(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024037604
(43)【公開日】2024-03-19
(54)【発明の名称】走行分析システムおよび走行分析方法
(51)【国際特許分類】
A63B 71/06 20060101AFI20240312BHJP
A63B 69/00 20060101ALI20240312BHJP
A61B 5/11 20060101ALI20240312BHJP
【FI】
A63B71/06 M
A63B71/06 T
A63B69/00 C
A61B5/11 200
A61B5/11 230
【審査請求】未請求
【請求項の数】11
【出願形態】OL
(21)【出願番号】P 2022142548
(22)【出願日】2022-09-07
(71)【出願人】
【識別番号】000000310
【氏名又は名称】株式会社アシックス
(74)【代理人】
【識別番号】100105924
【弁理士】
【氏名又は名称】森下 賢樹
(74)【代理人】
【識別番号】100109047
【弁理士】
【氏名又は名称】村田 雄祐
(72)【発明者】
【氏名】黄 雄暉
(72)【発明者】
【氏名】平川 菜央
(72)【発明者】
【氏名】野村 泰弘
(72)【発明者】
【氏名】中山 和長
【テーマコード(参考)】
4C038
【Fターム(参考)】
4C038VA04
4C038VA12
4C038VB11
4C038VB24
4C038VB35
4C038VC05
4C038VC20
(57)【要約】
【課題】走行に関する情報に基づく走行分析の容易化を図る技術を提供する。
【解決手段】走行分析システム100において、情報取得部70は、所定の測定装置20によって走行における経過点ごとに測定された走者であるユーザ10の位置情報および動作情報を取得する。測定値取得部80は、時系列的に続く位置情報および動作情報に基づいて、所定単位の測定区間ごとのユーザ10の走行動作状態を示す複数種類の動作分析指標の測定値を取得する。分類処理部85は、動作分析指標の種類ごとに複数の測定区間の測定値を特性で区分けするための所定の分類方法によって分類する。態様決定部90は、分類された測定値の出力態様を所定の比較対象との比較に基づいて決定する。出力部は、決定された出力態様に基づいて分類された測定値に関する情報を少なくとも出力し得る。
【選択図】
図2
【特許請求の範囲】
【請求項1】
所定の測定装置によって走行における経過点ごとに測定された走者であるユーザの位置情報および動作情報を取得する情報取得部と、
時系列的に続く前記位置情報および前記動作情報に基づいて、所定単位の測定区間ごとの前記ユーザの走行動作状態を示す複数種類の動作分析指標の測定値を取得する測定値取得部と、
前記動作分析指標の種類ごとに複数の測定区間の測定値を特性で区分けするための所定の分類方法によって分類する分類処理部と、
前記分類された測定値の出力態様を所定の比較対象との比較に基づいて決定する態様決定部と、
前記決定された出力態様に基づいて前記分類された測定値に関する情報を少なくとも出力し得る出力部と、
を備えることを特徴とする走行分析システム。
【請求項2】
前記分類処理部は、前記動作分析指標の種類ごとに測定値同士の近似度で区分けするための所定の分類方法によって測定値を分類することを特徴とする請求項1に記載の走行分析システム。
【請求項3】
前記分類処理部は、前記動作分析指標の種類ごとに測定値の平均値および標準偏差により求められる範囲に基づいて測定値を分類することを特徴とする請求項2に記載の走行分析システム。
【請求項4】
前記分類処理部は、前記動作分析指標の種類ごとに測定値をクラスター分析により分類することを特徴とする請求項2に記載の走行分析システム。
【請求項5】
前記態様決定部は、所定の変化条件に該当する変化が検出された測定値を他の測定値と区別する形で前記出力態様を決定することを特徴とする請求項1から4のいずれかに記載の走行分析システム。
【請求項6】
前記態様決定部は、所定の変化条件に該当する変化が検出された動作分析指標を他の動作分析指標と区別する形で前記出力態様を決定することを特徴とする請求項1から4のいずれかに記載の走行分析システム。
【請求項7】
前記態様決定部は、ユーザが指定する変化条件に該当する変化が検出された測定値を他の測定値と区別する形で前記出力態様を決定することを特徴とする請求項1から4のいずれかに記載の走行分析システム。
【請求項8】
前記態様決定部は、ユーザが指定する動作分析指標において所定の変化条件に該当する変化が検出された測定値を他の測定値と区別する形で前記出力態様を決定することを特徴とする請求項1から4のいずれかに記載の走行分析システム。
【請求項9】
前記態様決定部は、ユーザが指定する測定区間において所定の変化条件に該当する変化が検出された測定値を他の測定値と区別する形で前記出力態様を決定することを特徴とする請求項1から4のいずれかに記載の走行分析システム。
【請求項10】
前記態様決定部は、ユーザが指定する比較対象との比較に基づいて前記分類された測定値の出力態様を決定することを特徴とする請求項1から4のいずれかに記載の走行分析システム。
【請求項11】
所定の測定装置によって走行における経過点ごとに測定された走者であるユーザの位置情報および動作情報を取得する過程と、
時系列的に続く前記位置情報および前記動作情報に基づいて、所定単位の測定区間ごとの前記ユーザの走行動作状態を示す複数種類の動作分析指標の測定値を取得する過程と、
前記動作分析指標の種類ごとに複数の測定区間の測定値を特性で区分けするための所定の分類方法によって分類する過程と、
前記分類された測定値の出力態様を所定の比較対象との比較に基づいて決定する過程と、
前記決定された出力態様に基づいて前記分類された測定値に関する情報を少なくとも出力する過程と、
を備えることを特徴とする走行分析方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、走行分析システムに関する。特に、走行の結果を分析するシステムに関する。
【背景技術】
【0002】
