(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024004033
(43)【公開日】2024-01-16
(54)【発明の名称】判定装置、判定方法、および判定プログラム
(51)【国際特許分類】
G01S 19/21 20100101AFI20240109BHJP
【FI】
G01S19/21
【審査請求】未請求
【請求項の数】8
【出願形態】OL
(21)【出願番号】P 2022103468
(22)【出願日】2022-06-28
(71)【出願人】
【識別番号】000005223
【氏名又は名称】富士通株式会社
(74)【代理人】
【識別番号】100087480
【弁理士】
【氏名又は名称】片山 修平
(72)【発明者】
【氏名】佐藤 峻
(72)【発明者】
【氏名】藤嶌 由紀
(72)【発明者】
【氏名】鳥居 悟
【テーマコード(参考)】
5J062
【Fターム(参考)】
5J062AA09
5J062BB01
5J062BB02
5J062BB03
5J062CC07
(57)【要約】
【課題】 偽装信号を検知することができる判定装置、判定方法、および判定プログラムを提供する。
【解決手段】 受信機が受信した測距信号を取得する取得部と、前記測距信号に含まれる、前記測距信号を送信した測位衛星情報と、前記測距信号の送信時刻情報とに基づいて、前記測距信号を重複して受信したか否かを判定する第1判定部と、前記第1判定部が、前記測距信号を重複して受信したと判定した場合に、前記測距信号を偽装信号であると判定する第2判定部と、を備える。
【選択図】
図5
【特許請求の範囲】
【請求項1】
受信機が受信した測距信号を取得する取得部と、
前記測距信号に含まれる、前記測距信号を送信した測位衛星情報と、前記測距信号の送信時刻情報とに基づいて、前記測距信号を重複して受信したか否かを判定する第1判定部と、
前記第1判定部が、前記測距信号を重複して受信したと判定した場合に、前記測距信号を偽装信号であると判定する第2判定部と、を備えることを特徴とする判定装置。
【請求項2】
前記第1判定部は、前記測位衛星情報および前記送信時刻情報が重複する2以上の測距信号を、閾値以上の時間差を持って前記受信機が受信した場合に、前記測距信号を重複して受信したと判定することを特徴とする請求項1に記載の判定装置。
【請求項3】
所定の基準を用いて、前記測距信号が偽装信号であるか否かを判定する第3判定部を備え、
前記第2判定部は、前記第3判定部が前記測距信号は偽装信号ではないと判定した場合には、前記測距信号を偽装信号とは判定しないことを特徴とする請求項1または請求項2に記載の判定装置。
【請求項4】
前記第3判定部は、前記測距信号に含まれるアルマナック情報と、電気通信回線を介して取得したアルマナック情報との照合結果に応じて前記測距信号が偽装信号であるか否かを判定することを特徴とする請求項3に記載の判定装置。
【請求項5】
前記第3判定部は、前記受信機が受信した各測距信号に含まれる情報から導出した測位衛星の識別情報と、電気通信回線を介して取得したアルマナック情報を含む情報から導出した、前記受信機にとっての可視衛星の識別情報との照合結果に応じて、前記測距信号が偽装信号であるか否かを判定することを特徴とする請求項3に記載の判定装置。
【請求項6】
前記第3判定部は、前記受信機にとっての可視衛星の識別情報を導出する際に、地形情報および建物情報の少なくとも一方を反映することを特徴とする請求項5に記載の判定装置。
【請求項7】
受信機が受信した測距信号を取得し、
前記測距信号に含まれる、前記測距信号を送信した測位衛星情報と、前記測距信号の送信時刻情報とに基づいて、前記測距信号を重複して受信したか否かを判定し、
前記測距信号を重複して受信したと判定した場合に、前記測距信号を偽装信号であると判定する、処理を、コンピュータが実行することを特徴とする判定方法。
【請求項8】
コンピュータに、
受信機が受信した測距信号を取得する処理と、
前記測距信号に含まれる、前記測距信号を送信した測位衛星情報と、前記測距信号の送信時刻情報とに基づいて、前記測距信号を重複して受信したか否かを判定する処理と、
前記測距信号を重複して受信したと判定した場合に、前記測距信号を偽装信号であると判定する処理と、実行させることを特徴とする判定プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本件は、判定装置、判定方法、および判定プログラムに関する。
