(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024035408
(43)【公開日】2024-03-14
(54)【発明の名称】熱分析装置
(51)【国際特許分類】
G01N 25/02 20060101AFI20240307BHJP
G01N 25/00 20060101ALI20240307BHJP
G01N 25/56 20060101ALI20240307BHJP
G01N 5/04 20060101ALI20240307BHJP
G01N 33/38 20060101ALN20240307BHJP
【FI】
G01N25/02 Z
G01N25/00 K
G01N25/56 D
G01N5/04 E
G01N33/38
【審査請求】未請求
【請求項の数】6
【出願形態】OL
(21)【出願番号】P 2022139845
(22)【出願日】2022-09-02
(71)【出願人】
【識別番号】000250339
【氏名又は名称】株式会社リガク
(74)【代理人】
【識別番号】100101867
【弁理士】
【氏名又は名称】山本 寿武
(72)【発明者】
【氏名】則武 弘一郎
【テーマコード(参考)】
2G040
【Fターム(参考)】
2G040AA03
2G040AB11
2G040BA02
2G040BA25
2G040BB02
2G040BB04
2G040CA01
2G040CA16
2G040CA25
2G040DA03
2G040DA12
2G040EA02
2G040EC07
2G040GA04
2G040HA16
(57)【要約】
【課題】 少なくとも100グラムを超える大きな重量の試料Sを加熱することで、当該試料Sから脱離した大量の成分ガスを迅速かつ高精度に検出できる熱分析装置を提供する。
【解決手段】 外部の空気をキャリアガスとして前記キャリアガス流動路に取り込む構成とする。成分ガス検出部70には、試料から脱離したCO
2ガスを検出するためのCO
2センサ(特定ガス検出センサ)71を設置する。また、送風ファン51によりキャリアガス流動路に取り込まれた空気に含有するCO
2ガスを検出するためのCO
2センサ(空気含有特定ガス検出センサ)54を別に設置する。そして、特定ガス検出センサ71が検出したCO
2ガス検出量から、空気含有特定ガス検出センサ54が検出したCO
2ガス検出量を差し引いて、試料から脱離したCO
2ガスの検出量を求める。
【選択図】
図1
【特許請求の範囲】
【請求項1】
内部に配置した試料を加熱する加熱炉と、加熱により前記試料から脱離した成分ガスを検出するための成分ガス検出部と、前記加熱炉の内部で前記試料から脱離した成分ガスを、キャリアガスにより前記成分ガス検出部まで搬送するためのキャリアガス流動路とを備えた熱分析装置において、
外部の空気をキャリアガスとして前記キャリアガス流動路に取り込むための空気取込み器と、
前記成分ガス検出部に設けられ、前記試料から脱離した特定の成分ガスを検出するための特定ガス検出センサと、
前記空気取込み器により前記キャリアガス流動路に取り込まれた空気から、前記特定ガス検出センサの検出対象となっている特定の成分ガスと同じガスを検出する空気含有特定ガス検出センサと、を備え、
前記特定ガス検出センサが検出したガス検出量から前記空気含有特定ガス検出センサが検出したガス検出量を差し引いて、前記試料から脱離した特定の成分ガスの検出量を検出することを特徴とする熱分析装置。
【請求項2】
前記キャリアガス流動路は、
ガス供給口およびガス排出口を有し、前記ガス供給口からキャリアガスを前記加熱炉の内部に供給し、前記試料が配置された当該加熱炉の内部を経由して、前記ガス排出口から当該キャリアガスを排出する加熱炉内経由流動路と、
前記加熱炉の外部を通って前記成分ガス検出部に至る加熱炉外部通過流動路と、を含み、
