IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 東洋炭素株式会社の特許一覧

<>
  • 特開-SiCウエハの製造方法 図1
  • 特開-SiCウエハの製造方法 図2
  • 特開-SiCウエハの製造方法 図3
  • 特開-SiCウエハの製造方法 図4
  • 特開-SiCウエハの製造方法 図5
  • 特開-SiCウエハの製造方法 図6
  • 特開-SiCウエハの製造方法 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024038313
(43)【公開日】2024-03-19
(54)【発明の名称】SiCウエハの製造方法
(51)【国際特許分類】
   C30B 29/36 20060101AFI20240312BHJP
   C30B 33/12 20060101ALI20240312BHJP
【FI】
C30B29/36 A
C30B33/12
【審査請求】有
【請求項の数】1
【出願形態】OL
(21)【出願番号】P 2024002053
(22)【出願日】2024-01-10
(62)【分割の表示】P 2020532458の分割
【原出願日】2019-07-25
(31)【優先権主張番号】P 2018139347
(32)【優先日】2018-07-25
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000222842
【氏名又は名称】東洋炭素株式会社
(74)【代理人】
【識別番号】100118784
【弁理士】
【氏名又は名称】桂川 直己
(72)【発明者】
【氏名】矢吹 紀人
(72)【発明者】
【氏名】中島 祐治
(72)【発明者】
【氏名】坂口 卓也
(72)【発明者】
【氏名】野上 暁
(72)【発明者】
【氏名】北畠 真
(57)【要約】      (修正有)
【課題】少ないエッチング量で加工変質層を十分に除去することができるSiCウエハの製造方法を提供する。
【解決手段】SiCウエハ(40)の製造方法では、SiCウエハ(40)の表面及びその内部に生じた加工変質層を除去する加工変質層除去工程を行って、当該加工変質層の少なくとも一部が除去されたSiCウエハ(40)を製造する。加工変質層除去工程では、酸化剤を用いてSiCウエハ(40)に反応生成物を生成させつつ、砥粒を用いて当該反応生成物を除去された研磨工程後のSiCウエハ(40)に対して、Si蒸気圧下の加熱によるエッチング量が10μm以下のエッチングを行うことで加工変質層が除去される。研磨工程後のSiCウエハ(40)には、加工変質層に起因して当該加工変質層よりも内部に内部応力が生じており、加工変質層除去工程で当該加工変質層を除去することでSiCウエハ(40)の内部応力が低減される。
【選択図】図2
【特許請求の範囲】
【請求項1】
SiCウエハの表面及びその内部に生じた加工変質層を除去する加工変質層除去工程を行って、当該加工変質層の少なくとも一部が除去されたSiCウエハを製造する方法において、
前記加工変質層除去工程では、酸化剤を用いて前記SiCウエハに反応生成物を生成させつつ、砥粒を用いて当該反応生成物を除去することにより表面が研磨された研磨後ウエハに対して、Si蒸気圧下の加熱によるエッチング量が10μm以下のエッチングを行うことで前記加工変質層が除去され、
前記研磨後ウエハには、前記加工変質層に起因して当該加工変質層よりも内部に応力が生じており、前記加工変質層除去工程で当該加工変質層を除去することで前記SiCウエハの内部応力が低減されることを特徴とする加工変質層が除去されたSiCウエハの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、主として、加工変質層が除去されたSiCウエハを製造する方法に関する。
【背景技術】
【0002】
