IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本電気株式会社の特許一覧

特開2024-3844受信器、受信装置、通信装置、および通信システム
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024003844
(43)【公開日】2024-01-16
(54)【発明の名称】受信器、受信装置、通信装置、および通信システム
(51)【国際特許分類】
   H04B 10/67 20130101AFI20240109BHJP
   H04B 10/112 20130101ALI20240109BHJP
【FI】
H04B10/67
H04B10/112
【審査請求】未請求
【請求項の数】10
【出願形態】OL
(21)【出願番号】P 2022103137
(22)【出願日】2022-06-28
(71)【出願人】
【識別番号】000004237
【氏名又は名称】日本電気株式会社
(74)【代理人】
【識別番号】100109313
【弁理士】
【氏名又は名称】机 昌彦
(74)【代理人】
【識別番号】100149618
【弁理士】
【氏名又は名称】北嶋 啓至
(72)【発明者】
【氏名】高田 紘也
(72)【発明者】
【氏名】水本 尚志
(72)【発明者】
【氏名】奥村 藤男
【テーマコード(参考)】
5K102
【Fターム(参考)】
5K102AA52
5K102AL23
5K102PH33
5K102PH34
5K102PH38
5K102RB02
5K102RD28
(57)【要約】
【課題】多様な方向から到来する光信号を効率よく受信できる受信器等を提供する。
【解決手段】ボールレンズと、ボールレンズの周囲に配置された複数の受光素子を含む受光素子アレイと、ボールレンズによって集光された光信号を受光素子に向けて導光する複数の反射ユニットによって構成される導光器と、を備える受信器とする。反射ユニットは、複数の受光素子のいずれかに対応付けられ、ボールレンズから受光素子に向けて先細る内側面に反射面が形成された第1反射器と、第1反射器の内部に配置され、第1反射器の反射面に対して平行な反射面を有する両面鏡が組み合わされた第2反射器と、を有する。
【選択図】 図1
【特許請求の範囲】
【請求項1】
ボールレンズと、
前記ボールレンズの周囲に配置された複数の受光素子を含む受光素子アレイと、
前記ボールレンズによって集光された光信号を前記受光素子に向けて導光する複数の反射ユニットによって構成される導光器と、を備え、
前記反射ユニットは、
複数の前記受光素子のいずれかに対応付けられ、前記ボールレンズから前記受光素子に向けて先細る内側面に反射面が形成された第1反射器と、
前記第1反射器の内部に配置され、前記第1反射器の反射面に対して平行な反射面を有する両面鏡が組み合わされた第2反射器と、を有する受信器。
【請求項2】
前記第1反射器は、
前記ボールレンズから前記受光素子に向けて先細った形状の4面の反射面を含み、
前記第2反射器は、
前記第1反射器に含まれる4面の反射面のいずれかに対応付けて配置された両面鏡が4つ組み合わされた構成を有する請求項1に記載の受信器。
【請求項3】
前記第2反射器の内部に配置され、前記ボールレンズの中心と前記受光素子とを結ぶ直線に対して平行な反射面を有する両面鏡によって構成された第3反射器を備える請求項2に記載の受信器。
【請求項4】
前記第2反射器の内部に配置され、前記第2反射器の反射面に対して平行な反射面を有する両面鏡が組み合わされた第4反射器を備える請求項2に記載の受信器。
【請求項5】
前記第1反射器の反射面は、前記受光素子の近傍において、前記受光素子の受光部に向けて折り曲げられた部分を有する請求項2に記載の受信器。
【請求項6】
複数の前記反射ユニットは、
空間光信号の到来方向に応じてグループ化される請求項1に記載の受信器。
【請求項7】
前記導光器は、
グループ化された複数の前記反射ユニットが一体化された構造を有する請求項6に記載の受信器。
【請求項8】
請求項1乃至7のいずれか一項に記載の受信器と、
前記受信器によって受信された信号を取得し、取得した前記信号をデコードする受信回路と、を備える受信装置。
【請求項9】
請求項8に記載の受信装置と、
空間光信号を送信する送信装置と、
前記受信装置によって受信された他の通信装置からの空間光信号に基づく信号を取得し、取得した前記信号に応じた処理を実行し、実行した前記処理に応じた空間光信号を前記送信装置に送信させる制御装置と、を備える通信装置。
【請求項10】
請求項9に記載の通信装置を複数備え、
複数の前記通信装置が、
空間光信号を互いに送受信し合うように配置された通信システム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、空間を伝搬する光信号を受信する受信器等に関する。
【背景技術】
【0002】
光空間通信においては、光ファイバなどの媒体を用いずに、空間を伝播する光信号(以下、空間光信号とも呼ぶ)を送受信し合う。空間を広がって伝搬する空間光信号を受信するためには、できる限り大口径のレンズを用いることが好ましい。また、光空間通信においては、高速通信を行うために、静電容量の小さな受光素子が採用される。そのような受光素子は、受光部の面積が小さい。レンズの焦点距離には限界があるため、多様な方向から到来する空間光信号を、大口径のレンズを用いて、面積の小さい受光部に導光することは難しい。
【0003】
特許文献1には、球レンズ、光ファイババンドル、および少なくとも一つの受光素子を備える光受信装置について開示されている。球レンズは、広角度から入射する光を、光ファイババンドルの一方の端面に集光させる。光ファイババンドルは、複数の光ファイバを集合させたバンドル構造体である。光ファイババンドルの一方の端面は、面形状の光入射部である。その光入射部は、球レンズの焦点分布位置に設けられる。少なくとも一つの受光素子は、光ファイババンドルの他方の端面に設けられる。少なくとも一つの受光素子は、光ファイババンドルの他方の端面から出射された出射光を受光する。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開昭63-095407号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1の装置は、球レンズによって集光された光を、複数の光ファイバからなる光ファイババンドルで受光する。個々の光ファイバが光を集光できる角度は、非常に限定される。そのため、球レンズの外周面に対して、個々の光ファイバの入射面が、略垂直に配置される必要がある。その結果、特許文献1の装置では、光ファイババンドルの一方の端面側が球レンズの直径に対して大きくなり、光ファイババンドルによって、球レンズに到来する光が遮られてしまう。
【0006】
光ファイバを用いなくても、例えば、複数の受光素子を含む帯状のセンサアレイでボールレンズの周囲を取り囲めば、360度の方位から到来する光信号を受光できる。球レンズによって収束された光を受光するためには、多くの受光素子を格子状に並べる必要がある。受光素子の数は、コストなどの要因に応じて限界がある。そのため、集光された光のスポットに対して、受光素子の受光可能領域の割合が小さく、数パーセント程度の受光効率しか得られない。
【0007】
本開示の目的は、多様な方向から到来する光信号を効率よく受信できる受信器等を提供することにある。
【課題を解決するための手段】
【0008】
本開示の一態様の受信器は、ボールレンズと、ボールレンズの周囲に配置された複数の受光素子を含む受光素子アレイと、ボールレンズによって集光された光信号を受光素子に向けて導光する複数の反射ユニットによって構成される導光器と、を備える。反射ユニットは、複数の受光素子のいずれかに対応付けられ、ボールレンズから受光素子に向けて先細る内側面に反射面が形成された第1反射器と、第1反射器の内部に配置され、第1反射器の反射面に対して平行な反射面を有する両面鏡が組み合わされた第2反射器と、を有する。
【発明の効果】
【0009】
本開示によれば、多様な方向から到来する光信号を効率よく受信できる受信器等を提供することが可能になる。
【図面の簡単な説明】
【0010】
図1】第1の実施形態に係る受信装置の構成の一例を示す概念図である。
図2】第1の実施形態に係る受信装置の構成の一例を示す概念図である。
図3】第1の実施形態に係る受信装置の受光素子アレイを構成する複数の受光素子の配置例について説明するための概念図である。
図4】第1の実施形態に係る受信装置の導光器の一例について説明するための概念図である。
図5】第1の実施形態に係る受信装置の導光器を構成する反射ユニットの一例について説明するための概念図である。
図6】第1の実施形態に係る受信装置が備える受信回路の構成の一例について説明するための概念図である。
図7】第1の実施形態に係る受信装置が備える受信回路に含まれる受信制御部の構成の一例について説明するための概念図である。
図8】第1の実施形態に係る導光器の第1例について説明するための概念図である。
図9】第1の実施形態に係る導光器の第1例について説明するための概念図である。
図10】第1の実施形態に係る導光器の第1例について説明するための概念図である。
図11】第1の実施形態に係る導光器の第2例について説明するための概念図である。