近年、人々の健康志向の高まりにより、ランニング人口が増加している。特に近年は、GPS(Global Positioning System)モジュールを内蔵したスマートフォンや腕時計の普及により、走行運動のログ(以下、「走行ログ」ともいう)を誰でも手軽に記録することができる。こうした走行ログの活用は、ランニングを継続して習慣化する動機付けとなり、ランニングの人気を後押ししている。
【0003】
ランニング人口の増加に伴い、マラソンレースの参加者数やレース数も増えている。走者はレース中に走行ログを記録することで、レース終了後に自身の走行結果を振り返ることができる。このように走行データを表示する技術として、走行データ表示方法や運動支援装置が知られている(例えば、特許文献1,2参照)。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特許第7031234号公報
【特許文献2】特許第5984002号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、先行技術においては、レースにおける走行時間や走行距離といった走行量や走行フォームに関する様々な情報を得られたとしても、自身のレベル向上のために特にどの情報に着目すべきかを見つけるのは必ずしも容易でなかった。そのため、様々な情報が得られても活用しきれないユーザにとっては、情報に基づいてレース結果を振り返る動機付けにはつながりにくかった。
【0006】
本発明は、こうした状況に鑑みてなされたものであり、その目的は、走行に関する情報に基づく走行分析の容易化を図る技術を提供することにある。
【課題を解決するための手段】
【0007】
上記課題を解決するために、本発明のある態様の走行分析システムは、所定の測定装置によって走行における経過点ごとに測定された走者の位置情報および動作情報を取得する情報取得部と、時系列的に続く位置情報および動作情報に基づいて、所定単位の測定区間ごとのユーザの走行動作状態を示す複数種類の動作分析指標の測定値を取得する測定値取得部と、動作分析指標の種類ごとに複数の測定区間の測定値を特性で区分けするための所定の分類方法によって分類する分類処理部と、分類された測定値の出力態様を所定の比較対象との比較に基づいて決定する態様決定部と、決定された出力態様に基づいて分類された測定値に関する情報を少なくとも出力し得る出力部と、を備える。
【0008】
本発明の別の態様は、走行分析方法である。この方法は、所定の測定装置によって走行における経過点ごとに測定された走者の位置情報および動作情報を取得する過程と、時系列的に続く位置情報および動作情報に基づいて、所定単位の測定区間ごとのユーザの走行動作状態を示す複数種類の動作分析指標の測定値を取得する過程と、動作分析指標の種類ごとに複数の測定区間の測定値を特性で区分けするための所定の分類方法によって分類する過程と、分類された測定値の出力態様を所定の比較対象との比較に基づいて決定する過程と、決定された出力態様に基づいて分類された測定値に関する情報を少なくとも出力する過程と、を備える。
【発明の効果】
【0009】
本発明によれば、走行に関する情報に基づく走行分析の容易化を図る技術を提供することができる。
【図面の簡単な説明】
【0010】
【
図2】走行分析システムの各構成を示す機能ブロック図である。
【
図3】走行分析システムにおける処理の過程を示すフローチャートである。
【
図4】指標測定値を第1の分類方法で分類する例を示す図である。
【
図5】指標測定値を第2の分類方法で分類する場合の準備処理を示す図である。
【
図6】指標測定値を第2の分類方法で分類する処理を示す図である。
【
図7】動作分析指標ごとの分類の割合を示す横棒グラフの図である。
【
図8】
図7の横棒グラフにおいて分割された指標測定値をさらに別の基準で評価した状態を示す図である。
【
図9】注目値として検出された指標測定値に出力対象を絞って表示する例を示す図である。
【
図10】顕著に悪い傾向が続く区間として最長区間を有する動作分析指標の例を示す図である。
【
図11】レース結果を表示する画面例を示す図である。
【
図12】レース評価を表示する画面例を示す図である。
【
図13】評価ポイントに関する詳細な解説を表示する画面例を示す図である。
【発明を実施するための形態】
【0011】
以下、本発明を好適な実施形態をもとに各図面を参照しながら説明する。実施形態、変形例では、同一または同等の構成要素には、同一の符号を付するものとし、適宜重複した説明は省略する。
【0012】
図1は、走行分析システム100の構成を示す。走行分析システム100は、走行運動における走者であるユーザ10が身につけることができる腕時計型デバイス12、腰装着型デバイス14、情報端末型デバイス16と走行分析サーバ60とを備える。腕時計型デバイス12、腰装着型デバイス14、情報端末型デバイス16は、測定装置20として総称される。腕時計型デバイス12は、位置情報や動作情報等を測定し得るスポーツウォッチやスマートウォッチである。腰装着型デバイス14は、ユーザ10の腰付近に装着して位置情報や動作情報を測定し得るモーションセンサである。情報端末型デバイス16は、ユーザ10がポケット等に保持した状態で位置情報や動作情報を測定し得るスマートフォン等の携帯型情報端末である。ユーザ10は、一つまたは複数の測定装置20を身につけてレース等において走行を実施し、位置情報や動作情報を取得する。複数の測定装置20を身につける場合は、位置情報を腕時計型デバイス12で取得し、動作情報を腰装着型デバイス14で取得する、というように、取得する情報によってデバイスを使い分けてもよい。
【0013】
なお、測定装置20は、腕時計型デバイス12、腰装着型デバイス14、情報端末型デバイス16といったデバイスに限られず、走者の靴の上または中に装着するデバイスであってもよい。あるいは、走者の胸や手首、腰、腕の周りに巻いて位置情報や動作情報を取得できるベルト型デバイスであってもよい。その他、測定装置20としてはスマートグラス等の様々なウェアラブルデバイスを用いることが考えられる。また、走行コースの各経過点付近にカメラを設置して走者を撮影し、画像認識によって走者の関節位置等の骨格情報や、そのような情報から算出できるピッチやストライドといった動作情報を取得してもよい。各経過点付近にカメラを設置する代わりに、ドローンによって走者を撮影してもよい。