特許文献1には、SiCウエハに例えば機械研磨を行うことで、SiCウエハの表面に研磨傷が生じるとともに、その内部に潜傷が生じることが記載されている。また、特許文献1では、Si蒸気圧下で加熱を行ってSiCウエハの表面をエッチングすることで、潜傷を除去する方法が記載されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】国際公開第2015/151413号
【発明の概要】
【発明が解決しようとする課題】
【0004】
ここで、潜傷等の加工変質層を特許文献1のようにエッチングによって除去する場合、少ないエッチング量で加工変質層を除去することが好ましい。なぜなら、エッチング量を少なくすることで、加工変質層の除去に必要な時間が低減されるとともに、素材としての単結晶SiCを効率良く利用でき、更に、エッチングを行うための処理装置の劣化を軽減できるからである。
【0005】
本発明は以上の事情に鑑みてされたものであり、その主要な目的は、少ないエッチング量で加工変質層を十分に除去することができるSiCウエハの製造方法を提供することにある。
【課題を解決するための手段及び効果】
【0006】
本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段とその効果を説明する。
【0007】
本発明の観点によれば、以下のSiCウエハの製造方法が提供される。即ち、このSiCウエハの製造方法では、SiCウエハの表面及びその内部に生じた加工変質層を除去する加工変質層除去工程を行って、当該加工変質層の少なくとも一部が除去されたSiCウエハを製造する。前記加工変質層除去工程では、酸化剤を用いて前記SiCウエハに反応生成物を生成させつつ、砥粒を用いて当該反応生成物を除去することにより表面が研磨された研磨後ウエハに対して、Si蒸気圧下の加熱によるエッチング量が10μm以下のエッチングを行うことで前記加工変質層が除去される。前記研磨後ウエハには、前記加工変質層に起因して当該加工変質層よりも内部に応力が生じており、前記加工変質層除去工程で当該加工変質層を除去することでSiCウエハの内部応力が低減される。
【0008】
酸化剤を用いて生成した比較的軟らかい反応生成物を砥粒を用いて除去するため、他の方法で研磨を行う場合と比較して、加工変質層が生じにくくなる。そのため、エッチング量が10μm以下であっても加工変質層を十分に除去することができる。また、従来と比較してエッチング量が少なくなるため、処理に必要な時間を低減できるとともに、処理装置への負荷も低減できる。
【図面の簡単な説明】
【0009】
図1】本発明の一実施形態に係るSi蒸気圧エッチングで用いる高温真空炉の概要を説明する図。
図2】本実施形態のSiCウエハの製造工程を模式的に示す図。
図3】研磨工程で使用される研磨装置の構成を示す斜視図。
図4】研磨工程後のSiCウエハに生じている加工変質層及び応力層が加工変質層除去工程により除去されることを説明する図。
図5】研磨工程後のSiCウエハと加工変質層除去工程後のSiCウエハのスクラッチマップを示す図。
図6】加工変質層除去工程でのエッチング量が異なるそれぞれのSiCウエハについてのスクラッチマップを示す図。
図7】研磨工程後のSiCウエハの表面粗さと加工変質層除去工程後のスクラッチの量とを比較する図。
【発明を実施するための形態】
【0010】
次に、図面を参照して本発明の実施形態を説明する。初めに、図1を参照して、本実施形態のSiCウエハの製造方法等で用いる高温真空炉10について説明する。
【0011】
図1に示すように、高温真空炉10は、本加熱室21と、予備加熱室22と、を備えている。本加熱室21は、少なくとも表面が単結晶SiC(例えば、4H-SiC又は6H-SiC)で構成されるSiCウエハ40(単結晶SiC基板)を1000℃以上2300℃以下の温度に加熱することができる。予備加熱室22は、SiCウエハ40を本加熱室21で加熱する前に予備加熱を行うための空間である。
【0012】