且つ、前記加熱炉内経由流動路のガス排出口を、前記加熱炉外部通過流動路に連通したことを特徴とする請求項1に記載の熱分析装置。
【請求項3】
前記加熱炉を内部に設置したハウジングを備え、
前記加熱炉内経由流動路における前記ガス供給口と、前記加熱炉外部通過流動路にキャリアガスを供給するガス供給口とを、各々前記ハウジングに設けたことを特徴とする請求項2に記載の熱分析装置。
【請求項4】
前記加熱炉外部通過流動路は、前記加熱炉内経由流動路に比べ、大きな流量のキャリアガスを前記成分ガス検出部に向かって流動させる構成であることを特徴とする請求項1乃至3のいずれか一項に記載の熱分析装置。
【請求項5】
前記成分ガス検出部に流れてくるキャリアガスの流速を計測するためのガス流速計と、
前記成分ガス検出部に流れてくるキャリアガスの流速を調整するガス流速調整器と、を備えたことを特徴とする請求項1乃至4のいずれか一項に記載の熱分析装置。
【請求項6】
前記加熱炉外部通過流動路から前記成分ガス検出部に搬送されてくるガスの凝固を抑制するための加熱器を備えたことを特徴とする請求項1乃至5のいずれか一項に記載の熱分析装置。
【発明の詳細な説明】
【技術分野】
【0001】
この発明は、試料を加熱したときの状態変化を分析するとともに、加熱により当該試料から脱離したガスを分析する機能を備えた熱分析装置に関する。
【背景技術】
【0002】
近年、世界的な温暖化対策の要請に応えるために、種々の産業分野において、CO2(二酸化炭素)をはじめとする温室効果ガスの排出量をできるだけ削減するための取り組み(カーボンニュートラル)が行われている。
例えば、セメント業界では、セメントの製造時などに大量のCO2が発生するが、それら製造時などに発生したCO2を、コンクリートに吸収させて使用することでCO2の大気中への排出量を削減するという技術開発が進められている(非特許文献1を参照)。
【0003】
ここで、CO2をコンクリートに吸収させる技術開発の成果を検証するには、製造されたコンクリートに如何ほどのCO2が含まれているか分析する技術が必要となる。
試料に含まれる成分量を分析する分析装置として、熱分析装置が知られているが、従来の熱分析装置は、数ミリグラム~数百ミリグラム程度の微小な試料を分析対象とすることを前提として開発されており、加熱した試料から脱離した数ミリグラム~数百ミリグラム程度の成分ガスを検出する仕様となっている(例えば、特許文献1を参照)。
【0004】
しかし、上記技術開発が進められているコンクリートには、主原料であるセメントに砂利や砕石などの骨材が混ぜ込まれているため、微小なコンクリートを試料とした場合、試料ごとのセメントと骨材の配合比率が大きくばらついてしまう。その結果、検出される脱離ガス(CO2)の量も試料ごとにばらつきが生じ、高精度な脱離ガスの定性分析は期待できない。
【0005】
そこで、従来の熱分装置が対象としていた試料に比べてはるかに大きな重量(例えば、数キログラム)のある試料を分析対象として、高精度な熱分析を実現できる装置の開発が望まれている。試料を大きくすることで、試料内部に大粒の固体成分がランダムに混ぜ込まれていても、成分全体の配合比率が均一化されて高精度な脱離ガスの定性分析が可能となる。
【0006】
一方、試料が大きくなると、必然的に試料から脱離するガス量が多くなるため、当該大量の脱離ガスを高精度に分析する技術の開発が必要となる。
【先行技術文献】
【特許文献】
【0007】
【非特許文献】
【0008】
【非特許文献1】”コンクリート・セメントで脱炭素社会を築く!?技術革新で資源もCO2も循環させる”、[online]、2021年12月15日掲載、経済産業省資源エネルギー庁、[2022年8月27日検索]、インターネット<URL:https://www.enecho.meti.go.jp/about/special/johoteikyo/concrete_cement.html>
