(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024004339
(43)【公開日】2024-01-16
(54)【発明の名称】計測装置及び計測方法
(51)【国際特許分類】
G01C 15/00 20060101AFI20240109BHJP
G01C 15/06 20060101ALI20240109BHJP
【FI】
G01C15/00 103E
G01C15/06 T
【審査請求】有
【請求項の数】9
【出願形態】OL
(21)【出願番号】P 2022103958
(22)【出願日】2022-06-28
(11)【特許番号】
(45)【特許公報発行日】2023-01-10
(71)【出願人】
【識別番号】599157284
【氏名又は名称】クモノスコーポレーション株式会社
(74)【代理人】
【識別番号】100145403
【弁理士】
【氏名又は名称】山尾 憲人
(74)【代理人】
【識別番号】100101454
【弁理士】
【氏名又は名称】山田 卓二
(72)【発明者】
【氏名】中庭 和秀
(57)【要約】
【課題】
点群データを取得する方法を提供する。
【解決手段】
3Dスキャナを間欠的に移動しながら前記3Dスキャナで環境の点群データを取得する方法は、3Dスキャナの移動方向に関して、4つの球体(241~244)を互いに間隔をあけて配置する球体配置工程と、3Dスキャナを用いて前記4つの球体を含む環境の点群データを取得する計測工程と、記計測工程の後、3Dスキャナを移動するスキャナ移動工程と、計測工程の後、4つの球体(241~244)のうちで計測工程の時点で3Dスキャナの移動方向に関して最も上流側に位置する球体を、4つの球体のうちで計測工程の時点で3Dスキャナの移動方向に関して最も下流側に位置する球体の下流側に移動する球体移動工程と、計測工程、スキャナ移動工程及び球体移動工程を繰り返し実行する繰り返し工程を含む。
【選択図】
図5
【特許請求の範囲】
【請求項1】
3Dスキャナを間欠的に移動しながら前記3Dスキャナで環境の点群データを取得する方法であって、
前記3Dスキャナの移動方向に関して、4つの球体を互いに間隔をあけて配置する球体配置工程と、
3Dスキャナを用いて前記4つの球体を含む環境の点群データを取得する計測工程と、
前記計測工程の後、前記3Dスキャナを移動するスキャナ移動工程と、
前記計測工程の後、前記4つの球体のうちで前記計測工程の時点で前記3Dスキャナの移動方向に関して最も上流側に位置する球体を、前記4つの球体のうちで前記計測工程の時点で前記3Dスキャナの移動方向に関して最も下流側に位置する球体の下流側に移動する球体移動工程と、
前記計測工程、前記スキャナ移動工程及び前記球体移動工程を繰り返し実行する繰り返し工程を含む、方法。
【請求項2】
3つの第1の球体を互いに間隔をあけて配置した第1の球体セット、3つの第2の球体を互いに間隔をあけて配置した第2の球体セットと、3Dスキャナとを用い、前記第1の球体セット、前記第2の球体セット、及び前記3Dスキャナを移動させながら、環境の点群データを取得する方法であって、
移動方向の上流側から下流側に向かって、前記第1の球体セット、前記3Dスキャナ及び前記第2の球体セットを順番に設置する第1の設置工程と、
前記3Dスキャナで前記第1の球体セットと前記第2の球体セットを含む第1の環境の第1の点群データを取得する第1の計測工程と、
前記第1の計測工程に続いて、前記第1の球体セットを前記第2の球体セットに向けて移動して、前記移動方向に前記第1の球体セット、前記3Dスキャナ及び前記第2の球体セットを順番に設置する第2の設置工程と、
前記第2の設置工程に続いて、前記3Dスキャナで前記第1の球体セットと前記第2の球体セットを含む第2の環境の第2の点群データを取得する第2の計測工程と、
前記第2の計測工程に続いて、前記第2の球体セットを前記移動方向に移動して、前記移動方向に、前記第1の球体セット、前記3Dスキャナ及び前記第2の球体セットを順番に設置する第3の設置工程と、
前記第3の設置工程に続いて、前記3Dスキャナで前記第1の球体セットと前記第2の球体セットを含む第3の環境の第1の点群データを取得する第3の計測工程と、
前記第3の計測工程に続いて、前記第1の球体セットを前記第2の球体セットに向けて移動して、前記移動方向に前記第1の球体セット、前記3Dスキャナ及び前記第2の球体セットを順番に設置する第4の設置工程と、
前記第4の設置工程に続いて、前記3Dスキャナで前記第1の球体セットと前記第2の球体セットを含む第4の環境の第4の点群データを取得する第4の計測工程と、
前記第4の計測工程に続いて、前記第2の球体セットを前記移動方向に移動して、前記移動方向に、前記第1の球体セット、前記3Dスキャナ及び前記第2の球体セットを順番に設置する第5の設置工程と、
前記第5の設置工程に続いて、前記3Dスキャナで前記第1の球体セットと前記第2の球体セットを含む第5の環境の第5の点群データを取得する第5の計測工程
を含む方法。
【請求項3】
前記第1の設置工程、前記第1の計測工程、前記第2の設置工程、前記第2の計測工程、前記第3の設置工程、前記第3の計測工程、前記第4の設置工程、前記第4の計測工程、前記第5の設置工程、及び前記第5の計測工程、を繰り返す繰り返し工程を有する、請求項2に記載の方法。
【請求項4】
前記第1の球体セットを第1の支持体に支持させ、前記第2の設置工程と前記第4の設置工程において、前記第1の球体セットを前記第1の支持体と共に移動させる、請求項3に記載の方法。
【請求項5】
前記第2の球体セットを第2の支持体に支持させ、前記第3の設置工程と前記第5の設置工程において、前記第2の球体セットを前記第2の支持体と共に移動させる、請求項3に記載の方法。
【請求項6】
前記3Dスキャナを第3の支持体に支持させ、前記第2の設置工程、前記第3の設置工程、前記第4の設置工程及び前記第5の設置工程の少なくとも1つにおいて、前記3Dスキャナを前記第3の支持体と共に移動させる、請求項3に記載の方法。
【請求項7】
前記第1の球体セットは、
基台と、
基台に支持された複数の柱と、
前記複数の柱のそれぞれに昇降可能に支持された複数の球体と、
前記複数の球体の高さをそれぞれ調整する機構を備えており、
前記複数の球体が、前記3つの第1の球体を含む、請求項2の方法。
【請求項8】
前記第2の球体セットは、
基台と、
基台に支持された複数の柱と、
前記複数の柱のそれぞれに昇降可能に支持された複数の球体と、
前記複数の球体の高さをそれぞれ調整する機構を備えており、
前記複数の球体が、前記3つの第2の球体を含む、請求項2の方法。