本加熱室21には、真空形成用バルブ23と、不活性ガス注入用バルブ24と、真空計25と、が接続されている。真空形成用バルブ23は、本加熱室21の真空度を調整することができる。不活性ガス注入用バルブ24は、本加熱室21内の不活性ガスの圧力を調整することができる。本実施形態において、不活性ガスとは、例えばAr等の第18族元素(希ガス元素)のガス、即ち、固体のSiCに対して反応性が乏しいガスであり、窒素ガスを除くガスである。真空計25は、本加熱室21内の真空度を測定することができる。
【0013】
本加熱室21の内部には、ヒータ26が備えられている。また、本加熱室21の側壁及び天井には図略の熱反射金属板が固定されており、この熱反射金属板は、ヒータ26の熱を本加熱室21の中央部に向けて反射させるように構成されている。これにより、SiCウエハ40を強力かつ均等に加熱し、1000℃以上2300℃以下の温度まで昇温させることができる。なお、ヒータ26としては、例えば、抵抗加熱式のヒータ又は高周波誘導加熱式のヒータを用いることができる。
【0014】
高温真空炉10は、坩堝(収容容器)30に収容されたSiCウエハ40に対して加熱を行う。収容容器30は、適宜の支持台等に載せられており、この支持台が動くことで、少なくとも予備加熱室から本加熱室まで移動可能に構成されている。収容容器30は、互いに嵌合可能な上容器31と下容器32とを備えている。収容容器30の下容器32に設けられた支持部33は、SiCウエハ40の主面及び裏面の両方を露出させるように、当該SiCウエハ40を支持可能である。SiCウエハ40の主面はSi面であり、結晶面で表現すると(0001)面である。SiCウエハ40の裏面はC面であり、結晶面で表現すると(000-1)面である。また、SiCウエハ40は上記のSi面、C面に対してオフ角を有していてもよいし、C面を主面としてもよい。ここで、主面とは、SiCウエハ40の面のうち面積が最も大きい2面(図1の上面及び下面)のうちの一方であり、後工程でエピタキシャル層が形成される面のことである。裏面とは、主面の裏側の面である。
【0015】
収容容器30は、SiCウエハ40が収容される内部空間の壁面(上面、側面、底面)を構成する部分において、外部側から内部空間側の順に、タンタル層(Ta)、タンタルカーバイド層(TaC及びTa2C)、及びタンタルシリサイド層(TaSi2又はTa5Si3等)から構成されている。
【0016】
このタンタルシリサイド層は、加熱を行うことで、収容容器30の内部空間にSiを供給する。また、収容容器30にはタンタル層及びタンタルカーバイド層が含まれるため、周囲のC蒸気を取り込むことができる。これにより、加熱時に内部空間内を高純度のSi雰囲気とすることができる。なお、タンタルシリサイド層を設けることに代えて、固体のSi等のSi源を内部空間に配置してもよい。この場合、加熱時に固体のSiが昇華することで、内部空間内を高純度のSi蒸気圧下とすることができる。
【0017】
SiCウエハ40を加熱する際には、初めに、図1の鎖線で示すように収容容器30を高温真空炉10の予備加熱室22に配置して、適宜の温度(例えば約800℃)で予備加熱する。次に、予め設定温度(例えば、約1800℃)まで昇温させておいた本加熱室21へ収容容器30を移動させる。その後、圧力等を調整しつつSiCウエハ40を加熱する。なお、予備加熱を省略してもよい。
【0018】
次に、本実施形態のSiCウエハ40(特にエピタキシャル層が形成されたSiCウエハ40)の製造工程について図2を参照して説明する。図2は、本実施形態のSiCウエハ40の製造工程を模式的に示す図である。
【0019】
