(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024038501
(43)【公開日】2024-03-19
(54)【発明の名称】体細胞の再プログラム化
(51)【国際特許分類】
C12N 5/10 20060101AFI20240312BHJP
C12N 5/071 20100101ALI20240312BHJP
【FI】
C12N5/10
C12N5/071 ZNA
【審査請求】有
【請求項の数】1
【出願形態】OL
(21)【出願番号】P 2024010931
(22)【出願日】2024-01-29
(62)【分割の表示】P 2021126772の分割
【原出願日】2008-03-21
(31)【優先権主張番号】60/974,980
(32)【優先日】2007-09-25
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】60/989,058
(32)【優先日】2007-11-19
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】60/919,687
(32)【優先日】2007-03-23
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】591013274
【氏名又は名称】ウィスコンシン アラムニ リサーチ ファンデーション
(74)【代理人】
【識別番号】100094569
【弁理士】
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100109070
【弁理士】
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100119013
【弁理士】
【氏名又は名称】山崎 一夫
(74)【代理人】
【識別番号】100111796
【弁理士】
【氏名又は名称】服部 博信
(74)【代理人】
【識別番号】100123766
【弁理士】
【氏名又は名称】松田 七重
(74)【代理人】
【識別番号】100136249
【弁理士】
【氏名又は名称】星野 貴光
(72)【発明者】
【氏名】トムソン ジェイムズ
(72)【発明者】
【氏名】ユー ジュンイン
(57)【要約】
【課題】多能性細胞を提供する。
【解決手段】本発明は、少なくとも1つ又は複数の潜在能力決定因子を体細胞に投与することにより、体細胞を多能性に再プログラム化する方法に関する。本発明はまた、再プログラム化する方法を用いて得られた多能性細胞集団に関する。
【選択図】なし
【特許請求の範囲】
【請求項1】
以下の工程を含む方法にしたがって作製される、霊長類の多能性細胞の濃縮集団:
Oct-4、Sox2及びLin28を含む複数の潜在能力決定因子を、前記潜在能力決定因子を発現させるために十分な条件下で、霊長類の体細胞に導入し、それによって前記霊長類の体細胞を再プログラム化する工程、
ここで、前記霊長類の多能性細胞は、前記霊長類の体細胞のゲノムと遺伝的に実質同一のゲノムを有する。
【請求項2】
以下の工程を含む方法にしたがって作製される、霊長類の多能性細胞の濃縮集団:
Oct-4、Sox2及びLin28を含む複数の潜在能力決定因子を、前記潜在能力決定因子を発現させるために十分な条件下で、霊長類の胎児又は霊長類の出生後の個体から得られる非胚性細胞に導入し、それによって前記非胚性細胞を再プログラム化する工程
ここで、前記再プログラム化工程が、Oct-4及びSox2が1:1の比で連結されている単一ベクターを、前記非胚性細胞に導入する工程を含み、
前記霊長類の多能性細胞は、前記非胚性細胞のゲノムと遺伝的に実質同一のゲノムを有する。
【請求項3】
霊長類多能性細胞が、(i)Oct-4、SSEA3、SSEA4、Tra-1-60及びTra-1-81から成る群から選択される細胞表面マーカーを発現し;(ii)多能性細胞に特徴的な形態を示し;さらに(iii)免疫不全動物に導入したときテラトーマを形成する、請求項1又は2に記載の細胞濃縮集団。
【請求項4】
霊長類多能性細胞が集団の少なくとも60%を占める、請求項1又は2に記載の細胞濃縮集団。
【請求項5】
霊長類多能性細胞が集団の少なくとも80%を占める、請求項1又は2に記載の細胞濃縮集団。
【請求項6】
霊長類多能性細胞が集団の少なくとも95%を占める、請求項1又は2に記載の細胞濃縮集団。
【発明の詳細な説明】
【背景技術】
【0001】
関連出願の相互引用
本出願は、米国仮特許出願60/919,687号(2007年3月23日出願);米国仮特許出願60/974,980号(2007年9月25日出願);及び米国仮特許出願60/989,058号(2007年11月19日出願)(前記の各々は、参照によりあたかもその全体が示されたかのように本明細書に含まれる)の権利を主張する。
連邦政府の研究開発支援に関する記述
該当無し
胚性幹(ES)細胞は、多能性を維持しながら無限に増殖することができ、さらに三つの胚葉の全ての細胞に分化することができる(Evans & Kaufman, Nature 1981, 292:154-156)。ヒトES細胞は、宿主の疾患(例えばパーキンソン病、脊髄損傷及び糖尿病)の治療に有用であろう(Thomson et al. Science 1998, 282:1145-1147)。研究者らは、胚盤胞細胞からES細胞を作製する従来の方法を避けるため、及び患者への移植後の予想される組織拒絶の問題を回避するための技術的解決を模索してきた。これらの解決を達成する1つの望ましい方法は、出生後の個体の体細胞から直接多能細胞を作製することであろう。
体細胞は、それらの核の内容物を卵母細胞に移すことによって(Wilmut et al. Nature 1997, 385:810-813)又はES細胞との融合によって(Cowan et al. Science 2005, 309:1369-1373)再プログラム化することができ、未受精卵及びES細胞は体細胞に全能性又は多能性を付与する因子を含むことが示唆された。
同様に、Yuらは、H1Oct4ノックインES細胞からin vitro分化によって誘導された細胞はEGFPを発現しないが、EGFP発現はヒトES細胞との細胞対細胞融合に際して回復することを示した(Yu et al. Stem Cells 2006, 24:168-176、前記文献は参照によりあたかもその全体が示されたかのように本明細書に含まれる)。したがって、Yuらは、分化した細胞はヒトES細胞との細胞対細胞融合により多能性となるえることを示した。分化した細胞のタイプに関係なく、未分化ヒトES細胞と融合したとき、融合ハイブリッド細胞では、ES細胞特異的抗原及びマーカー遺伝子が発現され、分化特異的抗原はもはや検出できなかった。