【請求項9】
基台と、
基台に支持された複数の柱と、
前記複数の柱のそれぞれに昇降可能に支持された球体と、
前記球体の高さを調整する機構を備えた、ことを特徴とする計測装置。
【請求項10】
計測対象の点群データを取得するために3Dスキャナと共に使用される計測装置であって、
3つの球体を互いに間隔をあけた状態で支持する支持体を備えた計測装置。
【請求項11】
前記支持体が三脚である、請求項10に記載の計測装置。
【請求項12】
前記3つの球体のそれぞれが前記三脚を構成する3つの脚に設けられている、請求項11に記載の計測装置。
【請求項13】
前記3つの球体のそれぞれが前記三脚に着脱可能である、請求項11に記載の計測装置。
【請求項14】
前記三脚が前記3Dスキャナを支持している請求項11に記載の計測装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、3Dスキャナを搭載するための計測装置及び3Dスキャナを用いた計測方法に関する。
【背景技術】
【0002】
3Dスキャナ(以下、「スキャナ」という。)を用いて構造物等の点群データを取得する場合、出来るだけ死角を無くすために、複数の場所にスキャナを移動する必要がある。また、スキャナ移動前に取得した点群データとスキャナ移動後に取得した点群データを合成(結合)して一つの点群データにするためには、周辺に少なくとも3つのターゲットを配置し、移動前及び移動後の点群データにそれら3つのターゲットの点群データが共通に含まれるようにしなければならない。
【0003】
例えば、非特許文献1に開示された計測では、建物室内の4か所にターゲットを固定した状態でスキャナを室内の3か所に順次設置(移動)して計測を繰り返すことで、室内全体の点群データを取得している。
【0004】
このように、比較的狭い室内の計測でも4か所にターゲットを配置しなければならないわけで、これが大型構造物の計測になると、必要なターゲットの数は計り知れない程になる。
【先行技術文献】
【非特許文献】
【0005】
【非特許文献1】「3Dスキャナ―の活用について」『建築コスト研究、No.88, 2015.1、(一財)建築コスト管理システム研究所、新技術調査検討会
【発明の概要】
【発明が解決しようとする課題】
【0006】
そこで、本発明は、出来るだけ少ない数のターゲットを用いて、大型の構造物や広い敷地であってもその全体の点群データを取得可能な方法及びその方法に好適に使用できる装置の提供を目的とする。
【課題を解決するための手段】
【0007】
具体的に、本発明に係る計測方法の実施形態1は、
3Dスキャナを間欠的に移動しながら前記3Dスキャナで環境の点群データを取得する方法であって、
前記3Dスキャナの移動方向に関して、4つの球体を互いに間隔をあけて配置する球体配置工程と、
3Dスキャナを用いて前記4つの球体を含む環境の点群データを取得する計測工程と、
前記計測工程の後、前記3Dスキャナを移動するスキャナ移動工程と、
前記計測工程の後、前記4つの球体のうちで前記計測工程の時点で前記3Dスキャナの移動方向に関して最も上流側に位置する球体を、前記4つの球体のうちで前記計測工程の時点で前記3Dスキャナの移動方向に関して最も下流側に位置する球体の下流側に移動する球体移動工程と、
前記計測工程、前記スキャナ移動工程及び前記球体移動工程を繰り返し実行する繰り返し工程を含む。
なお、本実施形態は、球体配置工程は「4つの球体」を互いに間隔をあけて配置すること記載しているが、本実施形態は4つ以上の球体を含み、それら4つ以上の球体のうちの4つが「4つの球体」に該当する形態を含むと解釈すべきである。
【0008】
本発明の計測方法の実施形態2は、
3つの第1の球体を互いに間隔をあけて配置した第1の球体セット、3つの第2の球体を互いに間隔をあけて配置した第2の球体セットと、3Dスキャナとを用い、前記第1の球体セット、前記第2の球体セット、及び前記3Dスキャナを移動させながら、環境の点群データを取得する方法であって、
移動方向の上流側から下流側に向かって、前記第1の球体セット、前記3Dスキャナ及び前記第2の球体セットを順番に設置する第1の設置工程と、
前記3Dスキャナで前記第1の球体セットと前記第2の球体セットを含む第1の環境の第1の点群データを取得する第1の計測工程と、
前記第1の計測工程に続いて、前記第1の球体セットを前記第2の球体セットに向けて移動して、前記移動方向に前記第1の球体セット、前記3Dスキャナ及び前記第2の球体セットを順番に設置する第2の設置工程と、
前記第2の設置工程に続いて、前記3Dスキャナで前記第1の球体セットと前記第2の球体セットを含む第2の環境の第2の点群データを取得する第2の計測工程と、
前記第2の計測工程に続いて、前記第2の球体セットを前記移動方向に移動して、前記移動方向に、前記第1の球体セット、前記3Dスキャナ及び前記第2の球体セットを順番に設置する第3の設置工程と、
前記第3の設置工程に続いて、前記3Dスキャナで前記第1の球体セットと前記第2の球体セットを含む第3の環境の第1の点群データを取得する第3の計測工程と、
前記第3の計測工程に続いて、前記第1の球体セットを前記第2の球体セットに向けて移動して、前記移動方向に前記第1の球体セット、前記3Dスキャナ及び前記第2の球体セットを順番に設置する第4の設置工程と、
前記第4の設置工程に続いて、前記3Dスキャナで前記第1の球体セットと前記第2の球体セットを含む第4の環境の第4の点群データを取得する第4の計測工程と、
前記第4の計測工程に続いて、前記第2の球体セットを前記移動方向に移動して、前記移動方向に、前記第1の球体セット、前記3Dスキャナ及び前記第2の球体セットを順番に設置する第5の設置工程と、
前記第5の設置工程に続いて、前記3Dスキャナで前記第1の球体セットと前記第2の球体セットを含む第5の環境の第5の点群データを取得する第5の計測工程
を含む。
なお、本実施形態において、第1の球体セットは3つの第1の球体を有し、第2の球体セットは3つの第2の球体を有するものと記載しているが、本実施形態は、それぞれの球体セットは3つ以上の球体を有していてもよく、それら3つ以上の球体のうちの3つが「3つの第1の球体」及び「3つの第2の球体」を構成する形態を含むと解釈すべきである。
【0009】
実施形態2は、前記第1の設置工程、前記第1の計測工程、前記第2の設置工程、前記第2の計測工程、前記第3の設置工程、前記第3の計測工程、前記第4の設置工程、前記第4の計測工程、前記第5の設置工程、及び前記第5の計測工程、を繰り返す繰り返し工程を有することが好ましい。