図12】第1の実施形態に係る導光器の第3例について説明するための概念図である。
図13】第1の実施形態に係る導光器の第3例について説明するための概念図である。
図14】第1の実施形態に係る導光器の第3例について説明するための概念図である。
図15】第1の実施形態に係る導光器の第4例について説明するための概念図である。
図16】第1の実施形態に係る導光器の第4例について説明するための概念図である。
図17】第1の実施形態に係る導光器の第4例について説明するための概念図である。
図18】関連技術に係る受信装置のボールレンズによる集光例について説明するための概念図である。
図19】関連技術に係る受信装置のボールレンズによって集光された光信号の受光例について説明するための概念図である。
図20】関連技術に係る受信装置による光信号の受光例を示す概念図である。
図21】関連技術に係る受信装置による光信号の受光例を示す概念図である。
図22】第2の実施形態に係る通信装置の構成の一例を示すブロック図である。
図23】第2の実施形態に係る通信装置が備える送信装置の構成の一例を示す概念図である。
図24】第2の実施形態に係る通信装置の構成の一例を示す概念図である。
図25】第2の実施形態に係る通信装置の適用例について説明するための概念図である。
図26】第3の実施形態に係る受信器の構成の一例を示す概念図である。
図27】第3の実施形態に係る受信器の構成の一例を示す概念図である。
図28】各実施形態に係る処理や制御を実行するハードウェア構成の一例を示すブロック図である。
【発明を実施するための形態】
【0011】
以下に、本発明を実施するための形態について図面を用いて説明する。ただし、以下に述べる実施形態には、本発明を実施するために技術的に好ましい限定がされているが、発明の範囲を以下に限定するものではない。なお、以下の実施形態の説明に用いる全図においては、特に理由がない限り、同様の構成には、同一の符号を付す。また、以下の実施形態において、同様の構成・動作に関しては、繰り返しの説明を省略する場合がある。
【0012】
以下の実施形態の説明に用いる全図において、図面中の矢印の向きは、一例を示すものであり、光や信号の向きを限定するものではない。また、図面中の光の軌跡を示す線は、概念的なものであり、実際の光の進行方向や状態を正確に表すものではない。例えば、図面においては、空気と物質との界面における屈折や反射、拡散などによる光の進行方向や状態の変化を省略したり、光束を一本の線で表現したりすることもある。また、光の経路の一例を図示したり、構成が込み合ったりする等の理由により、断面にハッチングを施さない場合がある。
【0013】
(第1の実施形態)
まず、本実施形態に係る受信装置について図面を参照しながら説明する。本実施形態の受信装置は、光ファイバなどの媒体を用いずに、空間を伝播する光信号(以下、空間光信号とも呼ぶ)を送受信し合う光空間通信に用いられる。本実施形態の受信装置は、空間を伝搬する光を受光する用途であれば、光空間通信以外の用途に用いられてもよい。本実施形態においては、特に断りがない限り、空間光信号は、十分に離れた位置から到来するために平行光とみなす。なお、本実施形態の説明で用いられる図面は、概念的なものであり、実際の構造を正確に描写したものではない。
【0014】
(構成)
図1図2は、本実施形態に係る受信装置1の構成の一例を示す概念図である。受信装置1は、ボールレンズ11、受光素子アレイ13、導光器14、および受信回路15を備える。ボールレンズ11、受光素子アレイ13、および導光器14は、受信器10を構成する。受光素子アレイ13および導光器14は、受光ユニット12を構成する。図1は、受信装置1の受信器10を上方向から見た平面図である。図2は、受信装置1の受信器10を横方向から見た側面図である。ボールレンズ11、受光素子アレイ13、および導光器14は、支持体(図示しない)によって、互いの位置関係が固定される。本実施形態においては、ボールレンズ11に対する受光素子アレイ13および導光器14の位置を固定する支持体を省略する。また、受信回路15の位置については、空間光信号の受信に影響がなければ、特に限定を加えない。
【0015】
ボールレンズ11は、球形のレンズである。ボールレンズ11は、外部から到来した空間光信号を集光する光学素子である。ボールレンズ11は、任意の角度から見て、球形である。ボールレンズ11は、入射される空間光信号を集光する。ボールレンズ11によって集光された空間光信号に由来する光(光信号とも呼ぶ)は、そのボールレンズ11の集光領域に向けて集光される。ボールレンズ11は、球形であるため、任意の方向から到来する空間光信号を集光する。すなわち、ボールレンズ11は、任意の方向から到来する空間光信号に対して、同様の集光性能を示す。ボールレンズ11に入射した光は、ボールレンズ11の内部に進入する際に屈折される。また、ボールレンズ11の内部を進行する光は、ボールレンズ11の外部に出射する際に、再度屈折される。ボールレンズ11から出射される光の大部分は、集光領域において集光される。その一方で、ボールレンズ11の周辺から入射した光は、ボールレンズ11から出射される際に、集光領域から外れた方向に向けて出射される。
【0016】
例えば、ボールレンズ11は、ガラスや結晶、樹脂などの材料で構成できる。可視領域の空間光信号を受光する場合、可視領域の光を透過/屈折するガラスや結晶、樹脂などの材料が、ボールレンズ11に適用できる。例えば、クラウンガラスやフリントガラスなどの光学ガラスが、ボールレンズ11に適用できる。例えば、BK(Boron Kron)などのクラウンガラスが、ボールレンズ11に適用できる。例えば、LaSF(Lanthanum Schwerflint)などのフリントガラスが、ボールレンズ11に適用できる。例えば、石英ガラスが、ボールレンズ11に適用できる。例えば、サファイア等の結晶が、ボールレンズ11に適用できる。例えば、アクリル等の透明樹脂が、ボールレンズ11に適用できる。
【0017】
空間光信号が近赤外領域の光(以下、近赤外線とも呼ぶ)である場合、ボールレンズ11には、近赤外線を透過する材料が用いられる。例えば、1.5マイクロメートル(μm)程度の近赤外領域の空間光信号を受光する場合、ボールレンズ11には、ガラスや結晶、樹脂などに加えて、シリコンなどの材料を適用できる。空間光信号が赤外領域の光(以下、赤外線とも呼ぶ)である場合、ボールレンズ11には、赤外線を透過する材料が用いられる。例えば、空間光信号が赤外線である場合、ボールレンズ11には、シリコンやゲルマニウム、カルコゲナイド系の材料を適用できる。空間光信号の波長領域の光を透過/屈折できれば、ボールレンズ11の材質には限定を加えない。ボールレンズ11の材質は、求められる屈折率や用途に応じて、適宜選択されればよい。
【0018】
受光素子アレイ13は、ボールレンズ11の周囲を取り囲むように配置される。図1図2の例の場合、受光素子アレイ13は、環状に配置される。受光素子アレイ13は、ボールレンズ11の周囲を取り囲む環状部分において、分割されて配置されてもよい。受光素子アレイ13は、複数の受光素子130を含む。図3は、複数の受光素子130の配置例を示す概念図である。複数の受光素子130は、環状の面内において、2次元アレイ状に配置される。複数の受光素子130は、同一方向から到来する空間光信号に由来する光信号を、いくつかの素子からなる受光グループでまとめて受光する。図3の例の場合、1つの受光グループは、9個の受光素子によって構成される。
【0019】
複数の受光素子130は、受信対象の空間光信号に由来する光信号を受光する受光部を含む。個々の受光素子130の受光面には、受光部が位置する領域(受光領域とも呼ぶ)と、受光部が位置しない領域(不感領域とも呼ぶ)とが含まれる。受光領域に到達した光信号は、受光素子130の受光部によって受光される。不感領域に到達した光信号は、受光されない。本実施形態においては、導光器14を構成する複数の導光部材の各々を用いて、ボールレンズ11によって集光された光信号を、受光素子130の受光部に導光する。
【0020】
受光素子130の受光部は、導光器14を挟んで、ボールレンズ11に向けられる。複数の受光素子130の各々には、導光器14を構成する導光部材(後述)が対応付けられる。複数の受光素子130の各々には、対応付けられた導光部材を介して導光された光信号が入射する。すなわち、ボールレンズ11によって集光された光信号は、導光器14によって導光されて、受光素子130の受光部で受光される。受光素子130は、受光した光信号を電気信号に変換する。受光素子130は、変換後の電気信号を、受信回路15に出力する。
【0021】
受光素子130は、受信対象である空間光信号の波長領域の光を受光する。例えば、受光素子130は、可視領域の光に感度を有する。例えば、受光素子130は、赤外領域の光に感度を有する。受光素子130は、例えば1.5μm(マイクロメートル)帯の波長の光に感度を有する。なお、受光素子130が感度を有する光の波長帯は、1.5μm帯に限定されない。受光素子130が受光する光の波長帯は、送信装置(図示しない)から送信される空間光信号の波長に合わせて、任意に設定できる。受光素子130が受光する光の波長帯は、例えば0.8μm帯や、1.55μm帯、2.2μm帯に設定されてもよい。また、受光素子130が受光する光の波長帯は、例えば0.8~1μm帯であってもよい。波長帯が短い方が、大気中の水分による吸収が小さいので、降雨時における光空間通信には有利である。また、受光素子130は、強烈な太陽光で飽和してしまうと、空間光信号に由来する光信号を読み取ることができない。そのため、受光素子130の前段に、空間光信号の波長帯の光を選択的に通過させる色フィルタが設置されてもよい。