都合のよいことに、EGFP発現がハイブリッド細胞で再度確立され、多能性幹細胞状態の再確立の簡便なマーカーを提供した。ハイブリッド細胞が胚様体(EB)を形成したとき、全3胚葉及び胚体外組織に特徴的な遺伝子がアップレギュレートされ、ハイブリッド細胞は多様な系列に分化する潜在能力を有することが示唆された。
【0002】
多能性の転写に関する規定は完全には理解されていないが、いくつかの転写因子(Oct 3/4(Nichols et al. Cell 1998, 95:379-391)、Sox2(Avilion et al. Genes Dev 2003, 17:126-140)及びNanog(Chambers et al. Cell 2003, 113:643-655)を含む)がES細胞の多能性の維持に必要とされる。しかしながら、いずれもそれだけではES細胞の実体を特徴付けるために十分ではない。
Chambers & Smith(EP1698639A2(2002))は、分化抑制因子をコード又は活性化するベクターを導入することによって、フィーダ層又はフィーダ細胞抽出物の非存在下及びgp130サイトカインの非存在下で多能性ネズミ細胞を維持したが、しかしながら分化細胞を多能性状態に転換できなかった。
その後、Takahashi & Yamanakaは、マウスES細胞及びマウス成体線維芽細胞(前記は、マウスES細胞の形態及び増殖特性並びにマウスES細胞マーカー遺伝子の発現を示す誘導性多能性幹細胞(iPS細胞)の獲得のためにマウスES細胞にとって適切な条件下で培養された)に4因子(すなわちOct3/4、Sox2、c-Myc及びKlf4)を導入した(Takahashi & Yamanaka, Cell 2006, 126:663-676)。注目すべきことに、マウス線維芽細胞に導入された外因性Oct-4は最小限のOct-4発現しかもたらさなかった。ヌードマウスへのiPS細胞の皮下移植は、3胚葉の全てに由来する多様な組織を含む腫瘍を生じた。胚盤胞への注入後、iPS細胞はマウス胚の発育に貢献した。しかしながら、c-Myc(多能性の誘導のために必要であった)はオンコジーンである。同様にKlf4もオンコジーンである。これらのデータは、レトロウイルス系形質導入を用いてほんの数個の特定の因子を添加することによって、多能性細胞をマウス線維芽細胞培養から直接作製できることを示している。しかしながら以下に記載するように、分化したマウス細胞からiPS細胞を作製するために用いられる因子セットは、さらに別の変化を細胞に導入しない限り、ヒト体細胞を、レンチウイルスベクターを用いて多能性に再プログラム化するには不十分であった。
【0003】
マウスのES細胞及びヒトのES細胞は、未分化状態を維持するために別個の因子セットを要求し、種特異的相違(哺乳動物間ですら)の重要性が示されているので、ヒトの体細胞を再プログラム化することができる因子は、モデル生物(マウスを含む)の体細胞を再プログラム化することができる因子とは異なりえると仮定できよう。例えば、白血病抑制因子(LIF)/Sta3経路(マウスES細胞の増殖にとって不可欠である)は、ヒトES細胞増殖を支援せず、ヒトES細胞を支援する条件下では活性をもたないようである(L. Daheron et al. Stem Cells 2004, 22:770-778;R. Humphrey et al. Stem Cells 2004, 22:522-530;及びT. Matsuda et al. EMBO J 1999, 18:4261-4269)。
同様に、骨形態発生タンパク質(BMP)はLIFと一緒になって、無血清培養液下でのクローン密度でマウスES細胞の自己再生を支援するが(Q. Ying et al. Cell 2003, 115:281-292)、一方、それらは、また別の場合には自己再生を支援するような条件下で(例えば線維芽細胞上での培養又は線維芽細胞条件付け培養液中での培養で)ヒトES細胞の急速な分化を引き起こす(R. Xu et al. Nat Biotechnol 2002, 20:1261-1264)。実際、ヒトES細胞でのBMPシグナリングの阻害は有益である(R. Xu et al. Nat Methods 2005, 2:185-190)。
さらにまた、線維芽細胞増殖因子(FGF)のシグナリングは、ヒトES細胞の自己再生にとって重要であるが、マウスには明らかに重要ではない(Xu et al. 2005, 上掲書;及びC. Xu et al. Stem Cells 2005, 23:315-323)。
したがって、当分野ではなお、多能性細胞を得るために、少なくとも霊長類(ヒト及び非ヒトを含む)の体細胞を再プログラム化する方法で使用されるために適した潜在能力決定因子セットが探索されている。胚性組織に依存する必要がない細胞は、既存の多能性霊長類ES細胞のために既に熟慮された用途での使用に適していよう。
【発明の概要】
【課題を解決するための手段】
【0004】
本発明は、おおざっぱに言えば分化した霊長類の体細胞を多能性細胞、より具体的にはiPS細胞に再プログラム化(reprogramming)する方法に関すると要約される。本明細書で用いられる、“iPS細胞”とは、対応するそれら細胞のもともとの分化した体細胞と遺伝的に実質同一であり、本明細書に記載するより高い潜在能力を有する細胞(higher potency cell)(例えばES細胞)と類似の特徴を示す細胞を指す。前記細胞は種々の分化した(すなわち非多能性及び多分化能性(multipotent))体細胞から入手することができる。
iPS細胞は、ES細胞と類似の形態学的特性(すなわち球状形、大きな核小体及び貧弱な細胞質)及び増殖特性(すなわち倍増時間:ES細胞は約17時間から18時間の倍増時間を有する)を示す。さらにまた、iPS細胞は、多能性細胞特異的マーカーを発現する(例えばOct-4、SSEA-3、SSEA-4、Tra-1-60、Tra-1-81を発現するが、SSEA-1は発現しない)。しかしながら、iPS細胞は胚から直接誘導されるわけではなく、さらに、少なくともiPS細胞が多能性になるまで、選択した潜在能力決定因子(potency-determining factor)の1つ以上のコピーを一過性又は安定的に発現することができる。本明細書で用いられる、“胚から直接誘導されるわけではなく”とは、iPS細胞を生じる出発の細胞タイプが、非多能性細胞、例えば多分化能性細胞又は最終的に分化した細胞、例えば出生後の個体から得られる体細胞であることを意味する。