SiCウエハ40はインゴット4から作製される。インゴット4は、公知の昇華法又は溶液成長法等によって作製される単結晶SiCの塊である。図2に示すように、ダイヤモンドワイヤ等の切断手段によってSiCのインゴット4を所定の間隔で切断することで、インゴット4から複数のSiCウエハ40を作製する(ウエハ作製工程)。なお、SiCウエハ40を別の方法で作製してもよい。例えば、インゴット4にレーザー照射等でダメージ層を設けた後に、ウエハ形状にして取り出すことができる。また、インゴット等から得られた単結晶SiC基板と多結晶SiC基板とを貼り合わせた後に、必要に応じて剥離等の処理を行うことで、少なくとも表面が単結晶SiCのSiCウエハを作製できる。なお、インゴット4から作製された後であって以下の機械加工工程が行われる前のSiCウエハ40をアズスライスウエハ又は加工前ウエハと称することもできる。
【0020】
次に、SiCウエハ40に対して、機械加工工程を行う。機械加工工程では、例えば、SiCウエハ40の少なくとも主面を、ダイヤモンドホイール等により機械的に削る処理(研削)を行う。機械加工工程は、SiCウエハ40を目標の厚みにするために行う処理である。機械加工工程は、砥粒の粒度が異なる器具を用いて複数段階に分けて行ってもよい。なお、機械加工が行われた後のSiCウエハ40であって、以下の研磨工程が行われる前のSiCウエハ40を研削後SiCウエハと称することもできる。
【0021】
次に、SiCウエハ40に対して、研磨工程を行う。従来では、機械加工工程後のSiCウエハ40に対して、所定のスラリーを用いた化学機械研磨(Chemical Mechanical Polishing)が行われる。スラリーとは、薬液に砥粒を混ぜた物である。本実施形態でもスラリーを用いて研磨が行われるが、本実施形態で用いられるスラリーの薬液は酸化作用を有している(詳細は後述)。この種の研磨は、Chemo Mechanical Polishingと称される。
【0022】
以下、図3を参照して、本実施形態の研磨工程について詳細に説明する。研磨工程で使用される研磨装置50の構成を示す斜視図である。
【0023】
図3に示すように、研磨装置50は、回転支持台51と、研磨パッド52と、スラリー供給管53と、ウエハキャリア55と、パッドコンディショナー56と、を備える。なお、研磨装置50は、図3及び以下の説明の構成に限られず、各部の形状及び構成が本実施形態とは異なっていてもよい。
【0024】
回転支持台51は、円板状の部材であり、図3に示すように軸方向を回転中心として回転可能に構成されている。回転支持台51の上面には、発泡ウレタン又は他の材料等で構成される円板状の研磨パッド52が取り付けられている。研磨パッド52上には、スラリー供給管53からスラリーが供給されている。なお、本実施形態で用いるスラリーの詳細及びスラリーが及ぼす作用については後述する。
【0025】
ウエハキャリア55は、下面にSiCウエハ40を固定可能に構成されている。ウエハキャリア55は、下面に固定されたSiCウエハ40の主面(研磨対象面)を研磨パッド52に押し付ける。また、ウエハキャリア55は、SiCウエハ40を研磨パッド52に押し付けた状態で、図3に示すように軸方向を回転中心として回転可能に構成されている。なお、回転支持台51とウエハキャリア55とは回転中心が異なる。この構成により、スラリーをSiCウエハ40に作用させることができる。また、研磨の進行に伴って、研磨パッド52の微小な孔には、加工屑及び反応生成物等が目詰まりする。パッドコンディショナー56は、研磨パッド52の表面を削ることでこの目詰まりを除去する。
【0026】
ここで、本実施形態のスラリーは、SiCウエハ40を酸化させる酸化剤を含んでいる。上述したようにスラリーは薬液と砥粒から構成されている。スラリーは例えばアルミナスラリー、酸化セリウムスラリー、酸化マンガンスラリー、又は酸化鉄スラリー等であり、薬液は例えば過マンガン酸カリウム、過酸化水素水、又は過酸化アンモニウム等であり、砥粒は例えばアルミナ、酸化セリウム、酸化マンガン、又は酸化鉄等である。本実施形態のスラリーでは、上述した薬液が酸化剤として作用する。
【0027】