【0022】
例えば、受光素子130は、フォトダイオードやフォトトランジスタなどの素子によって実現できる。例えば、受光素子130は、アバランシェフォトダイオードによって実現される。アバランシェフォトダイオードによって実現された受光素子130は、高速通信に対応できる。なお、受光素子130は、光信号を電気信号に変換できさえすれば、フォトダイオードやフォトトランジスタ、アバランシェフォトダイオード以外の素子によって実現されてもよい。通信速度を向上させるために、受光素子130の受光部は、できるだけ小さい方が好ましい。例えば、受光素子130の受光部は、一辺が5mm(ミリメートル)程度の正方形の受光面を有する。例えば、受光素子130の受光部は、直径0.1~0.3mm程度の円形の受光面を有する。受光素子130の受光部の大きさや形状は、空間光信号の波長帯や通信速度などに応じて選定されればよい。
【0023】
導光器14は、ボールレンズ11の集光領域に、ボールレンズ11の周囲を取り囲むように配置される。図4は、導光器14の一部分の断面図である。導光器14は、複数の反射ユニット140によって構成される。複数の反射ユニット140の各々は、複数の受光素子130のいずれか一つに対応付けられる。反射ユニット140は、第1反射器141と第2反射器142を有する。第2反射器142は、第1反射器141の内部に配置される。第1反射器141の内側の側面は、反射面である。第2反射器142の内側および外側の側面は、反射面である。第1反射器141の内側の側面(反射面)と、第2反射器142の外側の側面(反射面)とは、互いに対向して配置される。第1反射器141の内側の側面(反射面)と、第2反射器142の外側の側面(反射面)とは、互いに平行な部分を含むことが好ましい。平行な位置関係である2つの反射面に進入した光は、進入方向に戻ることなく、2つの反射面で多重反射されながら進行する。そのため、第1反射器141の内側の反射面と第2反射器142の反射面とが全ての面において互いに平行であれば、受光素子130の受光効率がより向上する。また、第1反射器141および第2反射器142は、曲面状の反射面を含んでもよい。第1反射器141および第2反射器142の対向する反射面が曲面状であっても、それらの反射面が互いに平行な関係にあれば、それらの反射面に進入した光は多重反射されながら進行する。また、第1反射器141および第2反射器142の反射面は、屈曲した部分を含んでもよい。図4の例では、ボールレンズ11に近い側において、第2反射器142の一部が、第1反射器141の外部に突出している。第2反射器142は、第1反射器141の内部に収まるように配置されてもよい。また、受光素子130に近い側において、第2反射器142の末端部分は、受光素子130から離れている。第2反射器142の末端部分は、受光素子130に接触してもよい。
【0024】
図5は、単一の反射ユニット140の斜視図である。第1反射器141は、側面のうち一方の面が反射面である片面鏡を組み合わせた構成を有する。第1反射器141は、台形状の側面を有する複数の片面鏡が、それらの反射面を内側にして筒状に組み合わされた構造を有する。第2反射器142は、側面のうち両面が反射面である両面鏡を組み合わせた構成を有する。第2反射器142は、台形状の側面を有する複数の両面鏡が、それらの反射面のうち一方を内側にして筒状に組み合わされた構造を有する。図5のように、第1反射器141の内側に、第2反射器142が配置される。第1反射器141の内側に第2反射器142を固定する方法については、特に限定を加えない。例えば、第2反射器142の外側の四辺と、第1反射器141の内側の四辺とが、柱や梁で接続されれば、第1反射器141の内側に第2反射器142を固定できる。図5には、第1反射器141および第2反射器142の各々が4つの面で構成される例をあげるが、第1反射器141および第2反射器142の各々は、5つ以上の面によって構成されてもよい。例えば、第1反射器141および第2反射器142の各々の面は、曲面を含んでもよい。
【0025】
第1反射器141および第2反射器142によって構成される反射ユニット140には、開口面積の異なる2つの開口が形成される。反射ユニット140の開口のうち、開口面積が大きい方の開口(第1開口面とも呼ぶ)は、ボールレンズ11に向けられる。第1開口面の一部の辺は、隣接して配置された反射ユニット140と近接して配置される。隣接する反射ユニット140の第1開口面は、できる限り隙間なく配置されることが好ましい。反射ユニット140の開口のうち、開口面積が小さい方の開口(第2開口面とも呼ぶ)には、受光素子130が配置される。第2開口面は、受光素子130の受光部に、近接または接続するように配置される。例えば、受光素子130の受光部と同じ形状になるように、第2開口面の形状が構成されてもよい。その場合、第1開口面の形状から第2開口面の形状になだらかに変化するように、第1反射器141および第2反射器142が形成されればよい。
【0026】
受信回路15は、複数の受光素子130の各々から出力された信号を取得する。受信回路15は、複数の受光素子130の各々からの信号を増幅する。受信回路15は、増幅された信号をデコードし、通信対象からの信号を解析する。例えば、受信回路15は、同じ受光グループに含まれる複数の受光素子130の信号をまとめて解析するように構成される。複数の受光素子130の信号をまとめて解析する場合、単一の通信対象と通信するシングルチャンネルの受信装置1を実現できる。例えば、受信回路15は、受光素子130ごとに、個別に信号を解析するように構成される。受光素子130ごとに、個別に信号を解析する場合、複数の通信対象と同時に通信するマルチチャンネルの受信装置1を実現できる。受信回路15によってデコードされた信号は、任意の用途に使用される。受信回路15によってデコードされた信号の使用については、特に限定を加えない。
【0027】
図6は、受信回路15の構成の一例を示すブロック図である。図6の例では、複数の受光素子130の数をN個とする(Nは自然数)。受信回路15は、受信制御部151、光学制御部155、および通信制御部157を有する。図6は、受信回路15の構成の一例であって、受信回路15の構成を限定するものではない。
【0028】
受信制御部151には、複数の受光素子130-1~Nが接続される。受信制御部151には、複数の受光素子130-1~Nから出力された信号が入力される。受信制御部151は、入力された信号を増幅する。受信制御部151には、増幅された信号を通信制御部157に出力する。
【0029】
図7は、受信制御部151の構成の一例を示す概念図である。図7の例において、受信制御部151は、複数の第1増幅器161と、複数の第2増幅器162とを含む。第1増幅器161は、複数の受光素子130-1~Nのうちいずれか一つに接続される。第1増幅器161は、入力された信号を増幅する。第1増幅器161は、増幅された信号を第2増幅器162に出力する。複数の受光素子130-1~Nは、複数の受光グループのうちいずれかに割り当てられる。図7の例の場合、1つの受光グループは、M個の受光素子130によって構成される(Mは、Nよりも小さい自然数)。複数の第2増幅器162の各々は、いずれかの受光グループに割り当てられる。第2増幅器162には、割り当てられた受光グループに属する複数の第1増幅器161から出力された信号が入力される。第2増幅器162は、入力された信号を、受光グループごとにまとめて増幅する。第2増幅器162は、受光グループごとに増幅された信号を、通信制御部157に出力する。図7は、受信制御部151の構成の一例であって、受信制御部151の構成を限定するものではない。
【0030】
例えば、受信制御部151には、第1増幅器161の前段に、リミッティングアンプ(図示しない)が設けられてもよい。リミッティングアンプが設けられれば、ダイナミックレンジを確保できる。例えば、受信制御部151には、ハイパスフィルタやバンドパスフィルタ(図示しない)が設けられてもよい。ハイパスフィルタやバンドパスフィルタは、太陽光などの環境光に由来する信号をカットし、空間光信号の波長帯に相当する高周波成分の信号を選択的に通過させる。例えば、受信制御部151には、バンドパスフィルタ(図示しない)が設けられてもよい。
【0031】
光学制御部155は、受信制御部151に接続される。光学制御部155は、受信制御部151によって増幅された信号の出力値を取得する。光学制御部155は、信号の出力値をモニタする。
【0032】
通信制御部157は、受信制御部151に接続される。通信制御部157は、受信制御部151によって増幅された信号を取得する。すなわち、通信制御部157は、複数の受光素子130-1~Nの各々が受光した光信号に由来する信号を取得する。通信制御部157は、取得された信号をデコードする。例えば、通信制御部157は、デコードされた信号に何らかの信号処理を加えるように、構成される。例えば、通信制御部157は、デコードされた信号を外部の信号処理装置等(図示しない)に出力するように、構成される。
【0033】
〔導光器〕