本明細書に記載する方法では、少なくとも2つの潜在能力決定因子が、分化した体細胞に導入され発現されて、その結果、前記体細胞は、多能性細胞、例えばヒトES細胞(すなわち少なくともOct-4、SSEA-3、SSEA-4、TRA-1-60、TRA-1-81を発現するが、SSEA-1は発現せず、核:細胞質比が高く核小体が目立つ密なコロニーの外観を有する)に特徴的な特性を有する細胞に培養の状態で転換される(前記多能性細胞は、三つの胚葉に特徴的な全ての細胞に分化することができ、さらに出生後の個体の体細胞の遺伝的に必要な全量を含む)。潜在能力決定因子をコードするために導入される遺伝物質は別として、再プログラム化された細胞は、それらが誘導された体細胞と遺伝的に実質同一である。
【0005】
本明細書で用いられる、“潜在能力決定因子”は、例えば遺伝子又は他の核酸又はその機能的フラグメントのような因子とともに、コードされた因子又はその機能的フラグメントを指し、前記は、体細胞が多能性になることができるように、その潜在能力を高めるために用いられる。潜在能力決定因子は、場合によって再プログラム化された細胞に単に一過性で存在してもよいが、また再プログラム化された細胞のゲノム内に転写的に活性又は不活性な状態で維持されてあってもよい。同様に、潜在能力決定因子は、再プログラム化細胞内に1コピー以上で存在することができ、この場合、前記潜在能力決定因子は細胞のゲノム内に組み込まれてあっても、染色体外にあっても、又はその両方であってもよい。
潜在能力決定因子には、Stella(配列番号:1)、POU5F1(Oct-4;配列番号:2)、Sox2(配列番号:3)、FoxD3、UTF1、Rex1、ZNF206、Sox15、Mybl2、Lin28(配列番号:4)、Nanog(配列番号:5)、DPPA2、ESG1、Otx2及びそのサブセットが含まれえるが、ただしこれらに限定されない。いくつかの実施態様では、わずか2つの潜在能力決定因子、例えばOct-4及びSox2で十分である。しかしながら、再プログラム化細胞を獲得する効率は、追加の潜在能力決定因子、例えばLin28、Nanog又はその両方を含むことによって改善することができる。
【0006】
第一の特徴では、本発明は、出生後の個体、特に生存個体、場合によって死亡個体から入手される多能性細胞の補充可能な濃縮集団に関する。濃縮細胞集団内の細胞は、少なくとも1つの細胞タイプ特異的マーカー(Oct-4、SSEA3、SSEA4、Tra-1-60、Tra-1-81またはその組合せを含む)を発現し、さらに多能性細胞、例えばES細胞の他の特徴を有する。さらにまた、前記多能性細胞はアルカリ性ホスファターゼ(ALP)を発現することができる。さらにまた、多能性細胞は、以前に存在していた分化した個体由来細胞のゲノムと遺伝的に実質同一のゲノムを有することができる。同様に、前記多能性細胞は、少なくとも1つの潜在能力決定因子をコードするゲノムを有することができ、前記は再プログラム化後に、転写的に活性であっても不活性であってもよい。さらにまた、潜在能力決定因子は再プログラミング配列(reprogramming sequence)の形態であってもよく、前記配列では、潜在能力決定因子をコードするポリヌクレオチドは、異種プロモータと機能的に連結される。本明細書で用いられる、“異種プロモータ”は、当該プロモータが通常は転写を開始しないポリヌクレオチドと機能的に連結されるプロモータを意味する。
第二の特徴では、本発明は、体細胞を多能性細胞に再プログラム化するために必要な潜在能力決定因子の認定のための方法及び組成物に関する。
特段に指定されなければ、本明細書で用いられる全ての技術用語及び学術用語は、本発明が属する分野の業者が一般的に理解する意味と同じ意味を有する。本発明を実施又は試験するための適切な方法及び材料は下記に記載されるが、本明細書に記載のものと類似又は等価の他の方法及び材料(前記は当分野では周知である)もまた用いることができる。
本発明の他の目的、利点及び特徴は、添付の図面と併せて以下の詳細な説明から明白となるであろう。
【図面の簡単な説明】
【0007】
【
図1】ノックイン構築物が導入された、ヒトOct4プロモータから下流の部位を示す。このノックイン構築物を含む細胞では、Oct4プロモータが活性を有するときに、強化緑色蛍光タンパク質(EGFP)及びネオマイシンホスホトランスフェラーゼ(NEO)が発現される。これらの細胞を用いて、どの因子が体細胞を多能性細胞に再プログラム化できるかを判定することができる。
【
図2A】
図2AはヒトH1 ES細胞分化を示す。
図2Aは、ヒトES細胞から骨髄球様前駆細胞の誘導及び精製を模式的に示す。略語:hESC、ヒト胚性幹細胞;MPO、ミエロパーオキシダーゼ;pHEMA、ポリ(2-ヒドロキシエチルメタクリレート)。
【
図2B】
図2BはヒトH1 ES細胞分化を示す。
図2Bは、パーコール(Percoll(商標))分離後に得られた分化細胞の表現型分析を示す。灰色線:アイソタイプコントロール;黒線:抗体染色。
【
図3】
図1のノックイン構築物を含むOct-4領域を示す。
【
図4A】
図4Aは、体細胞のレンチウイルスによる形質導入を示す。
図4Aはレンチウイルス構築物の模式図を示す。
【
図4B】
図4Bは、体細胞のレンチウイルスによる形質導入を示す。
図4Bは、パーコール(Percoll(商標))精製細胞が、種々のMOIのEGFP発現レンチウイルスベクターで形質導入されたことを示す。EGFP発現は、薬剤選別無しで形質導入3日後にフローサイトメトリーによって分析した。
【
図4C】
図4Cは、体細胞のレンチウイルスによる形質導入を示す。
図4Cは、マトリゲル(Matrigel(商標))でさらに数日培養した後のパーコール(Percoll(商標))精製細胞のレンチウイルス形質導入を示す。EGFP発現は、レンチウイルスによる形質導入の2日後に分析した。
【
図5】マトリゲル(Matrigel(商標))で7日間分化させた細胞におけるトランスジーンの過剰発現を示す。形態における有意な変化は、Nanog又はEGFP(コントロール)を過剰発現する細胞では観察されなかった。Oct-4発現細胞の形態は劇的に変化し、これら細胞の多くがネオマイシン選別に生き残ったが、これら細胞はいずれも典型的なヒトES細胞の形態を示さず、Oct-4発現ES細胞の薬剤選別性集団は、骨髄球様分化に必要な培養期間の端から端までを生存しぬけないことを示している。
【
図6A】
図6Aは、14の潜在能力決定因子の導入によるOct4KICD45+A細胞の再プログラム化を示す。