【0014】
ユーザ10は、測定装置20として、腕時計型デバイス12、腰装着型デバイス14、情報端末型デバイス16のうち少なくともいずれか、または、すべてを身につけた状態で走行する。測定装置20は、走行分析サーバ60と通信を介して情報を同期する。ただし、測定装置20のうち、腕時計型デバイス12および腰装着型デバイス14が持つ通信手段は近距離無線通信であるため、走行分析サーバ60と直接通信するのではなく、情報端末型デバイス16(後に詳述する「情報端末50」としても機能する)との間で情報を同期し、情報端末50が走行分析サーバ60と情報を同期する形をとる。このように、腕時計型デバイス12および腰装着型デバイス14は、情報端末50への同期を介して走行分析サーバ60へ情報を送信するため、情報端末50を保有することを前提とする。ただし、走行の実施中は必ずしも情報端末50を身につけていることを要さず、運動の実施後に情報端末50と同期できれば足りる。変形例として、腰装着型デバイス14は、近距離無線通信を介していったん腕時計型デバイス12と情報を同期し、腕時計型デバイス12がさらに近距離無線通信を介して情報端末型デバイス16(情報端末50)と情報を同期する形でもよい。
【0015】
ユーザ10は、主にマラソン等のランニングレースにおいて測定装置20を身につけて走行を実施する。ただし、レース中の測定に限らず、レースを想定した長距離の練習走行において測定してもよいし、より短距離の走行において測定してもよい。ユーザ10が走行開始時に測定装置20のボタン等を操作して測定および走行ログ記録を開始する。走行運動の実施中において、測定装置20は、記録開始からの経過時間を走行時間としてタイマーで測定し、所定の時間間隔で日時ごとの位置情報を記録する。測定装置20は、内蔵するモーションセンサによりピッチ(単位時間あたりの歩数をいい、ケイデンスともいう)や骨盤の回転・並進運動、または衝撃値等の動作情報を測定する。測定装置20は、内蔵する光学式心拍計によりユーザ10の心拍数を測定する。
【0016】
走行および走行ログ記録の終了後に、測定装置20から走行分析サーバ60へ走行時間や位置情報、動作情報、心拍数等の情報を走行ログとして送信する。なお、測定装置20は、時間情報や位置情報に基づいて走行時間や走行距離、走行速度、ピッチ、ストライド等の情報を算出し、それら算出した情報を走行ログに含めて走行分析サーバ60に送信してもよい。
【0017】
走行分析サーバ60は、インターネットに接続されて複数のユーザ10の情報端末50とデータを送受信するサーバコンピュータである。走行分析サーバ60は、情報端末50から受信したユーザ10の走行ログデータとして時間情報、位置情報、動作情報、心拍数等の情報をユーザ10の識別情報や属性情報とともに取得して、各情報から算出される様々な種類の走行分析指標の測定値や評価値とともに蓄積する。走行分析サーバ60は、情報端末50からのリクエストに応じて、蓄積した走行ログデータや測定値、評価値等を情報端末50へ送信する。
【0018】
図2は、走行分析システム100の各構成を示す機能ブロック図である。本実施形態における走行分析システム100は、測定装置20、情報端末50、走行分析サーバ60により構成される。ただし、走行分析システム100は、様々なハードウェア構成やソフトウェア構成にて実現することが考えられる。例えば、走行分析システム100は情報端末50のみで構成されてもよいし、情報端末50と測定装置20の組み合わせで構成されてもよいし、情報端末50と走行分析サーバ60の組み合わせで構成されてもよい。あるいは、情報端末50と測定装置20と走行分析サーバ60の組み合わせで構成されてもよいし、測定装置20と走行分析サーバ60の組み合わせで構成されてもよいし、走行分析サーバ60のみで構成されてもよい。
【0019】
例えば、測定装置20としては様々な汎用的なデバイスを用いて走行状態を検出して走行ログとして記録することを前提に、情報端末50および走行分析サーバ60の組み合わせ、または走行分析サーバ60のみで走行分析システム100を構成してもよいし、本図の情報端末50および走行分析サーバ60に含まれるソフトウェア構成をすべて含む単体の装置として実現してもよい。したがって、走行分析システム100は、そのハードウェア構成の態様にかかわらず、少なくとも本図の情報端末50および走行分析サーバ60が持つソフトウェア構成を含んでいれば足りる。
【0020】
図2では、測定装置20、情報端末50、走行分析サーバ60に関して、それぞれ様々なハードウェア構成およびソフトウェア構成の連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックがハードウェアのみ、ソフトウェアのみ、またはそれらの組合せによっていろいろな形で実現できることは、当業者には理解されるところである。測定装置20は、例えばマイクロプロセッサ、表示装置、メモリ、通信モジュール、測位モジュール、モーションセンサ、光学式心拍計等のハードウェアの組み合わせで構成される。情報端末50は、例えばマイクロプロセッサ、タッチパネル、メモリ、通信モジュール、測位モジュール、モーションセンサ等のハードウェアの組み合わせで構成される。走行分析サーバ60は、例えばマイクロプロセッサ、メモリ、ディスプレイ、通信モジュール等のハードウェアの組み合わせで構成される。以下、測定装置20、情報端末50、走行分析サーバ60のそれぞれの機能を説明する。
【0021】
測定装置20は、例えば腰装着型デバイス14である。測定装置20は、通信部21、時間測定部22、位置測定部24、動作検出部26を有する。時間測定部22は、走行開始時刻、すなわち測定開始時刻からの走行時間をタイマーのカウントにより測定する。位置測定部24は、GPSモジュールが衛星測位システムから受信する位置情報により現在位置を測定する。動作検出部26は、モーションセンサによりユーザ10のピッチや骨盤の回転・並進運動、または衝撃値等を検出する。
【0022】