次に、導光器14の構成例について、いくつかの例をあげて説明する。以下においては、形状が異なるものの同様の構成については、同じ符号を付して説明する。また、以下においては、同じ図面における同様の構成に関しては、符号を省略する。
【0034】
<第1例>
図8は、本実施形態の導光器14の第1例(導光器14-1)について説明するための概念図である。図8の例では、隣接する反射ユニットは、第1反射器141の第1開口の一部が接するように配置される。そのため、隣接し合う反射ユニットの間には、隙間がない。反射ユニットの第2開口面は、受光素子130の受光部に向けて開口する。図8の例では、第1反射器141の第2開口面の近傍が、受光素子130の受光部に向けて折り曲げられている。第1反射器141の第2開口面の近傍部分は、平面状であってもよいし、曲面状であってもよい。
【0035】
図8には、反射ユニットに入射する光の様子を、矢尻を含む直線で示す。第1反射器141と第2反射器142との間に入射した光は、第1反射器141の反射面と、第2反射器142の反射面とで多重反射されて、受光素子130の受光部に到達する。第2反射器142に入射した光は、第2反射器142の反射面で多重反射されて、受光素子130の受光部に到達する。同じ受光グループに属する受光素子130の場合、図8のように隣接し合う受光素子130によって受光された光信号は、同じ通信対象から送信された空間光信号に由来するものとして統合できる。異なる受光グループに属する受光素子130の場合、図8のように隣接し合う受光素子130によって受光された光信号は、異なる通信対象から送信された空間光信号に由来するものとして、別々に受信できる。
【0036】
図9図10は、3行×3列のアレイ状に配列された9つの受光素子130によって構成される受光グループに対応付けられた導光器145-1の一例を示す概念図である。図9は、導光器145-1を上面の視座から見た平面図である。図10は、図9のA-A切断線で切断された導光器145-1の断面図である。
【0037】
導光器145-1は、第1反射器141の反射面および受光素子130の形状に合わせて加工された基板146の一方の面(表面)に配置される。受光素子130は、基板146の外部(裏面)に配置されてもよい。第1反射器141および第2反射器142は、透明部材147の両面に反射面を形成することによって、形成できる。第1反射器141の反射面は、基板146の表面側の斜面に形成されてもよい。反射ユニットへの光信号の入力を大きくするために、反射ユニットの入射側の開口(第1開口)は、角型(方形)である。受光素子130の受光部の形状に合わせて、反射ユニットの出射側の開口(第2開口)は円形である。第1反射器141の反射面と、第2反射器142の外側の反射面とは、透明部材147によって、平行な位置関係が維持される。
【0038】
例えば、基板146の表面の形状に合わせて加工された透明部材147が、基板146の表面に貼り合わせられる。透明部材147は、射出成型等の手法を用いて、基板146の表面に形成されてもよい。透明部材は、通信対象の光信号が透過できる樹脂やガラスなどの素材で構成される。例えば、空間光信号の波長帯が1.55マイクロメートル(μm)帯である場合、透明部材は、その波長帯の光を透過しやすい材料で構成される。加工性の面においては、透明部材は、アクリル系樹脂が好適である。光の透過性の面において、透明部材は、石英ガラスなどが好適である。
【0039】
図9図10の例の場合、第1反射器141と第2反射器142との間に入射した光は、第1反射器141の反射面と第2反射器142の反射面とで多重反射されながら、透明部材147の内部を進行して、受光素子130の受光部で受光される。また、第2反射器142の内部に入射した光は、第2反射器142の反射面で多重反射されながら受光素子130に向けて進行して、受光素子130の受光部で受光される。
【0040】
<第2例>
図11は、本実施形態の導光器14の第2例(導光器14-2)について説明するための概念図である。図11の例では、第1例(図8)と同様に、隣接する反射ユニットは、第1反射器141の第1開口の一部が接するように配置される。そのため、隣接し合う反射ユニットの間には、隙間がない。図11の例では、複数の反射ユニットのうち、外側の位置に配置された反射ユニットの外周部分における第1反射器141の反射面が、外側に向けて広げられている。反射ユニットの第2開口面は、受光素子130の受光部に向けて開口する。
【0041】
図11には、反射ユニットに入射する光の様子を、矢尻を含む直線で示す。第1反射器141と第2反射器142との間に入射した光は、第1反射器141の反射面と、第2反射器142の反射面とで反射されて、受光素子130の受光部に到達する。第2反射器142の内部に入射した光は、第2反射器142の反射面で反射されて、受光素子130の受光部に到達する。図11の導光器14-2の構造では、外周部分の第1反射器141が外側に向けて広げられている。そのため、第1例(図8)と比較して、光信号の受光範囲を拡大できる。
【0042】
<第3例>
図12は、本実施形態の導光器14の第3例(導光器14-3)について説明するための概念図である。導光器14-3は、第1反射器141および第2反射器142に加えて、第3反射器143を有する。
【0043】
第3反射器143は、両面が反射面の平面鏡である。第3反射器143は、第2反射器142の内側に配置される。第3反射器143は、受光素子130の受光面に対して、垂直に配置される。図12の例では、隣接する反射ユニットは、第1反射器141の第1開口の一部が接するように配置される。そのため、隣接し合う反射ユニットの間には、隙間がない。反射ユニットの第2開口面は、受光素子130の受光部に向けて開口する。図12の例では、第1反射器141の第2開口面の近傍が、受光素子130の受光部に向けて折り曲げられている。第1反射器141の第2開口面の近傍部分は、平面状であってもよいし、曲面状であってもよい。
【0044】
図12には、反射ユニットに入射する光の様子を、矢尻を含む直線で示す。第1反射器141と第2反射器142との間に入射した光は、第1反射器141の反射面と、第2反射器142の反射面とで多重反射されて、受光素子130の受光部に到達する。第2反射器142と第3反射器143との間に入射した光は、第2反射器142の反射面と、第3反射器143の反射面とで多重反射されて、受光素子130の受光部に到達する。
【0045】
図13図14は、3行×3列のアレイ状に配列された9つの受光素子130によって構成される受光グループに対応付けられた導光器145-3の一例を示す概念図である。図13は、導光器145-3を上面の視座から見た平面図である。図14は、図13のB-B切断線で切断された導光器145-3の断面図である。第1反射器141の反射面は、基板146の表面側の斜面に形成される。受光素子130は、基板146の外部(裏面)に配置されてもよい。例えば、下面側の斜面に第2反射器142の反射面が形成され、垂直面(側面)に第3反射器143の反射面が形成された透明部材147が、基板146の表面に配置される。図13図14の例の場合、第2反射器142および第3反射器143の反射面が形成された複数の透明部材147が組み合わせられた状態を、破線で示す。透明部材147の素材は、第1例と同様である。
【0046】
図13図14の例の場合、第1反射器141の反射面と第2反射器142の反射面との間に入射した光は、第1反射器141の反射面と第2反射器142の反射面とで反射され、受光素子130の受光部で受光される。第2反射器142と第3反射器143との間に入射した光は、第2反射器142の反射面と第3反射器143の反射面とで反射されながら、透明部材147の内部を進行して、受光素子130の受光部で受光される。第3例では、第2反射器142の内部に第3反射器143が介在することによって、第2反射器142の入射側の開口を広げても、入射側への戻り光が少なくなる。そのため、第1例と比較して、第3例の方が、受光素子130の間隔を広げて配置できる。すなわち、第3例によれば、受光素子アレイ13を構成する受光素子130の数を減らすことができる。
【0047】
<第4例>
図15は、本実施形態の導光器14の第4例(導光器14-4)について説明するための概念図である。導光器14-4は、第1反射器141および第2反射器142に加えて、第4反射器144を有する。第4反射器144は、第2反射器142を小型にした構成である。
【0048】
第4反射器144は、台形状の側面を有する複数の両面鏡が、それらの反射面のうち一方を内側にして筒状に組み合わされた構造を有する。図15のように、第2反射器142の内側に、第4反射器144が配置される。第2反射器142の内側に第4反射器144を固定する方法については、特に限定を加えない。例えば、第4反射器144の外側の四辺と、第2反射器142の内側の四辺とが、柱や梁で接続されれば、第2反射器142の内側に第4反射器144を固定できる。第4例では、第1反射器141、第2反射器142、および第4反射器144の各々が4つの面で構成される例をあげる。第1反射器141、第2反射器142、および第4反射器144の各々は、5つ以上の面によって構成されてもよい。例えば、第1反射器141、第2反射器142、および第4反射器144の各々の面は、曲面を含んでもよい。
【0049】