図6Aは、樹立クローンは未分化ヒトES細胞の形態を示し、内因性Oct4プロモータの指令下でEGFPを発現させることを示す。
【
図6B】
図6Bは、14の潜在能力決定因子の導入によるOct4KICD45+A細胞の再プログラム化を示す。
図6Bは、樹立クローンにおけるヒトES細胞特異的細胞表面抗原の発現のフローサイトメトリー分析を示す。灰色線:アイソタイプコントロール;黒線:抗体染色。
【
図7A】
図7Aは、潜在能力決定因子の種々のセットの導入後のコロニー形成によって実証される再プログラム化効率を示す。
図7Aは、14の潜在能力決定因子を組み合わせた識別セットが細胞に導入されたことを示す(各組合せにおいて14因子の1つが排除された)。被検細胞をES様状態に再プログラム化する潜在能力決定因子の能力を判定することによって、発明者らは、排除された潜在能力決定因子が再プログラム化に必須であるか否かを決定した。例えば、OCT-4を欠いたM1と称される潜在能力決定因子セット(M1-Oct-4と記されている)は、有意な数のES様コロニーを形成することができなかった。したがって、OCT-4は体細胞の再プログラム化に重要であると結論された。
【
図7B】
図7Bは、潜在能力決定因子の種々のセットの導入後のコロニー形成によって実証される再プログラム化効率を示す。
図7Bは、更なる試験で判定した潜在能力決定因子のセット(
図7Aから削減された)は14から4に削減されたことを示している(M4はOct-4、Sox2、Lin28及びNanogである)。これら4つの潜在能力決定因子を、4つのうちの1つを組合せから連続的に排除することによって試験した。3つの潜在能力決定因子の組合せ(例えばM4-Oct-4)が、被検細胞が有意な数の安定なES様コロニーを形成するように再プログラム化できなかった場合、発明者らは、省かれた遺伝子が体細胞の再プログラム化のために重要であると結論した。
図7Bでは、淡灰色の棒線は典型的なヒトES細胞の形態を有して形成された再プログラム化コロニーの総数を示し、濃灰色の棒線は分化が最小限の大きなコロニーの数を示す。
【
図7C】
図7Cは、潜在能力決定因子の種々のセットの導入後のコロニー形成によって実証される再プログラム化効率を示す。
図7Cは、更なる試験で判定した潜在能力決定因子のセット(
図7Bから削減された)は、4つから2つ(すなわちOct-4及びSox2)に削減されたことを示している。Oct-4、Sox2、Lin28及びNanogを、組合せから4つのうち2つを連続的に排除することによって試験した。
【
図8A】
図8Aは、ヒト成人の皮膚線維芽細胞における再プログラム化を示す。
図8Aは、ヒト成人の皮膚細胞(p5)(左)及び再プログラム化細胞(右)の明視野像を示す。
【
図8B】
図8Bは、ヒト成人の皮膚線維芽細胞における再プログラム化を示す。
図8Bは、ヒト成人の皮膚細胞(p5)(下)及び再プログラム化細胞(上)におけるヒトES細胞特異的マーカーのフローサイトメトリー分析を示す。灰色線:アイソタイプコントロール;黒線:抗体染色。
【
図9A】
図9Aは、Oct-4及びSox2の相対的発現の再プログラム化への影響を示す。
図9Aは、293FT細胞におけるOct-4及びSox2のウェスタンブロット分析を示す。レーン1、pSin4-EF2-Oct4-IRES1-Sox2(OS-IRES1);レーン2、pSin4-Ef2-Oct4-IRES2-Sox2(OS-IRES2);レーン3、pSin4-EF2-Oct4-F2A-Sox2(OS-F2A);レーン4、pSin4-EF2-Oct4-IRES1-puro(O);レーン5、pSin4-EF2-Sox2-IRES1-puro(S);レーン6、プラスミド無し(コントロール)。
【
図9B】
図9Bは、Oct-4及びSox2の相対的発現の再プログラム化への影響を示す。
図9Bは、連結させた潜在能力決定因子を用いた、OCT4ノックインヒトES細胞から誘導した間葉細胞における再プログラム化を示す。遺伝子の組合せは
図9Aの場合と同じで、pSin4-EF2-Nanog-IRES1-puro(N)及びpSin4-EF2-Lin28-IRES1-puro(L)が加えられた。
【発明を実施するための形態】
【0008】
発明者らは、霊長類のES細胞に存在する潜在能力決定因子は多能性の維持に重要な役割を果たし、さらに分化した体細胞は潜在能力決定因子の発現を介して多能性の状態に再プログラム化されえると仮説を立てた。
細胞タイプは、分化を経る間に種々の潜在能力レベル、たとえば全能性、多能性及び多分化能性を経験する。本明細書で特に重要なものは多能性細胞である。本明細書で用いられる、“多能性細胞”とは、三胚葉(例えば内胚葉、中胚葉及び外胚葉)のいずれにも分化できる細胞集団を指す。多能性細胞は、多様な多能性細胞特異的マーカーを発現し、未分化細胞に特異的な細胞形態を有し(すなわち密なコロニー、高い核:細胞質比及び顕著な核小体)、免疫不全動物(例えばSCIDマウス)に導入したときテラトーマを形成する。
テラトーマは典型的にはどの三胚葉にも特徴的な細胞又は組織を含む。当業者は、当分野で一般的に用いられる技術を使用してこれらの特徴を判定することができる。例えば上掲書(Thomson et al.)を参照されたい。多能性細胞は、細胞培養で増殖することも、多分化能特性を示す種々の系列拘束細胞集団に分化することもできる。多分化能性体細胞は、多能性細胞に比してより分化しているが、最終分化にまでは至っていない。したがって、多能性細胞は多分化能性細胞よりも高い潜在能力を有する。本明細書で用いられる、“再プログラム化霊長類多能性幹細胞”(及び同様な言及)は、体細胞再プログラム化方法の多能性生成物を指す。そのような細胞は、研究及びヒトES細胞のために現時点で想定されている治療的用途での使用に適切である。
【0009】
おおざっぱに、本発明は、少なくとも2つの潜在能力決定因子を体細胞に投与して、体細胞の潜在能力よりも高いレベルの潜在能力を再プログラム化細胞で達成することによって、分化した体細胞をより高い潜在能力をもつ細胞(例えば多能性細胞)に再プログラム化する新規な方法に関する。有利なことには、本発明は、体細胞に潜在能力決定因子を導入するために細胞表面レセプターの添加を必要とすることなく、体細胞から多能性細胞(例えばiPS細胞)を作製することを可能にする。本明細書で用いられる、“再プログラム化”とは、遺伝学的プロセスであって、当該プロセスによって分化体細胞が脱分化多能性細胞に転換され、したがってそれらが誘導された細胞よりも強力な多能性潜在能力を有する前記遺伝学的プロセスを指す。すなわち、再プログラム化細胞は、以下の多能性細胞特異的マーカーの少なくとも1つを発現する:SSEA-3、SSEA-4、TRA-1-60又はTRA 1-81。好ましくは、再プログラム化細胞はこれらマーカーの全てを発現する。