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明は、上述した事情に鑑みてなされたもので、少なくとも100グラムを超える大きな重量の試料を加熱することで、当該試料から脱離した大量の成分ガスを迅速かつ高精度に検出できる熱分析装置の提供を目的とする。
【課題を解決するための手段】
【0010】
上記目的を達成するために、本発明は、内部に配置した試料を加熱する加熱炉と、加熱により前記試料から脱離した成分ガスを検出するための成分ガス検出部と、前記加熱炉の内部で前記試料から脱離した成分ガスを、キャリアガスにより前記成分ガス検出部まで搬送するためのキャリアガス流動路とを備えた熱分析装置において、
外部の空気をキャリアガスとして前記キャリアガス流動路に取り込むための空気取込み器と、
前記成分ガス検出部に設けられ、前記試料から脱離した特定の成分ガスを検出するための特定ガス検出センサと、
前記空気取込み器により前記キャリアガス流動路に取り込まれた空気から、前記特定ガス検出センサの検出対象となっている特定の成分ガスと同じガスを検出する空気含有特定ガス検出センサと、を備え、
前記特定ガス検出センサが検出したガス検出量から前記空気含有特定ガス検出センサが検出したガス検出量を差し引いて、前記試料から脱離した特定の成分ガスの検出量を検出することを特徴とする。
【0011】
また、本発明において、前記キャリアガス流動路は、
ガス供給口およびガス排出口を有し、前記ガス供給口からキャリアガスを前記加熱炉の内部に供給し、前記試料が配置された当該加熱炉の内部を経由して、前記ガス排出口から当該キャリアガスを排出する加熱炉内経由流動路と、
前記加熱炉の外部を通って前記成分ガス検出部に至る加熱炉外部通過流動路と、を含み、
且つ、前記加熱炉内経由流動路のガス排出口を、前記加熱炉外部通過流動路に連通したことを特徴とする。
【0012】
また、本発明は、前記加熱炉を内部に設置したハウジングを備え、
前記加熱炉内経由流動路における前記ガス供給口と、前記加熱炉外部通過流動路にキャリアガスを供給するガス供給口とを、各々前記ハウジングに設けたことを特徴とする。
【0013】
さらに、本発明において、前記加熱炉外部通過流動路は、前記加熱炉内経由流動路に比べ、大きな流量(単位時間に流れるガスの体積又は質量)のキャリアガスを前記成分ガス検出部に向かって流動させる構成であることを特徴とする。
【0014】
また、本発明は、前記成分ガス検出部に流れてくるキャリアガスの流速を計測するためのガス流速計と、
前記成分ガス検出部に流れてくるキャリアガスの流速を調整するガス流速調整器と、を備えたことを特徴とする。
【0015】
また、本発明は、前記加熱炉外部通過流動路から前記成分ガス検出部に搬送されてくるガスの凝固を抑制するための加熱器を備えたことを特徴とする。
【図面の簡単な説明】
【0016】
【
図1】本発明の実施形態に係る熱分析装置の全体構造を示す模式図である。
【
図2】各隔壁筒の蓋に設けた透孔の配置を示す斜視図である。
【
図3】ガス乾燥機を設置した熱分析装置の構成例を示す模式図である。
【発明を実施するための形態】
【0017】
以下、この発明の実施の形態について図面を参照して詳細に説明する。
本実施形態は、CO2を多く吸収したコンクリートを分析対象として、加熱によりコンクリートから脱離したCO2ガスの量を検出するための構成例を示している。試料Sは、例えば、3~5kg程度の大きな重量を有するコンクリート塊を想定しているが、これに限定されるものではない。
【0018】
本発明者らの実験では、3.5kgのコンクリート塊を試料Sとして、1000℃まで加熱してその過熱状態を継続したとき、300L程度のCO2ガスが試料Sから脱離することがわかった。同時に、大量のH2O(水蒸気)が試料Sから脱離することもわかった。
