、Fe、Co、Ni、Cr、Tiを含む、請求項1~5のいずれか一項に記載の方法。
【請求項9】
前記機械的に合金化された粉末原料が、Fe、Co、Ni、Cr、Alを含む、請求項1~5のいずれか一項に記載の方法。
【請求項10】
前記機械的に合金化された粉末原料が、Fe、Co、Ni、Cr、Cuを含む、請求項1~5のいずれか一項に記載の方法。
【請求項11】
前記機械的に合金化された粉末原料が、微細構造を含み、前記球状化された粉末が、微細構造を維持する、請求項1~10のいずれか一項に記載の方法。
【請求項12】
機械的に合金化された原料から球状化された粉末を製造するための方法であって:
1つ以上の前駆体を機械的に粉砕して高エントロピー合金を形成することによって、機械的に合金化された粉末原料を調製する工程;
前記機械的に合金化された粉末原料を、マイクロ波プラズマトーチ、前記マイクロ波プラズマトーチのプラズマプルーム、および/または前記マイクロ波プラズマトーチの排気
装置に導入する工程;ならびに
前記機械的に合金化された粉末原料を、前記マイクロ波プラズマトーチ、前記マイクロ波プラズマトーチの前記プラズマプルーム、および/または前記マイクロ波プラズマトーチの前記排気装置内で少なくとも部分的に溶融および球状化して、球状化された粉末を形成する工程
を含む、方法。
【請求項13】
前記球状化された粉末が、金属射出成形プロセスにおける使用のために少なくとも部分的に溶融および球状化される、請求項12に記載の方法。
【請求項14】
前記球状化された粉末が、熱間静水圧加工における使用のために少なくとも部分的に溶融および球状化される、請求項12に記載の方法。
【請求項15】
前記球状化された粉末が、付加製造における使用のために少なくとも部分的に溶融および球状化される、請求項12に記載の方法。
【請求項16】
前記機械的に合金化された粉末原料が、ボールミルによって機械的に粉砕される、請求項12~15のいずれか一項に記載の方法。
【請求項17】
前記機械的に合金化された粉末原料が、Ti、Zr、Nb、Ta、Feを含む、請求項12~16のいずれか一項に記載の方法。
【請求項18】
前記機械的に合金化された粉末原料が、Al、Fe、V、Siを含む、請求項12~16のいずれか一項に記載の方法。
【請求項19】
前記機械的に合金化された粉末原料が、Fe、Co、Ni、Cr、Tiを含む、請求項12~16のいずれか一項に記載の方法。
【請求項20】
前記機械的に合金化された粉末原料が、Fe、Co、Ni、Cr、Alを含む、請求項12~16のいずれか一項に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
優先権出願の参照による組み込み
この出願は、2019年4月30日に出願された、タイトル「MECHNICALLY
ALLOYED POWDER FEEDSTOCK」の米国特許仮出願番号第62/840,607号に対する利益を主張するものであり、その内容は、全体が参照により本明細書に組み込まれる。
【0002】
本開示は、概して、いくつかの実施形態において、機械的合金化によって達成される特性を含む金属球状または楕円状粉末製品を製造することを対象とする。
【背景技術】
【0003】
金属粉末は、特定の用途において産業的に使用されている。最近では、付加製造における使用のための金属粉末への関心が高まっている。金属合金粉末は、一般的に様々な噴霧技術-水噴霧、ガス噴霧、または熱化学的方法によって製造される。製造される粉末の形態は、粉末の製造方法に依存し得る。さらに、種々の形態が、粉末の種々の圧密方法または使用に好適であり得る。例えば、付加製造(AM)、特に、レーザーベースのAMシステム、例えば、粉末床溶融結合は、優れた流動性、展延性、および充填密度に起因して球形粉末の恩恵を受けることができる。
【発明の概要】
【0004】
本明細書において、機械的に合金化された原料から球状化された粉末を製造するための方法の実施形態が開示され、この方法は、少なくとも5つの元素粉末を機械的に粉砕して少なくとも5つの元素粉末を機械的に合金化することによって、機械的に合金化された粉末原料を調製することと、機械的に合金化された粉末原料を、マイクロ波プラズマトーチ、マイクロ波プラズマトーチのプラズマプルーム、および/またはマイクロ波プラズマトーチの排気装置に導入することと、を含み、機械的に合金化された粉末原料を、マイクロ波プラズマトーチ、マイクロ波プラズマトーチのプラズマプルーム、および/またはマイクロ波プラズマトーチの排気装置内で少なくとも部分的に溶融および球状化して、球状化された粉末を形成することを特徴とする。
【0005】
また本明細書において、機械的に合金化された原料から球状化された粉末を製造するための方法の実施形態が開示され、この方法は、1つ以上の前駆体を機械的に粉砕して高エントロピー合金を形成することによって、機械的に合金化された粉末原料を調製することと、機械的に合金化された粉末原料を、マイクロ波プラズマトーチ、マイクロ波プラズマトーチのプラズマプルーム、および/またはマイクロ波プラズマトーチの排気装置に導入することと、を含み、機械的に合金化された粉末原料を、マイクロ波プラズマトーチ、マイクロ波プラズマトーチのプラズマプルーム、および/またはマイクロ波プラズマトーチの排気装置内で少なくとも部分的に溶融および球状化して、球状化された粉末を形成することを特徴とする。
【0006】
さらに本明細書において、機械的に合金化された原料から球状化された粉末を製造するための方法の実施形態が開示され、この方法は、機械的に合金化された粉末原料を、マイクロ波プラズマトーチ、マイクロ波プラズマトーチのプラズマプルーム、および/またはマイクロ波プラズマトーチの排気装置に導入することを含み、機械的に合金化された粉末原料が、少なくとも5つの元素粉末を機械的に粉砕して少なくとも5つの元素粉末を機械的に合金化すること、ならびに、機械的に合金化された粉末原料を、マイクロ波プラズマトーチ、マイクロ波プラズマトーチのプラズマプルーム、および/またはマイクロ波プラ
ズマトーチの排気装置内で溶融および球状化して、球状化された粉末を形成することによって調製されることを特徴とする。
【0007】
