IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 森村SOFCテクノロジー株式会社の特許一覧

<>
  • 特開-電気化学反応モジュール 図1
  • 特開-電気化学反応モジュール 図2
  • 特開-電気化学反応モジュール 図3
  • 特開-電気化学反応モジュール 図4
  • 特開-電気化学反応モジュール 図5
  • 特開-電気化学反応モジュール 図6
  • 特開-電気化学反応モジュール 図7
  • 特開-電気化学反応モジュール 図8
  • 特開-電気化学反応モジュール 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024038678
(43)【公開日】2024-03-21
(54)【発明の名称】電気化学反応モジュール
(51)【国際特許分類】
   H01M 8/2483 20160101AFI20240313BHJP
   H01M 8/12 20160101ALI20240313BHJP
   H01M 8/0228 20160101ALN20240313BHJP
   H01M 8/021 20160101ALN20240313BHJP
【FI】
H01M8/2483
H01M8/12 101
H01M8/12 102A
H01M8/0228
H01M8/021
【審査請求】有
【請求項の数】5
【出願形態】OL
(21)【出願番号】P 2022142884
(22)【出願日】2022-09-08
(71)【出願人】
【識別番号】519322392
【氏名又は名称】森村SOFCテクノロジー株式会社
(74)【代理人】
【識別番号】110001911
【氏名又は名称】弁理士法人アルファ国際特許事務所
(72)【発明者】
【氏名】柿沼 保夫
(72)【発明者】
【氏名】島津 めぐみ
【テーマコード(参考)】
5H126
【Fターム(参考)】
5H126AA23
5H126BB06
5H126DD05
5H126EE11
5H126GG02
5H126JJ05
(57)【要約】
【課題】排出マニホールドから排出されたガスが供給される後段装置において、該ガスに対象元素が含まれることに起因する不具合の発生を抑制する。
【解決手段】電気化学反応モジュールは、それぞれ固体酸化物からなる電解質層と電解質層を挟んで互いに対向する空気極および燃料極とを含む複数の単セルと、少なくとも1つのマニホールド画定部材と、流路画定部材とを備える。少なくとも1つのマニホールド画定部材は、各単セルの空気極と燃料極との一方である特定電極に面する各セル側ガス流路を通過したガスが流れる排出マニホールドを画定する第1表面を有するマニホールド画定部材を含む。流路画定部材は、MnとFeとの少なくとも一方である対象元素を含有し、排出マニホールドに対して上流側に位置する上流側ガス流路を画定する表面を有する。マニホールド画定部材の第1表面に、対象元素と化合物を形成する特定元素を含む特定化合物が存在する。
【選択図】図8
【特許請求の範囲】
【請求項1】
固体酸化物からなる電解質層と、前記電解質層を挟んで互いに対向する空気極および燃料極と、をそれぞれ含み、所定の方向に並べて配置された複数の電気化学反応単セルと、
少なくとも1つのマニホールド画定部材であって、各前記電気化学反応単セルの前記空気極と前記燃料極との一方である特定電極に面する各セル側ガス流路を通過したガスが流れる排出マニホールドを画定する第1表面を有するマニホールド画定部材を含む、少なくとも1つのマニホールド画定部材と、
MnとFeとの少なくとも一方である対象元素を含有し、前記排出マニホールドに対して上流側に位置する上流側ガス流路を画定する表面を有する流路画定部材と、
を備える電気化学反応モジュールにおいて、
前記マニホールド画定部材の前記第1表面に、前記対象元素と化合物を形成する特定元素を含む特定化合物が存在する、
ことを特徴とする電気化学反応モジュール。
【請求項2】
請求項1に記載の電気化学反応モジュールにおいて、
前記第1表面を有する前記マニホールド画定部材は、
金属部と、
前記金属部の表面を覆うコート層と、
を有し、
前記第1表面である前記コート層の表面に、前記特定化合物が離散的に形成されている、
ことを特徴とする電気化学反応モジュール。
【請求項3】
請求項2に記載の電気化学反応モジュールにおいて、
前記金属部は、前記特定元素を含有する、
ことを特徴とする電気化学反応モジュール。
【請求項4】
請求項2または請求項3に記載の電気化学反応モジュールにおいて、
前記コート層の表面における前記特定元素の含有割合は、前記金属部における前記特定元素の含有割合よりも大きい、
ことを特徴とする電気化学反応モジュール。
【請求項5】
請求項1から請求項3までのいずれか一項に記載の電気化学反応モジュールにおいて、
前記少なくとも1つのマニホールド画定部材は、各前記電気化学反応単セルの前記セル側ガス流路にガスを供給する供給マニホールドを画定する第2表面を有するマニホールド画定部材を含み、
前記マニホールド画定部材の前記第2表面に、前記特定化合物が存在する、
ことを特徴とする電気化学反応モジュール。
【発明の詳細な説明】
【技術分野】
【0001】
本明細書によって開示される技術は、電気化学反応モジュールに関する。
【背景技術】
【0002】
水素と酸素との電気化学反応を利用して発電を行う燃料電池の種類の1つとして、固体酸化物形燃料電池(以下、「SOFC」という。)が知られている。SOFCは、一般に、複数の単セルが所定の方向に並べられた燃料電池スタックを含む燃料電池モジュールの形態で利用される。
【0003】
燃料電池スタックには、ガスを排出する排出マニホールドが形成されている。より具体的には、燃料電池スタックには、各単セルの空気極に面するセル側ガス流路を通過したガスが流れる酸化剤ガス排出マニホールドと、各単セルの燃料極に面するセル側ガス流路を通過したガスが流れる燃料ガス排出マニホールドと、の少なくとも一方が形成されている(例えば、特許文献1参照)。排出マニホールドから排出されたガスは、後段装置(例えば、燃焼器、他の燃料電池スタック、該排出マニホールドが形成された当該燃料電池スタック)に供給されることがある。
【0004】
また、燃料電池モジュールには、上記排出マニホールドに対して上流側に位置する上流側ガス流路が形成されている。上流側ガス流路の少なくとも一部は、流路画定部材の表面により画定される。流路画定部材は、MnとFeとの少なくとも一方である対象元素を含有する材料により形成されることがある。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2021-22560号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
流路画定部材が上記対象元素(Mnおよび/またはFe)を含有する材料により形成された構成において、運転時等において燃料電池モジュールが高温(例えば、600℃以上)になると、流路画定部材に含有される対象元素が上流側ガス流路を流れるガス中に飛散する。上流側ガス流路を流れるガスは、排出マニホールドを介して燃料電池スタックから排出された後、上述した後段装置に供給される。そのため、後段装置に供給されるガスに対象元素が含まれることとなり、後段装置において、対象元素が酸化物(例えば、MnやFe)として析出することに起因する不具合(例えば、燃焼器における燃焼ノズルの詰まり、他の燃料電池スタックや当該燃料電池スタックにおける電解質層のクラック)が発生するおそれがある。