本実施形態の熱分析装置は、このように試料Sから大量に脱離するCO2ガスの量を迅速かつ高精度に検出するとともに、試料Sから脱離した水蒸気の装置内での結露を抑制することができる構成としてある。
【0019】
図1は、本実施形態に係る熱分析装置の全体構造を示す模式図である。
熱分析装置は、ハウジング10、加熱炉20、試料台30、計量器40を備えている。
ハウジング10は、装置の内部と外部を仕切る筐体であり、このハウジング10の内部空間に加熱炉20が設置してある。加熱炉20は、円筒形状の熱源(ヒーター)21を有し、その熱源21の内部に配置された試料Sを周囲から加熱する。
【0020】
また、加熱炉20の周囲には、円筒状の隔壁筒が三重に配置してある。すなわち、隔壁筒は、内側隔壁筒22、中間隔壁筒23、外側隔壁筒24で構成され、内側隔壁筒22を加熱炉20の周囲に設置するとともに、その内側隔壁筒22の周囲を中間隔壁筒23で囲み、さらに中間隔壁筒23の周囲を外側隔壁筒24で囲んだ構造としてある。これら各隔壁筒22,23,24は、ステンレスやFe-Cr-Al等の耐熱合金で製作してあり、加熱炉20からの熱を遮断して加熱炉20内を効率よく昇温するために設けてある。
【0021】
各隔壁筒22,23,24の上端面は開口しており、その開口は同じく耐熱合金で製作した蓋22A,23A,24Aにより閉塞してある。各蓋22A,23A,24Aは、着脱自在となっており、試料Sの交換はこれらの蓋22A,23A,24Aを取り除いて行うことができる。なお、図には示されていないが、ハウジング10にも試料S交換のための開閉扉が設けてある。
【0022】
各蓋22A,23A,24Aにはガス送出孔22a,23a,24aが設けてあり、これらのガス送出孔22a,23a,24aは、後述するように加熱炉20の内部に供給されたキャリアガスを加熱炉20の外部(ハウジング10の内部空間)へと送り出す機能を有している。
【0023】
試料台30は、上端部に円盤形状をした試料配置部31が形成してあり、この試料配置部31の下端面中央部から下方に支柱32が伸びている。試料配置部31の上面に、分析対象となる試料Sが載せられて、加熱炉20の内部中央部に配置される。
試料Sは、例えば、分析対象となるコンクリートを、あらかじめ設定した重量の円柱状の塊に成形して用意しておく。
支柱32の下端には支持盤33が形成してある。支柱32は熱伝導率の小さな材料で製作され、加熱炉20内で試料配置部31が加熱されても、その熱が支持盤33まで伝わることを抑制している。支柱32は、図示しない軸受構造をもって上下方向の移動が規制されない状態で支持されている。
【0024】
ここで、試料配置部31に設定した試料温度計測点Paと、加熱炉20の内部における熱源21又はその近傍に設定した炉内温度計測点Pbには、それぞれ熱電対(図示せず)が設けてあり、それら各熱電対により各温度計測点の温度を計測する。
【0025】
計量器40は、加熱炉20の下方に設置してあり、計量器40の計測部に試料台30の支持盤33が搭載してある。計量器40には、例えば、秤量天秤が用いられ、試料台30の試料配置部31に配置した試料Sの重量を計測する。
【0026】
計量器40は、仕切壁41で囲まれた計量室42の内部に配置してある。計量室42の天井には開口部41aが形成してあり、この開口部41aを通して計量室42は加熱炉20の内部と連通している。加熱炉20の内部には、計量室42の開口部41aに近い下部領域に、複数枚の円盤状の対流防止板28が軸方向に並べて設けてある。対流防止板28も、各隔壁筒22,23,24と同様に耐熱合金で製作してある。
【0027】
各対流防止板28の外周縁と加熱炉20の内周面との間には隙間が形成してある。後述するように計量室42に供給されたキャリアガスは、この隙間を通って加熱炉20の内部へ流れ込む。