スラリーによりSiCウエハ40が酸化されることで、反応生成物(酸化膜等の酸化物)が生じる。反応生成物は、例えばケイ素の酸化物(二酸化ケイ素等)である。この反応生成物が砥粒によって除去されることで、SiCウエハ40の表面が除去されて研磨が行われる。これにより、SiCウエハ40の表面粗さが低下する。ここで、SiCの酸化により生じる反応生成物は、SiCと比較して硬度が低い。また、本実施形態で用いるスラリーに含まれるアルミナ等の砥粒は、SiCよりも硬度が低く、反応生成物(例えば二酸化ケイ素)よりも硬度が高い。なお、硬度の計測方法は特に限定されないが、例えばビッカース硬さ、モース硬度、又はヌープ硬度等を用いることができる。このように、反応生成物とSiCの間の硬度の砥粒で研磨工程を行うことで、SiCウエハ40に生じた反応生成物を除去しつつ、SiCウエハ40のSiC部分に傷が付くことを抑制しつつ、SiCウエハ40に大きな力が掛かることも抑制できる。なお、研磨工程が行われた後のSiCウエハ40であって、以下の加工変質層除去工程が行われる前のSiCウエハ40を研磨後SiCウエハと称することもできる。
【0028】
次に、加工変質層除去工程について説明する。初めに、SiCウエハ40(研磨後SiCウエハ)に生じている加工変質層等について図4を参照して説明する。図4は、SiCウエハ40(研磨後SiCウエハ)に生じている加工変質層及び応力層が加工変質層除去工程により除去されることを説明する図である。
【0029】
図4に示すように、研磨工程後のSiCウエハ40には、加工変質層と応力層とが形成されている。加工変質層は、内部応力が生じることで歪みが発生しているとともに、結晶の崩れ又は転位等が生じている領域である。加工変質層は、ウエハ作製工程、機械加工工程、及び研磨工程の少なくとも何れかでSiCウエハ40の表面及びその内部に力が掛かったり、SiCウエハ40の表面が削られたりすることで生じる。加工変質層は、SiCウエハ40のSiCが不可逆的に変化している(塑性変形している)部分である。
【0030】
また、加工変質層のうち、結晶の崩れ又は転位等の程度が大きい部分を潜傷と称する。潜傷は、SiCウエハ40の表面近傍のみに生じる研磨傷等の加工変質層とは異なり、SiCウエハ40の内部にまで生じるという特徴を有している。更に、潜傷は加熱処理時に顕在化するという特徴も有している。具体的には、SiC40の表面を顕微鏡等で観察して十分に平坦な場合であっても、内部に潜傷が残存しているときは、SiCウエハ40に加熱処理(例えば後述のSi蒸気圧エッチング又はエピタキシャル層の形成)を行うことで、潜傷が顕在化して、SiCウエハ40に大きな表面荒れが生じる。潜傷は、これらの特徴を有しているため、潜傷を取り除くためにはSiCウエハ40の除去量が多くなるとともに、潜傷を取り除くことができたか否かの確認が困難であるため、他の加工変質層と比較して除去が困難である。
【0031】
応力層は、加工変質層よりも内部側(主面の反対側、加工変質層の下側)に生じている。応力層は、加工変質層と同様、内部応力が生じることで歪みが発生している部分である。ただし、応力層では、加工変質層とは異なり、結晶の崩れ及び転位が全く又は殆ど生じていない。応力層が生じる原因は、加工変質層が生じる原因と同じである。更に言えば、応力層は上記の原因で加工変質層が存在していることにより、内部応力が残留している。応力層は、SiCウエハ40のSiCが可逆的に変化している(弾性変形している)部分である。従って、加工変質層が除去されることで、応力層に生じている内部応力が開放され、歪みが生じていない状態に戻る。
【0032】
また、本実施形態では研磨工程において、反応生成物を生じさせて当該反応生成物を除去しているため、上述したように、研磨工程においてSiCウエハ40に大きな力が掛かることを抑制できる。従って、加工変質層及び応力層が生じにくくなったり、加工変質層よりも応力層が優先的に生じたりする。その結果、従来よりも少ないエッチング量で加工変質層及び応力層を除去することができる。なお、本実施形態においてエッチング量とは、SiCウエハ40の主面を厚さ方向にエッチングする量(厚みの減少量、即ちエッチング深さ)である。