【0007】
なお、このような課題は、水の電気分解反応を利用して水素の生成を行う固体酸化物形電解セル(以下、「SOEC」という。)の構成単位である電解単セルが複数並べられた電解セルスタックを含む電解セルモジュールにも共通の課題である。なお、本明細書では、燃料電池単セルと電解単セルとをまとめて電気化学反応単セルといい、燃料電池スタックと電解セルスタックとをまとめて電気化学反応セルスタックといい、燃料電池モジュールと電解セルモジュールとをまとめて電気化学反応モジュールという。
【0008】
本明細書では、上述した課題を解決することが可能な技術を開示する。
【課題を解決するための手段】
【0009】
本明細書に開示される技術は、例えば、以下の形態として実現することが可能である。
【0010】
(1)本明細書に開示される電気化学反応モジュールは、複数の電気化学反応単セルと、少なくとも1つのマニホールド画定部材と、流路画定部材とを備える。複数の電気化学反応単セルは、それぞれ、固体酸化物からなる電解質層と、前記電解質層を挟んで互いに対向する空気極および燃料極とを含み、所定の方向に並べて配置されている。少なくとも1つのマニホールド画定部材は、各前記電気化学反応単セルの前記空気極と前記燃料極との一方である特定電極に面する各セル側ガス流路を通過したガスが流れる排出マニホールドを画定する第1表面を有するマニホールド画定部材を含む。流路画定部材は、MnとFeとの少なくとも一方である対象元素を含有し、前記排出マニホールドに対して上流側に位置する上流側ガス流路を画定する表面を有する。前記マニホールド画定部材の前記第1表面に、前記対象元素と化合物を形成する特定元素を含む特定化合物が存在する。
【0011】
本電気化学反応モジュールでは、排出マニホールドを画定する第1表面を有するマニホールド画定部材における該第1表面に、MnとFeとの少なくとも一方である対象元素と化合物を形成する特定元素を含む特定化合物が存在する。そのため、運転時等において電気化学反応モジュールが高温にされた際に流路画定部材に含まれる対象元素が上流側ガス流路に飛散しても、上流側ガス流路に対して下流側に位置する排出マニホールドにおいて、特定化合物に含まれる特定元素によって対象元素を捕捉することができる。そのため、排出マニホールドから排出されたガスが供給される後段装置において、該ガスに対象元素が含まれることに起因する不具合の発生を抑制することができる。
【0012】
(2)上記電気化学反応モジュールにおいて、前記第1表面を有する前記マニホールド画定部材は、金属部と、前記金属部の表面を覆うコート層と、を有し、前記第1表面である前記コート層の表面に、前記特定化合物が離散的に形成されている構成としてもよい。本構成を採用すれば、特定化合物に含まれる特定元素によって対象元素が捕捉される反応の際の体積膨張・収縮に起因する応力を分散させることができ、その結果、コート層におけるクラックの発生を抑制することができる。
【0013】
(3)上記電気化学反応モジュールにおいて、前記金属部は、前記特定元素を含有する構成としてもよい。本構成を採用すれば、マニホールド画定部材において、金属部からコート層の表面に特定元素を継続的に供給することができ、コート層の表面に存在する特定化合物による対象元素の捕捉機能を継続的に維持することができる。
【0014】
(4)上記電気化学反応モジュールにおいて、前記コート層の表面における前記特定元素の含有割合は、前記金属部における前記特定元素の含有割合よりも大きい構成としてもよい。本構成を採用すれば、コート層の表面において、特定元素により対象元素を効果的に捕捉することができる。
【0015】
(5)上記電気化学反応モジュールにおいて、前記少なくとも1つのマニホールド画定部材は、各前記電気化学反応単セルの前記セル側ガス流路にガスを供給する供給マニホールドを画定する第2表面を有するマニホールド画定部材を含み、前記マニホールド画定部材の前記第2表面に、前記特定化合物が存在する構成としてもよい。本構成を採用すれば、供給マニホールドを通って各電気化学反応単セルのセル側ガス流路に供給されるガス中の対象元素を、第2表面に存在する特定化合物によって捕捉することができ、セル側ガス流路に対象元素が飛散することに起因する不具合(例えば、電解質層のクラック等)の発生を抑制することができる。
【0016】
なお、本明細書に開示される技術は、種々の形態で実現することが可能であり、例えば、電気化学反応モジュール(燃料電池モジュールまたは電解セルモジュール)やその製造方法等の形態で実現することが可能である。
【図面の簡単な説明】
【0017】
図1】本実施形態における燃料電池モジュール10の構成を模式的に示す説明図
図2】本実施形態における燃料電池スタック100の外観構成を示す斜視図
図3図2のIII-IIIの位置における燃料電池スタック100のXZ断面構成を示す説明図
図4図2のIV-IVの位置における燃料電池スタック100のXZ断面構成を示す説明図
図5図2のV-Vの位置における燃料電池スタック100のYZ断面構成を示す説明図
図6図3に示す断面と同一の位置における互いに隣接する2つの発電単位102のXZ断面構成を示す説明図
図7図4に示す断面と同一の位置における互いに隣接する2つの発電単位102のXZ断面構成を示す説明図
図8】燃料極側フレーム140の詳細構成を示す説明図
図9】燃料極側フレーム140の詳細構成を示す説明図
【発明を実施するための形態】
【0018】
A.実施形態:
A-1.燃料電池モジュール10の構成:
図1は、本実施形態における燃料電池モジュール10の構成を模式的に示す説明図である。燃料電池モジュール10は、燃料電池スタック100と、その他の装置(後述する改質・加熱器330等)とを備える。以下では、まず燃料電池スタック100の構成について説明し、その後、燃料電池モジュール10を構成する他の装置の構成について説明する。燃料電池モジュール10は特許請求の範囲における電気化学反応モジュールの一例である。
【0019】
A-2.燃料電池スタック100の構成:
図2は、本実施形態における燃料電池スタック100の外観構成を示す斜視図である。また、図3は、図2のIII-IIIの位置における燃料電池スタック100のXZ断面構成を示す説明図であり、図4は、図2のIV-IVの位置における燃料電池スタック100のXZ断面構成を示す説明図である。図5は、図2のV-Vの位置における燃料電池スタック100のYZ断面構成を示す説明図である。各図には、方向を特定するための互いに直交するXYZ軸が示されている(他の図においても同様)。本明細書では、便宜的に、Z軸正方向を上方向と呼び、Z軸負方向を下方向と呼ぶものとするが、燃料電池スタック100は実際にはそのような向きとは異なる向きで設置されてもよい。
【0020】
図2から図5に示すように、燃料電池スタック100は、複数の(本実施形態では7つの)燃料電池発電単位(以下、単に「発電単位」という。)102と、下端用セパレータ189と、一対のエンドプレート104,106とを備える。7つの発電単位102は、所定の配列方向(本実施形態では上下方向)に並べて配置されている。一対のエンドプレート104,106のうちの一方(以下、「上側エンドプレート104」という。)は、7つの発電単位102から構成される発電ブロック103の上側に配置されており、一対のエンドプレート104,106のうちの他方(以下、「下側エンドプレート106」という。)は、発電ブロック103の下側に配置された下端用セパレータ189の下側に配置されている。一対のエンドプレート104,106は、発電ブロック103および下端用セパレータ189を上下から挟むように配置されている。