体細胞を再プログラム化することができる潜在能力決定因子には、例えばOct-4、Sox2、FoxD3、UTF1、Stella、Rex1、ZNF206、Sox15、Mybl2、Lin28、Nanog、DPPA2、ESG1、Otx2のような因子、又は前記の組合せが含まれるが、ただしこれらに限定されない。実施例では、14因子のうちのわずか2因子を含むセットが被検細胞の再プログラム化に十分であった。このセットはOct-4及びSox2を含んでいた。他の潜在能力決定因子のOct-4及びSox2への添加は、しかしながら再プログラム化細胞の獲得効率を高めた。しかしながらc-Myc及びKlf4は潜在能力決定因子として必須ではない。好ましくは、潜在能力決定因子は転写因子でありえる。
【0010】
適切な体細胞はいずれの体細胞でもよいが、ただし、出発の体細胞が約24時間の倍増時間を有するときに、より高い再プログラム化頻度が観察される。本発明で有用な体細胞は、ヒトを含む霊長類の胎児、新生児又は成体から得られる非胚性細胞である。本明細書に記載の方法とともに用いることができる体細胞の例には、骨髄細胞、上皮細胞、線維芽細胞、造血細胞、肝細胞、腸細胞、間葉細胞、骨髄球様前駆細胞及び脾臓細胞が含まれるが、ただしこれらに限定されない。また別の体細胞タイプは、基層と結合するCD29+ CD44+ CD166+ CD105+ CD73+及びCD31-間葉細胞である。また別には、前記体細胞は、それ自体分裂し、他のタイプの細胞に分化することができる細胞であってもよい。前記には血液幹細胞、筋/骨幹細胞、脳幹細胞及び肝幹細胞が含まれる。多分化能性造血細胞(適切には骨髄球様前駆細胞又は間葉細胞)は、本発明の方法で使用するために適切なものとして特に意図される。
同様に、適切な体細胞は、潜在能力決定因子(当該因子をコードする遺伝物質を含む)の取込みに対して受容性を有するか、又は学術文献で一般的に知られている方法を用いて受容性にすることができる。取込みを強化する方法は、細胞タイプ及び発現系によって多様でありえる。適切な形質導入効率を有する受容性体細胞を調製するために用いられる例示的条件は当分野で公知であり、下記の実施例に記載される。潜在能力決定因子に対して細胞を受容性にするある方法は、エレクトロポレーション法と併せて下記に記載する。
【0011】
潜在能力決定因子は、前記潜在能力決定因子をコードするポリヌクレオチド配列が異種プロモータに機能的に連結されている再プログラミング配列として導入することができる(前記は、体細胞が再プログラム化された後で不活性になってもよい)。前記異種プロモータは、体細胞内で潜在能力決定因子をコードするポリヌクレオチド配列の発現を駆動することができる任意のプロモータ配列、例えばOct4プロモータである。
潜在能力決定因子の相対的な比率は再プログラム化効率を高めるために調節することができる。例えば、単一ベクターでOct-4及びSox2を1:1で連結することによって、潜在能力決定因子が別々の構築物及びベクターで細胞に提供された場合(この場合、単一細胞内へのそれぞれの潜在能力決定因子の取込み比率は制御できない)と比較したとき、細胞の再プログラム化効率は4倍増加した(
図9A-B)。潜在能力決定因子の比率は、使用される潜在能力決定因子セットに応じて異なりえるが、当業者は、潜在能力決定因子の最適比を本開示から容易に決定することができる。
多能性細胞は、多能性細胞の増殖を支援するために用いられる任意の培地で培養することができる。典型的な培地には、規定培地、例えばTeSRTM(StemCell Technologies, Inc, Vancouver, Canada)、mTeSRTM(StemCell Technologies, Inc.)及びStemLine(商標)無血清培地(Sigma, St. Louis, MO)とともに、条件付け培地、例えばマウス胎児線維芽細胞(MEF)条件付け培地が含まれるが、ただしこれらに限定されない。本明細書で用いられる、“規定培地”とは、もっぱら生化学的に規定された成分で構成される、生化学的に規定された処方物を指す。規定培地はまた、公知の化学的組成を有する成分のみを含むことができる。規定培地はさらに公知の供給源に由来する成分を含むことができる。本明細書で用いられる、“条件付け培地”とは、培地中で培養した細胞の可溶性因子がさらに補充された増殖培地を指す。また別に、細胞は培養液中のMEF上で維持してもよい。
【0012】
発明者らは、ES細胞で豊富な遺伝子のトランスクリプトームプロフィルを入手するために、遺伝子発現連続分析(SAGE)ライブラリーを用いた。特に、ES細胞で多能性及び自己再生を調節する潜在能力決定因子を認定するためにSAGEライブラリーを用いた。SAGEライブラリーは当業者には周知であり、公開されているか、又はメーカー(例えばAgencourt Bioscience Corp., Beverly, MA)によって特別に構築されえる。
また別の特徴では、本発明は、出生後の個体の細胞と遺伝的に実質同一である多能性細胞の濃縮集団を提供する。前記細胞は、出生後個体から単離した体細胞を再プログラム化することによって入手できる。いくつかの実施態様では、前記細胞集団は精製された集団であり、前記精製集団は、集団内の細胞の少なくとも60%、70%、80%、有利には95%を超える割合、及びその間の任意のかつ全ての完全な整数又は不完全な整数で表される割合を占める。再プログラム化細胞は正倍数性であり、多能性細胞に特徴的な細胞形態を示し、多能性細胞特異的マーカー、例えばOct-4、SSEA-3、SSEA-4、Tra-1-60、Tra-1-81又はその組合せを発現し、さらに免疫不全動物に導入したときテラトーマを形成する。
【0013】
さらに別の特徴は、体細胞を多能性細胞に再プログラム化するために十分な潜在能力決定因子を認定し使用するための方法及び組成物を提供する。本明細書に記載するように、再プログラム化された多能性細胞は、出生後個体から得られた体細胞の遺伝的全量を含み、さらに前記体細胞と遺伝的に実質同一である。概して、潜在能力決定因子を認定する方法は、1つ又は複数の推定的潜在能力決定因子をコードする遺伝物質を、前記遺伝物質の取込に受容性を有する体細胞に、前記導入した遺伝物質上にコードされている前記因子を十分なレベルで発現させるために有効な条件下で導入して、分化の度合いがより低く潜在能力がより高い状態へ前記細胞を再プログラム化する工程、及び前記遺伝物質の導入後の多能性細胞の集団を観察する工程を含む。前記多能性細胞は、細胞の形態学、多能性細胞特異的マーカー又はその両方を特徴とすることができる。有利には、多能性細胞は、細胞が多能性状態に再プログラム化されたときにのみ発現されるように細胞に提供されたマーカーの処置細胞における発現によって認定することができる。このアプローチを介して、下記実施例に記載するように、体細胞を多能性細胞に再プログラム化することができる潜在能力決定因子を認定することができる。