【0010】
実施形態2において、前記第1の球体セットを第1の支持体に支持させ、前記第2の設置工程と前記第4の設置工程において、前記第1の球体セットを前記第1の支持体と共に移動させることが好ましい。
【0011】
実施形態2において、前記第2の球体セットを第2の支持体に支持させ、前記第3の設置工程と前記第5の設置工程において、前記第2の球体セットを前記第2の支持体と共に移動させることが好ましい。
【0012】
実施形態2において、前記3Dスキャナを第3の支持体に支持させ、前記第2の設置工程、前記第3の設置工程、前記第4の設置工程及び前記第5の設置工程の少なくとも1つにおいて、前記3Dスキャナを前記第3の支持体と共に移動させることが好ましい。
【0013】
実施形態2において、
前記第1の球体セットは、
基台と、
基台に支持された複数の柱と、
前記複数の柱のそれぞれに昇降可能に支持された複数の球体と、
前記複数の球体の高さをそれぞれ調整する機構を備えており、
前記複数の球体が、前記3つの第1の球体を含むことが好ましい。
【0014】
実施形態2において、
前記第2の球体セットは、
基台と、
基台に支持された複数の柱と、
前記複数の柱のそれぞれに昇降可能に支持された複数の球体と、
前記複数の球体の高さをそれぞれ調整する機構を備えており、
前記複数の球体が、前記3つの第2の球体を含むことが好ましい。
【0015】
実施形態3は計測装置に関し、該計測装置は、
基台と、
基台に支持された複数の柱と、
前記複数の柱のそれぞれに昇降可能に支持された球体と、
前記球体の高さを調整する機構を備えている。
【0016】
実施形態4は別の計測装置に関し、該計測装置は、
計測対象の点群データを取得するために3Dスキャナと共に使用される計測装置であって、
3つの球体を互いに間隔をあけた状態で支持する支持体を備えている。
なお、「3つの球体」は限定的ではなく、実施形態4は3つ以上の球体を含む形態も含むと解釈すべきである。
【0017】
実施形態4において、前記支持体(55)が三脚(50)であることが好ましい。
【0018】
実施形態4において、前記3つの球体(41,42,43)のそれぞれが前記三脚(50)を構成する3つの脚(51,52,53)に設けられていることが好ましい。
【0019】
実施形態4において、前記3つの球体(41,42,43)のそれぞれが前記三脚(50)に着脱可能であることが好ましい。
【0020】
前記三脚(50)が前記3Dスキャナ(17)を支持していることが好ましい。
【発明の効果】
【0021】
上述の実施形態に係る計測装置又は方法によれば、最小限の数のターゲットを用いて、大型の構造物や広い敷地であってもその全体の点群データを取得できる。
【図面の簡単な説明】
【0022】
【
図1】
図1は、本発明の実施に使用されるスキャナ装置の側面図。
【
図2】
図2は、
図1に示す3Dスキャナの構成を示すブロック図。
【
図4】
図4は、本発明の実施に使用されるターゲット装置の側面図。
【
図5】
図5は、一つのスキャナ装置と4つのターゲット装置を用いて点群データを取得する方法を説明する概念図。
【
図6】
図6は、
図5に示す方法で取得された点群データと球体との関係を説明する概念図。
【
図7】
図7は、一つのスキャナ装置と6つのターゲット装置を用いて点群データを取得する方法を説明する概念図。
【
図8】
図8は、球体と3Dスキャナを取り付けた三脚の斜視図。
【
図9】
図9は、4つの球体を昇降可能に支持した支持体の斜視図。
【
図11】
図11は、球体の位置(平面上の位置)を調整する機構の一部を示す斜視図。
【
図12】
図12は、4つの球体の位置(高さと、水平位置)を調整する機構を備えた装置の斜視図。
【発明を実施するための形態】
【0023】
以下、添付図面を参照して、本発明の複数の実施形態を説明する。
【0024】
[実施形態1]
実施形態1は、3Dスキャナ(以下、「スキャナ」という。)と4つのターゲットを用いた点群データの取得方法であって、特に、スキャナと4つのターゲットを移動しながら点群データを取得する手順に特徴を有するものである。
【0025】
[使用装置]
実施形態1に使用する装置は、
図1に示すスキャナ装置1と
図4に示すターゲット装置2である。
【0026】
[スキャナ装置]
スキャナ装置1は、リモートコントローラからの信号に基づいて任意の方向に移動可能な自走式が好ましい。ただし、スキャナ装置は、自走式である必要はなく、スキャナ装置に取り付けたけん引装置又は手押し装置等を介して人が移動させる非自走式であってもよい。以下の説明では、自走式のスキャナ装置を説明する。
【0027】
図1を参照すると、スキャナ装置1は、台車10を有する。
【0028】
台車10は、基台11と、基台11に取り付けた複数(実施形態では4つ)の車輪(2つの前輪12と2つの後輪13)を有する。2つの前輪12は、スキャナ装置1の移動方向を変えることができるように、ステアリング機構(図示せず)を介して基台11に連結されている。一方、2つの後輪13は、基台11に固定された車軸(図示せず)に連結されている。
【0029】
基台11の上面には、4つの柱14が固定されている。4つの柱14は、水平2方向(前後方向X方向(
図1の左右方向)と、それに直交するY方向(
図1の表裏方向)に対して対称に配置されている。
【0030】
4つの柱14は、テーブル15を支持している。
【0031】
テーブル15の中央(4つの柱14の中央)には、3Dスキャナ(以下、「スキャナ」という。)16が固定されている。実施形態において、スキャナ16は、例えば、FARO社から提供されている3Dスキャナ「FARO Focus Premium」が利用可能である。
【0032】
周知のとおり、スキャナ16は、周辺環境(測定対象物を含む)に照射したレーザが周辺環境に反射して帰ってくるまでの時間又は位相差から距離情報を算出し、また、レーザの移動方向角度から角度情報を算出し、これら距離情報と角度情報から周辺環境の3次元位置情報(点群データ)を取得するものである。
【0033】
そのために、例えば
図2に示すように、スキャナ16は、テーブル15に固定された下部固定部17と、下部固定部17に支持された上部回転部18を有する。上部回転部18は、鉛直軸19を中心に下部固定部17に対して、水平面上で回転可能に連結されている。
【0034】
下部固定部17と上部回転部18には、下部固定部17に対して上部回転部18を回転するために必要な水平回転機構が設けられている。実施形態では、水平回転機構は、モータ20と、モータ20の回転を上部回転部18の回転に変換する回転伝達機構を含む。実施形態では、モータ20は、例えば上部回転部18に収容され、回転伝達機構が下部固定部17と上部回転部との間に介在している。