【0021】
図2および図5に示すように、燃料電池スタック100を構成する各層(上側エンドプレート104、各発電単位102、下端用セパレータ189)のZ軸方向回りの外周の4つの角部付近には、各層を上下方向に貫通する孔が形成されており、下側エンドプレート106のZ軸方向回りの外周の4つの角部付近における上側の表面には、ネジ孔が形成されている。これらの各層に形成され互いに対応する孔同士が上下方向に連通して、上下方向に延びるボルト孔109を構成している。以下の説明では、ボルト孔109を構成するために燃料電池スタック100の各層に形成された孔も、ボルト孔109と呼ぶ場合がある。
【0022】
各ボルト孔109にはボルト22が挿入されている。各ボルト22の下端部は下側エンドプレート106に形成されたネジ孔に螺号しており、各ボルト22の上端部にはナット24が嵌められている。ナット24の下側の表面は、絶縁シート26を介してエンドプレート104の上側の表面に当接している。このような構成のボルト22およびナット24により、燃料電池スタック100の各層が一体に締結されている。なお、絶縁シート26は、例えばマイカシートや、セラミック繊維シート、セラミック圧粉シート、ガラスシート、ガラスセラミック複合剤等により構成される。
【0023】
また、図2から図4に示すように、燃料電池スタック100を構成する各層(各発電単位102、下端用セパレータ189、下側エンドプレート106)のZ軸方向回りの周縁部には、各層を上下方向に貫通する4つの孔が形成されており、各層に形成され互いに対応する孔同士が上下方向に連通して、最上部の発電単位102から下側エンドプレート106にわたって上下方向に延びる連通孔108を構成している。以下の説明では、連通孔108を構成するために燃料電池スタック100の各層に形成された孔も、連通孔108と呼ぶ場合がある。
【0024】
図2および図3に示すように、1つの連通孔108は、燃料電池スタック100の外部から酸化剤ガスOGが導入され、その酸化剤ガスOGを各発電単位102の後述する空気室166に供給するガス流路である空気極側供給マニホールド161として機能し、他の1つの連通孔108は、各発電単位102の空気室166から排出されたガスである酸化剤オフガスOOGを燃料電池スタック100の外部へ排出するガス流路である空気極側排出マニホールド162として機能する。酸化剤ガスOGとしては、例えば空気が使用される。空気極側供給マニホールド161は、特許請求の範囲における供給マニホールドの一例であり、空気極側排出マニホールド162は、特許請求の範囲における排出マニホールドの一例である。
【0025】
また、図2および図4に示すように、他の1つの連通孔108は、燃料電池スタック100の外部から燃料ガスFGが導入され、その燃料ガスFGを各発電単位102の後述する燃料室176に供給するガス流路である燃料極側供給マニホールド171として機能し、他の1つの連通孔108は、各発電単位102の燃料室176から排出されたガスである燃料オフガスFOGを燃料電池スタック100の外部へ排出するガス流路である燃料極側排出マニホールド172として機能する。燃料ガスFGとしては、例えば都市ガスを改質した水素リッチなガスが使用される。燃料極側供給マニホールド171は、特許請求の範囲における供給マニホールドの一例であり、燃料極側排出マニホールド172は、特許請求の範囲における排出マニホールドの一例である。
【0026】
なお、本明細書において、各マニホールド161,162,171,172の少なくとも一部を画定する表面を有する部材を、マニホールド画定部材という。本実施形態では、マニホールド画定部材は、下側エンドプレート106、下端用セパレータ189、および、発電単位102を構成する各部材(後述する単セル用セパレータ120、空気極側フレーム130、燃料極側フレーム140、インターコネクタ用セパレータ180)である。
【0027】
燃料電池スタック100には、4つのガス通路部材27が設けられている。各ガス通路部材27は、中空筒状の本体部28と、本体部28の側面から分岐した中空筒状の分岐部29とを有している。分岐部29の孔は本体部28の孔と連通している。各ガス通路部材27の分岐部29には、ガス配管(図示せず)が接続される。図3に示すように、空気極側供給マニホールド161の位置に配置されたガス通路部材27の本体部28の孔は、空気極側供給マニホールド161に連通しており、空気極側排出マニホールド162の位置に配置されたガス通路部材27の本体部28の孔は、空気極側排出マニホールド162に連通している。また、図4に示すように、燃料極側供給マニホールド171の位置に配置されたガス通路部材27の本体部28の孔は、燃料極側供給マニホールド171に連通しており、燃料極側排出マニホールド172の位置に配置されたガス通路部材27の本体部28の孔は、燃料極側排出マニホールド172に連通している。なお、各ガス通路部材27と下側エンドプレート106の表面との間には、絶縁シート26が介在している。
【0028】
(エンドプレート104,106の構成)
図2から図5に示すように、一対のエンドプレート104,106は、Z軸方向視での外形が略矩形の平板状の部材であり、例えばステンレス等の導電材料により形成されている。一対のエンドプレート104,106の中央付近には、Z軸方向に貫通する孔32,34が形成されている。Z軸方向視で、一対のエンドプレート104,106のそれぞれに形成された孔32,34の輪郭線は、後述する各単セル110を内包している。そのため、各ボルト22およびナット24による締結によって生じるZ軸方向の圧縮力は、主として各発電単位102の周縁部(後述する各単セル110より外周側の部分)に作用する。また、本実施形態では、上側エンドプレート104は、燃料電池スタック100のプラス側の出力端子として機能し、下側エンドプレート106は、燃料電池スタック100のマイナス側の出力端子として機能する。
【0029】
(下端用セパレータ189の構成)
図3から図5に示すように、下端用セパレータ189は、Z軸方向視での外形が略矩形の平板状の部材であり、例えば金属により形成されている。下端用セパレータ189の周縁部は、発電ブロック103と下側エンドプレート106との間に挟み込まれた状態で、下側エンドプレート106と例えば溶接により接合されており、下側エンドプレート106と電気的に接続されている。
【0030】
(発電単位102の構成)
図6は、図3に示す断面と同一の位置における互いに隣接する2つの発電単位102のXZ断面構成を示す説明図であり、図7は、図4に示す断面と同一の位置における互いに隣接する2つの発電単位102のXZ断面構成を示す説明図である。
【0031】
図6および図7に示すように、発電単位102は、燃料電池単セル(以下、「単セル」という。)110と、単セル用セパレータ120と、発電単位102の最上層および最下層を構成する一対のインターコネクタ190と、インターコネクタ用セパレータ180と、空気極側フレーム130と、燃料極側フレーム140と、燃料極側集電部144と、を備えている。単セル用セパレータ120、空気極側フレーム130、燃料極側フレーム140、インターコネクタ用セパレータ180におけるZ軸方向回りの周縁部には、各マニホールド161,162,171,172として機能する各連通孔108を構成する孔と、各ボルト孔109を構成する孔とが形成されている。