いくつかの実施形態において、球状化された粉末は、金属射出成形プロセスにおける使用のために溶融および球状化され得る。いくつかの実施形態において、球状化された粉末は、熱間静水圧加工における使用のために溶融および球状化され得る。いくつかの実施形態において、球状化された粉末は、付加製造における使用のために溶融および球状化され得る。
【0008】
いくつかの実施形態において、機械的に合金化された粉末原料は、ボールミリングによって機械的に粉砕され得る。いくつかの実施形態において、機械的に合金化された粉末原料を溶融することは、1秒未満で実施され得る。いくつかの実施形態において、機械的に合金化された粉末原料を溶融することは、500ミリ秒未満で実施され得る。
【0009】
いくつかの実施形態において、機械的に合金化された粉末原料は、Ti、Zr、Nb、Ta、Feを含み得る。いくつかの実施形態において、機械的に合金化された粉末原料は、Al、Fe、V、Siを含み得る。いくつかの実施形態において、機械的に合金化された粉末原料は、Fe、Co、Ni、Cr、Tiを含み得る。いくつかの実施形態において、機械的に合金化された粉末原料は、Fe、Co、Ni、Cr、Alを含み得る。いくつかの実施形態において、機械的に合金化された粉末原料は、Fe、Co、Ni、Cr、Cuを含み得る。いくつかの実施形態において、機械的に合金化された粉末原料は、微細構造を有し得、球状化された粉末は、微細構造を維持する。
【0010】
本開示の実施形態の方法から形成された、球状化された粉末。
【図面の簡単な説明】
【0011】
【0012】
【
図2】マイクロ波プラズマ加工前後の粉末のXRDスペクトルを示す。
【0013】
【
図3】本開示による粉末の製造方法の例としての実施形態を示す。
【0014】
【
図4】本開示の実施形態による、粉末の製造において使用され得るマイクロ波プラズマトーチの実施形態を示す。
【0015】
【
図5A】本開示の側部供給ホッパーの実施形態による、粉末の製造において使用され得るマイクロ波プラズマトーチの実施形態を示す。
【
図5B】本開示の側部供給ホッパーの実施形態による、粉末の製造において使用され得るマイクロ波プラズマトーチの実施形態を示す。
【0016】
【発明を実施するための形態】
【0017】
機械的に合金化された材料(例えば、粉末)を、原料として、特に、マイクロ波プラズマ加工ならびにそれから製造される粉末および製造物に利用するための方法、デバイス、およびアセンブリの実施形態を本明細書において開示する。かかる粉末を機械的に合金化された原料から調製することは極めて難しかったが、予想外の特性が、この開示の実施形態に基づいて達成された。
【0018】
いくつかの実施形態において、材料が一緒に粉砕されて粉末の粒子の所望の組成物を形
成することにより、機械的に粉砕された合金を作り出すことができる。合金化する他の方法も同様に使用されてよく、本開示は、機械的粉砕に限定されない。
【0019】
いくつかの実施形態において、機械的に粉砕された合金は、高エントロピー合金(HEA)であってもよく、複合濃縮合金(CCA)であってもよく、既存の合金からの修飾された合金であってもよい。HEAは、5つ以上の元素を等原子パーセントまたは非等原子パーセントで主として含有する合金である。粉末、または他の構成要素は、次いで、マイクロ波プラズマプロセスの原料(例えば、粉末原料)として使用されて、最終の球状化された粉末を形成することができ、これが、次いで、異なるプロセス、例えば、付加製造プロセスにおいて使用され得る。
【0020】
付加製造方法によって加工されたときに優れた特性を生じさせる新規の合金、例えば、高エントロピー合金(HEA)を開発する必要性がある。
【0021】
さらに、付加製造(AM)の出現に伴い、AMによって加工され得かつ従来または既存の合金によって得られる特性の限界に挑むことができる新規の合金を開発する必要性がさらに増加している。
【0022】
いくつかの実施形態において、HEAは、等価の割合または比較的大きな割合の比較的多数の元素を混合することによって形成される合金であってよい。いくつかの実施形態において、HEA内の元素の数は、3以上、4以上、5以上、または6以上、7以上、8以上であってよい。いくつかの実施形態において、原子百分率による相対的割合は、等価であっても、等価に近くてもよい。いくつかの実施形態において、HEAは、例えば、Z.Li and D,Raabe,2017,DOES:10.1007/s11837-017-2540-2による、JOMに記載されているように、例えば、1.67R(または約1.67R超)の高い混合エントロピーを有する合金であってよく、参照により本明細書に組み込まれる。
【0023】
HEAは、使用されている従来の合金と比較して有利な特性または特性の組み合わせ、例えば、高い高温強度、高温耐酸化性、高い耐食性および高い強度重量比を有し得る。互いの元素溶解性が限られているため、大部分の組成のHEA、特に、非等原子HEAが、従来の方法、例えば、アーク溶解および誘導溶融によって製造することが困難または不可能である。さらに、HEAにおける合金化する元素の融点の大きな差が、従来の方法による加工を制限している。
【0024】
かかる元素は、例えば、元素粉末、予め合金化された粉末、またはマスター合金粉末が均質な合金が形成されるまでボールミルで粉砕する機械的合金化技術によって固体で合金化され得る。ボールミルにおいて、合金を、機械的に強制的に結合させることで合金を得る。この合金化は、次いで、粉砕時間をかけて均質化され得る。合金の均質化は、多くの場合、x線回折(XRD)によってモニタリングされ、合金化する元素の最初の個々の元素のピークが徐々に消失し、合金化された相(複数可)の新しいピークが現れる。
【0025】
例えば、ボール対金属比、回転速度、および/またはボールサイズなどの適切なボールミルパラメータにより、合金化の際に異なるプロセスが起こり得る。例えば、得られる粉末は、凝集、機械的合金化、混合、ブレンドまたは粉砕を経ている場合がある。これらのいくつかまたは全てが、かかるプロセスの際に起こる場合がある。
【0026】
得られる粉末は、しかし、不規則かつフレークのような形態であり、さらなる加工/圧密技術、例えば、放電プラズマ焼結を制限する。この開示の実施形態は、機械的合金化によって加工されかつマイクロ波プラズマ球状化によって処理される球形HEA粉末の製造
を記載する。球形粉末は、次いで、工業粉末圧密プロセス、例えば、付加製造、金属射出成形、熱間静水圧加工および粉末鍛造の範囲で使用され得る。