【0035】
上部回転部18は、水平軸21を中心に回転可能に支持された円筒ミラー22を有する。円筒ミラー22は、水平軸21及び鉛直軸19と45度の角度をもって交叉する反射面23を有する。円筒ミラー22は、水平軸21を中心に円筒ミラー22を回転する鉛直回転機構に連結されている。実施形態では、鉛直回転機構は、モータ247と、モータ24の回転を円筒ミラー22に伝達する回転伝達機構を含む。
【0036】
上部回転部18はまた、レーザを発振するレーザ発振部25、発振されたレーザを案内する光学系26、周辺環境から戻ってくる反射レーザを検出するセンサ27、オペレータが保持するリモートコントローラ3からの信号を受信する通信部28、上述した複数の装置を予め決められた手順にしたがって駆動するとともに後に説明するように取得した点群データを保存し処理するプロセッサ29、及びそれらの装置に電力を供給する電源部30を有する。
【0037】
このような構成を備えたスキャナ装置1によれば、リモートコントローラ3から発信された起動信号を通信部28が受信し、その情報がプロセッサ19に伝達されると、プロセッサ19はモータ20,24を駆動する。これにより、上部回転部18が鉛直軸19を中心に回転し、円筒ミラー22が水平軸21を中心に回転する。この状態で、プロセッサ19は、レーザ発振部25を起動してレーザを発振する。光学系26は、レーザ発振部25が発振したレーザを水平軸21に沿って反射面23に案内し、反射面23を介して周辺環境に投射する。周辺環境(計測対象を含む。)で反射したレーザは、反射面23から光学系26を介してセンサ27で検出される。例えばタイムオブフライト方式のスキャナでは、プロセッサ29は、発振されたレーザがセンサ27で検出されるまでの時間に基づいて周辺環境までの距離情報を算出し、また、レーザの移動方向角度から角度状態を算出し、これら距離情報を角度情報に基づいて計測対象の3次元位置情報(点群データ)を取得し保存する。
【0038】
図3に示すように、スキャナ装置1は、自走するために必要な設備を搭載している。例えば、それらの設備には、
図3に示すように、後輪13に駆動連結されて後輪13に回転を伝える走行モータ31、前輪12のステアリング機構に連結されて前輪の方向を調整する操舵モータ32と、リモートコントローラ4からの制御信号を受信する通信部33、通信部33が受信した信号に基づいて走行モータ31と操舵モータ32の駆動を制御するプロセッサ34と、それらの各部に必要な電力を供給する電源部35等が含まれる。
【0039】
[ターゲット装置]
図4を参照すると、ターゲット装置2は、スキャナ装置1と同様に自走式の装置で、スキャナ装置1が3Dスキャナを支持しているのに対し、スキャナに代えてターゲット用の球体40を支持している点でのみ、スキャナ装置と相違する。したがって、ターゲット装置2に表れる構成のうち、ターゲット装置2の構成と同じ又は類似する構成には、
図1に示す符号にダッシュ(’)を加えた数字を付して説明を省略する。なお、ターゲット装置2は、非自走式の装置であってもよい。
【0040】
[計測方法]
上述のスキャナ装置1とターゲット装置2を用いて周辺環境の計測対象を計測する(すなわち、点群データを取得する)際の、スキャナ装置とターゲット装置の配置と動きを説明する。
【0041】
[実施形態1]
図5は、1つのスキャナ装置100(上述のスキャナ装置1を含む。)と4つのターゲット装置201~204(上述のターゲット装置2を含む。)を用いて、周辺環境(計測対象物)を計測するプロセスの実施形態1を示し、特に、
図5(a)~
図5(d)及び
図6は、時間が異なる複数時点におけるスキャナ装置100とターゲット装置201~204の位置関係と、スキャナ装置100からレーザが投射された領域およびその領域の点群データ301~304を概念的に示す。
【0042】
[工程1:
図5(a)]
図示するように、
図5(a)の時点では、スキャナ装置100が移動する方向(矢印A方向)に関して、スキャナ装置101の後方(上流側)に2つのターゲット装置201,202が配置され、スキャナ装置101の前方(下流側)に別の2つのターゲット装置203,204が配置される。後方に位置する2つのターゲット装置201,202のうち、一方(図の下側のターゲット装置)201は他方(図の上側のターゲット装置)202よりも後方(上流側)にあることが好ましい。同様に、前方に位置する2つのターゲット装置203,204のうち、一方(図の下側のターゲット装置)203は他方(図の上側のターゲット装置)204よりも後方(上流側)にあることが好ましい。
【0043】
この状態で、4つのターゲット装置201~204(特に、ターゲット球体241~244)は、スキャナ装置101から直接観察できる位置にあることが必要である。
【0044】
点群データ取得時、リモートコントローラ3からの信号により、スキャナ装置101がスキャナ16を駆動し、上部回転部18が鉛直軸19を中心に回転しながら円筒ミラー22が水平軸21を中心に回転し、レーザ発信器25で発振されたレーザを光学系26と円筒ミラー22の反射面23を介して周辺環境に投射する。周辺環境で反射したレーザは、円筒ミラー22の反射面23から光学系26を介してセンサ27に入射する(受振される)。プロセッサ29は、発振から受振までの時間差に基づいて距離情報を算出し、また、レーザの移動方向角度から角度情報を算出し、これら距離情報と角度情報から周辺環境の点群データ301を取得する。
【0045】
[工程2:
図5(b)]
図5(a)に示す状態での計測が終了すると、リモートコントローラ4の信号に基づいて、4つのターゲット装置201~204のうちで最も上流側に位置するターゲット装置201が計測作業の進行方向(矢印A方向)に移動し、
図5(a)の状態で最も下流側にあったターゲット装置204の下流側に移動する。また、リモートコントローラ3からの信号に基づいて、スキャナ装置101が下流側に移動する。ただし、
図5(a)に示す位置のスキャナ装置101が移動後のターゲット装置201~204を直接観察できれば、移動しなくてもよい。移動後のスキャナ装置101と4つのターゲット装置201~204の配置が、
図5(b)に示されている。そして、
図5(b)に示す状態で、リモートコントローラ3からの信号により、スキャナ装置101が駆動し、点群データ302を取得する。
【0046】
[工程3:
図5(c)]