測定装置20として、腕時計型デバイス12や情報端末型デバイス16を用いることもできる。測定装置20として腕時計型デバイス12を用いる場合、腕時計型デバイス12の動作検出部26は、モーションセンサによりユーザ10のピッチ等を検出し、光学式心拍計により心拍数等を検出する。測定装置20として情報端末型デバイス16を用いる場合、情報端末型デバイス16の動作検出部26は、モーションセンサによりユーザ10のピッチ等を検出する。なお、情報端末50は、測定装置20としての情報端末型デバイス16を兼ねてよく、その場合、例えば一つのスマートフォン等の携帯端末により測定装置20および情報端末50の双方の機能をすべて有してもよい。情報端末50を測定装置20として兼用しない場合、情報端末50はスマートフォンに限らず、ユーザ10が所有するタブレット端末やパーソナルコンピュータであってもよい。
【0023】
情報端末50は、情報取得部30、測定値取得部40、入出力部51、通信部52を有する。情報取得部30は、レースにおける走者であるユーザ10が身に着ける測定装置20によって走行における経過点ごとに測定されたユーザ10の位置情報および動作情報を通信部52を介して受け取る。ここで「経過点」とは、レース等の走行における時間的な経過地点または距離的な経過地点をいい、時間的または距離的な経過地点ごとに位置情報および動作情報が測定装置20に記録される。位置情報には、測定した日時、位置座標、標高等の情報が含まれる。動作情報には、ピッチや骨盤の回転・並進運動、または衝撃値等を示す情報が含まれる。情報取得部30は、走行中に測定装置20と情報を同期して測定装置20によって経過中の走行状態の情報として位置情報および動作情報を取得してもよいし、走行の終了後に全行程の位置情報および動作情報を一括して測定装置20から取得してもよい。
【0024】
測定値取得部40は、情報取得部30が取得した情報に基づいて、時系列的に続く位置情報および動作情報に基づいて、所定単位の測定区間ごとのユーザの走行動作状態を示す複数種類の動作分析指標の測定値(以下、走行動作状態を示す動作分析指標の測定値を「指標測定値」と呼ぶ)を取得する。「所定単位の測定区間」は、1秒ごと、1分ごとといった所定の経過時間を単位とする測定間隔、または、100mごと、1kmごとといった所定の経過距離を単位とする測定間隔をいう。
【0025】
測定値取得部40は、例えば、ラップペース、ラップタイム、走行タイム、走速度、ピッチ、ストライド、ストライド身長比、体幹の後傾、上下動、上下動身長比、腰の沈み込み、骨盤の左右傾き、骨盤の引き上げ量、骨盤の回転量、骨盤回転タイミング、左右方向衝撃、蹴り出し時間、接地時間、接地時間率、着地衝撃、蹴り出し加速度、減速量、スティフネス、スティフネス体重比、といった複数種類の動作分析指標における指標測定値を算出する。測定値取得部40は、走行開始から終了までの全行程において時系列で続く指標測定値を時系列データとして記録する。
【0026】
入出力部51は、測定装置20によって取得された位置情報および動作情報と、測定値取得部40によって取得された指標測定値とを、走行ログとしてユーザ10の属性情報とともに通信部52を介して走行分析サーバ60へ送信する。入出力部51は、測定装置20によって取得された位置情報および動作情報と、測定値取得部40によって取得された指標測定値を画面に表示するとともに、走行分析サーバ60から受信する情報を画面に表示する。入出力部51は、ユーザ10による操作入力を受け付ける。入出力部51は、ハードウェア的にはタッチパネルで構成されてよい。
【0027】
なお、本実施形態では測定値取得部40が複数種類の指標測定値を取得する例を説明したが、測定値取得部40の機能を走行分析サーバ60に持たせることで、情報端末50では指標測定値を算出しないこととしてもよい。以下の走行分析サーバ60の説明においては、走行分析サーバ60が測定値取得部40の機能に相当する測定値取得部80を有する例を説明する。
【0028】
走行分析サーバ60は、通信部62、ログ取得部64、情報取得部70、測定値取得部80、分類処理部85、態様決定部90、データ記憶部66、出力部99を備える。
【0029】
ログ取得部64は、通信部62を介して走行ログを取得してデータ記憶部66に記憶させる。情報取得部70は、測定装置20の情報取得部30に相当する機能である。すなわち、情報取得部70はレースにおける走者であるユーザ10が身に着ける測定装置20によって走行における経過点ごとに測定されたユーザ10の位置情報および動作情報をデータ記憶部66に記憶される走行ログから取得する。
【0030】
測定値取得部80は、情報端末50の測定値取得部40に相当する機能である。すなわち、測定値取得部80は情報取得部70が取得した情報に基づいて、時系列的に続く位置情報および動作情報に基づいて、所定単位の測定区間ごとのユーザの走行動作状態を示す複数種類の動作分析指標の指標測定値を取得する。測定値取得部80は、走行開始から終了までの全行程において時系列で続く指標測定値を時系列データとしてデータ記憶部66に記憶させる。
【0031】
なお、レース等の走行コースによっては起伏に富むこともあり、また季節や天候、気温、湿度、時間帯、参加人数等の外部環境要因によって指標測定値に大きな影響を与える場合がある。そこで、測定値取得部80は、コース条件や環境条件に関する情報を取得し、そのような情報に基づいてこれらのコース条件や環境条件に影響されない状況でのデータに正規化してもよい。この場合、後述する比較対象のデータも同様に正規化しておくことにより、平等な条件での比較を実現し、分析精度を高めてもよい。
【0032】
分類処理部85は、動作分析指標の種類ごとに複数の測定区間の指標測定値を特性で区分けするための所定の分類方法によって分類する。分類方法としては2通りの方法がある。第1の分類方法は、動作分析指標の種類ごとに指標測定値の平均値および標準偏差により求められる範囲に基づいて指標測定値を分類する方法である。第2の分類方法は、動作分析指標の種類ごとに指標測定値をクラスター分析により分類する方法である。これらの分類方法により、動作分析指標の種類ごとに指標測定値同士の近似度で区分けすることができる。
【0033】