【背景技術】
【0002】
現在、GNSSなどの測位技術は、自動車や船舶、航空機などのナビゲーションなどで社会の重要なインフラとして広く活用されている。GNSSのような測位技術に対して、偽装信号を用いてSpoofingなどの攻撃が行われることがある(例えば、特許文献1~4参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】米国公開第2016/0282473号公報
【特許文献2】特表2013-529897号公報
【特許文献3】米国公開第2020/0145831号公報
【特許文献4】特表2021-503605号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、偽装信号を検知できないことがある。
【0005】
1つの側面では、本発明は、偽装信号を検知することができる判定装置、判定方法、および判定プログラムを提供することを目的とする。
【課題を解決するための手段】
【0006】
1つの態様では、受信機が受信した測距信号を取得する取得部と、前記測距信号に含まれる、前記測距信号を送信した測位衛星情報と、前記測距信号の送信時刻情報とに基づいて、前記測距信号を重複して受信したか否かを判定する第1判定部と、前記第1判定部が、前記測距信号を重複して受信したと判定した場合に、前記測距信号を偽装信号であると判定する第2判定部と、を備える。
【発明の効果】
【0007】
偽装信号を検知することができる。
【図面の簡単な説明】
【0008】
【
図1】(a)および(b)は位置の算出を例示する図である。
【
図6】(a)は実施例1に係る測位装置の全体構成を例示するブロック図であり、(b)は測位装置のハードウェア構成を例示するブロック図である。
【
図7】測位装置の動作の一例を表すフローチャートである。
【
図8】測距信号のフレーム構成を例示する図である。
【
図9】(a)はサブフレーム2に含まれるエフェメリス情報を例示する図であり、(b)はサブフレーム3に含まれるエフェメリス情報を例示する図である。
【
図10】(a)はアルマナック情報を例示する図であり、(b)は解析部が記憶するデータを例示する図である。
【
図11】(a)~(c)は可視衛星を例示する図である。
【発明を実施するための形態】
【0009】
GNSS(Global Navigation Satellite System)とは、複数の測位衛星から時刻情報付きの測距信号を受信し、地上での現在位置を計測するシステムである。GPS(Global Positioning System)とは、GNSSの1つである。GNSSは、乗用車や除雪車の自動運転、ドローンや船舶の自動航行、農機具の自動走行、海洋土木工事(作業船や防波堤の位置決め)などに活用されている。
【0010】
測位衛星が送信する測距信号には、エフェメリス情報として、測位衛星情報(識別番号、測位衛星自身の位置など)、測距信号の送信時刻情報などが含まれている。受信機を備える測位装置は、測距信号の送信時刻と受信機の受信時刻との差から、測位衛星と受信機との距離を算出する。具体的には、測位衛星と受信機との距離は、電波到達時間×電波伝搬速度である。
【0011】
測位装置は、複数の測位衛星と受信機との距離を用いて自身の位置を算出する。例えば、
図1(a)および
図1(b)で例示するように、3つ以上の測位衛星と受信機との距離から、三角交差法を用いて測位装置の位置を算出することができる。測位装置の時計の精度は、測位衛星の原子時計ほど高精度ではない。信号の受信時刻が1マイクロ秒ずれたときに距離の誤差は300メートルほどになる。そこで、4つ目の測位衛星の測距信号で測位装置の時刻を補正することができる。
【0012】
測距信号は暗号化されておらず、認証処理も無い。測距信号は微弱であるため、同じ周波数で強力な電波が存在すると受信することができなくなる。例えば、高度約2万キロメートルの測位衛星が送信する電波の電力は100ワットの電流と同じ程度である。これらの性質を利用して、GNSSを偽装して標的に誤った位置情報を与えるSpoofingまたはMeaconingなどの攻撃が行われることがある。
【0013】