【0028】
次に、ハウジング10には、キャリアガス供給用の配管(ガス供給管50)と、キャリアガス排出用の配管(ガス排出管60)とが接続してある。ガス供給管50とガス排出管60は、ともに中空部がハウジング10の内部空間に連通している。
【0029】
ガス排出管60の中間部には、加熱炉20内で試料Sから脱離した成分ガスを検出するための成分ガス検出部70が設けてある。この成分ガス検出部70にはガスセンサが設置してあり、ガス排出管60の中空部内を搬送されてきた成分ガスの量を、ガスセンサによって逐次検出できる構成となっている。
【0030】
本実施形態では、試料Sであるコンクリートを加熱すると、コンクリートに含まれていたCO2とH2O(水蒸気)の成分ガスが大量に脱離する。そこで、成分ガス検出部70には、これらの成分ガスの量を検出するために、CO2センサ71とH2Oセンサ72が設置してある。
CO2センサ71は、ガス排出管60の中空部内を搬送されてきたキャリアガスに含まれるCO2を検出して、単位時間当たりの検出量を逐次出力する機能を有している。
また、H2Oセンサ72は、ガス排出管60の中空部内を搬送されてきたキャリアガスに含まれるH2Oを検出して、単位時間当たりの検出量を逐次出力する機能を有している。このH2Oセンサ72は、H2Oの量を湿度に換算して出力する湿度センサであってもよい。
【0031】
一方、ガス供給管50の中間部には、シロッコファン等の送風ファン51(空気取込み器)が設けてあり、この送風ファン51によって外部の空気をガス供給管50の中空部内に取り込み、ガス供給管50を通して当該外部の空気をハウジング10の内部空間へ供給する構成としてある。
【0032】
本実施形態では、装置の外部に存在する空気をキャリアガスとして利用している。
既述したように、試料Sであるコンクリートを加熱すると、大量の成分ガス(CO2とH2O)が試料Sから脱離する。この大量に脱離した成分ガスを迅速に成分ガス検出部70へ搬送するには、大量のキャリアガスが必要となる。一般に、熱分析装置で用いられるキャリアガスは窒素ガス(N2)等の不活性ガスであるが、その種の不活性ガスを大量かつ連続的に供給するには、きわめて高額の費用が必要となる。そこで、本実施形態では、装置の外部に存在する空気をキャリアガスとして使用することで、稼働コストが安価で経済性に優れた熱分析装置を実現した。
【0033】
また、ガス供給管50には分岐管52が接続してある。この分岐管52の終端はハウジング10に接続され、計量室42の内部に連通している。送風ファン51によりガス供給管50の中空部内に取り込まれた空気(キャリアガス)は、その一部が計量室42へ供給される。
ここで、分岐管52の中空部は、ガス供給管50の中空部よりも小さい断面積となっており、ガス供給管50を流れる空気(キャリアガス)の流量に比べて、分岐管52に送られる空気(キャリアガス)の流量は少ない。例えば、ガス供給管50に1000L/min程度の空気(キャリアガス)を取り込んだとき、分岐管52には5L/min程度の空気(キャリアガス)が流入する構造とすることが好ましい。
【0034】
また、分岐管52の中間部には流量調整弁53が設けてあり、この流量調整弁53によって分岐管52を流れる空気(キャリアガス)の流量を任意に調整できる構造としてある。
【0035】
本実施形態では、ガス供給管50からハウジング10の内部空間を経由してガス排出管60に至る経路が、加熱炉20の外部を通って成分ガス検出部70に至る加熱炉外部通過流動路Aを形成している。ここで、ハウジング10におけるガス供給管50の接続部が、加熱炉内経由流動路Bのガス供給口を形成している。