潜在能力決定因子をコードする遺伝物質は、ベクター(例えば組込みベクター又は非組込みベクター)を用いて、トランスフェクション又は形質導入によって体細胞に導入することができる。本明細書で特に重要なものはレトロウイルスベクターである。レトロウイルスベクター、特にレンチウイルスベクターは、細胞に接触させる前にビリオン中にベクターをパッケージすることによって形質導入される。導入後、潜在能力決定因子をコードするDNAセグメントは、染色体外(例えばエピソーム型プラスミドとして)に存在しても、又は安定的に細胞染色体に組み込まれてもよい。
【0014】
ウイルス系(viral-based)遺伝子移入及び発現ベクターは、大半の細胞(非分裂性細胞及びトランスフェクションが困難な細胞(初代細胞、血液細胞、幹細胞)を含む)への遺伝物質の効率的で旺盛なin vitro又はin vivoデリバリーを可能にする遺伝的構築物である。ゲノムDNAに組み込まれたウイルス系構築物は高い発現レベルをもたらす。対象の潜在能力決定因子をコードするDNAセグメントに加えて、ベクターは、前記DNAセグメントに対してそれぞれ上流及び下流に機能的に連結された転写プロモータ及びポリアデニル化シグナルを含む。ベクターは、ただ1つの潜在能力決定因子をコードするただ1つのDNAセグメント、又は複数の潜在能力決定因子コードDNAセグメントを含むことができる。複数のベクターを1個の体細胞に導入してもよい。ベクターは、ベクターを取り込み発現する細胞を確認するために、場合によって選別性マーカーをコードすることができる。例示として、ベクターが細胞に抗生物質耐性を付与する場合、抗生物質を培養液に添加して、細胞へのベクター導入の成功を確認することができる。組込みベクターを利用して、例示の場合のように概念を立証することができる。レトロウイルス(例えばレンチウイルス)ベクターは組み込みベクターである。しかしながら非組込みベクターもまた用いることができる。そのようなベクターは、記載のように再プログラム化後に希釈によって細胞から失われる。適切な非組込みベクターは、エプスタイン・バーウイルス(EBV)ベクターである(C. Ren et al. Acta Biochim Biophys 2005, Sin 37:68-73;及びC. Ren et al. Stem Cells 2006, 24:1338-1347、前記文献の各々は参照によりその全体が示されたかのように本明細書に含まれる)。
【0015】
本明細書に記載のベクターは、当分野で周知の技術を用いて構築及び操作して、治療におけるそれらの安全性を高め、さらに適切な発現エレメント及び治療遺伝子を付加することができる。本発明での使用に適した発現ベクターを構築するための標準的な技術は当業者に周知であり、例えば以下のような文献で見出すことができる:J. Sambrook et al. “Molecular cloning: a laboratory manual”(3rd ed. Cold Spring Harbor Press, Cold Spring Harbor, N.Y. 2001)(参照によりその全体が本明細書に含まれる)。
多能性細胞を識別及び濃縮する能力は、体細胞に非致死性マーカー、例えば緑色蛍光タンパク質(GFP)、強化緑色蛍光タンパク質(EGFP)又はルシフェラーゼを、前記体細胞が多能性状態に転換された後でのみ活性を示すプロモータの制御下で提供することによって促進することができる。選択性マーカー遺伝子を用い、前記マーカーを発現する再プログラム化細胞を可視化細胞選別技術(例えば蛍光性細胞分類技術)により識別する。また別には、再プログラム化細胞は選別性マーカーを用いないで作製してもよい。下記の実施例では、マーカーは、Oct-4発現を調節するプロモーターの下流で体細胞ゲノムに提供される。内因性Oct4プロモータは未分化の多能性ES細胞で活性を有する。Oct-4発現ES細胞の薬剤選別性集団は、骨髄球様分化に必要な培養期間の端から端までを生存しぬけなかった。しかしながらいくらかのOct-4発現は分化の初期段階で存続できるので、特徴的なES細胞形態を有するコロニーを選別することによって、さらにES細胞維持培養条件下でこれらの細胞を維持することによって、多能性細胞の集団を濃縮することは適切である。再プログラム化細胞培養中の全細胞が所望レベルの潜在能力を有することは意図されない。細胞分類技術の非効率性、遺伝子発現及び他の生物学的作用のレベルの変動がある場合には、濃縮集団中のいくつかの細胞は多能性でない可能性がある。しかしながら、実際的レベルでは、体細胞から誘導された再プログラム化細胞集団は、多能性細胞が濃縮されている。
【0016】
非致死性マーカーは、その後続いて当技術分野で周知の多様な技術のいずれか(例えばCre仲介位置特異的遺伝子除去)を用いて除去できるように構築することができる。例えば、多能性細胞集団を入手した後でマーカー遺伝子を除去し、前記細胞を用いて実施される実験又はプロセスにおけるマーカー遺伝子の生成物による干渉を回避することを所望することができる。誘導削除は、マーカー遺伝子近くにその容易な削除を可能にする構造を提供することによって達成することができる。すなわち、Cre/Lox遺伝的エレメントを用いることができる。Lox部位は細胞内に構築することができる。多能性細胞からマーカーを除去することが所望される場合、Cre因子を細胞に添加することができる。他の同様な系もまた用いることができる。Cre/Lox除去は、望ましくない染色体再編成を導入し、除去後に残留する遺伝物質を残すことがあるので、発明者らは、潜在能力決定因子を非組込み型エピソームベクターにより体細胞に導入し、その後で、再プログラム化工程中にベクターを維持するために用いられた薬剤選別を撤回することによりエピソームベクターが、例えば約5%/世代の割合で失われた細胞を入手することが望ましいことを認識している。
以下の実施例は、体細胞を多能性細胞に転換する潜在能力決定遺伝子又は因子を認定する方法のさらに別の非限定的例示として提供される。いくつかの実施例では、ヒトH1 Oct4ノックインES細胞を間質細胞共培養で分化させ、再プログラム化することができる体細胞としての使用に適した細胞を得た。これらの細胞は、体細胞再プログラム化方法で使用するために出生後の個体から単離される細胞のモデルである。