【0032】
単セル110は、電解質層112と、電解質層112を挟んでZ軸方向に互いに対向する空気極114および燃料極116と、電解質層112と空気極114との間に配置された中間層118とを備える。なお、本実施形態の単セル110は、燃料極116で単セル110を構成する他の層(電解質層112、空気極114、中間層118)を支持する燃料極支持形の単セルである。単セル110は、特許請求の範囲における電気化学反応単セルの一例である。
【0033】
電解質層112は、Z軸方向視で略矩形の平板形状部材であり、固体酸化物(例えば、YSZ(イットリア安定化ジルコニア)等の安定化ジルコニア)を含むように構成されている。すなわち、本実施形態の単セル110は、電解質として固体酸化物を用いる固体酸化物形燃料電池(SOFC)である。空気極114は、Z軸方向視で電解質層112より小さい略矩形の平板形状部材であり、例えばペロブスカイト型酸化物(例えば、LSCF(ランタンストロンチウムコバルト鉄酸化物))を含むように構成されている。燃料極116は、Z軸方向視で電解質層112と略同じ大きさの略矩形の平板形状部材であり、例えば、Ni(ニッケル)、Niとセラミック粒子からなるサーメット、Ni基合金等により形成されている。中間層118は、Z軸方向視で空気極114と略同じ大きさの略矩形の平板形状部材であり、例えばGDC(ガドリニウムドープセリア)とYSZとを含むように構成されている。中間層118は、空気極114から拡散した元素(例えば、Sr)が電解質層112に含まれる元素(例えば、Zr)と反応して高抵抗な物質(例えば、SrZrO)が生成されることを抑制する機能を有する。
【0034】
単セル用セパレータ120は、中央付近に上下方向に貫通する略矩形の貫通孔121が形成されたフレーム状の部材であり、例えば、金属により形成されている。単セル用セパレータ120における貫通孔121を取り囲む部分(以下、「貫通孔周囲部」という。)は、単セル110(電解質層112)の周縁部における上側の表面に対向している。単セル用セパレータ120は、その対向した部分に配置されたロウ材(例えば、Agロウ)により形成された接合部124により、単セル110(電解質層112)と接合されている。単セル用セパレータ120により、空気極114に面する空気室166と燃料極116に面する燃料室176とが区画され、単セル110の周縁部における一方の電極側から他方の電極側へのガスのリーク(クロスリーク)が抑制される。
【0035】
単セル用セパレータ120は、単セル用セパレータ120の貫通孔周囲部を含む内側部126と、内側部126より外周側に位置する外側部127と、内側部126と外側部127とを連結する連結部128とを備える。本実施形態では、内側部126および外側部127は、Z軸方向に略直交する方向に延びる略平板状である。また、連結部128は、内側部126と外側部127との両方に対して下側に突出するように湾曲した形状となっている。連結部128における下側(燃料室176側)の部分は凸部となっており、連結部128における上側(空気室166側)の部分は凹部となっている。このため、連結部128は、Z軸方向における位置が内側部126および外側部127とは異なる部分を含んでいる。
【0036】
単セル用セパレータ120における貫通孔121付近には、ガラスを含むガラスシール部125が配置されている。ガラスシール部125は、接合部124に対して空気室166側に位置しており、単セル用セパレータ120の貫通孔周囲部の表面と、単セル110(本実施形態では電解質層112)の表面との両方に接触するように形成されている。ガラスシール部125により、上述したクロスリークが効果的に抑制される。
【0037】
インターコネクタ190は、略矩形の平板形状の平板部150と、平板部150から空気極114側に突出した複数の略柱状の空気極側集電部134と、を有する導電性の部材であり、例えばフェライト系ステンレスにより形成されている。インターコネクタ190における空気室166に面する側の表面の少なくとも一部には、例えばスピネル型酸化物により構成された導電性の被覆層194が形成されている。また、インターコネクタ190における燃料室176に面する側の表面の少なくとも一部には、酸化被膜198が形成されている。酸化被膜198は、例えばCr(クロミア)を含む内層と、例えばMnCrを含む外層と、から構成されている。以下では、被覆層194および酸化被膜198に覆われたインターコネクタ190を、単にインターコネクタ190という。インターコネクタ190は、MnとFeとの少なくとも一方である対象元素を含有している。なお、インターコネクタ190は、燃料室176の一部を画定する表面を有する。燃料室176は、燃料極側排出マニホールド172に対して上流側に位置する上流側ガス流路である。そのため、インターコネクタ190は、上流側ガス流路を画定する表面を有する流路画定部材に該当する。
【0038】
各発電単位102において、上側のインターコネクタ190は、単セル110に対して上側に配置されている。上側のインターコネクタ190の各空気極側集電部134は、例えばスピネル型酸化物により構成された導電性接合材196を介して、単セル110の空気極114に接合されており、これにより単セル110の空気極114に電気的に接続されている。また、各発電単位102において、下側のインターコネクタ190は、単セル110に対して下側に配置されており、後述する燃料極側集電部144を介して、単セル110の燃料極116に電気的に接続されている。インターコネクタ190は、発電単位102間の電気的導通を確保すると共に、発電単位102間での反応ガスの混合を抑制する。なお、本実施形態では、2つの発電単位102が隣接して配置されている場合、1つのインターコネクタ190は、隣接する2つの発電単位102に共有されている。すなわち、ある発電単位102における上側のインターコネクタ190は、その発電単位102の上側に隣接する他の発電単位102における下側のインターコネクタ190と同一部材である。また、燃料電池スタック100は下端用セパレータ189を備えているため、燃料電池スタック100において最も下側に位置する発電単位102は下側のインターコネクタ190を備えていない(図3から図5参照)。
【0039】
インターコネクタ用セパレータ180は、中央付近に上下方向に貫通する略矩形の貫通孔181が形成されたフレーム状の部材であり、例えば、金属により形成されている。インターコネクタ用セパレータ180における貫通孔181を取り囲む部分(以下、「貫通孔周囲部」という。)は、インターコネクタ190の平板部150の周縁部における上側の表面に例えば溶接により接合されている。ある発電単位102に含まれる一対のインターコネクタ用セパレータ180のうち、上側のインターコネクタ用セパレータ180は、該発電単位102の空気室166と、該発電単位102に対して上側に隣り合う他の発電単位102の燃料室176とを区画する。また、ある発電単位102に含まれる一対のインターコネクタ用セパレータ180のうち、下側のインターコネクタ用セパレータ180は、該発電単位102の燃料室176と、該発電単位102に対して下側に隣り合う他の発電単位102の空気室166とを区画する。このように、インターコネクタ用セパレータ180により、発電単位102の周縁部における発電単位102間のガスのリークが抑制される。なお、燃料電池スタック100において最も上側に位置する発電単位102の上側のインターコネクタ190に接合されたインターコネクタ用セパレータ180は、上側エンドプレート104に電気的に接続されている。