第1の分類方法においては、分類処理部85は指標測定値を平均値と標準偏差を用いて分類する。分類処理部85は、指標測定値の時系列データを平均値±標準偏差の範囲内にあるか否かで分類する。これにより、指標測定値を正常値と異常値とで区別することができ、あるいは安定的な走行フォームを示す指標測定値と不安定な走行フォームの指標測定値とで区別することができる。
【0034】
第2の分類方法においては、分類処理部85は指標測定値をクラスター分析により分類する。分類処理部85は、クラスター分析の準備処理として、指標測定値の時系列データにおいてスタート地点からゴール地点まで所定単位ずつのデータの平均値と標準偏差を算出する。すなわち、指標測定値の時系列データにおいてスタート地点から所定長区間のウィンドウを設定した上で、ゴール地点まで全範囲にわたってウィンドウをスライドしながら、順次、ウィンドウ内の指標測定値の平均値と標準偏差を算出するウィンドウ処理を実行する。こうして算出された平均値と標準偏差の値をクラスター分析によって所定個数の群にクラスタリングすることで、指標測定値を複数の群に分類して群ラベルをラベリングする。クラスター分析の詳細については後述する。
【0035】
指標測定値によって、第1の分類方法と第2の分類方法のいずれで分類するかが異なってもよく、いずれの分類方法で分類するかが指標測定値によってあらかじめ設定されていてもよい。あるいは、分類処理部85は指標測定値ごとに第1の分類方法と第2の分類方法の双方で分類処理を実行し、その実行結果に応じていずれを採用するかを決定してもよい。例えば、一方の分類方法による実行結果では適切な数に分類できなかった場合に、他方の分類方法を採用するようにしてもよい。
【0036】
態様決定部90は、分類された指標測定値の出力態様を所定の比較対象との比較に基づいて決定する。ここで「出力態様」とは、情報端末50の画面へ表示させる情報の種類や表示内容、表示形式、情報端末50へ送信するデータ内容等を含む、情報端末50へ出力する情報の態様をいう。態様決定部90は、測定装置20の入出力部51への入力を介したユーザ10の指示に基づいて、出力する情報の種類や情報の比較対象、情報の出力形式等を決定する。態様決定部90は、指示取得部91、出力対象決定部92、比較対象設定部93、比較処理部94、変化条件設定部95、変化検出部96を有する。
【0037】
指示取得部91は、測定装置20の入出力部51への入力を介したユーザ10の指示を取得する。指示取得部91は、ユーザ10が気になる分析視点をユーザ10に選択させることで、その選択された分析視点に対応する指標測定値を出力対象や比較対象として設定するようにしてもよい。例えば、ユーザ10に選択させる複数種類の分析視点として、「負担の少ない接地」「安定した姿勢」「骨盤を軸とした全身の連動」「スムーズな重心移動」「動きの力強さ」「左右対称性」「レースの速さ」の7種類の分析視点を用意する。これらはそれぞれが個別に一つまたは複数の指標測定値に影響する分析視点である。
【0038】
出力対象決定部92は、ユーザ10が選択した分析視点に対応する指標測定値を出力対象に設定する。例えば「負担の少ない接地」の分析視点に対応する指標測定値は、上下動身長比、着地衝撃、蹴りだし加速度である。「安定した姿勢」の分析視点に対応する指標測定値は、骨盤の左右傾き、体幹の後傾量である。「骨盤を軸とした全身の連動」の分析視点に対応する指標測定値は、蹴りだし時間、骨盤の回転タイミング、腰の沈み込みである。「スムーズな重心移動」の分析視点に対応する指標測定値は、減速量、左右方向衝撃である。「動きの力強さ」の分析視点に対応する指標測定値は、ストライド身長比、骨盤の回転量、骨盤の引き上げ量である。「左右対称性」の分析視点には、すべての指標測定値が対応する。「レースの速さ」の分析視点に対応する指標測定値は、走速度である。
【0039】
なお、出力対象決定部92は、特にユーザ10の指示がない場合には、すべての指標測定値を出力対象としてもよい。また、出力対象決定部92は、一つの指標測定値においてすべての測定区間を出力対象としてもよいし、ユーザ10自身が気になる測定区間の選択指示を指示取得部91が取得した場合、ユーザ10の指示に基づく特定の測定区間に絞って出力対象としてもよい。出力対象決定部92は、後述する変化検出部96によって検出された、特に異常が見られる測定区間や特に優れた結果を示す測定区間に絞って出力対象としてもよい。
【0040】
出力データ生成部98は、出力対象決定部92により出力対象とされた指標測定値が含まれるように出力データを生成する。出力データには、少なくとも測定装置20の入出力部51によって画面に表示される内容が定められる。
【0041】
態様決定部90は、どのような値を比較対象とするかによって、異なる出力態様にて指標測定値を出力し得る。比較対象設定部93は、何らかの基準値を比較対象として設定する。比較対象設定部93は、例えば分類処理部85によって分類された群ラベルごとの平均値同士で比較するよう設定してもよい。比較対象設定部93は、例えば指標測定値の時系列データにおける平均値や所定の測定区間に絞った範囲の平均値を比較対象としてもよいし、他の測定区間における同種の指標測定値を比較対象としてもよい。比較対象設定部93は、左右の脚のうち一方の指標測定値である場合は、他方の脚の指標測定値を比較対象としてもよい。比較対象設定部93は、他の日時または他のユーザにおける同種の指標測定値を比較対象としてもよい。
【0042】
比較処理部94は、出力対象となる指標測定値を、比較対象設定部93により設定された比較対象と比較する。例えば、分類処理部85によって分類された群ラベルごとの平均値を比較対象とする場合、比較処理部94は群ラベルごとの平均値同士を比較する。評価決定部97は、比較処理部94による比較結果に基づいて、分類処理部85により分類された指標測定値の各群を評価する。評価決定部97は、出力対象決定部92によって出力対象とされた指標測定値に関し、比較処理部94による比較結果の他、変化検出部96による検出結果に基づいて指標測定値の評価を決定する。
【0043】