図5(b)に示す状態での計測が終了すると、リモートコントローラ4の信号に基づいて、4つのターゲット装置201~204のうち、
図5(b)の状態で最も上流側に位置するターゲット装置202が計測作業の進行方向(矢印A方向)に移動し、
図5(b)の状態で最も下流側にあったターゲット装置201の下流側に移動する。また、リモートコントローラ3からの信号に基づいて、スキャナ装置101が下流側に移動する。ただし、
図5(b)に示す位置のスキャナ装置101が移動後のターゲット装置201~204を直接観察できれば、移動しなくてもよい。移動後のスキャナ装置101と4つのターゲット装置の配置201~204が、
図5(c)に示されている。そして、
図5(c)に示す状態で、リモートコントローラ3からの信号により、スキャナ装置101が駆動し、点群データ303を取得する。
【0047】
[工程4:
図5(d)]
図5(c)に示す状態での計測が終了すると、リモートコントローラ4の信号に基づいて、4つのターゲット装置201~204のうち、
図5(c)の状態で最も上流側に位置するターゲット装置203が計測作業の進行方向(矢印A方向)に移動し、
図5(c)の状態で最も下流側にあったターゲット装置204の下流側に移動する。また、リモートコントローラ3からの信号に基づいて、スキャナ装置101が下流側に移動する。ただし、
図5(c)に示す位置のスキャナ装置101が移動後のターゲット装置201~204を直接観察できれば、移動しなくてもよい。移動後のスキャナ装置101と4つのターゲット装置201~204の配置が、
図5(d)に示されている。そして、
図5(d)に示す状態で、リモートコントローラ3からの信号により、スキャナ装置101が駆動し、点群データ304を取得する。
【0048】
[工程5]
図5(d)に示す状態での計測が終了すると、リモートコントローラ4の信号に基づいて、4つのターゲット装置201~204のうち、
図5(d)の状態で最も上流側に位置するターゲット装置204が計測作業の進行方向(矢印A方向)に移動し、
図5(d)の状態で最も下流側にあったターゲット装置203の下流側に移動する。また、リモートコントローラ3からの信号に基づいて、スキャナ装置101が下流側に移動する。ただし、
図5(d)に示す位置のスキャナ装置101が移動後のターゲット装置201~204を直接観察できれば、移動しなくてもよい。移動後のスキャナ装置101と4つのターゲット装置201~204の配置が、
図5(a)の状態である。そして、この状態で、リモートコントローラ3からの信号により、スキャナ装置101が駆動し、点群データを取得する。
【0049】
以後、上述の工程1~5が繰り返されることにより、大型構造物や広大な敷地の全体の点群データが取得される。
【0050】
このように、実施形態の計測方法では、一つの場所での計測が終了すると、最も上流側に配置されたターゲット装置が最も上流側に移動するとともに、スキャナ装置が4つのターゲット装置(特に、ターゲット球体)を観察できる位置に移動する。そして、この動作を繰り返すことによって、周辺環境全体の点群データを取得する。
【0051】
なお、各工程でスキャナ装置が移動することは必須ではなく、スキャナ装置が移動後のターゲット装置の球体を直接観察できれば移動しなくてもよい。
【0052】
[合成(結合)処理]
以上の計測によって得られた点群データは合成(結合)されて一つの点群データ(合成後)が得られる。例えば、
図5(b)で示す点群データ302を前後の点群データ301,303と合成する場合、点群データ302と301に共通して含まれる3つの球体242,243,244の点群が重なり、点群データ302と303に共通して含まれる3つの球体243,244,241の点群が重なるように、点群データ302が調整される。
【0053】
同様に、点群データ303を前後の点群データ302,304と合成する場合、点群データ303と302に共通して含まれる3つの球体243,244,241の点群が重なり、点群データ303と304に共通して含まれる3つの球体244,241,242の点群が重なるように、点群データ303が調整される。
【0054】
以上の処理が順次隣接する点群データとの間で行われることにより、すべての点群データが調整されて合成される。
【0055】
このように、上述の実施形態では、4つのターゲット装置を用い、それら4つのターゲット装置を一定の規則に従って移動配置することで、周辺環境全体の点群データを得ることができるとともに、取得された点群データが適切に合成される。
【0056】
[実施形態2]
実施形態2は、3Dレーザスキャナ(以下、「スキャナ」という。)と6つのターゲットを用いて点群データを取得する方法であって、特に、スキャナと複数のターゲットを移動する手順に特徴を有するものである。
【0057】
図7は、1つのスキャナ装置2101(上述のスキャナ装置1を含む。)と6つのターゲット装置2201~2206(上述のターゲット装置2を含む。)を用いて、周辺環境(計測対象物)を計測するプロセスの実施形態2を示し、特に、
図7(a)~
図7(e)は、時間が異なる複数時点におけるスキャナ装置2101とターゲット装置2201~2206の位置関係と、スキャナ装置2101からレーザが投射された領域およびその領域の点群データ2301~2306を概念的に示す。
【0058】
[工程1:
図7(a)] 図示するように、
図7(a)の時点では、スキャナ装置2101が移動する方向(矢印A方向)に関して、スキャナ装置2101の後方(上流側)3つのターゲット装置2201~2203が配置され、スキャナ装置2101の前方(下流側)に別の3つのターゲット装置2204~2206が配置される。図面上、後方の3つのターゲット装置2201~2203と前方の3つのターゲット装置2204~2206はそれぞれ縦一列に表されているが、これは発明の理解を容易にするためにであって、必要なことではない。ただし、6つのターゲット装置2101~2106(特に、ターゲット球体2241~2246)は、スキャナ装置2101から直接観察できる位置にあることが必要である。
【0059】
点群データ取得時、リモートコントローラ3からの信号により、スキャナ装置2101のスキャナ16駆動し、上部回転部18が鉛直軸19を中心に回転しながら円筒ミラー22が水平軸21を中心に回転し、レーザ発信器25で発振されたレーザを光学系26と円筒ミラー22の反射面を介して周辺環境(計測対象物を含む。)に投射する。これにより、周辺環境で反射したレーザが円筒ミラー22の反射面23から光学系26を介してセンサ27に入射する(受振される)。プロセッサ29は、発振から受振までの時間差に基づいて距離情報を算出し、また、レーザの移動方向角度から角度情報を算出し、これら距離情報と角度情報から周辺環境の点群データ2301を取得する。