【0040】
インターコネクタ用セパレータ180は、インターコネクタ用セパレータ180の貫通孔周囲部を含む内側部186と、内側部186より外周側に位置する外側部187と、内側部186と外側部187とを連結する連結部188とを備える。本実施形態では、内側部186および外側部187は、Z軸方向に略直交する方向に延びる略平板状である。また、連結部188は、内側部186と外側部187との両方に対して下側に突出するように湾曲した形状となっている。連結部188における下側(空気室166側)の部分は凸部となっており、連結部188における上側(燃料室176側)の部分は凹部となっている。このため、連結部188は、Z軸方向における位置が内側部186および外側部187とは異なる部分を含んでいる。
【0041】
空気極側フレーム130は、中央付近に上下方向に貫通する略矩形の孔131が形成されたフレーム状の部材であり、例えば、マイカ等の絶縁体により形成されている。空気極側フレーム130の孔131は、空気極114に面する空気室166を構成する。空気極側フレーム130は、単セル用セパレータ120の周縁部における上側の表面と、上側のインターコネクタ用セパレータ180の周縁部における下側の表面とに接触しており、両者の間のガスシール性(すなわち、空気室166のガスシール性)を確保するシール部材として機能する。また、空気極側フレーム130によって、発電単位102に含まれる一対のインターコネクタ用セパレータ180間(すなわち、一対のインターコネクタ190間)間が電気的に絶縁される。空気極側フレーム130には、空気極側供給マニホールド161と空気室166とを連通する空気極側供給連通流路132と、空気室166と空気極側排出マニホールド162とを連通する空気極側排出連通流路133とが形成されている。空気室166と、空気極側供給連通流路132と、空気極側排出連通流路133とを合わせた空間(ガス流路)は、特許請求の範囲におけるセル側ガス流路の一例である。
【0042】
燃料極側フレーム140は、中央付近に上下方向に貫通する略矩形の孔141が形成されたフレーム状の部材であり、例えば、金属により形成されている。燃料極側フレーム140の孔141は、燃料極116に面する燃料室176を構成する。燃料極側フレーム140は、単セル用セパレータ120の周縁部における下側の表面と、下側のインターコネクタ用セパレータ180の周縁部における上側の表面とに接触している。燃料極側フレーム140には、燃料極側供給マニホールド171と燃料室176とを連通する燃料極側供給連通流路142と、燃料室176と燃料極側排出マニホールド172とを連通する燃料極側排出連通流路143とが形成されている。燃料室176と、燃料極側供給連通流路142と、燃料極側排出連通流路143とを合わせた空間(ガス流路)は、特許請求の範囲におけるセル側ガス流路の一例である。
【0043】
燃料極側集電部144は、燃料室176内に配置されている。燃料極側集電部144は、インターコネクタ対向部146と、電極対向部145と、電極対向部145とインターコネクタ対向部146とをつなぐ連接部とを備えており、例えば、ニッケルやニッケル合金、ステンレス等により形成されている。電極対向部145は、燃料極116の下側の表面に接触しており、インターコネクタ対向部146は、インターコネクタ190の上側の表面に接触している。ただし、上述したように、燃料電池スタック100において最も下側に位置する発電単位102は下側のインターコネクタ190を備えていないため、該発電単位102における燃料極側集電部144のインターコネクタ対向部146は、下端用セパレータ189に接触している。燃料極側集電部144は、このような構成であるため、燃料極116とインターコネクタ190(または下端用セパレータ189)とを電気的に接続する。なお、燃料極側集電部144の電極対向部145とインターコネクタ対向部146との間には、例えばマイカにより形成されたスペーサー149が配置されている。そのため、燃料極側集電部144が温度サイクルや反応ガス圧力変動による発電単位102の変形に追随し、燃料極側集電部144を介した燃料極116とインターコネクタ190(または下端用セパレータ189)との電気的接続が良好に維持される。
【0044】
A-3.燃料電池モジュール10における燃料電池スタック100以外の装置の構成:
次に、燃料電池モジュール10における燃料電池スタック100以外の装置の構成について説明する。図1に示すように、燃料電池モジュール10は、蒸発器310および改質・加熱器330を含む補助器300と、各装置間を結ぶ各種流路とを備える。各装置(燃料電池スタック100、補助器300)は、断熱材350によって囲まれた断熱空間351に収容されている。なお、図1では、便宜的に、断熱材350は全装置の周囲を覆う単純な四角形状をなすものとしてあるが、実際には、全装置の周囲を覆い、かつ、各装置の周囲を覆っている。図1では、燃料極側のガス(原燃料ガスRFG、燃料ガスFG、および燃料オフガスFOGを含む)の流れを一点鎖線で示し、空気極側のガス(酸化剤ガスOGおよび酸化剤オフガスOOGを含む)の流れを実線で示し、排ガスEGの流れを破線で示し、水の流れを二点鎖線で示している。
【0045】
蒸発器310は、内部に空間が形成された箱形部材であり、例えば金属により形成されている。蒸発器310は、水WAを蒸発させて水蒸気を生成するための装置である。蒸発器310には、水WAを導入するための純水導入流路251が接続されている。純水導入流路251は、主として配管により構成されており、純水導入流路251上には、いずれの図示しないイオン交換樹脂と、浄水タンク・フロートと、流量制御機構とが設けられている。給水源から純水導入流路251に供給された水WAは、イオン交換樹脂においてカルシウムイオン等の除去が行われ、浄水タンク・フロートにおいて浄化・貯留され、流量制御機構により制御された流量で、純水として蒸発器310に導入される。
【0046】
また、蒸発器310には、原燃料ガスRFGを導入するための原燃料ガス導入流路261が接続されている。原燃料ガス導入流路261は、主として配管により構成されており、原燃料ガス導入流路261上には、いずれも図示しない流量制御機構と、水素添加脱硫器とが設けられている。ガス源から原燃料ガス導入流路261に供給された原燃料ガスRFGは、水素添加脱硫器において硫黄成分を除去された状態で、流量制御機構により制御された流量で蒸発器310に導入される。
【0047】
また、蒸発器310には、改質・加熱器330のハウジング335(後述)から蒸発器310へ排ガスEGを送り出すための排ガス中継流路226と、蒸発器310から改質・加熱器330の改質器331(後述)へ混合ガスを送り出すための混合ガス流路228と、蒸発器310から排ガスEGを排出するための排ガス排出流路(図示せず)とが接続されている。これらの流路は、主として配管により構成されている。
【0048】