変化検出部96は、出力対象となる指標測定値の時系列データにおいて、所定の変化条件に該当する変化を検出する。変化条件設定部95は、変化検出部96によって検出対象となる変化条件を設定する。変化条件設定部95は、特定の変化条件を標準的な検出の条件として変化条件に設定していてもよいし、ユーザ10が指定する条件を変化条件に設定してもよい。変化条件としては、例えば所定の基準値と指標測定値の差が所定範囲を超える場合に、その指標測定値を注目値として検出するよう定められた条件でもよい。例えば、指標測定値が基準値より顕著に良い場合や顕著に悪い場合に注目値として検出してもよい。比較対象となる基準値は、比較対象設定部93が設定する比較対象であってよい。
【0044】
評価決定部97は、主に出力対象決定部92によって出力対象とされた指標測定値に関し、比較処理部94による比較結果や変化検出部96による検出結果に基づいて指標測定値の評価を決定する。
【0045】
出力データ生成部98は、変化検出部96によって変化が検出された指標測定値の測定区間を他の指標測定値、すなわち変化が検出されなかった測定区間とは区別する形で出力データを生成する。また、出力データ生成部98は、変化検出部96によって変化が検出された指標測定値の動作分析指標を、他の動作分析指標、すなわち同様の変化が検出されなかった動作分析指標の指標測定値とは区別する形で出力データを生成する。出力データ生成部98は、評価決定部97により評価が決定された場合は、その評価結果を含むように出力データを生成する。
【0046】
図3は、走行分析システムにおける処理の過程を示すフローチャートである。ユーザ10がレース等の走行において測定装置20により測定した位置情報や動作情報を情報取得部70が取得し(S10)、取得された位置情報や動作情報に基づいて測定値取得部80が各種の動作分析指標の測定値を取得する(S12)。分類処理部85が各種の動作分析指標に対応する指標測定値を所定の分類方法により分類する(S14)。指示取得部91は、ユーザ10の操作による分析視点の入力があった場合は分析視点の情報を取得し(S16)、出力対象決定部92は指標測定値の出力対象を分析視点に応じて決定し(S18)、変化検出部96は所定の変化条件に該当する動作分析指標またはその指標測定値を検出し(S22)、評価決定部97は指標測定値の評価を決定する(S24)。出力データ生成部98は出力対象の指標測定値を、比較結果や検出結果、評価とともに出力データを生成する。出力データ生成部98によって生成された出力データに基づいて出力部99が指標測定値を出力する(S26)。なお、S12~S26の処理は様々な順序で実行することが考えられ、本図のフローチャートにおけるS12~S26の順序は便宜上定めた順序にすぎない。
【0047】
図4は、指標測定値を第1の分類方法で分類する例を示す。第1の分類方法においては、分類処理部85は指標測定値を平均値と標準偏差を用いて分類する。
図4のグラフでは、分類対象とする指標測定値として、骨盤の回転量を示す指標測定値の時系列データが走行距離地点との対応でプロットされている。縦軸は骨盤の回転量[deg]を示し、横軸は距離地点[km]を示す。実線110は、骨盤の回転量の時系列データの平均値を示し、破線112は骨盤の回転数の時系列データの平均値±標準偏差の範囲を示す。2本の破線112の範囲内にある指標測定値は円形でプロットされており、破線112の範囲外にある指標測定値は菱形でプロットされている。本図の例では、プロット群114a~kの菱形プロットが破線112の範囲外の指標測定値であり、破線112の範囲内にある円形プロットの指標測定値と区別される形で分類される。円形プロットで示される指標測定値は、標準偏差内にある安定的な走行フォームを示す指標値として分類され、菱形プロットで示される指標測定値は、標準偏差外にある不安定または乱れた走行フォームを示す指標値として分類される。
【0048】
このように、指標測定値の時系列データを平均値±標準偏差の範囲内にあるか否かで分類することにより、安定的な走行フォームを示す指標測定値と不安定な走行フォームの指標測定値とを区別することができる。
【0049】
図5は、指標測定値を第2の分類方法で分類する場合の準備処理を示す。第2の分類方法においては、分類処理部85は指標測定値をクラスター分析により分類する。
図5のグラフでは、分類対象とする指標測定値として、走行ペースを示す指標測定値の時系列データが走行距離地点との対応でプロットされている。縦軸は走行ペース[min/km]を示し、横軸は距離地点[km]を示す。
図5(a)は指標測定値がそのままプロットされている。ここで準備処理として、図に示すように所定長区間のウィンドウWを設定し、ウィンドウWをスタート地点からゴール地点までスライドしながらウィンドウWに含まれる指標測定値の平均値と標準偏差を算出するウィンドウ処理を実行する。ウィンドウWは、時系列的に連続する複数個、例えば5個の指標測定値を含み得る範囲の区間をカバーする。仮に100mの距離ごとに指標測定値が測定されている場合、500mの区間のウィンドウが設定される。または、例えば10秒ごとといった時間単位で指標測定値が測定されている場合は、1区間が60秒というような時間ウィンドウが設定される。
【0050】
第1ウィンドウW
1は1~5個目の指標測定値をカバーし、第2ウィンドウW
2は2~6個目の指標測定値をカバーし、指標測定値を1個分ずつスライドするようにウィンドウを設定する。ゴール地点に向かってスライドしていき、第n-1ウィンドウW
n-1から最後の第nウィンドウW
nまで到達すると、ウィンドウ処理が終了する。
図5(b)にはウィンドウ処理により算出された各ウィンドウ内の指標測定値の平均値の時系列データが各ウィンドウの走行距離地点との対応でプロットされている。
図5(c)にはウィンドウ処理により算出された各ウィンドウ内の指標測定値の標準偏差の時系列データが各ウィンドウの走行距離地点との対応でプロットされている。
【0051】
図6は、指標測定値を第2の分類方法で分類する処理を示す。
図6(a)のグラフは、
図5のウィンドウごとに算出した
図5(b)の平均値を横軸にとり、