【0060】
[工程2:
図7(b)]
図7(a)に示す状態での計測が終了すると、リモートコントローラ4の信号に基づいて、後方の3のターゲット装置2201~2203が計測作業の進行方向(矢印A方向)に移動する。また、リモートコントローラ3からの信号に基づいて、スキャナ装置2101が下流側に移動する。ただし、
図7(a)に示す位置のスキャナ装置2101が移動後のターゲット装置2201~2203を直接観察できれば、移動しなくてもよい。移動後のスキャナ装置1101と6つのターゲット装置2201~2203、2204~2206の配置が、
図7(b)に示されている。そして、リモートコントローラ3からの信号により、スキャナ装置2101が駆動し、点群データ2302を取得する。
【0061】
[工程3:
図7(c)]
図7(b)に示す状態での計測が終了すると、リモートコントローラ4の信号に基づいて、前方の3のターゲット装置2204~2206が計測作業の進行方向(矢印A方向)に移動する。また、リモートコントローラ3からの信号に基づいて、スキャナ装置2101が下流側に移動する。ただし、
図7(b)に示す位置のスキャナ装置2101が移動後のターゲット装置2201~2203を直接観察できれば、移動しなくてもよい。移動後のスキャナ装置1101と6つのターゲット装置2201~2203、2204~2206の配置が、
図7(c)に示されている。そして、リモートコントローラ3からの信号により、スキャナ装置2101が駆動し、点群データ2303を取得する。
【0062】
[工程4:
図7(d)]
図7(c)に示す状態での計測が終了すると、リモートコントローラ4の信号に基づいて、後方の3のターゲット装置2201~2203が計測作業の進行方向(矢印A方向)に移動する。また、リモートコントローラ3からの信号に基づいて、スキャナ装置1100が下流側に移動する。ただし、
図7(c)に示す位置のスキャナ装置2101が移動後のターゲット装置2201~2203を直接観察できれば、移動しなくてもよい。移動後のスキャナ装置2201と6つのターゲット装置2201~2203、2204~2206の配置が、
図7(d)に示されている。そして、リモートコントローラ3からの信号により、スキャナ装置2101が駆動し、点群データ2304を取得する。
【0063】
[工程5:
図7(e)]
図7(d)に示す状態での計測が終了すると、リモートコントローラ4の信号に基づいて、前方の3のターゲット装置2204~2206が計測作業の進行方向(矢印A方向)に移動する。また、リモートコントローラ3からの信号に基づいて、スキャナ装置2101が下流側に移動する。ただし、
図7(d)に示す位置のスキャナ装置2101が移動後のターゲット装置2201~2203を直接観察できれば、移動しなくてもよい。移動後のスキャナ装置2101と6つのターゲット装置2201~2203、2204~2206の配置が、
図7(e)に示されている。そして、リモートコントローラ3からの信号により、スキャナ装置2101が駆動し、点群データ2305を取得する。
【0064】
以後、上述の工程が繰り返されることにより、大型構造物や広大な敷地の全体の点群データが取得される。特に、実施形態2の方法は、幅が狭くて長い計測対象、例えば隧道などの計測に有効である。
【0065】
[合成処理]
以上の計測によって得られた点群データは合成(結合)されて一つの点群データ(合成後)が得られる。例えば、
図7(b)で示す点群データ2302を前後の点群データ2301,2303と合成する場合、点群データ2302と2301に共通して含まれる3つの球体2204~2206の点群が重なり、点群データ230と2303に共通して含まれる3つの球体2201~2203の点群が重なるように、点群データ2302が調整される。
【0066】
同様に、点群データ2303を前後の点群データ2302,2304と合成する場合、点群データ2303と2302に共通して含まれる3つの球体2201~2203の点群が重なり、点群データ2303と2304に共通して含まれる3つの球体2204~2206の点群が重なるように、点群データ2303が調整される。
【0067】
以上の処理が順次隣接する点群データとの間で行われることにより、すべての点群データが調整されて合成される。
【0068】
このように、上述の実施形態では、6つのターゲット装置を用い、それら6つのターゲット装置を一定の規則に従って移動配置することで、周辺環境全体の点群データを得ることができるとともに、取得された点群データが適切に合成される。
【0069】
[改変例1]
実施形態2において、後方に配置した6つの球体2241~2246はそれぞれが別々の支持体(台車)に支持されているが、後方の3つのターゲット球体2241~2243を一つの支持体に支持させ、前方の3つのターゲット球体2244~2246を別の支持体に支持させてもよい。
【0070】
具体的には、
図8に示すように、測量用三脚50のそれぞれの脚51~53に球体41~43(上述の球体40を含む。)を取り付けた支持体55からなる計測装置(球体セット)を2つ(第1の球体セットと第2の球体セット)用意し、これら2つの計測装置を上述の実施形態2で説明した規則に従って移動させてもよい。
【0071】
図8に示す支持体55では、3つの球体41~43を脚51~53のほぼ同じ位置(高さ)に取り付けているが、点群データの中に表れる3つのターゲット球体を容易に区別できるように、3つのターゲット球体41~43を脚に取り付ける位置(高さ)を違えることが好ましい。そのために、支持体55の脚51~53のそれぞれに、高さの異なる複数の位置にそれぞれ球体取付部を設けることが好ましい。
【0072】
三脚と球体の持ち運びの容易性を考慮すると、3つの球体41~43は、脚51~53に着脱可能であることが好ましい。これにより、球体41~43は、三脚とは別に持ち運ぶことができる。
【0073】
[改変例2]
改変例1で説明した支持体55(球体付三脚)には、
図8に示すように、実施形態1で説明したスキャナ16を搭載してもよい。このように球体付三脚50にスキャナ16を搭載したスキャナ及び球体付き三脚(計測装置)は、実施形態2で説明した、スキャナ装置12101と後方の3つのターゲット装置2201~2203の組み合わせ、または、スキャナ装置2101と前方の3つのターゲット球体装置2204~2206の組み合わせに代えることができる。また、実施形態2で説明した、3つのターゲット装置2201~2203、または、前方の3つのターゲット装置2204~2206を一つの球体付三脚に代えることができる。これら球体付き三脚とスキャナ及び球体付き三脚を用いると、一つの球体付き三脚と一つのスキャナ及び球体付き三脚を交互に移動方向に移動させることによって、大型構造物の点群データも簡易に得ることができる。