改質・加熱器330は、改質器331と、燃焼器333と、ハウジング335とを備える。ハウジング335は、例えば金属により形成された密閉型の容器であり、改質器331と燃焼器333とを収容している。ハウジング335は、内壁336と外壁337とを有する二重壁構造に構成されており、内壁336と外壁337との間に形成された空気流路338には、伝熱用フィン339が配置されている。なお、図1では、伝熱用フィン339の一部の図示が省略されている。ハウジング335には、酸化剤ガスOG(空気)を導入するための空気導入流路271が接続されている。空気導入流路271は、主として配管により構成されており、空気導入流路271上には流量制御機構(図示せず)が設けられている。空気導入流路271に供給された酸化剤ガスOGは、流量制御機構により制御された流量でハウジング335の空気流路338に導入される。また、ハウジング335には、燃料電池スタック100の空気極側供給マニホールド161に向けて酸化剤ガスOGを送り出すための空気極側ガス供給流路61が接続されている。空気極側ガス供給流路61は、主として配管により構成されている。
【0049】
改質器331は、内部に空間が形成された箱形部材であり、例えば金属により形成されている。改質器331は、原燃料ガスRFGを改質(水蒸気改質)して燃料ガスFGを生成するための装置である。改質器331内には、改質反応を促進させる触媒が配置されている。上述したように、改質器331には、蒸発器310から改質器331へ混合ガスを送り出すための混合ガス流路228が接続されている。また、改質器331には、燃料電池スタック100の燃料極側供給マニホールド171に向けて燃料ガスFGを送り出すための燃料極側ガス供給流路71が接続されている。燃料極側ガス供給流路71は、主として配管により構成されている。
【0050】
燃焼器333は、内部に空間が形成された箱形部材であり、例えば金属により形成されている。燃焼器333は、酸化剤オフガスOOGおよび燃料オフガスFOGを燃焼させるための装置である。燃焼器333内には、酸化剤オフガスOOGおよび燃料オフガスFOGの燃焼を促進させる触媒が配置されていてもよい。燃焼器333には、燃料電池スタック100の空気極側排出マニホールド162から酸化剤オフガスOOGが送り出される空気極側ガス排出流路240と、燃料電池スタック100の燃料極側排出マニホールド172から燃料オフガスFOGが送り出される燃料極側ガス排出流路230とが接続されている。これらの流路は、主として配管により構成されている。
【0051】
A-4.燃料電池モジュール10の動作:
次に、燃料電池モジュール10の動作について説明する。図1に示すように、酸化剤ガスOGは、空気導入流路271を介して、改質・加熱器330のハウジング335に形成された空気流路338内に導入される。空気流路338内に導入された酸化剤ガスOGは、燃焼器333によって生成された燃焼熱によって加熱されつつ空気流路338内を流れ、温度が上昇した状態で空気極側ガス供給流路61を介して燃料電池スタック100の空気極側供給マニホールド161に供給される。図3および図6に示すように、空気極側供給マニホールド161に供給された酸化剤ガスOGは、各発電単位102の空気極側供給連通流路132を介して空気室166に供給される。
【0052】
また、図1に示すように、原燃料ガス導入流路261を介して蒸発器310に原燃料ガスRFGが供給されると共に、純水導入流路251を介して蒸発器310に水WAが供給されると、蒸発器310において、排ガス中継流路226を介して導入された排ガスEGの熱を利用して水WAを蒸発させることにより水蒸気が生成されると共に、この水蒸気が原燃料ガスRFGと混合される。水蒸気と混合された原燃料ガスRFGは、混合ガス流路228を介して蒸発器310から改質器331に導入され、改質器331において水蒸気改質され、その結果、水素リッチな燃料ガスFGが生成される。生成された燃料ガスFGは、燃料極側ガス供給流路71を介して燃料電池スタック100の燃料極側供給マニホールド171に供給される。図4および図7に示すように、燃料極側供給マニホールド171に供給された燃料ガスFGは、各発電単位102の燃料極側供給連通流路142を介して燃料室176に供給される。
【0053】
各発電単位102の空気室166に酸化剤ガスOGが供給され、燃料室176に燃料ガスFGが供給されると、各発電単位102の単セル110において酸化剤ガスOGに含まれる酸素と燃料ガスFGに含まれる水素との電気化学反応による発電が行われる。この発電反応は発熱反応である。各発電単位102において、単セル110の空気極114は一方のインターコネクタ190に電気的に接続され、燃料極116は燃料極側集電部144を介して他方のインターコネクタ190に電気的に接続されている。また、燃料電池スタック100に含まれる複数の発電単位102は、電気的に直列に接続されている。そのため、燃料電池スタック100の出力端子として機能するエンドプレート104,106から、各発電単位102において生成された電気エネルギーが取り出される。なお、SOFCは、比較的高温(例えば700℃から1000℃)で発電が行われる。
【0054】
図1図3および図6に示すように、各発電単位102の空気室166から空気極側排出連通流路133を介して空気極側排出マニホールド162に排出された酸化剤オフガスOOGは、燃料電池スタック100から空気極側ガス排出流路240を介して燃焼器333に導入される。また、図1図4および図7に示すように、各発電単位102の燃料室176から燃料極側排出連通流路143を介して燃料極側排出マニホールド172に排出された燃料オフガスFOGは、燃料電池スタック100から燃料極側ガス排出流路230を介して燃焼器333に導入される。燃焼器333に導入された酸化剤オフガスOOGおよび燃料オフガスFOGは、燃焼器333において混合されて燃焼され、その後、排ガスEGとして排ガス中継流路226を介して蒸発器310へと排出される。なお、燃焼器333において発生する熱により、改質器331における改質反応が促進されると共に、燃料電池スタック100が加熱される。
【0055】
A-5.燃料極側フレーム140の詳細構成:
図8および図9は、燃料極側フレーム140の詳細構成を示す説明図である。図8には、図7のX1部の構成を拡大して示しており、図9には、図7のX2部の構成を拡大して示している。
【0056】
上述したように、燃料極側フレーム140は、マニホールドの少なくとも一部を画定する表面を有するマニホールド画定部材である。より具体的には、図8に示すように、燃料極側フレーム140は、燃料オフガスFOGを排出する燃料極側排出マニホールド172を画定する第1表面41を有する。また、図9に示すように、燃料極側フレーム140は、燃料ガスFGを供給する燃料極側供給マニホールド171を画定する第2表面42を有する。
【0057】
図8および図9に示すように、燃料極側フレーム140は、金属部140aと、金属部140aの表面を覆うコート層140bとを有する。金属部140aは、例えばフェライト系ステンレスにより構成されている。コート層140bは、内層140cと、内層140cの外側を覆う外層140dとを含む。上述した第1表面41および第2表面42は、コート層140b(外層140d)の表面である。内層140cは、例えばCr(クロミア)により構成され、外層140dは、例えばAl(アルミナ)により構成される。外層140dをアルミナにより構成することにより、金属部140aに含まれるCrがマニホールド中に飛散することを効果的に抑制することができる。
【0058】