【0027】
機械的合金化は、元素粉末粒子または予め合金化された粉末粒子が高エネルギーボールミルによって粉砕される固体粉末冶金プロセスである。粉末粒子は、このプロセスの際、繰り返しの冷間圧接、破砕および再溶接に供される。粉末粒子への機械的エネルギーの移動により、迅速な拡散経路として作用する転位を発生させることによって粉末に歪みが生じる。
図6は、かかる方法の例を示す。示されているように、元素粉末(左)は、機械的に粉砕されて(中央)原料を製造する(右)ことができる。
【0028】
さらに、拡散距離は、顆粒の微細化に起因して低減される。そのため、このプロセスによって、原料粉末のものとは異なる相および異なる微細構造を有する合金を製造することができる。実際の粉砕時間は、供給材料および合金に応じて変動し得る。例えば、1、2、3、4、5、6、7、8、9、または10時間超(あるいは約1、約2、約3、約4、約5、約6、約7、約8、約9、または約10時間)である。いくつかの実施形態において、粉砕は、1、2、3、4、5、6、7、8、9、または10時間未満(あるいは約1、約2、約3、約4、約5、約6、約7、約8、約9、または約10時間)継続し得る。いくつかの実施形態において、粉砕は、例えば、XRDパターンをモニタリングすることおよび個々の元素のピークの消失を追跡することによって部分的または完全な均質化が達成されるまで持続し得る。
【0029】
有利なことに、機械的合金化は、粒子の均質化を増加させ得る、なぜなら、元素が互いに機械的に強制されて、合金化する元素間の拡散経路を低減するからである。この均質化はまた、粉砕時間の増加によっても向上され得る。
【0030】
マイクロ波支援プラズマ技術は、温度が6000Kほどに到達して、連続的かつ持続可能なプラズマプルームを提供し得る。プラズマプルームの特徴、例えば、プルーム長さおよびプルーム密度を調整することによって、機械的に合金化された、高度に不規則なもしくはフレーク状のHEAまたは機械的に合金化された粉末を球状化するまたは均質化することが可能である。さらに、原料がマイクロ波プラズマトーチのプラズマプルーム、プラズマ残光、またはプラズマ排気装置に進入する場所を調整することで、原料が供される温度を調整することができる。
【0031】
不規則なまたはフレーク状の粉末は、加工方法を放電プラズマ焼結に限定する場合があるため、かかる粉末を粉末圧密方法にわたってのより延長された使用のために球状化することが有利になり得る。例えば、HIPは、HIP後に完全密度を達成するために、粉末のタップ密度が合金の理論密度の約60%超であることが有益である。他の粉末加工方法は、例えば、付加製造の際の、粉末の高い流動性および/または展延性があることが有益である。不規則な粉末およびフレーク状の粉末は、流動特性に劣っており、これらを加工することを困難または不可能にする。そのため、マイクロ波プラズマ加工は、不規則な粉末およびフレーク状の粉末を、様々な製造プロセスに使用され得る球状粉末に変換し得る。
【0032】
高温において最大で数百ミリ秒であると見積もられる、マイクロ波プラズマプロセスにおける少ない滞留時間に起因して、粉末は、部分的に溶融され、機械的に合金化された粉末の均質化が促進される。
【0033】
熱による、機械的に合金化された粒子のマイクロ波プラズマ加工を通しての加工の加速により、粒子のバルク内への合金化する元素の拡散を増加させ、これにより、均質性を増加させる。プラズマ加工後、球形HEA粉末は、次いで、様々な工業粉末圧密方法、例え
ば、限定されないが、付加製造(AM)、金属射出成形(MIM)、粉末鍛造および熱間静水圧プレス(HIP)によって加工され得、HEAを主流の工業加工に付す。
【0034】
原料は、機械的合金化から作り出された後、原料は、ある特定の材料組成物を含む。マイクロ波プラズマ加工のためのプロセスパラメータセットは、材料組成物に基づいて選択されてよい。プロセスパラメータは、均質な合金化および/または球状化の変動を可能にするように調整されてもよい。
【0035】
このプロセスパラメータセットは、マイクロ波電力、プラズマガス流、ガスの種類、プラズマプルーム長さ、プラズマプルーム直径、プラズマジェット速度、排気チャンバ圧、クエンチガス、排気ガス速度、プラズマジェット速度に対する原料速度、供給ガス流量、および原料供給速度、またはこれらの組み合わせを含んでいてよい。このプロセスパラメータセットは、原料が進入するプラズマ、プラズマプルーム、および/またはプラズマ排気装置の部分をさらに含んでいてよい。例えば、原料は、より低温が望まれるときにはより冷たいプラズマ排気装置の領域に供給されてよい。
【0036】
本明細書において開示されているように、溶融することは、粒子状の原料の表面を完全に溶融すること、部分的に溶融すること、または溶融することを含み得る。
【0037】
原料
マイクロ波プラズマ加工のための原料は、機械的合金化によって開発され得る。有利なことに、機械的合金化では、他の合金化方法、例えば、アーク溶解および誘導溶融によって製造することが困難または不可能である合金が開発され得る。機械的合金化によって形成され得る固有の合金には、従来の合金に対して固有の特性が実験室規模において実証されているHEAが含まれる。
【0038】
機械的合金化において、原料は、均質化を達成するように機械的に粉砕することができ、これはXRD技術を使用して測定/モニタリングされ得る。機械的合金化のための時間が増加するにつれて、XRDスペクトルにおいて異なるピークが現れ、これは、合金化された相の形成を示唆している。粉砕は、安定なXRDスペクトルが得られるまで続けられ、安定なXRDスペクトルとは、粉砕時間の増加に伴って変化しないスペクトルであり、これにより、化学的に安定な合金を示唆している。
【0039】
得られる粉末は、集中的な機械的粉砕に起因して高度に不規則かつフレーク状である。例えば、不規則な粉末は、不規則または環状の形態を有する粒子、例えば、水中で噴霧された粉末であり得る。一方で、フレーク状の粉末は、比較的大きいアスペクト比を有し得、また、薄く、非常に低い見掛け密度および充填密度を有しており、これは、粉末を流動、展開、および加工することを困難にする。不規則な粉末およびフレーク状の粉末はいずれも、工業粉末圧密方法に好適でない。
【0040】