例えば、上記のエフェメリス情報の形式および内容は公知であるため、Spoofingでは、測位衛星からの測距信号を偽装した測距信号(以下、偽装信号と称することがある)を生成する。Meaconingでは、測位衛星からの測距信号を受信および記録し、測距信号の一部を加工して偽装信号を生成する。送信機を使用して偽装信号を標的の受信機のアンテナに送信すれば、受信機は測位衛星からの測距信号ではなく偽装信号を受信する。したがって、GNSSを偽装して標的に誤った位置情報を与える攻撃が可能となる。
【0014】
Spoofing攻撃およびMeaconing攻撃では、例えば、(1)標的を攻撃者の元に誘導する、(2)標的を追い払う、(3)荷台扉の電子錠を不正に解錠する、(4)携帯端末の画面ロックを不正に解除する、などの攻撃が行われることがある。
【0015】
例えば、(1)の攻撃で船の航路を不正に制御することが考えられる。この場合、
図2で例示するように、攻撃者が、攻撃者に有利な場所へ誘導するための偽装信号を一定時間送信し、自動操舵装置が設定針路に向かって進むように舵を制御することが考えられる。
【0016】
または、飛行禁止区域を自動的に避けて航行するドローン(無人航空機)を、(2)の攻撃で不正に追い払うことが考えられる。この場合、
図3で例示するように、攻撃者が、飛行禁止区域の位置情報を偽装した偽装信号を一定時間送信することで、ドローンを追い払うことが考えられる。
【0017】
または、所有者が事前に設定した位置に到着すると解錠する電子錠に対して、(3)の攻撃で不正に解錠することが考えられる。この場合、
図4で例示するように、攻撃者は、目的地に該当する偽装信号を至近距離から一瞬だけ送信することで電子錠を不正に解錠することが考えられる。
【0018】
または、所有者が信頼できる場所に設定した位置情報で画面ロックが解除される携帯端末に対して、(4)の攻撃で不正に解除することが考えられる。例えば、
図5(a)で例示するように、所有者Aが信頼できる場所として自分の職場を設定しておくものとする。この場合、
図5(b)で例示するように、攻撃者は、所有者Aの職場に該当する偽装信号を至近距離から一瞬だけ送信することで、所有者Aの携帯端末のロックを不正に解除することが考えられる。
【0019】
これらの(1)の攻撃および(2)の攻撃について検知する手法については、いくつかの手法が開示されている。例えば、(1)の攻撃および(2)の攻撃では特定の同じ位置から複数の偽装信号が送信されるため、各偽装信号が伝達してきた経路はそれぞれ同じになり、偽装信号が当該経路において受ける外乱の影響も同じとなる。そのため、偽装信号同士の信号強度の時間変化に高い相関関係が現れる。このことを利用し、例えば、一定期間、測距信号を取得し、取得した複数の測距信号同士を比較し、相関が高ければ偽の測距信号であると判定する技術が開示されている。
【0020】
しかしながら、(3)の攻撃および(4)の攻撃では偽装信号が一瞬だけ送信されるため、上記技術では(3)の攻撃および(4)の攻撃を検知することは困難である。そこで、本発明者は、(1)の攻撃および(2)の攻撃と、(3)の攻撃および(4)の攻撃との比較検討を行なった。その結果、以下の相違について明らかとなった。
【0021】
まず、(1)の攻撃および(2)の攻撃では、標的は運動物体であることが多い。攻撃者は、遠距離から一定時間、偽装信号を、内容(衛星時刻および衛星軌道)を変化させながら送信する。偽装信号の電波は強めにする。これに対して、(3)の攻撃および(4)の攻撃では、標的は静止物体であることが多い。攻撃者は、至近距離から一瞬、偽装信号を送信する。偽装信号については1パターンだけ用意すればよい。偽装信号の電波は微弱で構わない。これらのように、(1)の攻撃および(2)の攻撃と、(3)の攻撃および(4)の攻撃との間には、上記のような特徴差が現れる。
【0022】
また、遠距離で偽装信号を送信する場合には、山や建物などの障害物による反射や、隠蔽物の回折により、マルチパスが発生する。ここで、マルチパスとは、同一の測距信号に対して、2つ以上の信号伝搬経路が発生することを意味する。これらの信号伝搬経路では、経路長に差が生じるため、同じ測位衛星から送信された同じ内容の測距信号が時間差を持って受信機に到達することになる。したがって、同じ内容の測距信号が時間差を持って受信機で検出されれば、マルチパスが発生していると判断することができる。至近距離で測距信号を送信する(3)の攻撃および(4)の攻撃では、マルチパスは発生しにくい。