図15の例では、隣接する反射ユニットは、第1反射器141の第1開口の一部が接するように配置される。そのため、隣接し合う反射ユニットの間には、隙間がない。反射ユニットの第2開口面は、受光素子130の受光部に向けて開口する。図15の例では、第1反射器141の第2開口面の近傍が、受光素子130の受光部に向けて折り曲げられている。第1反射器141の第2開口面の近傍部分は、平面状であってもよいし、曲面状であってもよい。
【0050】
図15には、反射ユニットに入射する光の様子を、矢尻を含む直線で示す。第1反射器141と第2反射器142との間に入射した光は、第1反射器141の反射面と、第2反射器142の反射面とで多重反射されて、受光素子130の受光部に到達する。第2反射器142と第4反射器144との間に入射した光は、第2反射器142の反射面と、第4反射器144の反射面とで多重反射されて、受光素子130の受光部に到達する。
【0051】
図16図17は、3行×3列のアレイ状に配列された9つの受光素子130によって構成される受光グループに対応付けられた導光器145-4の一例を示す概念図である。図16は、導光器145-4を上面の視座から見た平面図である。図17は、図16のC-C切断線で切断された導光器145-4の断面図である。
【0052】
導光器145-4は、第1反射器141の反射面および受光素子130の形状に合わせて加工された基板146の表面に形成される。受光素子130は、基板146の外部(裏面)に配置されてもよい。第1反射器141の反射面は、基板146の表面側の斜面に形成される。例えば、透明部材147は、基板146の表面に貼り合わせられる。透明部材147の凸側の斜面(下面)には、第2反射器142の反射面が形成される。透明部材147の凹側の斜面(上面)には、第4反射器144の反射面が形成される。透明部材147の素材は、第1例と同様である。第4反射器144の内側の反射面にも、透明部材147が充填されてもよい。
【0053】
図16図17の例の場合、第1反射器141の反射面と第2反射器142の反射面との間に入射した光は、第1反射器141の反射面と第2反射器142の反射面とで多重反射され、受光素子130の受光部で受光される。第2反射器142の反射面と第4反射器144の反射面との間に入射した光は、第2反射器142と第4反射器144とで多重反射されながら、透明部材147の内部を進行して、受光素子130の受光部で受光される。また、第4反射器144の内部に入射した光は、第4反射器144の反射面で多重反射されながら受光素子130に向けて進行して、受光素子130の受光部で受光される。
【0054】
(関連技術)
次に、本実施形態に関連する関連技術について図面を参照しながら説明する。関連技術については、導光器14が含まれない例や、導光器14が異なる例をあげる。
【0055】
図18は、関連技術1に係る受信器100の構成の一例を示す概念図である。受信器100は、第1の実施形態と同様のボールレンズ11および受光素子アレイ13を備える。しかし、受信器100は、導光器14を含まない。受光素子アレイ13は、複数の受光素子130が環状に並べられた構造を有する。図18には、環状の受光素子アレイ13を半分に割り、ボールレンズ11による光信号の集光の様子をハッチングで示す。図18の構成によれば、球形のボールレンズ11を用いることにより、水平面に対する角度が浅い面内における360度の方位から到来する空間光信号が受信される。
【0056】
図19は、図18の関連技術1の構成において、ボールレンズ11によって集光された光信号が、受光素子アレイ13に集光された様子を示す。図19においては、3行×3列のアレイ状に配列された9つの受光素子130によって、受光グループが構成される。図9には、同じ受光グループの複数の受光素子130を、破線で囲っている。光信号は、受光素子130の受光部を含む受光領域と、不感領域とに集光される。受光領域に集光された光信号は、受信回路(図示しない)によって受信される。不感領域に集光された光信号は、受信回路(図示しない)によって受信されない。高速通信を行うためには、静電容量の小さな受光素子が採用される。そのような受光素子は、受光部の面積が小さい。導光器14がない構成では、不感領域に集光された光信号の分だけ、受光ロスが発生する。本実施形態の構成では、導光器14によって光信号が受光素子130の受光部に向けて導光される。そのため、図18図19の関連技術1と比べて、本実施形態の構成によれば、光信号の受光効率を向上できる。
【0057】
図20は、第1反射器141のみで構成された導光器を用いた関連技術2に関する概念図である。図20の例は、第1反射器141の内部に進入した光信号が入射面の側に戻りにくいように、第1反射器141の内部の傾斜角度が小さく形成されている。図20の例では、受光素子アレイ13を構成する複数の受光素子130の間隔に応じて、隣接し合う第1反射器141の間に隙間が空く。隣接し合う第1反射器141の間の隙間に進入した光信号は、受光素子130によって受光されない。そのため、図20の構成では、隣接し合う第1反射器141の間の隙間に進入した光信号の分だけ、受光ロスが発生する。
【0058】
図21は、第1反射器141のみで構成された導光器を用いた関連技術3に関する概念である。図21の例では、図20と比べて、第1反射器141の内部の傾斜角度が大きく形成されている。図21の例において、受光素子アレイ13を構成する受光素子130の数は、図20の例と同じである。第1反射器141は、隣接し合う第1反射器141との間に隙間がないように配置される。そのため、隣接し合う第1反射器141の間の隙間に、光信号が進入しない。しかし、図21の例では、第1反射器141の反射面への光信号の入射角が大きい場合、第1反射器141の内部に進入した光信号が、複数回の多重反射を経て、入射方向に戻る可能性がある。すなわち、第1反射器141の内部の傾斜角度が大きすぎると、多重反射による戻り光が増加してしまう。図20のように、第1反射器141の内部の傾斜角度が小さい第1反射器141を隙間なく配置すれば、隣接し合う第1反射器141の間の隙間に進入する光信号と戻り光との受光ロスが解消される。その場合、受光素子アレイ13を構成する受光素子130の間隔を小さくする必要があるため、受光素子アレイ13を構成する受光素子130の数を増やさなければならない。受光素子130の数の増加は、コストの増加につながる。
【0059】
本実施形態の構成では、第1反射器141と第2反射器142とを組み合わせた反射ユニット140を用いる。そのため、本実施形態の構成では、隣接し合う反射ユニットの間に隙間がないため、図20のような隙間に進入する光信号の受光ロスを解消できる。また、図21と同様に内部の傾斜角度が大きい第1反射器141を用いながら、入射方向に戻る光信号を減らすことができる。すなわち、本実施形態の構成によれば、隣接し合う第1反射器141の間の隙間に進入する光信号と、多重反射による戻り光とが原因となる受光ロスを解消できる。
【0060】
以上のように、本実施形態の受信装置は、ボールレンズ、受光素子アレイ、導光器、および受信回路を備える。ボールレンズ、導光器、および受光素子アレイは、受信器を構成する。導光器および受光素子アレイは、受光ユニットを構成する。ボールレンズは、球状のレンズである。受光素子アレイは、ボールレンズの周囲に配置された複数の受光素子を含む。導光器は、ボールレンズによって集光された光信号を受光素子に向けて導光する複数の反射ユニットによって構成される。反射ユニットは、第1反射器と反射器を有する。第1反射器は、複数の受光素子のいずれかに対応付けられる。第1反射器は、ボールレンズから受光素子に向けて先細る内側面に反射面が形成された構成である。第2反射器は、第1反射器の内部に配置される。第2反射器は、第1反射器の反射面に対して平行な反射面を有する両面鏡が組み合わされた構成である。受信回路は、受信器によって受信された信号を取得する。受信回路は、取得した信号をデコードする。
【0061】
本実施形態の受信装置は、多様な方向から到来する光信号を、ボールレンズによって集光する。ボールレンズによって集光された光信号は、導光器を構成する複数の反射ユニットのいずれかに進入する。反射ユニットに進入した光信号のうち、第1反射器と第2反射器との間に進入した光信号は、第1反射器の反射面と第2反射器の反射面との間で多重反射されて、受光素子によって受光される。反射ユニットに進入した光信号のうち、第2反射器の間に進入した光信号は、第2反射器の反射面の間で多重反射されて、受光素子によって受光される。すなわち、ボールレンズによって集光された光信号は、導光器を構成する複数の反射ユニットのいずれかによって、その反射ユニットに対応付けられた受光素子に向けて、効率よく導光される。受光素子によって受光された光信号は、電気信号に変換されて受信回路で受信される。そのため、本実施形態の受信装置によれば、多様な方向から到来する光信号を効率よく受信できる。
【0062】
本実施形態の一態様において、第1反射器は、ボールレンズから受光素子に向けて先細った形状の4面の反射面を含む。第2反射器は、第1反射器に含まれる4面の反射面のいずれかに対応付けて配置された両面鏡が4つ組み合わされた構成を有する。本態様においては、第1反射器の反射面と第2反射器の反射面との間と、第2反射器の反射面の間とで多重反射された光信号が、受光素子によって受光される。本態様によれば、互いに対向する反射面を有する第1反射器と第2反射器とを含む反射ユニットを用いることで、多様な方向から到来する光信号を効率よく受信できる。
【0063】