【0017】
本方法を他の分化細胞タイプを用いて繰り返した。ある細胞タイプはヒト胎児肺線維芽細胞、IMR-90であった(以下を参照されたい:W. Nichols et al. Science 1977, 196:60-63(前記文献はその全体が参照により本明細書に含まれる))。IMR-90細胞は、ENCODE協会によって徹底的に性状が調べられ、アメリカ菌培養収集所(ATCC; Manassas, VA; Catalog No. CCL-186)から容易に入手することができ、再プログラム化クローンの起源を別個に確認することを可能にするフィンガープリントが公表されている。さらにまた、これらの細胞は、イーグル最少必須培地-10%FBSで老衰期に入る前に20継代を超える期間激しく増殖するが、ヒトES細胞培養条件下ではゆっくりと増殖し、この相違は、再プログラム化クローンに増殖に関する利点を提供し、形態学的基準のみによるそれらの選別を容易にする。本方法で用いられた他の分化細胞タイプは、ヒト出生後包皮線維芽細胞(ATCC; Catalog No. CRL-2097)及びヒト成人皮膚細胞(ATCC; Catalog No. CRL-2106)であった。
細胞は、下記に記載するように、ウイルス発現系による形質導入に対して受容性にした。前記体細胞に、多能性細胞に再プログラム化することができるように、多能性と密接に関与していると考えられる潜在能力決定因子をコードするポリヌクレオチドを形質導入した。形質導入ベクターで提供された14の潜在能力決定因子の全てが体細胞に取り込まれ、発現されたか否かはまだ決定されていない。14の潜在能力決定因子セット及び体細胞の再プログラム化に十分な14因子のうちの少なくとも2つのサブセットを認定することによって、発明者らは、同様に体細胞を再プログラム化することができる潜在能力決定因子の1つ以上の特異的なサブセットを認定する能力を当業者に提供し、それによって、そのような潜在能力決定因子の他のサブセットの認定を容易にする。したがって、下記に記載する本方法は、体細胞の多能性細胞への再プログラム化に必要な潜在能力決定因子の認定を促進する。
【0018】
体細胞を再プログラム化するために十分な潜在能力決定因子セットは、体細胞の細胞タイプに応じて変動しえることは特に想定される。14の潜在能力決定因子セットへの暴露は、表示の体細胞の培養で多能性状態への転換をもたらした。下記に示すように、潜在能力決定因子の種々の組合せ(他の潜在能力決定因子と同様に前記14の潜在能力決定因子のいくつかまたは全てを含むことができる)を用い、下記に記載の方法を繰り返すことによって、他の細胞タイプを再プログラム化するために十分な潜在能力決定因子セットを認定することができる。結果として、以前に存在していた分化した体細胞と遺伝的に実質同一の多能性細胞株/集団を作製することができる。
実施例
以下の実施例では、分化細胞は種々の潜在能力決定因子をコードするベクターを受容した。これら細胞のいくつかは、統制管理されているOct4プロモータ(前記は多能性細胞でのみ活性を有する)の下流に配置されたEGFPコードマーカー遺伝子をそのゲノム内に含んでいた。この有用なツールの作製はYuら(上掲書)が記載しており、前記文献は、ヒトES細胞との細胞対細胞融合により分化細胞は多能性になることができることを示した。
【実施例0019】
レンチウイルスベクターのパッケージングと作製
トランスジーン発現レンチウイルスベクターは293FT細胞株(Invitrogen)で生成した。293Tは、形質転換293胎児腎細胞に由来する、増殖が速くトランスフェクション性が高いクローン変種である。前記は、より高いウイルス力価に寄与する高レベルのパッケージングタンパク質の発現のために大量のT抗原を含む。日常的な維持管理及び発現のために、これら細胞は、293FT培養液(DMEM/10%FBS、2mM L-グルタミン及び0.1mM MEM非必須アミノ酸)で500μg/mLのゲネチシンの存在下で培養した。パッケージングのために、293FT細胞をトリプシン処理によって採集した。遠心によりトリプシンを除去した後、これらの細胞を、ゲネチシンを含まない293FT培養液にてT75フラスコに分注した(15x10
6細胞/フラスコ及び6フラスコ/構築物)。
細胞の分注直後に、スーパーフェクト(Superfect(商標))トランスフェクション試薬(Qiagen)を用いて、レンチウイルスと2つのヘルパープラスミドの同時トランスフェクションを実施した(レンチウイルスベクター:MD.G:pCMVdeltaR8.9:Superfect(商標)=1フラスコ当り5μg:5μg:10μg:400μLのイスコフ(Iscove)改変ダルベッコー培地(IMDM)(1X)中に40μLで、室温にて10分インキュベーション)。次の日、トランスフェクション混合物を含む培養液を、1mMのピルビン酸ナトリウムを補充した新しい293FT培養液で置き換えた(8mL/フラスコ)。形質導入後約48から72時間でレンチウイルス含有上清を採集した(~48mL/構築物)。4℃にて15分3000rpm(1750g)で遠心して、上清から293FT細胞屑を除去した。レンチウイルスを濃縮するために、0.4μMの酢酸セルロース(CA)メンブレン(Cornington, 115mL低タンパク質結合)で上清をろ過し、70mLの滅菌ビン(Beckman, Cat#355622、45Tiローター専用ポリカーボネート)で、4℃にて2.5時間33,000rpm(50,000g)で超遠心した。残留する一切の細胞屑と一緒にレンチウイルスは目に見えるペレットを遠心チューブの底に形成した。上清を除去した後、PBS(各構築物につき~300μL)を添加し、4℃にて8から14時間、又は室温にて2時間遠心チューブを揺らすことによりペレットを再懸濁した。残留する細胞屑を5000rpm(2700g)で5分遠心して除去し、再懸濁レンチウイルスを小分けして-80℃で保存した。得られた力価は、濃縮後の1mL当りおおむね10
7から10
8ウイルス粒子(vp)の範囲であった。Stella(配列番号:1)を保持するレンチウイルスの配列(pSIN4-EF2-Stella-puro;配列番号:6、3604から4083のStellaの配列を含む)は、配列リストで提供される。同じ配列を他の全ての潜在能力決定因子(例えば配列番号2-5)のために用いたが、ただしStella(配列番号:1)の配列は別の潜在能力決定因子の配列と置き換えた。
骨髄球様細胞に潜在能力決定因子を効率的に導入するために、発明者らは前記レンチウイルス発現系を改変した(