【0023】
そこで、以下の実施例では、マルチパス発生の有無に着目し、(3)の攻撃および(4)の攻撃を検知する例について説明する。
【0024】
以下、図面を参照しつつ、実施例について説明する。
【実施例0025】
図6(a)は、実施例1に係る測位装置100の全体構成を例示するブロック図である。
図6(a)で例示するように測位装置100は、取得部10、解析部20、判定用情報生成部30、マルチパス解析部40、アルマナック情報比較部50、可視衛星照合部60、判定部70、測位部80などを備える。
【0026】
図6(b)は、判定装置100のハードウェア構成を例示するブロック図である。
図6(b)で例示するように、測位装置100は、CPU101、RAM102、記憶装置103、受信機104等を備える。
【0027】
CPU(Central Processing Unit)101は、中央演算処理装置である。CPU101は、1以上のコアを含む。RAM(Random Access Memory)102は、CPU101が実行するプログラム、CPU101が処理するデータなどを一時的に記憶する揮発性メモリである。記憶装置103は、不揮発性記憶装置である。記憶装置103として、例えば、ROM(Read Only Memory)、フラッシュメモリなどのソリッド・ステート・ドライブ(SSD)、ハードディスクドライブに駆動されるハードディスクなどを用いることができる。記憶装置103は、判定プログラムを記憶している。受信機104は、測位衛星からの測距信号を受信する受信機である。CPU101が判定プログラムを実行することで、取得部10、解析部20、判定用情報生成部30、マルチパス解析部40、アルマナック情報比較部50、可視衛星照合部60、判定部70、および測位部80が実現される。なお、取得部10、解析部20、判定用情報生成部30、マルチパス解析部40、アルマナック情報比較部50、可視衛星照合部60、判定部70、および測位部80として、専用の回路などのハードウェアを用いてもよい。
【0028】
図7は、測位装置100の動作の一例を表すフローチャートである。以下、
図7を参照しつつ、測位装置100の動作の一例について説明する。
【0029】
判定部70は、終了指示を受け取ったか否かを判定する(ステップS1)。ステップS1で「Yes」と判定されれば、フローチャートの実行が終了する。その後、所定期間後に再度ステップS1から実行される。
【0030】
ステップS1で「No」と判定された場合、解析部20は、受信機104が受信した測距信号を取得した取得部10から、測距信号を受け取って解析する(ステップS2)。
【0031】
図8は、測距信号のフレーム構成を例示する図である。測距信号のサブフレーム#2およびサブフレーム#3には、エフェメリス情報が含まれている。
図9(a)は、サブフレーム#2に含まれるエフェメリス情報を例示する図である。
図9(b)は、サブフレーム#3に含まれるエフェメリス情報を例示する図である。エフェメリス信号は、ケプラーによる6軌道要素と摂動などの影響に基づいて作成されたものである。有効期間は、約90分である。
【0032】
測距信号のサブフレーム#4およびサブフレーム#5には、アルマナック情報が含まれている。
図10(a)は、アルマナック情報を例示する図である。
図10(a)で例示するように、アルマナック情報は、全測位衛星に関する軌道情報である。アルマナック情報は、ケプラーによる6軌道要素に基づいて作成されたものである。有効期間は、約1週間である。
【0033】
解析部20は、取得部10が受信した測距信号に含まれるエフェメリス情報およびアルマナック情報を解析する。解析の結果、解析部20は、当該測距信号を送信した測位衛星のクロック値、識別番号値、測距信号送信時刻、測距信号受信時刻、および全測位衛星の位置を取得し、取得した各データを保存する。
図10(b)は、解析部20が記憶するデータを例示する図である。
【0034】
次に、判定用情報生成部30は、解析部20が保存しているデータに基づいて、矛盾判定用の情報を生成する(ステップS3)。例えば、判定用情報生成部30は、測位装置100の位置情報(緯度、経度、高度)を生成し、これらの位置解析に利用した測位衛星のID群を生成する。ID群として、例えば識別番号値を用いる。
【0035】