しかし、機械的粉砕から得られる粉末は、マイクロ波プラズマ加工に理想的な原料であることが実証されている。マイクロ波プラズマ加工は、不規則なまたはフレーク状の形である機械加工された粉末を球状化することができる。
図1は、粉砕プロセスの際の、例としての原料粉末の経時的な推移を表す。1時間、4時間、8時間、および17時間機械的に粉砕された粉末において実施されたXRDスキャンが示されている。示されているように、時間が増加するにつれて、XRDスキャンにおけるいくつかのピークが減衰し、または実質的に消失する。さらに、新しいピークが高くなり、または現れ、これは、合金化された相の形成または増加を示唆している。
【0041】
並外れた特性に起因して、HEAは、いくつかの用途にとって興味深い。例えば、医療
インプラント用のTiZrNbTaFe HEAは、現在使用されているTi-6Al-4V合金と比較してかなり改良された耐食性を示している。AlFeVSi合金は、高い強度および高い熱安定性を有しており、潜在的な構造重量低減により航空機産業にとって興味深いものとなり得る。同様に、FeCoNiCrTiまたはFeCoNiCrAl HEAは、室温において並外れた引張特性を達成することが示されており、多くの産業用途に魅力的なものとなる。いくつかの実施形態において、FeCoCrNiCu HEAが使用され得る。
【0042】
機械的に合金化された粉末は、マイクロ波プラズマ加工によって球状化されたとき、高度に球形の粉末を生じさせる。この球形粉末は、次いで、付加製造、金属射出成形、粉末鍛造および熱間静水圧プレスのような様々な工業圧密方法の原料として使用され得る。有利なことに、機械的に粉砕された粉末の微細構造(またはナノ構造)は、加工を通して、例えば、プラズマ加工後に維持され得る。
【0043】
図2は、(マイクロ波プラズマ加工球状化の前後に25Fe-17Co-17Cr-17Ni-16Cuを含む例としての組成を有する、例としての粉末のXRDスペクトルを示す。他の例としての組成には、Fe-25、Ni-19、Cr-13、Co-0.45、Ti-2.5、Mo-2.4、Nb-.4、Cu-0.2、Reが含まれる。ライン202は、機械的合金化の17時間後であるがマイクロ波プラズマ加工前の粉末原料のXRDプロットを示す。ライン204は、マイクロ波プラズマ加工後の粉末原料のXRDプロットを示す。
【0044】
示されているように、合金は、球状化プロセス後に、より均質化される。均質化とは、出発の個々の元素粉末から合金を形成することを指す。このことは、元素を表す個々のピークが消失して合金ピークが現れるXRDスペクトルから見られ得る。球状化後、合金ピークがより明確になり、残存するバックグラウンドのピークが除去され、これは、機械的に合金化された粉末の均質化の向上を示唆している。そのため、マイクロ波プラズマ加工は、粉末原料を球状化するだけでなく、原料をさらに均質化する。
【0045】
適切な最適化により、機械的合金化のための粉砕時間が低減され得る、なぜなら、均質化が、マイクロ波プラズマ加工球状化を使用して達成され得るからである。単一の理論によって制限されないが、粉砕により精製された顆粒が生成するため、機械的合金化は、粉末内の拡散距離を大幅に低減する。そのため、機械的合金化後、マイクロ波プラズマ加工の際に、拡散が高温で迅速に起こることにより、機械的合金化によって生成される合金の均質化を向上させ得る。そのため、マイクロ波プラズマ加工は、機械的合金化のための粉砕時間の期間が長いほど、同様の均質化を作り出すことができる。粉砕時間は、原料がマイクロ波プラズマ加工されるときには、短縮されてよい。
【0046】
機械的合金化は、HEA以外の合金にも使用され得る。機械的合金化によって、いずれの既存の合金、例えば、ステンレス鋼、例えば、ステンレス鋼型316および17-4、またはNiベースインコネル、例えば、718、625、738なども製造することができる。本開示の実施形態は、新しい合金を開発するために、または、新たな圧密技術、例えば、付加製造において使用される既存の合金を修飾するために、効果的かつ経済的に使用され得る。
【0047】
機械的合金化は、固体プロセスである。そのため、技術的には、任意の合金が機械的合金化によって製造され得る。しかし、従来の合金、または溶融などの液体状態で製造され得る合金では、これらのプロセスが、機械的合金化よりもかなり迅速かつ経済的である。ゆえに、これらは、かかる合金に使用されることはまれである。にもかかわらず、機械的合金化は、液体状態、例えば、溶融することで製造され得る合金も生成するのに使用され
得る。
【0048】
球状化
いくつかの実施形態において、プラズマ加工によって達成される最終の粒子は、球状または楕円状であり得、これらの用語は、互換可能に使用され得る。有利なことに、開示されている種々の原料のそれぞれに関連する重要かつ具体的な開示を使用することにより、原料の全てが、球形粉末に変換され得る。
【0049】
本開示の実施形態は、実質的に球状もしくは楕円状であるまたは有意な球状化を経ている粒子を生成することを対象とする。いくつかの実施形態において、球形、球状または球状化された粒子は、ある特定の閾値を超える真球度を有する粒子を指す。真球度は、以下の式を使用して、粒子の体積に一致する体積Vを用いて球A
s, idealの表面積を
算出し:
【数1】
次いで、当該理想化された表面積を粒子の測定された表面積A
s, actualと比較する:
【数2】
ことによって算出され得る。
【0050】
いくつかの実施形態において、粒子は、0.5、0.6、0.7、0.75、0.8、0.9、0.91、0.95、または0.99超(あるいは約0.5、約0.6、約0.7、約0.75、約0.8、約0.8、約0.91、約0.95、または約0.99超)の真球度を有し得る。いくつかの実施形態において、粒子は、0.75以上または0.91以上(あるいは約0.75以上または約0.91以上)の真球度を有し得る。いくつかの実施形態において、粒子は、0.5、0.6、0.7、0.75、0.8、0.9、0.91、0.95、または0.99未満(あるいは約0.5、約0.6、約0.7、約0.75、約0.8、約0.8、約0.91、約0.95、または約0.99未満)の真球度を有し得る。いくつかの実施形態において、粒子は、上記の球形度値のいずれかであるまたはこれを超える球形度を有するとき、球形、球状または球状化されているとされ、いくつかの好ましい実施形態において、粒子は、その真球度が、約0.75もしくはそれを超える、または約0.91もしくはそれを超えるとき、球形であるとされる。