図8に示すように、燃料極側フレーム140において燃料極側排出マニホールド172を画定する第1表面41には、特定化合物43が存在する。特定化合物43は、上述した対象元素(MnとFeとの少なくとも一方)と化合物を形成する特定元素を含む化合物である。特定元素は、例えばTi、S等であり、特定化合物は、例えばTiO(チタニア)、Al(SO(硫酸アルミニウム)等である。図8に示すように、燃料極側フレーム140の第1表面41には、特定化合物43が離散的に(島状に)形成されている。特定化合物43は対象元素と化合物を形成する特定元素を含むため、燃料極側排出マニホールド172を流れる燃料オフガスFOGに対象元素(例えば、Mn)が含まれると、該対象元素は第1表面41に存在する特定化合物43によって捕捉される。
【0059】
同様に、図9に示すように、燃料極側フレーム140において燃料極側供給マニホールド171を画定する第2表面42にも、特定化合物43が存在する。燃料極側フレーム140の第2表面42には、特定化合物43が離散的に(島状に)形成されている。燃料極側供給マニホールド171を流れる燃料ガスFGに対象元素(例えば、Mn)が含まれると、該対象元素は第2表面42に存在する特定化合物43によって捕捉される。
【0060】
なお、本実施形態では、燃料極側フレーム140の金属部140aが、特定元素を含有している。ただし、燃料極側フレーム140のコート層140bの表面における特定元素の含有割合は、金属部140aにおける特定元素の含有割合よりも大きい。なお、コート層表面における特定元素の含有割合は、EDS(エネルギー分散型X線分光法)を用いてコート層表面を1000倍以下(例えば1000倍)に拡大した視野の中で任意の10箇所をポイント分析したときの、10箇所の特定元素の含有割合の平均値である。具体的には、ポイント分析により検出された酸素を除く無機元素の質量濃度の総和を100%とした場合の特定元素の割合を特定元素の含有割合とすることができる。また、金属部における特定元素の含有割合については、EDSを用いて金属部断面を1000倍以下(例えば1000倍)に拡大した視野の中で任意の10箇所をポイント分析したときの、10箇所の特定元素の含有割合の平均値である。特定元素の含有割合の求め方は、コート層表面の特定元素の含有割合と同様である。
【0061】
このような構成の燃料極側フレーム140は、例えば、Al、Cr、および特定元素を所定の濃度で含むフェライト系ステンレスの基材に対して熱処理(例えば、大気中1000℃、10時間)を行うことにより製造することができる。すなわち、このような熱処理により、金属部140aに内層140cおよび外層140dが形成され、さらに、外層140dを構成する粒子の粒界から特定元素が酸化物として析出し、外層140dの表面に島状の特定化合物43が形成される。ただし、燃料極側フレーム140の製造方法として、他の方法(例えば、燃料極側フレーム140の表面に特定化合物43を塗布して付着させる方法等)が採用されてもよい。
【0062】
A-6.実施例:
サンプルの燃料電池スタック100を作製した。このとき、燃料極側フレーム140におけるマニホールドを画定する表面に、特定化合物43としてのチタニアを配置させた。この燃料電池スタック100を対象として、850℃、2000時間の耐久試験を行った。燃料利用率は82%、電流密度は0.47A/cmとした。耐久試験後、燃料電池スタック100を解体し、燃料極側フレーム140におけるマニホールドを画定する表面のEDSマッピングを行ったところ、MnとTiのマッピング位置が重なっていた。そのため、マニホールドを流れるガス中の対象元素であるMnを特定化合物43によって捕捉できることが確認された。
【0063】
また、別のサンプルの燃料電池スタック100を用いて同様の耐久試験を行い、燃料極側フレーム140におけるマニホールドを画定する表面のEDSマッピングを行ったところ、FeとTiのマッピング位置が重なっていた。そのため、マニホールドを流れるガス中の対象元素であるFeを特定化合物43によって捕捉できることが確認された。
【0064】
A-7.本実施形態の効果:
以上説明したように、本実施形態の燃料電池モジュール10は、所定の方向に並べて配置された複数の単セル110と、マニホールド画定部材である燃料極側フレーム140と、流路画定部材であるインターコネクタ190とを備える。各単セル110は、固体酸化物からなる電解質層112と、電解質層112を挟んで互いに対向する空気極114および燃料極116とを含む。燃料極側フレーム140は、各単セル110の燃料極116に面するセル側ガス流路(燃料室176、燃料極側供給連通流路142および燃料極側排出連通流路143)を通過したガスが流れる燃料極側排出マニホールド172を画定する第1表面41を有する。インターコネクタ190は、MnとFeとの少なくとも一方である対象元素を含有し、燃料極側排出マニホールド172に対して上流側に位置する上流側ガス流路(燃料室176)を画定する表面を有する。燃料極側フレーム140において燃料極側排出マニホールド172を画定する第1表面41に、対象元素と化合物を形成する特定元素を含む特定化合物43が存在する。
【0065】
このように、本実施形態では、各単セル110の燃料極116に面するセル側ガス流路を通過したガスが流れる燃料極側排出マニホールド172を画定する第1表面41を有する燃料極側フレーム140における該第1表面41に、MnとFeとの少なくとも一方である対象元素と化合物を形成する特定元素を含む特定化合物43が存在する。そのため、運転時等において燃料電池モジュール10が高温にされた際にインターコネクタ190に含まれる対象元素が上流側ガス流路(燃料室176)に飛散しても、上流側ガス流路に対して下流側に位置する燃料極側排出マニホールド172において、特定化合物に含まれる特定元素によって対象元素を捕捉することができる。そのため、燃料極側排出マニホールド172から排出されたガスが供給される後段装置(例えば、燃焼器333)において、該ガスに対象元素が含まれることに起因する不具合(例えば、燃焼器333における燃焼ノズルの詰まり)の発生を抑制することができる。
【0066】
また、本実施形態では、第1表面41を有する燃料極側フレーム140は、金属部140aと、金属部140aの表面を覆うコート層140bとを有し、第1表面41であるコート層140bの表面に、特定化合物43が離散的に形成されている。そのため、特定化合物43に含まれる特定元素によって対象元素が捕捉される反応の際の体積膨張・収縮に起因する応力を分散させることができ、その結果、コート層140bにおけるクラックの発生を抑制することができる。
【0067】
また、本実施形態では、燃料極側フレーム140の金属部140aは、特定元素を含有する。そのため、燃料極側フレーム140において、金属部140aからコート層140bの表面に特定元素を継続的に供給することができ、コート層140bの表面に存在する特定化合物43による対象元素の捕捉機能を継続的に維持することができる。
【0068】
また、本実施形態では、燃料極側フレーム140のコート層140bの表面における特定元素の含有割合は、金属部140aにおける特定元素の含有割合よりも大きい。そのため、コート層140bの表面において、特定元素により対象元素を効果的に捕捉することができる。
【0069】
また、本実施形態では、燃料極側フレーム140は、各単セル110のセル側ガス流路にガスを供給する燃料極側供給マニホールド171を画定する第2表面42を有し、第2表面42にも特定化合物43が存在する。そのため、燃料極側供給マニホールド171を通って各単セル110のセル側ガス流路に供給される燃料ガスFG中の対象元素を、第2表面42に存在する特定化合物43によって捕捉することができ、セル側ガス流路に対象元素が飛散することに起因する不具合(例えば、電解質層112のクラック等)の発生を抑制することができる。