次に、マルチパス解析部40は、解析部20が保存しているデータに基づいて、判定装置100が受信した測距信号の重複の有無を解析し、マルチパスについて解析する(ステップS4)。
【0036】
次に、マルチパス解析部40は、マルチパスが発生しているか否かを判定する(ステップS5)。マルチパス解析部40は、測距信号の重複を検知した場合にはマルチパス有りと判定し、測距信号の重複を検知しなかった場合にはマルチパス無しと判定する。例えば、同じ内容を表す測距信号を所定の閾値以上の時間差を有して受信した場合には、測距信号の重複が検知される。マルチパス解析部40は、マルチパス無しと判定した場合には、測距信号による攻撃が行われたと判定する。ここでの同じ内容であるか否かを判断するためには、エフェメリス情報およびアルマナック情報の全てが一致することの確認、エフェメリス情報およびアルマナック情報の特定の情報について一致することの確認、などを行なう。
【0037】
ステップ5で「Yes」と判定された場合、ステップS1から再度実行される。ステップS5で「No」と判定された場合、アルマナック情報比較部50は、解析部20が保存しているアルマナック情報を取得し、インターネットなどの電気通信回線からもアルマナック情報を取得する。インターネット上のアルマナック情報は、例えば、US.Coast Guard Navigation Centerから公開されている。アルマナック情報比較部50は、両方のアルマナック情報を比較する(ステップS6)。
【0038】
次に、アルマナック情報比較部50は、両方のアルマナック情報が一致しているか否かを判定する(ステップS7)。アルマナック情報の全てが一致することを確認してもよく、アルマナック情報の特定の情報が一致することを確認してもよい。
【0039】
ステップS7で「Yes」と判定された場合、判定部70は、矛盾フラグ1をオフにする(ステップS8)。
【0040】
ステップS7で「No」と判定された場合、判定部70は、矛盾フラグ1をオンにする(ステップS9)。
【0041】
ステップS8またはステップS9が実行された後、可視衛星照合部60は、位置解析に利用した測位衛星のID群と、可視衛星のID群とを比較する(ステップS10)。
【0042】
例えば、可視衛星照合部60は、判定用情報生成部30が生成した位置情報を取得する。また、可視衛星照合部60は、インターネットなどの電気通信回線からアルマナック情報を取得する。可視衛星照合部60は、取得した位置情報とアルマナック情報とから、可視衛星のID群を導出する。
【0043】
可視衛星とは、測位装置100が見通せる範囲内の測位衛星である。可視衛星は、
図11(a)~
図11(c)のように求めることができる。
図11(a)は、最大可視帯と、可視範囲との関係を例示する図である。
図11(b)は、仰角が0°のときの地球局の可視範囲である。
図11(b)において、αは、可視範囲の大きさを表す角度である。Hは、測位衛星の高度である。H
sは、地球局の地表高である。rは、地球半径である。
図11(c)は、衛星高度Hと、仰角βと、地球中心角θとの関係を例示する図である。
図11(a)~
図11(c)で例示するように、一定時間間隔ごとに軌道計算を行なうことで測位衛星の位置を決め、地球局からの仰角を求めることによって、可視衛星を特定することができる。
【0044】
受信機104が位置する地形によっては、一部の可視衛星を見通せないことがある。そこで、可視衛星の特定に、受信機104が位置する地形情報を反映してもよい。解析部20は、予め地形情報を記憶しておいてもよく、インターネットなどの電気通信回線を介して地形情報を取得してもよい。
図12は、電気通信回線を介して開示されている地形情報を例示する図である。地形情報は、例えば、国土交通省国土地理院が航空レーザー測量で収集した地形情報などである。地形情報は、例えば、レーザー光、GNSS、IMU(慣性計測装置)などにより算出した緯度、経度、および標高などを含む。
【0045】
また、受信機104が位置する場所の周辺の建物の配置によっては、一部の可視衛星を見通せないことがある。そこで、可視衛星の特定に、受信機104が位置する場所の周辺の建物情報を反映してもよい。解析部20は、予め建物情報を記憶しておいてもよく、インターネットなどの電気通信回線を介して建物情報を取得してもよい。建物情報は、例えば、建物ポイントデータなどである。建物情報には、建物の高さなどが含まれている。