本実施形態の一態様の受信器は、第3反射器を備える。第3反射器は、第2反射器の内部に配置される。第3反射器は、ボールレンズの中心と受光素子とを結ぶ直線に対して平行な反射面を有する両面鏡によって構成される。本態様においては、第1反射器の反射面と第2反射器の反射面との間と、第2反射器の反射面と第3反射器の反射面との間とで多重反射された光信号が、受光素子によって受光される。本態様によれば、第3反射器を含む反射ユニットを用いることで、反射面に対する入射角が大きな光を、ボールレンズの方向に戻すことなく、受光素子に向けて導光できる。そのため、本態様によれば、第1反射器および第2反射器の内側面の傾斜角度を拡大できるので、複数の受光素子の間隔を拡大できる。その結果、本態様によれば、受光素子アレイを構成する受光素子アレイの数を減らすことができる。
【0064】
本実施形態の一態様の受信器は、第4反射器を備える。第4反射器は、第2反射器の内部に配置される。第4反射器は、第2反射器の反射面に対して平行な反射面を有する両面鏡が組み合わされた構成を有する。本態様においては、第1反射器の反射面と第2反射器の反射面との間と、第2反射器の反射面と第4反射器の反射面との間と、第4反射器の反射面とで多重反射された光信号が、受光素子によって受光される。本態様によれば、第4反射器を含む反射ユニットを用いることで、反射面に対する入射角が大きな光を、ボールレンズの方向に戻すことなく、受光素子に向けて導光できる。そのため、本態様によれば、第1反射器および第2反射器の内側面の傾斜角度を拡大できるので、複数の受光素子の間隔を拡大できる。その結果、本態様によれば、受光素子アレイを構成する受光素子アレイの数を減らすことができる。
【0065】
本実施形態の一態様において、第1反射器の反射面は、受光素子の近傍において、受光素子の受光部に向けて折り曲げられた部分を有する。本態様によれば、第1反射器および第2反射器の内側面における大部分の傾斜角度を拡大できるので、複数の受光素子の間隔を拡大できる。そのため、本態様によれば、受光素子アレイを構成する受光素子アレイの数を減らすことができる。
【0066】
本実施形態の一態様において、複数の反射ユニットは、空間光信号の到来方向に応じてグループ化される。例えば、導光器は、グループ化された複数の反射ユニットが一体化された構造を有する。本態様によれば、複数の反射ユニットを一体成型することによって、受信器を製造しやすくなる。
【0067】
(第2の実施形態)
次に、第2の実施形態に係る通信装置について図面を参照しながら説明する。本実施形態の通信装置は、受信装置と送信装置とを組み合わせた構成である。受信装置は、第1の実施形態の構成である。送信装置は、空間光信号を送信する。以下においては、位相変調型の空間光変調器を含む送信装置を備える送信装置の例をあげる。なお、本実施形態の通信装置は、位相変調型の空間光変調器ではない送光機能を含む送信装置を備えてもよい。
【0068】
図22は、本実施形態に係る通信装置20の構成の一例を示す概念図である。通信装置20は、受信装置21、制御装置25、および送信装置27を備える。通信装置20は、外部の通信対象と空間光信号を送受信し合う。そのため、通信装置20には、空間光信号を送受信するための開口や窓が形成される。
【0069】
受信装置21は、第1の実施形態の受信装置である。受信装置21は、通信対象(図示しない)から送信された空間光信号を受信する。受信装置21は、受信した空間光信号を電気信号に変換する。受信装置21は、変換後の電気信号を制御装置25に出力する。
【0070】
制御装置25は、受信装置21から出力された信号を取得する。制御装置25は、取得した信号に応じた処理を実行する。制御装置25が実行する処理については、特に限定を加えない。制御装置25は、実行した処理に応じた光信号を送信するための制御信号を、送信装置27に出力する。例えば、制御装置25は、受信装置21が受信した信号に含まれる情報に応じて、予め決められた条件に基づく処理を実行する。例えば、制御装置25は、受信装置21が受信した信号に含まれる情報に応じて、通信装置20の管理者によって指定された処理を実行する。
【0071】
送信装置27は、制御装置25から制御信号を取得する。送信装置27は、制御信号に応じた空間光信号を投射する。送信装置27から投射された空間光信号は、その空間光信号の送信先の通信対象(図示しない)によって受光される。例えば、送信装置27は、位相変調型の空間光変調器を備える。また、送信装置27は、位相変調型の空間光変調器ではない送光機能を有してもよい。
【0072】
〔送信装置〕
図23は、送信装置27の構成の一例を示す概念図である。送信装置27は、光源271、空間光変調器273、曲面ミラー275、および制御部277を有する。図23は、送信装置27の内部構成を横方向から見た側面図である。図23は、概念的なものであり、各構成要素間の位置関係や、光の進行方向などを正確に表したものではない。
【0073】
光源271は、制御部277の制御に応じて、所定の波長帯のレーザ光を出射する。光源271から出射されるレーザ光の波長は、特に限定されず、用途に応じて選定されればよい。例えば、光源271は、可視や赤外の波長帯のレーザ光を出射する。例えば、800~900ナノメートル(nm)の近赤外線であれば、レーザクラスをあげられるので、他の波長帯よりも1桁くらい感度を向上できる。例えば、1.55マイクロメートル(μm)の波長帯の赤外線ならば、高出力のレーザ光源を用いることができる。1.55μmの波長帯の赤外線を出射するレーザ光源としては、アルミニウムガリウムヒ素リン(AlGaAsP)系レーザ光源や、インジウムガリウムヒ素(InGaAs)系レーザ光源などを用いることができる。レーザ光の波長が長い方が、回折角を大きくでき、高いエネルギーに設定できる。光源271は、空間光変調器273の変調部2730に設定された変調領域の大きさに合わせて、レーザ光を拡大するレンズを含む。光源271は、レンズによって拡大された光202を出射する。光源271から出射された光202は、空間光変調器273の変調部2730に向けて進行する。
【0074】
空間光変調器273は、変調部2730を有する。変調部2730には、変調領域が設定される。変調部2730の変調領域には、制御部277の制御に応じて、投射光205によって表示される画像に応じたパターン(位相画像とも呼ぶ)が設定される。変調部2730には、光源271から出射された光202が照射される。変調部2730に入射した光202は、変調部2730に設定されたパターン(位相画像)に応じて変調される。変調部2730で変調された変調光203は、曲面ミラー275の反射面2750に向けて進行する。
【0075】
例えば、空間光変調器273は、強誘電性液晶やホモジーニアス液晶、垂直配向液晶などを用いた空間光変調器によって実現される。例えば、空間光変調器273は、LCOS(Liquid Crystal on Silicon)によって実現できる。また、空間光変調器273は、MEMS(Micro Electro Mechanical System)によって実現されてもよい。位相変調型の空間光変調器273では、投射光205を投射する箇所を順次切り替えるように動作させることによって、エネルギーを像の部分に集中することができる。そのため、位相変調型の空間光変調器273を用いる場合、光源271の出力が同じであれば、その他の方式と比べて画像を明るく表示させることができる。
【0076】
変調部2730の変調領域は、複数の領域に分割される(タイリングとも呼ぶ)。例えば、変調部2730の変調領域は、所望のアスペクト比に設定された四角形の領域(タイルとも呼ぶ)に分割される。変調部2730の変調領域に設定された複数のタイルの各々には、位相画像が割り当てられる。複数のタイルの各々は、複数の画素によって構成される。複数のタイルの各々には、投射される画像に対応する位相画像が設定される。複数のタイルの各々に設定される位相画像は、同じであってもよいし、異なっていてもよい。
【0077】
変調部2730の変調領域に割り当てられた複数のタイルの各々には、位相画像がタイリングされる。例えば、複数のタイルの各々には、予め生成された位相画像が設定される。複数のタイルに位相画像が設定された状態で、変調部2730に光202が照射されると、各タイルの位相画像に対応する画像を形成する変調光203が出射される。変調部2730に設定されるタイルが多いほど、鮮明な画像を表示させることができるが、各タイルの画素数が低下すると解像度が低下する。そのため、変調部2730の変調領域に設定されるタイルの大きさや数は、用途に応じて設定される。
【0078】
曲面ミラー275は、曲面状の反射面2750を有する反射鏡である。曲面ミラー275の反射面2750は、投射光205の投射角に応じた曲率を有する。曲面ミラー275の反射面2750は、曲面状の部分を含めばよい。図23の例の場合、曲面ミラー275の反射面2750は、円柱の側面の形状を有する。例えば、曲面ミラー275の反射面2750は、自由曲面や球面でもよい。例えば、曲面ミラー275の反射面2750は、単一の曲面ではなく、複数の曲面を組み合わせた形状であってもよい。例えば、曲面ミラー275の反射面2750は、曲面と平面を組み合わせた形状であってもよい。
【0079】