また、分岐管52から計量室42、加熱炉20の内部、各蓋22A,23A,24Aのガス送出孔22a,23a,24aを経由する経路が、加熱炉内経由流動路Bを形成している。ここで、ハウジング10におけるガス供給管50に連通する分岐管52の接続部が、加熱炉内経由流動路Bのガス供給口を形成しており、また外側隔壁筒24の上端開口を閉塞する蓋に設けたガス送出孔24aが、加熱炉内経由流動路Bのガス排出口を形成している。そして、このガス排出口を形成するガス送出孔24aが、ハウジング10の内部空間に連通している。すなわち、加熱炉内経由流動路Bのガス排出口が、加熱炉外部通過流動路Aに連通しており、加熱炉20の内部で試料Sから脱離した成分ガスを含むキャリアガスが、ガス送出孔24a(ガス排出口)から加熱炉外部通過流動路Aへ送り出されて、加熱炉外部通過流動路Aを流動するキャリアガスと合流し、成分ガス検出部70へと流れていく。
【0036】
このように、本実施形態では、加熱炉外部通過流動路Aと加熱炉内経由流動路Bとがキャリアガス流動路を形成しており、これらの流動路A,Bを流れるキャリアガスによって、加熱炉20の内部で試料Sから脱離した成分ガスが成分ガス検出部70まで搬送されていく。
【0037】
ここで、加熱炉外部通過流動路Aは、試料Sから大量に脱離する成分ガスを滞留させることなく、迅速に成分ガス検出部70まで搬送するために、大きな流量(少なくとも10L/min以上)のキャリアガスを成分ガス検出部70に向かって流動させる構成となっている。これにより、試料Sから脱離した成分ガスの量を迅速かつ高精度に検出することが可能となる。
【0038】
また、本実施形態で分析対象としているコンクリートからは、加熱により大量のH2Oガス(水蒸気)が脱離するため、ハウジング10の内部空間や成分ガス検出部70などで、このH2Oガス(水蒸気)が滞留すると、ハウジング10の内壁や成分ガス検出部70に設けた各センサ71,72などに結露が生じて、ハウジング10の内壁を腐食させたり、各センサ71,72による成分ガスの検出精度を低下させるおそれがある。
しかし、上述したように本実施形態では、加熱炉外部通過流動路Aを通して、試料Sから大量に脱離する成分ガスを滞留させることなく、迅速に成分ガス検出部70まで搬送するので、結露によるこれらの問題の発生を回避することができる。
例えば、本実施形態において分析対象とするコンクリートのように脱離ガスが多い場合は、加熱炉外部通過流動路Aから成分ガス検出部70に向かって100L/min以上のキャリアガスを流動させることが好ましい。
【0039】
一方、加熱炉内経由流動路Bに大きな流量のキャリアガスを流動させると、キャリアガスによって加熱炉20の内部が冷却されてしまい、あらかじめ設定した温度プログラムによる熱分析を安定して実施できず、高精度な分析データを得ることができないおそれがある。
そこで、本実施形態では、加熱炉内経由流動路Bには、加熱炉外部通過流動路Aよりも単位時間当たり小さい流量のキャリアガスを流動させる構成としてある。これにより、キャリアガスにより加熱炉20の内部が冷却される不都合を回避して、高精度な熱分析を安定して実施することが可能となる。
【0040】
さて、加熱炉20の内部では、計量室42から流動してきたキャリアガスに、試料Sから脱離した成分ガスが混ざり合ってガスの容量が増加する。そのため、ガス排出口を形成するガス送出孔24aから成分ガスを含むキャリアガスが勢いよく噴出して、加熱炉外部通過流動路A内を成分ガス検出部70へ向かって流動するキャリアガスの円滑な流れを乱してしまうおそれがある。
そこで、本実施形態では、
図2に示すように、各蓋22A,23A,24Aに設けたガス送出孔22a,23a,24aを、各蓋の積層方向から見て隣接する蓋の相互間(蓋22Aと蓋23A、蓋23Aと蓋24A)で、各々周方向にずれた位置に形成してある。これにより、各蓋22A,23A,24Aの間の空間でいったんキャリアガスが滞留するので、ガス排出口を形成するガス送出孔24aからの成分ガスを含むキャリアガスの噴出量が抑制され、加熱炉外部通過流動路A内へ緩やかに当該キャリアガスを送り出すことが可能となる。