【0033】
本実施形態では、加工変質層除去工程は、Si蒸気圧下でSiCウエハ40を加熱するSi蒸気圧エッチングによって行われる。具体的には、例えばオフ角を有するSiCウエハ40を収容容器30に収容し、Si蒸気圧下で1500℃以上2200℃以下、望ましくは1600℃以上2000℃以下の温度範囲で高温真空炉10を用いて加熱を行う。なお、この加熱時において、Si蒸気以外にも不活性ガスを供給してもよい。不活性ガスを供給することでSiCウエハ40のエッチング速度を低下させることができる。なお、Si蒸気及び不活性ガス以外には、他の蒸気の発生源は使用されない。この条件でSiCウエハ40が加熱されることで、表面が平坦化されつつエッチングされる。具体的には、以下に示す反応が行われる。簡単に説明すると、SiCウエハ40がSi蒸気圧下で加熱されることで、SiCウエハ40のSiCが熱分解ならびにSiとの化学反応によってSi2C又はSiC2等になって昇華するとともに、Si雰囲気下のSiがSiCウエハ40の表面でCと結合して自己組織化が起こり平坦化される。
(1) SiC(s) → Si(v) + C(s)
(2) 2SiC(s) → Si(v) + SiC2(v)
(3) SiC(s) + Si(v) → Si2C(v)
【0034】
Si蒸気圧エッチングは、研削及び研磨等の機械加工ではなく熱化学的エッチングであるため、加工変質層及び応力層の発生の原因とならない。従って、機械加工とは異なり、新たな加工変質層及び応力層が形成されることなく、現在発生している加工変質層及び応力層を除去できる。
【0035】
図4の一番上には、研磨工程が行われた後のSiCウエハ40(研磨後ウエハ)が示されている。このSiCウエハ40には、潜傷を含む加工変質層と、応力層と、が生じている。加工変質層除去工程では、エッチング量が10μm以下のSi蒸気圧エッチングが行われる。本実施形態の研磨工程を行うことで加工変質層は10μm以下になることが予測されるため、本実施形態の加工変質層除去工程を行うことで、全部又は殆どの加工変質層(潜傷を含む)が除去される。
【0036】
図4の中央及び一番下には、加工変質層除去工程が行われた後のSiCウエハ40が示されている。上述したように応力層は加工変質層が原因で生じており、加工変質層が除去されることで応力層が消失する。従って、加工変質層除去工程を行うことで、加工変質層及び応力層が全く又は殆ど存在しないSiCウエハ40を製造することができる。
【0037】
図5には、本実施形態の方法で処理を行うことで、高品質のSiCウエハ40が得られることを確かめた実験の結果が示されている。この実験では、スラリーとしてアルミナスラリーを用いて研磨工程を行った後のSiCウエハ40と、その後にエッチング量が3.4μmの加工変質層除去工程を行った後のSiCウエハ40と、について主面のスクラッチの形成状況を観測した。スクラッチとは、線状の傷であって、加工変質層の一種である。
【0038】
図5に示すように、研磨工程を行った後のSiCウエハ40では、大量のスクラッチが存在している。そして、エッチング量が3.4μmのエッチングを行うだけで、この大量のスクラッチの殆どが除去された。これにより、従来よりも大幅に少ないエッチング量で加工変質層及び応力層が殆ど存在しないSiCウエハ40が製造できることが確かめられた。
【0039】