曲面ミラー275は、空間光変調器273の変調部2730に、反射面2750を向けて配置される。曲面ミラー275は、変調光203の光路上に配置される。反射面2750には、変調部2730で変調された変調光203が照射される。反射面2750で反射された光(投射光205)は、その反射面2750の曲率に応じた拡大率で拡大されて、投射される。図23の例の場合、投射光205は、曲面ミラー275の反射面2750における変調光203の照射範囲の曲率に応じて、水平方向(図23の紙面に対して垂直方向)に沿って拡大される。また、投射光205は、送信装置27から離れるにつれて、垂直方向(図23の紙面における上下方向)にも拡大される。
【0080】
例えば、空間光変調器273と曲面ミラー275の間に、遮蔽器(図示しない)が配置されてもよい。すなわち、空間光変調器273の変調部2730によって変調された変調光203の光路上に、遮蔽器が配置されてもよい。遮蔽器は、変調光203に含まれる不要な光成分を遮蔽し、投射光205の表示領域の外縁を規定する枠体である。例えば、遮蔽器は、所望の画像を形成する光を通過させる部分にスリット状の開口が形成されたアパーチャである。遮蔽器は、所望の画像を形成する光を通過させ、不要な光成分を遮蔽する。例えば、遮蔽器は、変調光203に含まれる0次光やゴースト像を遮蔽する。遮蔽器の詳細については、説明を省略する。
【0081】
送信装置27には、曲面ミラー275の代わりに、フーリエ変換レンズや投射レンズ等を含む投射光学系が設けられてもよい。また、送信装置27は、曲面ミラー275や投射光学系を含まずに、空間光変調器273の変調部2730で変調された光をそのまま投射するように、構成されてもよい。
【0082】
制御部277は、光源271および空間光変調器273を制御する。例えば、制御部277は、プロセッサとメモリを含むマイクロコンピュータによって実現される。制御部277は、空間光変調器273の変調部2730に設定されたタイリングのアスペクト比に合わせて、投射される画像に対応する位相画像を変調部2730に設定する。例えば、制御部277は、画像表示や通信、測距など、用途に応じた画像に対応する位相画像を変調部2730に設定する。投射される画像の位相画像は、記憶部(図示しない)に予め記憶させておけばよい。投射される画像の形状や大きさには、特に限定を加えない。
【0083】
制御部277は、空間光変調器273の変調部2730に照射される光202の位相と、その変調部2730で反射される変調光203の位相との差分を決定づけるパラメータが変化するように、空間光変調器273を制御する。例えば、パラメータは、屈折率や光路長などの光学的特性に関する値である。例えば、制御部277は、空間光変調器273の変調部2730に印加する電圧を変化させることによって、変調部2730の屈折率を調節する。位相変調型の空間光変調器273の変調部2730に照射された光202の位相分布は、変調部2730の光学的特性に応じて変調される。なお、制御部277による空間光変調器273の駆動方法は、空間光変調器273の変調方式に応じて決定される。
【0084】
制御部277は、表示される画像に対応する位相画像が変調部2730に設定された状態で、光源271を駆動させる。その結果、空間光変調器273の変調部2730に位相画像が設定されたタイミングに合わせて、光源271から出射された光202が空間光変調器273の変調部2730に照射される。空間光変調器273の変調部2730に照射された光202は、空間光変調器273の変調部2730において変調される。空間光変調器273の変調部2730において変調された変調光203は、曲面ミラー275の反射面2750に向けて出射される。
【0085】
例えば、送信装置27に含まれる曲面ミラー275の反射面2750の曲率と、空間光変調器273と曲面ミラー275の距離とを調整し、投射光205の投射角を180度に設定する。そのように構成された送信装置27を二つ用いれば、投射光205の投射角を360度に設定できる。また、送信装置27の内部で変調光203の一部を平面鏡等で折り返し、投射光205を2方向に投射するように構成すれば、投射光205の投射角を360度に設定できる。例えば、360度の向きに投射光を投射するように構成された送信装置27と、360度の方向から到来する空間光信号を受光するように構成された受信装置21とを組み合わせた構成とする。このような構成とすれば、360度の向きに空間光信号を送信し、360度の方向から到来する空間光信号を受光する通信装置を実現できる。
【0086】
〔通信装置〕
図24は、通信装置20の一例(通信装置200)を示す概念図である。通信装置200は、受信器220、送信器270、および制御装置(図示しない)を備える。図24では、受信回路や制御装置を省略する。通信装置200は、円筒状の外形を有する受信器220および送信器270を組み合わせた構成を有する。
【0087】
受信器220は、ボールレンズ221、受光ユニット222、導線225、カラーフィルタ226、および支持部材227を含む。ボールレンズ221は、第1の実施形態のボールレンズ11と同様の構成である。ボールレンズ221は、上下に配置された一対の支持部材227によって、上下の部分を挟持される。ボールレンズ221の上下は、空間光信号の送受信に用いられないため、支持部材227で挟持されやすいように、平面状に加工されてもよい。受光ユニット222は、受信対象の空間光信号を受信できるように、ボールレンズ221の集光領域に合わせて配置される。受光ユニット222は、第1の実施形態の受光ユニット12と同様の構成である。受光ユニット222は、複数の受光素子(図示しない)と、導光器とを有する。複数の受光素子は、導線225によって、制御装置(図示しない)や送信器270に接続される。
【0088】
円筒状の受信器220の側面には、カラーフィルタ226が配置される。カラーフィルタ226は、不要な光を除去し、通信に用いられる空間光信号を選択的に透過する。円筒状の受信器220の上下面には、一対の支持部材227が配置される。一対の支持部材227は、ボールレンズ221の上下を挟持する。ボールレンズ221の出射側には、環状に形成された受光ユニット222が配置される。カラーフィルタ226を介してボールレンズ221に入射した空間光信号は、ボールレンズ221によって、受光ユニット222に向けて集光される。受光ユニット222に集光された光信号は、いずれかの受光素子の受光部に向けて導光される。受光素子の受光部に到達した光信号は、その受光素子によって受光される。制御装置(図示しない)は、受光ユニット222に含まれる受光素子よって受光された光信号に応じて、送信器270から空間光信号を送信させる。
【0089】
送信器270は、図23の構成(送信装置27)によって実現できる。送信器270は、円筒状の筐体の内部に収納される。円筒状の筐体には、送信器270による空間光信号の送信方向に合わせて開口されたスリットが形成される。例えば、送信器270が360度の方向に空間光信号を送信できる場合、送信器270の筐体の側面には、空間光信号の送信方向に合わせて、スリットが形成される。
【0090】
〔適用例〕
次に、本実施形態の通信装置200の適用例について図面を参照しながら説明する。図25は、本適用例について説明するための概念図である。本適用例では、街中に配置された電柱や街灯などの柱の上部(柱上空間とも呼ぶ)に、複数の通信装置200が配置された通信ネットワークの一例(通信システムとも呼ぶ)をあげる。
【0091】
柱上空間には障害物が少ない。そのため、柱上空間は、通信装置200を設置するのに適している。また、同程度の高さに通信装置200を設置すれば、空間光信号の到来方向が水平方向に限定される。そのため、受信器220を構成する受光ユニット222の受光面積を小さくして、装置を簡略化できる。空間光信号を送受信し合う通信装置200のペアは、少なくとも一方の通信装置200が、他方の通信装置200から送信された空間光信号を受光するように配置される。通信装置200のペアは、空間光信号を互いに送受信するように配置されてもよい。複数の通信装置200で空間光信号の通信ネットワークが構成される場合、中間に位置する通信装置200は、他の通信装置200から送信された空間光信号を、別の通信装置200に中継するように配置されてもよい。
【0092】
本適用例によれば、柱上空間に配置された複数の通信装置200の間で、空間光信号を用いた通信が可能になる。例えば、柱上空間に配置された通信装置200の間における通信に応じて、自動車や家屋などに設置された無線装置や基地局と通信装置200との間で、無線通信による通信を行うように構成されてもよい。例えば、柱に設置された通信ケーブル等を介して、通信装置200がインターネットに接続されるように構成されてもよい。
【0093】
以上のように、本実施形態の通信装置は、受信装置、送信装置、および制御装置を備える。受信装置は、ボールレンズ、受光素子アレイ、導光器、および受信回路を備える。ボールレンズ、導光器、および受光素子アレイは、受信器を構成する。導光器および受光素子アレイは、受光ユニットを構成する。ボールレンズは、球状のレンズである。受光素子アレイは、ボールレンズの周囲に配置された複数の受光素子を含む。導光器は、ボールレンズによって集光された光信号を受光素子に向けて導光する複数の反射ユニットによって構成される。反射ユニットは、第1反射器と反射器を有する。第1反射器は、複数の受光素子のいずれかに対応付けられる。第1反射器は、ボールレンズから受光素子に向けて先細る内側面に反射面が形成された構成である。第2反射器は、第1反射器の内部に配置される。第2反射器は、第1反射器の反射面に対して平行な反射面を有する両面鏡が組み合わされた構成である。受信回路は、受信器によって受信された信号を取得する。受信回路は、取得した信号をデコードする。送信装置は、空間光信号を送信する。制御装置は、受信装置によって受信された他の通信装置からの空間光信号に基づく信号を取得する。制御装置は、取得した信号に応じた処理を実行する。制御装置は、実行した処理に応じた空間光信号を送信装置に送信させる。