【0041】
なお、
図2に示す構造では、各蓋22A,23A,24Aに、それぞれ中心を挟んで二つのガス送出孔22a,23a,24aを設け、これらを互いに90度回転した位置にずらして配置したが、これに限らず、孔の形状や個数、又は上下の孔とのずらし量を変更して所望の噴出量に調整することもできる。
【0042】
本実施形態では、成分ガス検出部70に、キャリアガスの流速を計測するためのガス流速計73を設けてある。装置を起動させたときの調整作業に際して、このガス流速計73により成分ガス検出部70に流れるキャリアガスの流速を計測して、その結果が規定された流速となるように送風ファン51を調整する。これにより、同じ条件下での熱分析データの取得を繰り返し実施することが可能となる。送風ファン51は、空気取込み器としての機能に加え、成分ガス検出部70に流れてくるキャリアガスの流速を調整するガス流速調整器としても機能する。
【0043】
なお、熱分析を実施している間もガス流速計73によって成分ガス検出部70に流れるキャリアガスの流速を計測し、その流速が一定となるように送風ファン51をフィードバック制御することもできる。
【0044】
さらに、本実施形態では、ガス供給管50の中空部内であって、分岐管52の接続部よりも上流側にも、CO2センサ54が設置してある。
成分ガス検出部70に設けられたCO2センサ71は、試料Sから脱離した特定の成分ガスを検出するための特定ガス検出センサとして機能している。そして、ガス供給管50の中空部内に設置したCO2センサ54は、外部から取り込まれる空気に対して、特定ガス検出センサの検出対象となっている特定の成分ガス(ここではCO2)と同じガスを検出する空気含有特定ガス検出センサとして機能する。
【0045】
キャリアガスとして外部の空気を利用した本実施形態においては、試料Sから脱離する成分ガスであるCO2が、キャリアガスとして外部から取り込まれた空気にも混入している。その混入量は、装置の外部に存在する空気中のCO2濃度によって変動する。
キャリアガスとしての空気に、検出対象となる成分ガスと同じガス(すなわち、CO2)が混入していた場合、成分ガス検出部70に設けられたCO2センサ71は、本来検出すべき試料Sから脱離した成分ガスであるCO2に加え、外部から取り込まれたキャリアガス内のCO2も検出するため、検出データに誤差が生じてしまう。
【0046】
そこで、本実施形態では、成分ガス検出部70に設けられたCO2センサ71により検出したCO2ガスの検出量から、ガス供給管50の中空部内に設置したCO2センサ54により検出したCO2ガスの検出量を差し引くことで、試料Sから脱離したCO2ガスの量を誤差なく求めるようにしてある。
【0047】
なお、本実施形態では、ガス供給管50の中空部内であって、分岐管52の接続部よりも上流側に、H2Oセンサ55も設置してある。そして、成分ガス検出部70に設けられたH2Oセンサ72により検出したH2Oガス(水蒸気)の検出量から、ガス供給管50の中空部内に設置したH2Oセンサ55により検出したH2Oガス(水蒸気)の検出量を差し引くことで、試料Sから脱離したH2Oガス(水蒸気)の量も誤差なく求めることができるようにしてある。
【0048】
上述した構成の熱分析装置は、ガス供給管50から空気をキャリアガスとして取り込み、加熱炉外部通過流動路Aと加熱炉内経由流動路Bとに分岐してそのキャリアガスを供給する。
加熱炉20の内部では、試料S(コンクリート)を加熱することで、当該試料Sから脱離した成分ガスとしてCO2ガスが脱離する。同時に、試料Sに含まれるH2Oガス(水蒸気)などの他の成分ガスも脱離する。本実施形態では、それらの脱離ガスのうちCO2ガスとH2Oガス(水蒸気)を検出対象である特定成分ガスに選定し、これらの成分ガスを成分ガス検出部70に設けたCO2センサ71とH2Oセンサ72で検出する構成としてあるが、それら以外の脱離ガスを検出する構成とすることもできる。