なお、研磨工程の条件によって加工変質層の厚みが異なるため、最低限必要なエッチング量は異なるが、従来の研磨工程を行う場合に最低限必要なエッチング量(10μm)と比較して、本実施形態で必要なエッチング量は少なくなる。図6には、加工変質層除去工程でのエッチング量が異なるそれぞれのSiCウエハ40についての、加工変質層除去工程後のスクラッチマップが示されている。それぞれのスクラッチマップの上側のEDはエッチング量を示し、下側のRaは加工変質層除去工程後の表面粗さ(詳細には、算術平均粗さRa、以下同じ)を示す。図6に示すように、エッチング量が何れのスクラッチマップにおいても、スクラッチが殆ど又は全く存在しない。つまり、本実施形態の方法を用いることにより、エッチング量が最も少ない20nmのエッチングを行うだけで、スクラッチが殆ど又は全く存在しないSiC40を製造できる。なお、この実験結果等を考慮すると、加工変質層除去工程のエッチング量の下限は、例えば、20nm、50nm、75nm、0.1μm、0.15μm、0.5μm、1μm、3μm、5μmの何れかであることが好ましく、加工変質層除去工程のエッチング量の上限は、例えば、1μm、3μm、5μm、10μmの何れかであることが好ましい。本実施形態の方法を用いることで、従来と比較して少ないエッチング量で、加工変質層及び応力層が殆どないSiCウエハ40を製造できる。そのため、SiCウエハ40の加工処理に必要な時間を低減できるとともに、高温真空炉10への負荷も低減できる。
【0040】
また、機械加工工程の除去量と比較した場合、加工変質層除去工程のエッチング量は、機械加工工程の除去量よりも少ないことが好ましい。
【0041】
次に、SiCウエハ40の主面に対して、エピタキシャル層41を形成するエピタキシャル層形成工程を行う。エピタキシャル層形成工程では、サセプタにSiCウエハ40をセットし、サセプタを加熱容器に収容して化学蒸着法(CVD法)を行う。そして、高温環境下で原料ガス等を導入することで、SiC基板に単結晶SiCからなるエピタキシャル層41が形成される。なお、エピタキシャル層41の形成は異なる方法で行うこともできる。例えば、MSE法等の溶液成長法又は近接昇華法等を用いてエピタキシャル層41を形成することもできる。MSE法は、準安定溶媒エピタキシー法とも称されており、SiCウエハと、SiCウエハより自由エネルギーの高いフィード基板と、Si融液と、を用いた成長法である。SiCウエハとフィード基板を対向するように配置し、その間にSi融液を介在させた状態で真空下で加熱することにより、SiCウエハの表面に単結晶SiCを成長させることができる。
【0042】
次に、図7を参照して、研磨工程後のSiCウエハ40の表面粗さと、その後の加工変質層除去工程後のスクラッチの量と、の関係を確かめた実験について説明する。
【0043】
この実験では、研磨工程後の表面粗さが異なるSiCウエハ40を3種類用意した。研磨工程後の表面粗さは、研磨条件(砥粒の大きさ、研磨パッド52の回転速度、及びウエハキャリア55の押付力等)に応じて異なる。なお、研磨工程で用いたスラリーはアルミナスラリーである。また、この3種類のSiCウエハ40には、同じ条件の加工変質層除去工程を行った。加工変質層除去工程でのエッチング量は、3.4μmである。
【0044】
図7の一番上及び中央の2組の写真は、研磨工程後の表面粗さがそれぞれ0.46nm、0.64nmのSiCウエハ40、及び、加工変質層除去工程後のSiCウエハ40について、顕微鏡で観察することで得られたものである。また、SiCウエハ40の表面のスクラッチは、細い線として表れる。研磨工程後の表面粗さが0.46nm、0.64nmの場合は、加工変質層除去工程後において、スクラッチはあまり確認できない。なお、研磨工程後の表面粗さが0.46nmのSiCウエハ40の方が、加工変質層除去工程後のスクラッチが僅かに少ないことが確認できる。
【0045】
一方、図7の一番下の1組の写真は、研磨工程後の表面粗さが0.91nmのSiCウエハ40、及び、加工変質層除去工程後のSiCウエハ40について、顕微鏡で観察することで得られたものである。また、加工変質層除去工程の条件は同じである。研磨工程後の表面粗さが0.91nmの場合は、加工変質層除去工程後において、大量のスクラッチが確認できる。更に、このSiCウエハ40では、左右方向の中央よりも僅かに左の部分に大きなスクラッチが確認できる。
【0046】