図5(c)の標準偏差を縦軸にとってプロットした散布図である。全プロットを例えばK平均法によりクラスタリングする。クラスター数Kには、例えばエルボー法による推定値を設定してもよいし、走行評価値の種類にかかわらず一律に4段階に分けたい場合には「4」といった固定値を設定してもよい。図示するように、全プロットがK個の重心点との距離によってクラスタリングされ、重心点121を核とする第1群120と、重心点123を核とする第2群122と、重心点125を核とする第3群124と、重心点127を核とする第4群126と、に分類される。各プロットは、それぞれが分類された群ラベルでラベリングされる。
図6(b)のグラフは、
図5(b)の平均値を示す。各プロットは、
図6(a)でラベリングされた群ラベルである第1群120、第2群122、第3群124、第4群126に分類されている。指標測定値によってクラスター数は異なってよいし、ユーザ10ごと、あるいは走行ごとの指標測定値のばらつきによってもクラスター数は異なってもよい。
【0052】
このように、指標測定値の時系列データをクラスター分析で分類することにより、指標測定値同士の特性の近似度で区分けすることができ、指標測定値のばらつきを客観的に捉えて検出することができる。
【0053】
図7は、動作分析指標ごとの分類の割合を示す横棒グラフの図である。動作分析指標ごとにその指標測定値が上述の第1または第2の分類方法により分類され、その分類の変化点にて時系列データが分割される。縦軸に各指標測定値を並べ、横軸に走行距離地点[km]をとる。マラソンの場合、全体を42kmとして、各動作分析指標の指標測定値の横棒グラフを分類ごとの割合で分割している。例えば、動作分析指標「スティフネス」では、34.5km付近を境に2つの分類に分割されている。動作分析指標「骨盤回転タイミング」では、4km付近と14.5km付近を境にして3つの分類に分割されている。例えば、第1の分類方法で分類された動作分析指標の場合は、標準偏差の範囲内か範囲外かの境で指標測定値の時系列データが分割される。第2の分類方法で分類された動作分析指標の場合は、群ラベルの変化点を境に指標測定値の時系列データが分割される。
【0054】
図8は、
図7の横棒グラフにおいて分割された指標測定値をさらに別の基準で評価した状態を示す。比較処理部94は、比較対象設定部93が設定した比較対象を基準値として、動作分析指標ごとの分類を評価する。例えば、分類処理部85によって分類された群ラベルごとの平均値を比較対象とする場合、比較処理部94は群ラベルごとの平均値同士を比較する。評価決定部97は、比較処理部94による比較結果に基づいて、分類処理部85により分類された指標測定値の各群を評価し、群ごとの平均値の順序にしたがって
図8に示すように他の指標測定値の群と区別する形で色分け表示する。第1色130は最も良い値の分類を示す(例えば青色で示す)。第2色131はやや良い値の分類を示す(例えば緑色で示す)。第3色132はやや悪い値の分類を示す(例えば黄色で示す)。第4色は最も悪い値の分類を示す(例えば赤色で示す)。変形例として、比較処理部94はレース全体の指標測定値の平均値を算出し、群ラベルごとにレース全体の平均値と比較し、比較結果ごとに区別する形で色分け表示してもよい。
【0055】
図9は、注目値として検出された指標測定値に出力対象を絞って表示する例を示す。
図9(a)(b)は比較処理部94による比較結果として、比較対象となる所定の基準値より顕著に良い分類と顕著に悪い分類に限定して表示し、顕著に良い分類を第4色134(例えば赤色)で示し、顕著に悪い分類を第5色135(例えば青色)で示す。
図9(a)における比較対象は、例えばユーザ10自身のデータや他の走者のデータである。同じレース内における同じ走者の指標測定値の中から比較対象を設定してもよいし、過去のレースにおける同じ走者の指標測定値から比較対象を設定してもよいし、他の走者の指標測定値から比較対象を設定してもよい。他の走者の指標測定値を比較対象とする場合、同じ測定区間における他の走者の指標測定値を比較対象としてもよい。
図9(b)における比較対象は、例えば
図5(a)のウィンドウごとに一つ前のウィンドウの値を比較対象としてもよいし、ラップごとに一つ前のラップの値を比較対象としてもよい。
【0056】
変化検出部96は、顕著に良い傾向が続く区間として最長区間を持つ動作分析指標(
図9(a)の例では「骨盤の左右傾き」)や、顕著に悪い傾向が続く区間として最長区間を持つ動作分析指標(
図9(a)の例では「減速量」)を検出する。
【0057】
変化検出部96は、複数の動作分析指標のいずれも顕著に良い傾向が続く区間として最長区間を持つ動作分析指標の組み合わせ、または、複数の動作分析指標のいずれも顕著に悪い傾向が続く区間として最長区間を持つ動作分析指標の組み合わせを検出してもよい。変化検出部96は、例えば、着地衝撃・蹴りだし加速度(負担の少ない接地)、左右方向衝撃(スムーズな重心移動)の組み合わせを、顕著に良い傾向が続く区間として最長区間をレース終盤に有する動作分析指標の組み合わせとして検出する。この場合、評価決定部97は、力を無駄なく発揮して走ることができているとの助言を評価結果として決定してよい。また、骨盤の回転量(動きの力強さ)、蹴りだし時間(骨盤を軸とした全身の連動)の組み合わせを、顕著に悪い傾向が続く区間として最長区間をレース終盤に有する動作分析指標の組み合わせとして検出する。この場合、評価決定部97は、蹴りだす動きを小さくして、骨盤を使って足を前に出して走るようにするべきとの助言を評価結果として決定してよい。
【0058】
図10は、顕著に悪い傾向が続く区間として最長区間を有する動作分析指標の例を示す。本図では顕著に悪い傾向が続く区間として最長区間をレース終盤に有する骨盤の回転量をグラフで示す。指標測定値として、骨盤の回転量を示す指標測定値の時系列データが走行距離地点との対応でプロットされている。縦軸は骨盤の回転量[deg]を示し、横軸は距離地点[km]を示す。特にレース終盤である区間139におけるユーザ10の骨盤の回転量が顕著に悪い傾向が続いており、重要な変化として変化検出部96により検出される。このような重要な変化が生じていることは、ユーザ10自身がレース中に感覚で認識している場合も多いが、実際に予兆としてどの段階で変化し始めたかはユーザ10自身も認識しきれない場合がある。本実施形態によれば、客観的なデータにおける重要な変化とその変化が始まったタイミングも予兆として検出でき、ユーザ10のレベル向上のための有用なデータとなる。