【0049】
加熱炉20の内部で試料Sから脱離した成分ガス(CO2ガス、H2Oガスなど)は、加熱炉内経由流動路Bに流れるキャリアガスにより搬送され、同流動路のガス排出口であるガス送出孔24aから、加熱炉外部通過流動路Aに送り出される。そして、加熱炉外部通過流動路Aを流れる大量のキャリアガスにより成分ガス検出部70へと搬送されていく。
【0050】
成分ガス検出部70に到達した成分ガスのうち、検出対象としてあるCO2ガスの量は、CO2センサ71により検出され、またH2Oガスの量はH2Oセンサ72により検出される。
【0051】
なお、本発明は上述した実施形態に限定されるものではなく、特許請求の範囲に記載した発明の範囲で種々の変形実施や応用実施が可能であることはもちろんである。
例えば、上述した実施形態では、キャリアガスとして装置の外部から空気を取り込む構成としたが、窒素ガス等の不活性ガスをキャリアガスとして利用することもできる。
【0052】
また、上述した実施形態では、分岐管52を経由して計量室42へ空気(キャリアガス)を供給する構成としたが、計量室42の仕切壁41に開口を設け、ガス供給管50によりハウジング10の内部空間に供給された空気(キャリアガス)の一部を、その開口から計量室42の内部へ取り込む構成とすることもできる。
【0053】
この構成において、仕切壁41に設けた開口に開閉窓を取り付け、当該開閉窓によって開口量を任意に調整できる構成とすることで、計量室42へのキャリアガスの流入量を調整することができる。
【0054】
また、上述した実施形態では、ガス供給管50に設けた送風ファン51により、外部の空気を送り込む構成としてあるが、ガス排出管60側に送風ファンや吸引ポンプなどの気体吸引手段(空気取込み器)を設け、その吸引力をもって外部の空気をガス供給管50に取り込む構成とすることもできる。ガス供給管50側についても、送風ファン51に限らず、吸引ポンプなど各種の空気取込み器を用いて空気を取り込む構成とすることができる。
【0055】
また、上述した実施形態では、加熱炉外部通過流動路Aと加熱炉内経由流動路Bという二つの経路でキャリアガス流動路を構成したが、試料から脱離するガスの量が少ない場合は、加熱炉の内部を通る単一の経路でキャリアガス流動路を構成することもできる。
【0056】
また、
図3に示すように、ハウジング10の内部やガス排出管60の中空部内などの必要箇所に、パネルヒータ、電熱線ヒータ、赤外線ヒータなどで構成した加熱器80を設置することもできる。この加熱器80によって、キャリアガスや試料Sからの脱離ガスに含まれるH
2Oガス(水蒸気)の結露(凝固)を抑制することで、ハウジング10の内壁の腐食や、成分ガス検出部70に設けた各センサによる成分ガスの検出精度の低下を回避することが可能となる。
【符号の説明】
【0057】
10:ハウジング
20:加熱炉、21:熱源(ヒーター)、
22:内側隔壁筒、22A:蓋、22a:ガス送出孔、
23:中間隔壁筒、23A:蓋、23a:ガス送出孔、
24:外側隔壁筒、24A:蓋、24a:ガス送出孔、
28:対流防止板、
30:試料台、31:試料配置部、32:支柱、33:支持盤、
40:計量器、41:仕切壁、41a:開口部、42:計量室、
50:ガス供給管、51:送風ファン、52:分岐管、53:流量調整弁
54:CO2センサ、55:H2Oセンサ、
60:ガス排出管、
70:成分ガス検出部、71:CO2センサ、72:H2Oセンサ、73:ガス流速計、
80:加熱器
S:試料、
Pa:試料温度計測点、
Pb:炉内温度計測点、
A:加熱炉外部通過流動路、
B:加熱炉内経由流動路