以上により、研磨工程後の表面粗さが小さい場合、加工変質層除去工程後にスクラッチが発生しにくいことが分かる。また、研磨工程後のSiCウエハ40の表面粗さを0.7nm以下にすることで、スクラッチが十分に少ないSiCウエハ40を製造できる可能性がある。また、研磨工程後のSiCウエハ40の表面粗さを0.5nm以下とすることで、スクラッチが更に少ないSiCウエハ40を製造できる。
【0047】
以上に説明したように、本実施形態のSiCウエハ40の製造方法では、SiCウエハ40の表面及びその内部に生じた加工変質層を除去する加工変質層除去工程を行って、当該加工変質層の少なくとも一部が除去されたSiCウエハ40を製造する。加工変質層除去工程では、酸化剤を用いてSiCウエハ40に反応生成物を生成させつつ、砥粒を用いて当該反応生成物を除去された研磨工程後のSiCウエハ40に対して、Si蒸気圧下の加熱によるエッチング量が10μm以下のエッチングを行うことにより加工変質層が除去される。研磨工程後のSiCウエハ40には、加工変質層に起因して当該加工変質層よりも内部に応力が生じており、加工変質層除去工程で当該加工変質層を除去することでSiCウエハ40の内部応力が低減される。
【0048】
酸化剤を用いて生成した比較的軟らかい反応生成物を砥粒を用いて除去するため、他の方法で研磨を行う場合と比較して、加工変質層が生じにくくなる。そのため、エッチング量が10μm以下であっても加工変質層を十分に除去することができる。また、従来と比較してエッチング量が少なくなるため、処理に必要な時間を低減できるとともに、処理装置への負荷も低減できる。
【0049】
また、本実施形態のSiCウエハ40の製造方法においては、研磨工程後のSiCウエハ40の表面の算術表面粗さ(Ra)が0.7nm以下である。
【0050】
研磨工程後のSiCウエハ40の表面粗さが小さいほど、その後の加工変質層除去工程を行った後にスクラッチ等の加工変質層が残存しにくい易いため、品質が高いSiCウエハ40を製造できる。
【0051】
また、本実施形態のSiCウエハ40の製造方法においては、加工変質層除去工程では、エッチング量が5nm以上又は20nm以上のエッチングを行う。
【0052】
これにより、研磨工程後のSiCウエハ40に含まれる加工変質層を十分に除去できる。
【0053】
また、本実施形態のSiCウエハ40の製造方法は、加工変質層除去工程の前に行われる研磨工程を含む。研磨工程では、酸化剤を用いてSiCウエハ40に反応生成物を生成させつつ、砥粒を用いて当該反応生成物を除去することで表面が研磨される。
【0054】
これにより、酸化剤を用いて生成した比較的軟らかい反応生成物を砥粒を用いて除去するため、他の方法で研磨を行う場合と比較して、SiCウエハ40に加工変質層が生じにくくなる。従って、加工変質層を容易に除去することができる。
【0055】
また、本実施形態のSiCウエハ40の製造方法において、研磨工程では、SiCよりも硬度が低い砥粒を用いて研磨を行う。
【0056】
これにより、酸化剤を用いて生成された反応生成物はSiCよりも硬度が低くなるため、上記の砥粒を用いることで、反応生成物を除去しつつ、SiC部分に傷が生じることを抑制できる。
【0057】
以上に本発明の好適な実施の形態を説明したが、上記の構成は例えば以下のように変更することができる。
【0058】
上記実施形態で説明した製造工程は一例であり、工程の順序を入れ替えたり、一部の工程を省略したり、他の工程を追加したりすることができる。例えば、水素エッチングによる表面のクリーニング工程を例えばエピタキシャル層形成工程前に行っても良い。
【0059】
上記で説明した温度条件及び圧力条件等は一例であり、適宜変更することができる。また、上述した高温真空炉10以外の加熱装置を用いたり、多結晶のSiCウエハ40を用いたり、収容容器30と異なる形状又は素材の容器を用いたりしても良い。例えば、収容容器の外形は円柱状に限られず、立方体状又は直方体状であっても良い。
【符号の説明】
【0060】
10 高温真空炉
40 SiCウエハ
図1
図2
図3
図4
図5
図6
図7