【0070】
B.変形例:
本明細書に開示される技術は、上述の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の形態に変形することができ、例えば次のような変形も可能である。
【0071】
上記実施形態における燃料電池モジュール10やその構成部材の構成は、あくまで一例であり、種々変形可能である。例えば、上記実施形態では、燃料極側フレーム140におけるマニホールドを画定する表面に特定化合物43が離散的に形成されているが、該表面に特定化合物43が連続的に形成されていてもよい。
【0072】
上記実施形態では、燃料極側フレーム140が金属部140aとコート層140bとを有しているが、燃料極側フレーム140がコート層140bを有さないとしてもよい。また、上記実施形態では、燃料極側フレーム140のコート層140bが内層140cと外層140dとを含んでいるが、コート層140bが単層構成であってもよいし、3層以上の構成であってもよい。また、上記実施形態では、金属部140aが特定元素を含有しているが、金属部140aが特定元素を含有していないとしてもよい。また、上記実施形態では、コート層140bの表面における特定元素の含有割合は、金属部140aにおける特定元素の含有割合よりも大きいとしているが、必ずしもこのような大小関係である必要はない。
【0073】
上記実施形態では、燃料極側フレーム140におけるマニホールドを画定する表面に特定化合物43が存在しているが、これに代えて、あるいは、これと共に、他のマニホールド画定部材(例えば、下側エンドプレート106、下端用セパレータ189、単セル用セパレータ120、インターコネクタ用セパレータ180等)におけるマニホールドを画定する表面に特定化合物43が存在していてもよい。
【0074】
マニホールド画定部材における燃料極側排出マニホールド172を画定する表面に特定化合物43が存在するが、当該マニホールド画定部材または他のマニホールド画定部材における燃料極側供給マニホールド171を画定する表面には特定化合物43が存在しないとしてもよい。反対に、マニホールド画定部材における燃料極側供給マニホールド171を画定する表面に特定化合物43が存在するが、当該マニホールド画定部材または他のマニホールド画定部材における燃料極側排出マニホールド172を画定する表面には特定化合物43が存在しないとしてもよい。
【0075】
上記実施形態では、燃料極側の排出マニホールドおよび/または供給マニホールドの表面に特定化合物43が存在するとしているが、これに代えて、あるいは、これと共に、空気極側の排出マニホールドおよび/または供給マニホールドの表面に特定化合物43が存在するとしてもよい。特定化合物43が存在するマニホールドに対応する電極(燃料極116および/または空気極114)は、特許請求の範囲における特定電極の一例である。
【0076】
上記実施形態では、流路画定部材としてのインターコネクタ190が対象元素(Mnおよび/またはFe)を含有しているが、これに代えて、あるいは、これと共に、他の流路画定部材(例えば、下側エンドプレート106、下端用セパレータ189、単セル用セパレータ120、インターコネクタ用セパレータ180、ガス通路部材27、燃料電池スタック100に接続される空気極側ガス供給流路61や燃料極側ガス供給流路71を形成する各種配管等)が対象元素を含有しているとしてもよい。また、流路画定部材の形成材料は、金属であってもよいし、セラミックスであってもよいし、それ以外の材料であってもよい。
【0077】
上記実施形態では、燃料ガスに含まれる水素と酸化剤ガスに含まれる酸素との電気化学反応を利用して発電を行うSOFCを対象としているが、本明細書に開示される技術は、水の電気分解反応を利用して水素の生成を行う固体酸化物形電解セル(SOEC)の構成単位である電解単セルや、電解単セルを複数備える電解セルスタックを含む電解セルモジュールにも同様に適用可能である。なお、電解セルの構成は、例えば特開2016-81813号に記載されているように公知であるためここでは詳述しないが、概略的には上述した実施形態における燃料電池と同様の構成である。すなわち、上述した実施形態における燃料電池モジュール10を電解セルモジュールと読み替え、燃料電池スタック100を電解セルスタックと読み替え、発電単位102を電解セル単位と読み替え、単セル110を電解単セルと読み替えればよい。ただし、電解セルモジュールの運転の際には、空気極114がプラス(陽極)で燃料極116がマイナス(陰極)となるように両電極間に電圧が印加されると共に、マニホールドを介して原料ガスとしての水蒸気が供給される。これにより、各電解セル単位において水の電気分解反応が起こり、燃料室176で水素ガスが発生し、マニホールドを介して電解セルスタックの外部に水素が取り出される。このような構成の電解セルモジュールにおいても、上記実施形態と同様の構成を採用すると、マニホールドから排出されたガスが供給される後段装置において、該ガスに対象元素が含まれることに起因する不具合の発生を抑制することができる。
【0078】
上記実施形態では、いわゆる平板型の燃料電池スタックを例に用いて説明したが、本明細書に開示される技術は、平板型に限らず、他のタイプ(いわゆる円筒平板型や円筒形)の燃料電池(または電解セル)にも同様に適用可能である。
【符号の説明】
【0079】
10:燃料電池モジュール 22:ボルト 24:ナット 26:絶縁シート 27:ガス通路部材 28:本体部 29:分岐部 32,34:孔 41:第1表面 42:第2表面 43:特定化合物 61:空気極側ガス供給流路 71:燃料極側ガス供給流路 100:燃料電池スタック 102:発電単位 103:発電ブロック 104:上側エンドプレート 106:下側エンドプレート 108:連通孔 109:ボルト孔 110:単セル 112:電解質層 114:空気極 116:燃料極 118:中間層 120:単セル用セパレータ 121:貫通孔 124:接合部 125:ガラスシール部 126:内側部 127:外側部 128:連結部 130:空気極側フレーム 131:孔 132:空気極側供給連通流路 133:空気極側排出連通流路 134:空気極側集電部 140:燃料極側フレーム 140a:金属部 140b:コート層 140c:内層 140d:外層 141:孔 142:燃料極側供給連通流路 143:燃料極側排出連通流路 144:燃料極側集電部 145:電極対向部 146:インターコネクタ対向部 149:スペーサー 150:平板部 161:空気極側供給マニホールド 162:空気極側排出マニホールド 166:空気室 171:燃料極側供給マニホールド 172:燃料極側排出マニホールド 176:燃料室 180:インターコネクタ用セパレータ 181:貫通孔 186:内側部 187:外側部 188:連結部 189:下端用セパレータ 190:インターコネクタ 194:被覆層 196:導電性接合材 198:酸化被膜 226:排ガス中継流路 228:混合ガス流路 230:燃料極側ガス排出流路 240:空気極側ガス排出流路 251:純水導入流路 261:原燃料ガス導入流路 271:空気導入流路 300:補助器 310:蒸発器 330:改質・加熱器 331:改質器 333:燃焼器 335:ハウジング 336:内壁 337:外壁 338:空気流路 339:伝熱用フィン 350:断熱材 351:断熱空間
図1
図2
図3
図4
図5
図6
図7
図8
図9