【0074】
[改変例3]
上述の改変例1,2は、測量用三脚に3つの球体を取り付けたが、支持体の構造はこれに限るものではなく、例えば、
図9に示す形態の支持体500であってもよい。この支持体500は、実施形態1で説明した車輪付基台と同様の基台501の上に、球体を支持するための4本の柱502が、直交する水平2方向(X方向とY方向)に一定の間隔をあけて固定されている。
図10に示すように、各柱502には、一定の間隔をあけて水平方向の貫通孔(ピン挿入孔)503が形成されており、その貫通孔503にピン504が挿入できるように構成されている。
【0075】
球体510は、球体の中心を通る貫通孔511が形成されている。貫通孔511の横断面は柱502の横断面とほぼ同じである。したがって、球体510は、貫通孔511に柱502を挿入するとによって、柱502に昇降可能である。また、球体510の位置(高さ)は、ピン504を挿入する貫通孔503を選択するとによって、容易に変更又は調整できる。このように、改変例3では、4つの球体510が一つの球体セットを構成している。
【0076】
[改変例4]
改変例3における各柱502及びそれに支持された球体510の水平方向の位置は、適当な水平位置調整機構によって変更できるようにしてもよい。例えば、
図11に示す水平位置調整機構520は、基台501の上に固定された一対の細長い縦方向(
図9のX方向)のサイドフレーム521(一方のフレームは図示せず)を有する。サイドフレーム521の間には、サイドフレーム521に直交する方向に延在する横方向レール522が固定されている。横方向レール522の上面には、長手方向に溝(ガイド溝)523が形成されている。横方向レール522の上には、改変例3で説明した柱502を支持する可動ブロック524が配置される。可動ブロック524の下面には、溝523に係合する突条(被ガイド部)525が形成されており、突条525を溝523に係合した状態で、可動ブロック524は横方向レール522に沿って移動できるように構成されている。可動ブロック524には、突条525と平行に、可動ブロック524を貫通する孔が形成され、その孔にナット526が固定されている。ナット52にはねじ軸527が螺合され、ねじ軸527の一端は、基台501又はサイドフレーム521に固定されたモータ528の回転軸が直接又は変速機構を介して間接的に連結されている。モータ528は、リモートコントローラ4からの信号によって調整できるようにすることが好ましい。このように構成された移動機構520によれば、リモートコントローラ4からの信号に基づいてモータ528が駆動し、柱502及び球体510の水平位置を適宜変更又は調整できる。
【0077】
[改変例5]
改変例4における球体の高さは、遠隔操作によって調整できるようにしてもよい。そのように構成された装置の実施形態を
図12、13に示す。
図12に示す垂直位置調整機構は、基台601のX方向に延在する縁に沿って配置された一対の下部サイドフレーム602を有する。サイドフレーム602は、
図11に示す改変例4のサイドフレーム521と同じである。一対のサイドフレーム602の間には、X方向に一定の間隔をあけて、Y方向(X方向に直交する方向)に延在する4つの下部横方向レール603が配置されている。横方向レール603は、
図11に示す改変例4の横方向レールと同じで、
図13に示すように、上面に溝(ガイド溝)604が形成されている。横方向レール603の上面には、可動ブロック605が配置される。可動ブロック605は、
図11に示す改変例4の可動ブロックと同様に下面の突条606とナット607を有し、ナット607にねじ軸608が螺合され、ねじ軸608の一端がモータ(下部移動モータ)609に直接又は変速機構を介して間接的に連結されている。このように、可動ブロック605は、横方向レール603、溝604と突条606の噛み合い、ねじ軸608とナット607の噛み合い、及びモータ609、を含む下部可動ブロック移動機構によってY方向に移動するようになっている。
【0078】
可動ブロック605は、鉛直方向に向けて配置された昇降用ねじ軸610の下端を回転可能に支持している。また、可動ブロック605は、ねじ軸610の近傍にねじ軸610と平行に鉛直方向に配置された案内棒611の下端を支持している。昇降用のねじ軸610と案内棒611の上端は、可動ブロック612に連結されている。
【0079】
図12に示すように、基台601の上には、4つの横方向レール603のそれぞれの両端近傍に柱615が固定されている。
図13に示すように、柱615の上端は、X方向に延在する上部サイドフレーム616によって連結されている。また、左右一対のサイドフレーム616は、下部横方向レール603と平行に配置された上部横方向フレーム617によって連結されている。図示する形態では、横方向フレーム617は、ブラケット形状の横断面を有し、上部フランジと下部フランジの間に案内溝617が形成されており、案内溝617に可動ブロック612が案内溝617に沿って移動可能に嵌め込まれている。
【0080】
可動ブロック612には、Y方向の貫通孔が形成され、そこにナット618が嵌められている。ナット618にはねじ軸619が螺合しており、ねじ軸619の一端が、サイドフレーム616に固定されたモータ(上部移動モータ)620に駆動連結されている。このように、上部可動ブロック612は、横方向レール617、溝617と可動ブロック612の噛み合い、ねじ軸619とナット618の噛み合い、及びモータ620を含む上部可動ブロック移動機構によってY方向に移動するようになっている。
【0081】
球体621を昇降するために、可動ブロック612はモータ(昇降モータ)622を支持しており、モータ622の回転軸に縦方向ねじ軸610の上端が連結されている。可動ブロック612はまた、案内棒611の上端を支持している。一方、球体621の中心を通る貫通孔にはナット623が固定され、このナット623にねじ軸610が螺合されている。球体621にはまた、貫通孔の近くに該貫通孔と平行に案内貫通孔624が形成されており、この貫通孔624に案内棒611が挿通されている。このように、球体621は、ねじ軸610とナット623の噛み合い、案内棒611、及びモータ622を含む昇降機構によって、上下方向に移動するようになっている。