【0059】
図11は、レース結果を表示する画面例を示す。ユーザ10がレース結果の概要を表示する指示をした場合、態様決定部90によって生成されたレースサマリー画面140が表示される。レースサマリー画面140においては、走行距離、走行時間、平均ペース、平均ストライド、平均ピッチといった走行状態を示す情報の他、ランニングフォームスコアとして各種動作分析指標の測定値に基づくスコアがレーダーチャート形式で表示される。また、走行した位置情報に基づくコースの情報が表示される。最下欄には、ユーザ10に対する助言を含む評価内容が表示される。
【0060】
図12は、レース評価を表示する画面例を示す。ユーザ10がレース評価を表示する指示をした場合、態様決定部90によって生成されたレースレビュー画面142が表示される。レースレビュー画面142において、第1欄143には、走行ペースに関する評価が表示される。第2欄144には、走行ペースの経過を示すグラフが表示される。第3欄145には、レース序盤、中盤、終盤に分けたペースの評価およびフォームに関する評価が表示される。
【0061】
第4欄146には、変化検出部96によって検出された重要な変化に基づく評価や、ユーザ10が選択した視点に対応する動作分析指標に関する評価が表示される。第4欄146には、評価決定部97によって決定された複数の評価ポイントが表示され、ユーザ10の指示によりそれぞれの評価ポイントに関する詳細な解説やグラフが表示される次図のような画面に切り替わる。
【0062】
図13は、評価ポイントに関する詳細な解説を表示する画面例を示す。ユーザ10が評価ポイントに関する詳細な解説を表示する指示をした場合、態様決定部90によって生成されたポイント解説画面150が表示される。ポイント解説画面150においては、動作分析指標そのものの解説や、重要な変化が検出された場合の変化の解説、所定の比較対象との比較結果の解説等が文章とグラフで表示される。
【0063】
以上、本発明について実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。また、上述した実施形態を一般化すると以下の態様が得られる。
【0064】
〔態様1〕
所定の測定装置によって走行における経過点ごとに測定された走者であるユーザの位置情報および動作情報を取得する情報取得部と、
時系列的に続く前記位置情報および前記動作情報に基づいて、所定単位の測定区間ごとの前記ユーザの走行動作状態を示す複数種類の動作分析指標の測定値を取得する測定値取得部と、
前記動作分析指標の種類ごとに複数の測定区間の測定値を特性で区分けするための所定の分類方法によって分類する分類処理部と、
前記分類された測定値の出力態様を所定の比較対象との比較に基づいて決定する態様決定部と、
前記決定された出力態様に基づいて前記分類された測定値に関する情報を少なくとも出力し得る出力部と、
を備えることを特徴とする走行分析システム。
【0065】
〔態様2〕
前記分類処理部は、前記動作分析指標の種類ごとに測定値同士の近似度で区分けするための所定の分類方法によって測定値を分類することを特徴とする態様1に記載の走行分析システム。
【0066】
〔態様3〕
前記分類処理部は、前記動作分析指標の種類ごとに測定値の平均値および標準偏差により求められる範囲に基づいて測定値を分類することを特徴とする態様1または2に記載の走行分析システム。
【0067】
〔態様4〕
前記分類処理部は、前記動作分析指標の種類ごとに測定値をクラスター分析により分類することを特徴とする態様1から3のいずれかに記載の走行分析システム。
【0068】
〔態様5〕
前記態様決定部は、所定の変化条件に該当する変化が検出された測定値を他の測定値と区別する形で前記出力態様を決定することを特徴とする態様1から4のいずれかに記載の走行分析システム。
【0069】
〔態様6〕
前記態様決定部は、所定の変化条件に該当する変化が検出された動作分析指標を他の動作分析指標と区別する形で前記出力態様を決定することを特徴とする態様1から5のいずれかに記載の走行分析システム。
【0070】
〔態様7〕
前記態様決定部は、ユーザが指定する変化条件に該当する変化が検出された測定値を他の測定値と区別する形で前記出力態様を決定することを特徴とする態様1から6のいずれかに記載の走行分析システム。
【0071】
〔態様8〕
前記態様決定部は、ユーザが指定する動作分析指標において所定の変化条件に該当する変化が検出された測定値を他の測定値と区別する形で前記出力態様を決定することを特徴とする態様1から7のいずれかに記載の走行分析システム。
【0072】
〔態様9〕
前記態様決定部は、ユーザが指定する測定区間において所定の変化条件に該当する変化が検出された測定値を他の測定値と区別する形で前記出力態様を決定することを特徴とする態様1から8のいずれかに記載の走行分析システム。
【0073】
〔態様10〕
前記態様決定部は、ユーザが指定する比較対象との比較に基づいて前記分類された測定値の出力態様を決定することを特徴とする態様1から9のいずれかに記載の走行分析システム。
【0074】
〔態様11〕
所定の測定装置によって走行における経過点ごとに測定された走者であるユーザの位置情報および動作情報を取得する過程と、
時系列的に続く前記位置情報および前記動作情報に基づいて、所定単位の測定区間ごとの前記ユーザの走行動作状態を示す複数種類の動作分析指標の測定値を取得する過程と、
前記動作分析指標の種類ごとに複数の測定区間の測定値を特性で区分けするための所定の分類方法によって分類する過程と、
前記分類された測定値の出力態様を所定の比較対象との比較に基づいて決定する過程と、
前記決定された出力態様に基づいて前記分類された測定値に関する情報を少なくとも出力する過程と、
を備えることを特徴とする走行分析方法。
【符号の説明】
【0075】
10 ユーザ、 20 測定装置、 30 情報取得部、 40 測定値取得部、 50 情報端末、 60 走行分析サーバ、 70 情報取得部、 80 測定値取得部、 85 分類処理部、 90 態様決定部、 99 出力部、 100 走行分析システム。