【0046】
判定部70は、測位衛星のID群の全てが、ステップS10で生成された可視衛星のID群に含まれているか否かを判定する(ステップS11)。
【0047】
判定部70は、ステップS11で「Yes」と判定された場合、矛盾フラグ2をオフにする(ステップS12)。
【0048】
判定部70は、ステップS11で「No」と判定された場合、矛盾フラグ2をオンにする(ステップS13)。
【0049】
ステップS12またはステップS13の実行後に、判定部70は、矛盾フラグ1オフかつ矛盾フラグ2がオフの状態となっているか否かを判定する(ステップS14)。
【0050】
判定部70は、ステップS14で「Yes」と判定された場合には、正常(測距信号が偽装信号ではない)と判定する(ステップS15)。その後、ステップS1から再度実行される。
【0051】
判定部70は、ステップS14で「No」と判定された場合には、攻撃(測距信号が偽装信号である)と判定する(ステップS16)。その後、ステップS1から再度実行される。
【0052】
測位部80は、ステップS13で正常と判定された場合に、測距信号を用いて測位装置100の位置を算出する。測位部80は、ステップS16で攻撃と判定された場合には、測距信号を用いた位置の算出を行なわない。それにより、攻撃が行われている場合には、電子解錠などの動作を回避することができるようになる。
【0053】
本実施例によれば、受信した測距信号に含まれる、当該測距信号を送信した測位衛星の情報と、当該測距信号の送信時刻情報とに基づいて、マルチパスが発生しているか否かを判定することができる。マルチパスが発生していると判定されれば、当該測距信号が偽装信号ではないと判定することができる。このような構成では、一瞬だけ送信される偽装信号を検出することができるため、攻撃対象物が攻撃者の近距離にあるような場合においても不正を防止することができる。
【0054】
なお、3つの測位衛星が全て天頂近くに位置して障害物が存在しない場合には、マルチパスが発生しない可能性がある。そこで、矛盾判定1および矛盾判定2を用いて判定行なうことで、マルチパスが発生していない場合においても、攻撃が行われていないと判定するようにすることが好ましい。上記の例では、一例としてアルマナック情報の一致や可視衛星群の一致を確認しているが、その他の基準を満足するか否かを判定してもよい。
【0055】
上記各例において、取得部10が、受信機が受信した測距信号を取得する取得部の一例である。マルチパス解析部40が、測距信号に含まれる、測距信号を送信した測位衛星情報と、測距信号の送信時刻情報とに基づいて、測距信号を重複して受信したか否かを判定する第1判定部の一例である。判定部70が、第1判定部が、測距信号を重複して受信したと判定した場合に、測距信号を偽装信号であると判定する第2判定部の一例である。アルマナック情報比較部50および可視衛星照合部60が、所定の基準を用いて、測距信号が偽装信号であるか否かを判定する第3判定部の一例である。
【0056】
以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
(付記)
(付記1)
受信機が受信した測距信号を取得する取得部と、
前記測距信号に含まれる、前記測距信号を送信した測位衛星情報と、前記測距信号の送信時刻情報とに基づいて、前記測距信号を重複して受信したか否かを判定する第1判定部と、
前記第1判定部が、前記測距信号を重複して受信したと判定した場合に、前記測距信号を偽装信号であると判定する第2判定部と、を備えることを特徴とする判定装置。
(付記2)
前記第1判定部は、前記測位衛星情報および前記送信時刻情報が重複する2以上の測距信号を、閾値以上の時間差を持って前記受信機が受信した場合に、前記測距信号を重複して受信したと判定することを特徴とする付記1に記載の判定装置。
(付記3)
所定の基準を用いて、前記測距信号が偽装信号であるか否かを判定する第3判定部を備え、
前記第2判定部は、前記第3判定部が前記測距信号は偽装信号ではないと判定した場合には、前記測距信号を偽装信号とは判定しないことを特徴とする付記1または付記2に記載の判定装置。
(付記4)
前記第3判定部は、前記測距信号に含まれるアルマナック情報と、電気通信回線を介して取得したアルマナック情報との照合結果に応じて前記測距信号が偽装信号であるか否かを判定することを特徴とする付記3に記載の判定装置。