【0051】
いくつかの実施形態において、所与の粉末における全ての粒子のメジアン真球度は、0.5、0.6、0.7、0.75、0.8、0.9、0.91、0.95、または0.99超(あるいは約0.5、約0.6、約0.7、約0.75、約0.8、約0.8、約0.91、約0.95、または約0.99超)であり得る。いくつかの実施形態において、所与の粉末における全ての粒子のメジアン真球度は、0.5、0.6、0.7、0.75
、0.8、0.9、0.91、0.95、または0.99未満(あるいは約0.5、約0.6、約0.7、約0.75、約0.8、約0.8、約0.91、約0.95、または約0.99)であり得る。いくつかの実施形態において、粉末は、所与の粉末についての粒子の全または閾値百分率(以下の画分のいずれかによって記載されているように)が、上記の真球度値のいずれか以上のメジアン真球度を有するとき、球状化されているとされ、いくつかの好ましい実施形態において、粉末は、粒子の全または閾値百分率が、約0.75もしくはそれを超える、または約0.91もしくはそれを超えるメジアン真球度を有するとき、球状化されているとされる。
【0052】
いくつかの実施形態において、例えば、上記に記載されている、所与の真球度閾値を超え得る粉末における粒子の画分は、50%、60%、70%、80%、90%、95%、または99%超(あるいは約50%、約60%、約70%、約80%、約90%、約95%、または約99%超)であり得る。いくつかの実施形態において、例えば、上記に記載されている、所与の真球度閾値を超え得る粉末における粒子の画分は、50%、60%、70%、80%、90%、95%、または99%未満(または約50%、約60%、約70%、約80%、約90%、約95%、または約99%未満)であり得る。
【0053】
粒度分布および真球度は、任意の好適な公知の技術によって、例えば、SEM、光学顕微鏡、動的光散乱、レーザー回折、例えば同じ材料の断面またはサンプルの少なくとも3つの画像にわたって画像あたり約15~30の測定による、画像分析ソフトウェアを使用した寸法の手動測定、および任意の他の技術によって求められ得る。
【0054】
マイクロ波プラズマ加工
プロセスパラメータは、粉末の初期状態に応じて最大の球状化を得るように最適化され得る。それぞれの原料粉末特徴について、プロセスパラメータは、特定の結果のために最適化され得る。米国特許出願公開公報第2018/0297122号、米国特許第8,748,785号、および米国特許第9,932,673号は、開示されているプロセスにおいて、具体的にはマイクロ波プラズマ加工に使用され得るある特定の加工技術を開示している。したがって、米国特許出願公開公報第2018/0297122号、米国特許第8,748,785号、および米国特許第9,932,673号は、全体が参照により組み込まれ、当該技術は、本明細書に記載されている原料に適用可能であるとされるべきである。
【0055】
本開示の一態様は、マイクロ波生成プラズマを使用した金属および金属合金の球状化のプロセスを含む。粉末原料は、不活性および/または還元および/または酸化ガス環境に取り込まれ、マイクロ波プラズマ環境に注入される。高温プラズマへの注入の際、原料は、球状化され、不活性ガスを充填したチャンバに放出され、当該材料が保存される密閉されているドラムに誘導される。このプロセスは、大気圧で、部分真空において、または、大気圧よりわずかに高い圧力において実施され得る。代替の実施形態において、プロセスは、低、中または高真空環境において実施され得る。プロセスは、連続的に行われ得、ドラムは、球状化された金属または金属合金粒子で満たされたときに置き換えられる。
【0056】
球状化された金属および金属合金の冷却の速度は、粉末の微細構造に戦略的に影響するように制御され得る。プロセスパラメータ、例えば、冷却ガス流量、滞留時間、冷却ガス組成などを制御することにより、金属および金属合金の微細構造が制御され得る。これらの構造を形成するのに必要とされる正確な冷却速度は、主として、材料内の合金化する元素の種類および量に大きく依存する。
【0057】
冷却の速度は、特に、マイクロ波プラズマプルームの一貫した均一な加熱能力と合わされるとき、最終の微細構造にわたっての制御を可能にする。結果として、上記の方法は、
金属(例えば、機械的合金化および/またはHEA)原料の加工に適用され得る。
【0058】
冷却処理パラメータには、限定されないが、冷却ガス流量、ホットゾーンにおける球状化された粒子の滞留時間、および冷却ガスの組成または製造方法が含まれる。例えば、粒子の冷却速度またはクエンチング速度は、冷却ガスの流量を増加させることによって増加され得る。プラズマを出る球状化された粒子を越えて冷却ガスが速く流れるほど、クエンチング速度がより速くなり-これにより、ある特定の所望の微細構造が閉じ込められることを可能にする。プラズマのホットゾーン内での粒子の滞留時間はまた、得られる微細構造にわたって制御を付与するように調整され得る。すなわち、粒子がプラズマに暴露される時間の長さにより、粒子の溶融の程度(すなわち、粒子の最も内側の部分またはコアと比較して粒子表面が溶融している)が求められる。
【0059】
結果として、溶融の程度は、固化に必要とされる冷却の程度に影響し、そのため、冷却プロセスパラメータである。微細構造の変更は、粒子の溶融の程度に応じて、粒子全体を通してまたはその一部のみに組み込まれ得る。滞留時間は、ホットゾーン内の粒子注入速度および流量(ならびに層流または乱流などの状態)のかかる操作可変値を調整することによって調整され得る。機器の変更はまた、滞留時間を調整するのに使用され得る。例えば、滞留時間は、ホットゾーンの断面積を変更することによって調整され得る。
【0060】
変動または制御され得る別の冷却処理パラメータは、冷却ガスの組成である。ある特定の冷却ガスは、他のものよりも熱伝導性である。例えば、ヘリウムは、高度に熱伝導性のガスであるとされる。冷却ガスの熱伝導率が高いほど、球状化された粒子が、より速く冷却/クエンチされ得る。冷却ガスの組成を制御すること(例えば、高熱伝導性ガス対低熱伝導性ガスの量または比を制御すること)により、冷却速度が制御され得る。
【0061】