【0094】
本実施形態の通信装置は、多様な方向から到来する光信号を、導光器を構成する複数の反射ユニットのいずれかによって、その反射ユニットに対応付けられた受光素子に向けて導光する受信装置を備える。受信装置は、多様な方向から到来する光信号を、ボールレンズによって集光する。ボールレンズによって集光された光信号は、導光器を構成する複数の反射ユニットのいずれかによって、その反射ユニットに対応付けられた受光素子に向けて導光される。そのため、本実施形態の受信装置によれば、多様な位置に配置された複数の通信装置の間において、空間光信号を用いた通信が可能になる。
【0095】
本実施形態の一態様の通信システムは、上記の通信装置を複数備える。通信システムにおいて、複数の通信装置は、空間光信号を互いに送受信し合うように配置される。本態様によれば、空間光信号を送受信する通信ネットワークを実現できる。
【0096】
(第3の実施形態)
次に、第3の実施形態に係る受信器について図面を参照しながら説明する。本実施形態の受信器は、第1の実施形態の受信器が簡略化された構成である。図26図27は、本実施形態に係る受信器30の構成の一例を示す概念図である。図26は、受信器30を上方向から見た平面図である。図27は、受信器30を横方向から見た側面図である。
【0097】
受信器30は、ボールレンズ31、導光器34、および受光素子アレイ33を備える。導光器34および受光素子アレイ33は、受光ユニット32を構成する。
【0098】
ボールレンズ31は、球状のレンズである。受光素子アレイ33は、ボールレンズ31の周囲に配置された複数の受光素子を含む。導光器34は、ボールレンズ31によって集光された光信号を受光素子に向けて導光する複数の反射ユニットによって構成される。反射ユニットは、第1反射器と反射器を有する。第1反射器は、複数の受光素子のいずれかに対応付けられる。第1反射器は、ボールレンズから受光素子に向けて先細る内側面に反射面が形成された構成である。第2反射器は、第1反射器の内部に配置される。第2反射器は、第1反射器の反射面に対して平行な反射面を有する両面鏡が組み合わされた構成である。
【0099】
以上のように、本実施形態の受信器は、多様な方向から到来する光信号を、ボールレンズによって集光する。ボールレンズによって集光された光信号は、導光器を構成する複数の反射ユニットのいずれかによって、その反射ユニットに対応付けられた受光素子に向けて導光される。そのため、本実施形態の受信器によれば、多様な方向から到来する光信号を効率よく受信できる。
【0100】
(ハードウェア)
ここで、本開示の各実施形態に係る制御や処理を実行するハードウェア構成について、図28の情報処理装置90を一例としてあげて説明する。なお、図28の情報処理装置90は、各実施形態の制御や処理を実行するための構成例であって、本開示の範囲を限定するものではない。
【0101】
図28のように、情報処理装置90は、プロセッサ91、主記憶装置92、補助記憶装置93、入出力インターフェース95、および通信インターフェース96を備える。図28においては、インターフェースをI/F(Interface)と略記する。プロセッサ91、主記憶装置92、補助記憶装置93、入出力インターフェース95、および通信インターフェース96は、バス98を介して、互いにデータ通信可能に接続される。また、プロセッサ91、主記憶装置92、補助記憶装置93、および入出力インターフェース95は、通信インターフェース96を介して、インターネットやイントラネットなどのネットワークに接続される。
【0102】
プロセッサ91は、補助記憶装置93等に格納されたプログラムを、主記憶装置92に展開する。プロセッサ91は、主記憶装置92に展開されたプログラムを実行する。本実施形態においては、情報処理装置90にインストールされたソフトウェアプログラムを用いる構成とすればよい。プロセッサ91は、各実施形態に係る制御や処理を実行する。
【0103】
主記憶装置92は、プログラムが展開される領域を有する。主記憶装置92には、プロセッサ91によって、補助記憶装置93等に格納されたプログラムが展開される。主記憶装置92は、例えばDRAM(Dynamic Random Access Memory)などの揮発性メモリによって実現される。また、主記憶装置92として、MRAM(Magnetoresistive Random Access Memory)などの不揮発性メモリが構成/追加されてもよい。
【0104】
補助記憶装置93は、プログラムなどの種々のデータを記憶する。補助記憶装置93は、ハードディスクやフラッシュメモリなどのローカルディスクによって実現される。なお、種々のデータを主記憶装置92に記憶させる構成とし、補助記憶装置93を省略することも可能である。
【0105】
入出力インターフェース95は、規格や仕様に基づいて、情報処理装置90と周辺機器とを接続するためのインターフェースである。通信インターフェース96は、規格や仕様に基づいて、インターネットやイントラネットなどのネットワークを通じて、外部のシステムや装置に接続するためのインターフェースである。入出力インターフェース95および通信インターフェース96は、外部機器と接続するインターフェースとして共通化してもよい。
【0106】
情報処理装置90には、必要に応じて、キーボードやマウス、タッチパネルなどの入力機器が接続されてもよい。それらの入力機器は、情報や設定の入力に使用される。なお、タッチパネルを入力機器として用いる場合は、表示機器の表示画面が入力機器のインターフェースを兼ねる構成としてもよい。プロセッサ91と入力機器との間のデータ通信は、入出力インターフェース95に仲介させればよい。
【0107】
また、情報処理装置90には、情報を表示するための表示機器を備え付けてもよい。表示機器を備え付ける場合、情報処理装置90には、表示機器の表示を制御するための表示制御装置(図示しない)が備えられていることが好ましい。表示機器は、入出力インターフェース95を介して情報処理装置90に接続すればよい。
【0108】
また、情報処理装置90には、ドライブ装置が備え付けられてもよい。ドライブ装置は、プロセッサ91と記録媒体(プログラム記録媒体)との間で、記録媒体からのデータやプログラムの読み込み、情報処理装置90の処理結果の記録媒体への書き込みなどを仲介する。ドライブ装置は、入出力インターフェース95を介して情報処理装置90に接続すればよい。
【0109】
以上が、本発明の各実施形態に係る制御や処理を可能とするためのハードウェア構成の一例である。なお、図28のハードウェア構成は、各実施形態に係る制御や処理を実行するためのハードウェア構成の一例であって、本発明の範囲を限定するものではない。また、各実施形態に係る制御や処理をコンピュータに実行させるプログラムも本発明の範囲に含まれる。さらに、各実施形態に係るプログラムを記録したプログラム記録媒体も本発明の範囲に含まれる。記録媒体は、例えば、CD(Compact Disc)やDVD(Digital Versatile Disc)などの光学記録媒体で実現できる。記録媒体は、USB(Universal Serial Bus)メモリやSD(Secure Digital)カードなどの半導体記録媒体によって実現されてもよい。また、記録媒体は、フレキシブルディスクなどの磁気記録媒体、その他の記録媒体によって実現されてもよい。プロセッサが実行するプログラムが記録媒体に記録されている場合、その記録媒体はプログラム記録媒体に相当する。
【0110】
各実施形態の構成要素は、任意に組み合わせてもよい。また、各実施形態の構成要素は、ソフトウェアによって実現されてもよいし、回路によって実現されてもよい。
【0111】
以上、実施形態を参照して本発明を説明してきたが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
【符号の説明】
【0112】
1 受信装置
10、30 受信器
11、31 ボールレンズ
12、32 受光ユニット
13、33 受光素子アレイ
14、34 導光器
15 受信回路
20 通信装置
21 受信装置
25 制御装置
27 送信装置
130 受光素子
140 反射ユニット
141 第1反射器
142 第2反射器
143 第3反射器
144 第4反射器
145 導光器
146 基板
147 透明部材
151 受信制御部
155 光学制御部
157 通信制御部
161 第1増幅器
162 第2増幅器
200 通信装置
220 受信器
221 ボールレンズ
222 受光ユニット
225 導線
226 カラーフィルタ
227 支持部材
270 送信器
271 光源
273 空間光変調器
275 曲面ミラー
277 制御部
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26
図27
図28