(付記5)
前記第3判定部は、前記受信機が受信した各測距信号に含まれる情報から導出した測位衛星の識別情報と、電気通信回線を介して取得したアルマナック情報を含む情報から導出した、前記受信機にとっての可視衛星の識別情報との照合結果に応じて、前記測距信号が偽装信号であるか否かを判定することを特徴とする付記3に記載の判定装置。
(付記6)
前記第3判定部は、前記受信機にとっての可視衛星の識別情報を導出する際に、地形情報および建物情報の少なくとも一方を反映することを特徴とする付記5に記載の判定装置。
(付記7)
受信機が受信した測距信号を取得し、
前記測距信号に含まれる、前記測距信号を送信した測位衛星情報と、前記測距信号の送信時刻情報とに基づいて、前記測距信号を重複して受信したか否かを判定し、
前記測距信号を重複して受信したと判定した場合に、前記測距信号を偽装信号であると判定する、処理を、コンピュータが実行することを特徴とする判定方法。
(付記8)
前記測位衛星情報および前記送信時刻情報が重複する2以上の測距信号を、閾値以上の時間差を持って前記受信機が受信した場合に、前記測距信号を重複して受信したと判定することを特徴とする付記7に記載の判定方法。
(付記9)
所定の基準を用いて、前記測距信号が偽装信号であるか否かを判定し、
前記所定の基準を用いて前記測距信号は偽装信号ではないと判定した場合には、前記測距信号を偽装信号とは判定しないことを特徴とする付記7または付記8に記載の判定方法。
(付記10)
前記所定の基準を用いて前記測距信号が偽装信号であるか否かを判定する際に、前記測距信号に含まれるアルマナック情報と、電気通信回線を介して取得したアルマナック情報との照合結果に応じて前記測距信号が偽装信号であるか否かを判定することを特徴とする付記9に記載の判定方法。
(付記11)
前記所定の基準を用いて前記測距信号が偽装信号であるか否かを判定する際に、前記受信機が受信した各測距信号に含まれる情報から導出した測位衛星の識別情報と、電気通信回線を介して取得したアルマナック情報を含む情報から導出した、前記受信機にとっての可視衛星の識別情報との照合結果に応じて、前記測距信号が偽装信号であるか否かを判定することを特徴とする付記9に記載の判定方法。
(付記12)
前記受信機にとっての可視衛星の識別情報を導出する際に、地形情報および建物情報の少なくとも一方を反映することを特徴とする付記11に記載の判定方法。
(付記13)
コンピュータに、
受信機が受信した測距信号を取得する処理と、
前記測距信号に含まれる、前記測距信号を送信した測位衛星情報と、前記測距信号の送信時刻情報とに基づいて、前記測距信号を重複して受信したか否かを判定する処理と、
前記測距信号を重複して受信したと判定した場合に、前記測距信号を偽装信号であると判定する処理と、実行させることを特徴とする判定プログラム。
(付記14)
前記測位衛星情報および前記送信時刻情報が重複する2以上の測距信号を、閾値以上の時間差を持って前記受信機が受信した場合に、前記測距信号を重複して受信したと判定することを特徴とする付記13に記載の判定プログラム。
(付記15)
所定の基準を用いて、前記測距信号が偽装信号であるか否かを判定し、
前記所定の基準を用いて前記測距信号は偽装信号ではないと判定した場合には、前記測距信号を偽装信号とは判定しないことを特徴とする付記13または付記14に記載の判定プログラム。
(付記16)
前記所定の基準を用いて前記測距信号が偽装信号であるか否かを判定する際に、前記測距信号に含まれるアルマナック情報と、電気通信回線を介して取得したアルマナック情報との照合結果に応じて前記測距信号が偽装信号であるか否かを判定することを特徴とする付記15に記載の判定プログラム。
(付記17)
前記所定の基準を用いて前記測距信号が偽装信号であるか否かを判定する際に、前記受信機が受信した各測距信号に含まれる情報から導出した測位衛星の識別情報と、電気通信回線を介して取得したアルマナック情報を含む情報から導出した、前記受信機にとっての可視衛星の識別情報との照合結果に応じて、前記測距信号が偽装信号であるか否かを判定することを特徴とする付記15に記載の判定プログラム。
(付記18)
前記受信機にとっての可視衛星の識別情報を導出する際に、地形情報および建物情報の少なくとも一方を反映することを特徴とする付記17に記載の判定プログラム。