冶金において公知であるように、金属の微細構造は、金属の組成、ならびに材料の加熱および冷却/クエンチングによって決定される。本技術において、原材料の組成を選択する(または知る)こと、次いで、原料を、マイクロ波プラズマトーチによって提供されるものにわたって均一な温度プロファイルおよび制御を有するプラズマに暴露し、続いて、冷却パラメータを選択および制御することによって、球状化された金属粒子の微細構造にわたっての制御が達成される。また、金属材料の相は、原材料の組成(例えば、純度、合金化する元素の純度、組成など)、ならびに熱的加工に依る。
【0062】
1つの例示的な実施形態において、不活性ガスが粉末化金属供給物を取り囲んで連続的にパージされて、粉末供給ホッパー内の酸素を除去する。連続量の粉末供給物がひいては不活性ガス内に取り込まれて、脱水素化のためにまたは球状化された粒子の組成/純度維持のためにマイクロ波生成プラズマに供給される。一例において、マイクロ波生成プラズマは、米国特許出願公開公報第US2013/0270261号、ならびに/または米国特許第8,748,785号、同第9,023,259号、同第9,206,085号、同第9,242,224号、および同第10,477,665号に記載されているマイクロ波プラズマトーチを使用して生成されてよく、それぞれ全体が参照により本明細書に組み込まれる。
【0063】
いくつかの実施形態において、粒子は、マイクロ波生成プラズマ内の4,000~8,000Kの間での均一な温度プロファイルに暴露される。いくつかの実施形態において、粒子は、マイクロ波生成プラズマ内の3,000~8,000Kの間での均一な温度プロファイルに暴露される。プラズマトーチ内で、粉末粒子が迅速に加熱されて溶融される。液体の対流は、溶融された粒子の全体を通してのH2拡散を加速して、粒子を離れる液体金属水素化物の表面に水素(H2)を連続的に導き、各粒子が固体プロセスと比較してプロセス環境内にあるのに必要とされる時間を低減する。プロセス内で粒子が不活性ガス、
例えば、アルゴン内に取り込まれるにつれて、概して粒子間の接触が最小となり、粒子凝集の発生を大幅に低減する。後プロセスの選別の必要性は、そのため、大幅に低減されまたは排除され、得られる粒度分布は、投入供給材料の粒度分布と事実上は同じであり得る。例示的な実施形態において、供給材料の粒度分布は、最終生成物において維持される。
【0064】
プラズマ内で、溶融された金属は、液体表面張力に起因して本質的に球状化される。マイクロ波生成プラズマが実質的に均一な温度プロファイルを示すとき、90%超(例えば、91%、93%、95%、97%、99%、100%)の粒子の球状化が達成され得る。プラズマを出た後、粒子は、収集瓶に進入する前に冷却される。収集瓶は、満たされたら、プロセスを停止することなく必要に応じて除去されて空の瓶に置き換えられ得る。
【0065】
図3は、本開示の実施形態による、球形粉末を生成するための例示的な方法(250)を示すフローチャートである。この実施形態において、プロセス(250)は、供給材料をプラズマトーチに導入すること(255)によって開始する。いくつかの実施形態において、プラズマトーチは、マイクロ波生成プラズマトーチまたはRFプラズマトーチである。プラズマトーチ内で、供給材料は、上記に記載されているようにプラズマに暴露されて材料を溶融させる(260)。溶融された材料は、上記に考察されているように表面張力によって球状化される(260b)。プラズマを出た後、生成物は冷却して固化し、球形の形状で閉じ込められ、次いで収集される(265)。
【0066】
いくつかの実施形態において、瓶の環境および/または密閉要件は、注意深く制御される。すなわち、粉末の汚染および潜在的酸化を防止するために、瓶の環境および密閉は、用途に合わされる。一実施形態において、瓶は真空下にある。一実施形態において、瓶は、本技術によって生じた粉末で充填された後に密封される。一実施形態において、瓶は、不活性ガス、例えば、アルゴンなどでまた充填される。プロセスの連続的な性質により、瓶は、一旦充填されると、プラズマプロセスを停止することなく必要に応じて除去されて空の瓶によって置き換えられ得る。
【0067】
本開示による方法およびプロセスは、粉末、例えば、球形粉末を作製するのに使用され得る。
【0068】
いくつかの実施形態において、本明細書において考察されている加工、例えば、マイクロ波プラズマ加工は、ある特定の元素が溶融の際に原料から漏出することを防止および/または最小限にするように制御され得、所望の組成/微細構造を維持することができる。
【0069】
図4は、本開示の実施形態による、粉末の生成に使用され得る例示的なマイクロ波プラズマトーチを示す。上記に考察されているように、供給材料9、10は、マイクロ波生成プラズマ11を持続させる、マイクロ波プラズマトーチ3に導入され得る。一例の実施形態において、取り込みガス流およびシース流(下向き矢印)は、マイクロ波放射線源1を介してのプラズマ11の点火の前に、入口5を通して注入されて、プラズマトーチ内で流動状態を作り出すことができる。
【0070】
いくつかの実施形態において、取り込み流およびシース流がいずれも軸対称的であって層流である一方で、他の実施形態では、ガス流が渦巻いている。供給材料9は、マイクロ波プラズマトーチに軸方向に導入され、ここで、材料が、材料をプラズマに向けるガス流によって取り込まれる。上記で考察されているように、ガス流は、周期表の希ガス列、例えば、ヘリウム、ネオン、アルゴンなどからなっていてよい。マイクロ波生成プラズマ内で、供給材料は、材料を球状化するために溶融される。入口5は、プロセスガスを導入して、プラズマ11に向けて軸12に沿って粒子9、10を取り込んで加速するのに使用され得る。まず、粒子9は、プラズマトーチ内に環状ギャップを通して作り出されたコアの
層流のガス流(上方の矢印セット)を使用した取り込みによって加速される。第2の層流(下方の矢印セット)は、第2の環状ギャップを通して作り出されて、層流のシースを誘電性トーチ3の内壁に付与し、これを、プラズマ11からの熱放射に起因した溶融から保護することができる。例示的な実施形態において、層流は、軸12にできる限り近い経路に沿って粒子9、10をプラズマ11に向かわせ、粒子をプラズマ内の実質的に均一な温度に暴露する。
【0071】