図4A)。発明者らは、最初のレンチウイルス構築物のサイズ(>11kb)を、連続欠失分析により5'及び3'LTRに隣接する配列を除去することによって短縮した。これらの改変は、パッケージング効率におけるマイナスの作用を最小限にした。
日常的に得られた力価は、上清1mLにつき10
5から10
6vp、濃縮(超遠心による)後は10
7から10
8ウイルスvp/mLの範囲であった。個々のトランスジーンのコード領域の簡便な交換のために、骨格内に制限部位を導入した。
エレクトロポレーションのために、コラゲナーゼIV(1mg/mL、Invitrogen)を37℃で7分用いて細胞を採集し、培養液で洗浄し、0.5mLの培養液に再懸濁した(1.5-3.0x10
7細胞)。エレクトロポレーション用細胞を調製するために、40mgの直鎖化した誘導ベクターDNAを含むリン酸緩衝食塩水(PBS、Invitrogen)に細胞を添加した。続いて、バイオラド社(BioRad)のジーンパルサー(Gene Pulser(商標))IIを用い、室温で320V、200μFの1回パルスに細胞を暴露した(0.4cmギャップキュベット)。細胞を室温で10分インキュベートし、Matrigel(商標)上に高密度で播種した。G418選別(50mg/mL、Invitrogen)をエレクトロポレーションの48時間後に開始した。1週間後に、G418濃度を2倍にした。三週間後に、NEOカセット特異的プライマー及び3'相同領域の直ぐ下流のPOU5F1遺伝子に特異的なプライマーをそれぞれ用いて、生存コロニーを個々にPCRによって解析した。PCR陽性コロニーは、BamHI消化DNA及び誘導構築物の外側のプローブを用いてサザンブロット分析によって再度スクリーニングした。
H1 Oct4ノックインES細胞株は、二元性内部リボソームエントリー部位(IRES)を用いて、内部Oct4プロモータ/調節領域からEGFP及びネオマイシンホスホトランスフェラーゼ(neo)の両者を発現した(
図3)。H1 Oct4ノックインES細胞でのEGFP及びneoの発現は、活性を有する内因性Oct4プロモータ/調節領域のインジケーターであった。
H1 Oct4ノックインES細胞は、加熱不活化処理を施されていない規定ウシ胎児血清(FBS、HyClone Laboratories, Logan, UT)(20%)を補充したDMEM培養液(Invitrogen)(10mL/プレート)から成る、ゼラチン被覆10cmプラスチックプレート(BD Biosciences)上で維持したマウスOP9骨髄間質細胞との共培養により維持した(
図2A)。OP9培養は4日毎に1:7の割合で分割した。ヒトES細胞分化で使用するために、OP9細胞が4日目にコンフルエントになった後、培養液の半分を交換し、細胞をさらに4日間培養した。
再プログラム化のために、H1 Oct4ノックインES細胞を付着細胞に分化させた(すなわちCD29
+ CD44
+ CD166
+ CD105
+ CD73
+及びCD31
-)。略記すれば、ヒトH1 Oct4ノックインES細胞(p76から110)を、10%FBS(HyClone Laboratories)及び100μMモノチオグリセロール(MTG、Sigma, St. Louis, MO)補充DMEM培養液20mL中にあるOP9単層培養(1.5x10
6/10cmプレート)に添加した。ヒトES/OP9細胞の共培養を9日間、4、6及び8日目に培養液の半分を交換しながらインキュベートした。インキュベーション後に、37℃で20分のコラゲナーゼIV処理(DMEM培養液(Invitrogen)中に1mg/mL)、続いて37℃で15分のトリプシン処理(0.05%トリプシン/0.5mM EDTA(Invitrogen))によって前記共培養を個々の細胞に分散させた。細胞を培養液で2回洗浄し、10%FBS、100μMのMTG及び100ng/mLのGM-CSF(Leukine、Berlex Laboratories Inc., Richmond, CA)を補充したDMEM培養液に2x10
6/mLで再懸濁させた。細胞をさらに、ポリ(2-ヒドロキシエチルメタクリレート)(pHEMA、Sigma)で被覆したフラスコで、3日毎に培養液の半分を交換しながら10日間培養した。粘着防止pHEMA培養の間、処置が施されてなければ粘着していたはずの細胞は浮遊凝集塊を形成し、一方、対象の細胞は個々の細胞として懸濁状態で増殖した。大きな細胞凝集塊を100μMの細胞ろ過器(BD Biosciences)でろ過することにより除去し、一方、小さな凝集塊及び死細胞は25%のPercoll(商標)(Sigma)による遠心によって除去した。細胞ペレットから回収した分化細胞はCD33、MPO、CD11b及びCD11c分子を発現した(前記は骨髄の骨髄球様細胞の特徴である)(
図2B)。発明者らは、1x10
6のH1 ES細胞(ヒトH1 Oct4ノックインES細胞)から6-10x10
6の分化細胞を日常的に作製している。Yuらの論文(Science, 2007, 318:1917-1920)もまた参照されたい(前記はワールドワイドウェブの科学ウェブサイトで入手できる補充物質を含む)(前記文献は参照により本明細書に含まれる)。
細胞は、体細胞を前記因子に暴露する前及び後で細胞分類の方法を用いて分析した。粘着細胞はトリプシン処理(トリプシン/0.5mM EDTA、Invitrogen)で個々に分離し、2%パラホルムアルデヒドで20分室温にて固定した。細胞を40μmのメッシュでろ過し、FACS緩衝液(2%のFBS及び0.1%のアジ化ナトリウムを含むPBS)に再懸濁した。懸濁状態で増殖させた細胞は、1mMのEDTA及び1%の正常マウス血清(Sigma)を補充したFACS緩衝液中で染色した。Fix & Perm(商標)試薬(Caltag Laboratories, Burlingame, CA)を用いて、細胞内のミエロペルオキシダーゼ(MPO)染色を実施した。5x105細胞を含む、約100μLの細胞懸濁液を各標識で用いた。一次抗体及び二次抗体の両インキュベーション(適用される場合)は室温で30分実施した。コントロールサンプルはアイソタイプ適合コントロール抗体を用いて染色した。洗浄後、細胞を300-500μLのFACS緩衝液に再懸濁し、FACSCaliburフローサイトメーター(BDIS, San Jose, CA)で、CellQuestTM捕捉分析ソフト(BDIS)を用いて解析した。合計20,000事象を捕捉した。フローサイトメトリーで使用した全抗体を表1に挙げた。最終データ及びグラフは、FlowJoソフト(Tree Star, Inc., Ashland, OR)を用いて解析及び作成された。