【0082】
図14は、4つの横方向レール603のそれぞれの列に対応して設けたモータ及びその駆動を制御するプロセッサ625等を示す。なお、
図4において、各列に設けたモータを区別するために、第1列目(
図12の最も左側に表れる列)~第4列目(
図12の最も右側に表れる列)のモータにはそれぞれ添え字(小文字)の1~4を付して区別する。
【0083】
図14に示すように、各列の下部移動モータ609、上部移動モータ620、及び昇降モータ622は、プロセッサ625からの信号に基づいてそれぞれ駆動されるように接続される。プロセッサ625は、通信部626に接続されている。したがって、オペレータが操作するリモートコントローラ627からの信号を通信部626が受信すると、その受信信号に対応する信号がプロセッサに送信される。その結果、各列のモータ609,620,622が、オペレータからの指示に基づいて適宜駆動し、球体621の位置及び高さが調整される。
【0084】
なお、下部と上部の可動ブロック605,612は、ねじ軸610を鉛直に保った状態を維持することが好ましいため、下部移動モータ609と上部移動モータ620の回転数及び回転角度は精度良く制御することが好ましい。そのために、下部移動モータ609と上部移動モータ620は、パルスモータで構成することが好ましい。
【符号の説明】
【0085】
1、101、2101:スキャナ装置
2、201~204,2201~2206:ターゲット装置
16:3Dスキャナ
40、41~43:球体
50:三脚
55:支持体
【手続補正書】
【提出日】2022-11-28
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
3Dスキャナを間欠的に移動しながら前記3Dスキャナで環境の点群データを取得する方法であって、
前記3Dスキャナの移動方向に関して、4つの球体を互いに間隔をあけて配置する球体配置工程と、
3Dスキャナを用いて前記4つの球体を含む環境の点群データを取得する計測工程と、
前記計測工程の後、前記3Dスキャナを移動するスキャナ移動工程と、
前記計測工程の後、前記4つの球体のうちで前記計測工程の時点で前記3Dスキャナの移動方向に関して最も上流側に位置する球体を、前記4つの球体のうちで前記計測工程の時点で前記3Dスキャナの移動方向に関して最も下流側に位置する球体の下流側に移動する球体移動工程と、
前記計測工程、前記スキャナ移動工程及び前記球体移動工程を繰り返し実行する繰り返し工程を含む、方法。
【請求項2】
3つの第1の球体を互いに間隔をあけて配置した第1の球体セット、3つの第2の球体を互いに間隔をあけて配置した第2の球体セットと、3Dスキャナとを用い、前記第1の球体セット、前記第2の球体セット、及び前記3Dスキャナを移動させながら、環境の点群データを取得する方法であって、
移動方向の上流側から下流側に向かって、前記第1の球体セット、前記3Dスキャナ及び前記第2の球体セットを順番に設置する第1の設置工程と、
前記3Dスキャナで前記第1の球体セットと前記第2の球体セットを含む第1の環境の第1の点群データを取得する第1の計測工程と、
前記第1の計測工程に続いて、前記第1の球体セットを前記第2の球体セットに向けて移動して、前記移動方向に前記第1の球体セット、前記3Dスキャナ及び前記第2の球体セットを順番に設置する第2の設置工程と、
前記第2の設置工程に続いて、前記3Dスキャナで前記第1の球体セットと前記第2の球体セットを含む第2の環境の第2の点群データを取得する第2の計測工程と、
前記第2の計測工程に続いて、前記第2の球体セットを前記移動方向に移動して、前記移動方向に、前記第1の球体セット、前記3Dスキャナ及び前記第2の球体セットを順番に設置する第3の設置工程と、
前記第3の設置工程に続いて、前記3Dスキャナで前記第1の球体セットと前記第2の球体セットを含む第3の環境の第1の点群データを取得する第3の計測工程と、
前記第3の計測工程に続いて、前記第1の球体セットを前記第2の球体セットに向けて移動して、前記移動方向に前記第1の球体セット、前記3Dスキャナ及び前記第2の球体セットを順番に設置する第4の設置工程と、
前記第4の設置工程に続いて、前記3Dスキャナで前記第1の球体セットと前記第2の球体セットを含む第4の環境の第4の点群データを取得する第4の計測工程と、
前記第4の計測工程に続いて、前記第2の球体セットを前記移動方向に移動して、前記移動方向に、前記第1の球体セット、前記3Dスキャナ及び前記第2の球体セットを順番に設置する第5の設置工程と、
前記第5の設置工程に続いて、前記3Dスキャナで前記第1の球体セットと前記第2の球体セットを含む第5の環境の第5の点群データを取得する第5の計測工程
を含む方法。
【請求項3】
前記第1の設置工程、前記第1の計測工程、前記第2の設置工程、前記第2の計測工程、前記第3の設置工程、前記第3の計測工程、前記第4の設置工程、前記第4の計測工程、前記第5の設置工程、及び前記第5の計測工程、を繰り返す繰り返し工程を有する、請求項2に記載の方法。
【請求項4】
前記第1の球体セットを第1の支持体に支持させ、前記第2の設置工程と前記第4の設置工程において、前記第1の球体セットを前記第1の支持体と共に移動させる、請求項3に記載の方法。
【請求項5】
前記第2の球体セットを第2の支持体に支持させ、前記第3の設置工程と前記第5の設置工程において、前記第2の球体セットを前記第2の支持体と共に移動させる、請求項3に記載の方法。
【請求項6】
前記3Dスキャナを第3の支持体に支持させ、前記第2の設置工程、前記第3の設置工程、前記第4の設置工程及び前記第5の設置工程の少なくとも1つにおいて、前記3Dスキャナを前記第3の支持体と共に移動させる、請求項3に記載の方法。
【請求項7】
前記第1の球体セットは、
基台と、
基台に支持された複数の柱と、
前記複数の柱のそれぞれに昇降可能に支持された複数の球体と、
前記複数の球体の高さをそれぞれ調整する機構を備えており、
前記複数の球体が、前記3つの第1の球体を含む、請求項2の方法。
【請求項8】
前記第2の球体セットは、
基台と、
基台に支持された複数の柱と、
前記複数の柱のそれぞれに昇降可能に支持された複数の球体と、
前記複数の球体の高さをそれぞれ調整する機構を備えており、
前記複数の球体が、前記3つの第2の球体を含む、請求項2の方法。
【請求項9】
基台と、
基台に支持された複数の柱と、
前記複数の柱のそれぞれに昇降可能に支持された球体と、
前記球体の高さを調整する機構を備えた、ことを特徴とする計測装置。