いくつかの実施形態において、好適な流動状態は、粒子10が、プラズマ付着が生じ得るプラズマトーチ3の内壁に達するのを避けるために存在する。粒子9、10は、それぞれ均一な熱的処理を経る、マイクロ波プラズマ11に向かうガス流によって誘導される。マイクロ波生成プラズマの様々なパラメータ、ならびに粒子パラメータは、所望の結果を達成するために調整されてよい。これらのパラメータは、マイクロ波電力、供給材料サイズ、供給材料挿入速度、ガス流量、プラズマ温度、滞留時間および冷却速度を含んでいてよい。いくつかの実施形態において、冷却またはクエンチング速度は、プラズマ11を出る際に10+3℃/秒以上である。上記で考察されているように、この特定の実施形態において、ガス流は層流である;しかし、代替の実施形態において、供給材料をプラズマに向かわせるために渦流または乱流が使用されてもよい。
【0072】
図5A~Bは、
図4の実施形態において示されている上部供給ホッパーではなく側部供給ホッパーを含むことにより下流供給を可能にする例示的なマイクロ波プラズマトーチを示す。そのため、この実施形態では、原料は、マイクロ波プラズマトーチの「プルーム」または「排気装置」における加工のためのマイクロ波プラズマトーチアプリケータの後に注入される。そのため、マイクロ波プラズマトーチのプラズマは、
図4に関して考察されている上部供給(または上流供給)とは対照的に、プラズマトーチの出口端部で確保されて原料の下流供給を可能にする。この下流供給は、ホットゾーンがホットゾーンライナーの壁におけるあらゆる材料堆積物から無制限に保護されているため、トーチの寿命を有利に延長することができる。さらに、これは、温度レベルおよび滞留時間の正確な標的化を通しての粉末の最適な溶融に好適な温度でプラズマプルーム下流の確保を可能にする。例えば、マイクロ波粉末を使用したプルームの長さ、ガス流、およびプラズマプルームを含むクエンチング容器における圧力を調節する能力がある。
【0073】
概して、下流球状化方法は:例えば、米国特許出願公開公報第2018/0297122号に記載されている環状トーチ、またはUS8,748,785B2およびUS9,932,673B2に記載されている渦巻きトーチ;である、安定なプラズマプルームを確立するための2つの主なハードウェア構成を利用することができる。
図5Aおよび
図5Bは、いずれも、環状トーチまたは渦巻きトーチのいずれかによって実行され得る方法の実施形態を示す。プラズマトーチの出口においてプラズマプルームと強連結されている供給システムは、プロセスの均質性を保護するために軸対称的に粉末を供給するのに使用される。
【0074】
他の供給構成は、プラズマプルームを取り囲む1つまたはいくつかの個々の供給ノズルを含んでいてよい。原料粉末は、任意の方向からある点においてプラズマに進入することができ、任意の方向から、プラズマの周り360°で、プラズマ内の当該点に供給され得る。原料粉末は、具体的な温度が測定されているプラズマプルームの長さに沿って特定の位置で、また、粒子の充分な溶融のために見積もられる滞留時間で、プラズマに進入することができる。溶融された粒子は、プラズマを出て、当該粒子がクエンチされて次いで収集される密閉されたチャンバに入る。
【0075】
供給材料314は、マイクロ波プラズマトーチ302に導入され得る。ホッパー306は、供給材料314をマイクロ波プラズマトーチ302、プルーム、または排気装置に供
給する前に、供給材料314を保存するのに使用され得る。供給材料314は、プラズマトーチ302の長手方向に任意の角度、5、10、15、20、25、30、35、40、45、50、または55度で注入され得る。いくつかの実施形態において、原料は、5、10、15、20、25、30、35、40、45、50、または55度を超える角度で注入され得る。いくつかの実施形態において、原料は、5、10、15、20、25、30、35、40、45、50、または55度未満の角度で注入され得る。代替の実施形態において、原料は、プラズマトーチの長手軸に沿って注入され得る。
【0076】
マイクロ波放射線は、導波路304を通してプラズマトーチに導かれ得る。供給材料314は、プラズマチャンバ310に供給され、プラズマトーチ302によって生じるプラズマと接触して配置される。供給材料は、プラズマ、プラズマプルーム、またはプラズマ排気装置と接触したときに溶融する。供給材料314は、依然、プラズマチャンバ310にあるが、容器312に収集される前に冷却および固化する。代替的には、供給材料314は、プラズマチャンバ310を出ることができるが、依然、溶融された相にあり、プラズマチャンバの外側で冷却および固化する。いくつかの実施形態において、陽圧を使用しても使用しなくてもよいクエンチングチャンバが使用されてよい。
図4とは別に記載されているが、
図5A~5Bの実施形態は、
図4の実施形態と同様の特徴および条件を使用することが理解される。
【0077】
いくつかの実施形態において、下流注入方法の実施は、下流渦巻き、延長された球状化、またはクエンチングを使用してよい。下流渦巻きは、プラズマトーチから下流に導入されて粉末をチューブの壁から離しておくことができるさらなる渦巻き成分を指す。延長された球状化は、より長い滞留時間を粉末に与えるために延長されたプラズマチャンバを指す。いくつかの実施において、これは、下流渦巻き、延長された球状化、またはクエンチングを使用しなくてよい。いくつかの実施形態において、これは、下流渦巻き、延長された球状化、またはクエンチングのうちの1つを使用してよい。いくつかの実施形態において、これは、下流渦巻き、延長された球状化、またはクエンチングのうちの2つを使用してよい。
【0078】
下方からの粉末の注入は、マイクロ波領域におけるプラズマチューブコーティングの低減または排除を結果として生じさせ得る。コーティングが頑丈になり過ぎるときには、マイクロ波エネルギーが、プラズマホットゾーンに進入することから保護され、プラズマカップリグが低減される。時折、プラズマはさらに消火されて不安定になり得る。プラズマ強度の減少は、粉末の球状化レベルの減少を意味する。そのため、マイクロ波領域の下方に原料を供給してプラズマトーチの出口においてプラズマプルームを確保することによって、この領域におけるコーティングが排除され、プラズマカップリグに対してのマイクロ波粉末がプロセスを通して一定のままとなり、適切な球状化を可能にする。
【0079】
そのため、有利なことに、下流アプローチは、コーティングの課題が低減されるため、方法を長い継続期間にわたって運転させることができる。さらに、下流アプローチは、コーティングを最小にする必要性がないため、より多くの粉末を注入する能力を可能にする。
【0080】
上記の詳細な説明から、機械的に合金化された粉末および/またはHEA粉末のための本発明の加工方法が開示されていることが認識されよう。いくつかの構成要素、技術および態様が、ある一定の程度の特殊性によって記載されているが、多くの変更が、この開示の精神および範囲から逸脱することなく、本明細書における具体的な設計、構成および方法においてなされ得ることが明らかである。
【0081】
別個の実施の文脈においてこの開示に記載されているある一定の特徴はまた、単一の実
施において組み合わせて実行され得る。対照的に、単一の実施の文脈において記載されている様々な特徴もまた、複数の実施において別個に、または任意のサブコンビネーションにおいて実行され得る。また、特徴が、ある一定の組み合わせにおいて作用するとして上記に記載されている場合があるが、特許請求の範囲における組み合わせから1つ以上の特徴が、いくつかの場合において当該組み合わせから削除されている場合があり、当該組み合わせは、任意のサブコンビネーションまたは任意のサブコンビネーションの変形として特許請求されている場合がある。
【0082】
また、方法が、特定の順序で図に示されまたは明細書に記載されている場合があるが、かかる方法は、示されている特定の順序でまたは逐次的な順序で実施される必要はなく、また、所望の結果を得るために、かかる全ての方法が実施される必要があるということではない。示されていないまたは記載されていない他の方法が、例としての方法およびプロセスに組み込まれ得る。例えば、1つ以上のさらなる方法が、記載されている方法のいずれかの前、後、同時または間に実施されてよい。さらに、方法は、他の実施において、再構成されても、並べ替えられてもよい。また、上記に記載されている実施における様々なシステム構成要素の分離は、全ての実施においてかかる分離を必要とするとして理解されるべきではなく、記載されている構成要素およびシステムは、概して、一緒に単一の製品に一体化されても、複数の製品にパッケージされてもよいことが理解されるべきである。加えて、他の実施が、この開示の範囲内である。
【0083】
条件付きの言語、例えば、「できる(can)」、「できる(could)」、「であってよい(might)」、または「であってよい(may)」は、別途特に記述されていない限り、または、使用されている文脈内で別途理解されない限り、ある一定の実施形態が、ある一定の特徴、要素、および/またはステップを含むまたは含まないことを伝達することが概して意図される。そのため、かかる条件付きの言語は、特徴、要素、および/またはステップがいかなる方法においても1つ以上の実施形態に必要とされることを暗示することは概して意図していない。
【0084】
接続詞的言語、例えば、句「X、Y、およびZのうちの少なくとも一つ」は、別途特に記述されていない限り、項目、用語などがX、Y、またはZのいずれかであってよいことを伝えるために一般的に使用されるものとして、文脈とともに理解される。そのため、かかる接続詞的言語は、ある一定の実施形態が、Xのうちの少なくとも1つ、Yのうちの少なくとも1つ、およびZのうちの少なくとも1つの存在を必要とすることを暗示することは概して意図していない。
【0085】
本明細書において使用されている程度の言語、例えば、用語「およそ(approximately)」、「約(about)」、「概して(generally)」、および「実質的に(substantially)」は、本明細書において使用されているとき、所望の機能を実施しまたは所望の結果を依然として達成する、記述されている値、量または特徴に近い値、量または特徴を表す。例えば、用語「およそ(approximately)」、「約(about)」、「概して(generally)」、および「実質的に(substantially)」は、記述されている量の10%以下の範囲内、5%以下の範囲内、1%以下の範囲内、0.1%以下の範囲内、および0.01%以下の範囲内にある量を指すことができる。記述されている量が0(例えば、なし、有さない)であるとき、上記の列挙されている範囲は、具体的な範囲であってよく、値の特定の%の範囲内、例えば、記述されている量の、10wt./vol.%以下の範囲内、5wt./vol.%以下の範囲内、1wt./vol.%以下の範囲内、0.1wt./vol.%以下の範囲内、および0.01wt./vol.%以下の範囲内である。
【0086】
様々な実施形態に関連する任意の特定の特徴、態様、方法、特性、特徴、質、属性、要
素などの本明細書における開示は、本明細書において記載されている全ての他の実施形態において使用され得る。加えて、本明細書に記載されているいずれの方法も、列挙されているステップを実施するのに好適ないずれのデバイスを使用して実用されてもよいことが認識されよう。
【0087】
多数の実施形態およびその変形が詳細に記載されているが、これを使用する他の変更および方法が当業者に明らかである。したがって、様々な適用、変更、材料、および置換が、本明細書における特有の本発明の開示または特許請求の範囲から逸脱することなく、等価物からなっていてよいことが理解されるべきである。
【手続補正書】
【提出日】2024-01-12
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
機械的に合金化された原料から球状化された粉末を製造するための方法であって:
少なくとも5つの元素粉末を機械的に粉砕して前記少なくとも5つの元素粉末を機械的に合金化することによって、機械的に合金化された粉末原料を調製する工程;
前記機械的に合金化された粉末原料を、マイクロ波プラズマトーチ、前記マイクロ波プラズマトーチのプラズマプルーム、および/または前記マイクロ波プラズマトーチの排気装置に導入する工程;ならびに
前記機械的に合金化された粉末原料を、前記マイクロ波プラズマトーチ、前記マイクロ波プラズマトーチの前記プラズマプルーム、および/または前記マイクロ波プラズマトーチの前記排気装置内で少なくとも部分的に溶融および球状化して、球状化された粉末を形成する工程
を含む、方法。