IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 富士通株式会社の特許一覧

特開2024-44029光送受信器、これを用いた光送受信装置、及び光源波長制御方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024044029
(43)【公開日】2024-04-02
(54)【発明の名称】光送受信器、これを用いた光送受信装置、及び光源波長制御方法
(51)【国際特許分類】
   H04B 10/572 20130101AFI20240326BHJP
   G02F 1/01 20060101ALI20240326BHJP
   H04J 14/02 20060101ALI20240326BHJP
【FI】
H04B10/572
G02F1/01 C
H04J14/02 198
【審査請求】未請求
【請求項の数】9
【出願形態】OL
(21)【出願番号】P 2022149338
(22)【出願日】2022-09-20
【国等の委託研究の成果に係る記載事項】(出願人による申告)令和3年度、国立研究開発法人新エネルギー・産業技術総合開発機構、「高効率・高速処理を可能とするAIチップ・次世代コンピューティングの技術開発/次世代コンピューティング技術の開発/異種材料集積光エレクトロニクスを用いた高効率・高速処理分散コンピューティングシステム技術開発」委託研究、産業技術力強化法第17条の適用を受ける特許出願
(71)【出願人】
【識別番号】000005223
【氏名又は名称】富士通株式会社
(74)【代理人】
【識別番号】100107766
【弁理士】
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【弁理士】
【氏名又は名称】伊東 忠彦
(74)【代理人】
【識別番号】100107515
【弁理士】
【氏名又は名称】廣田 浩一
(72)【発明者】
【氏名】松井 潤
(72)【発明者】
【氏名】秋山 知之
(72)【発明者】
【氏名】田中 信介
【テーマコード(参考)】
2K102
5K102
【Fターム(参考)】
2K102AA28
2K102BA16
2K102BB01
2K102BB02
2K102BB04
2K102BC10
2K102BD02
2K102DA04
2K102DB04
2K102EA05
2K102EA17
2K102EA18
2K102EA25
2K102EB20
2K102EB22
5K102AA11
5K102AA15
5K102AD02
5K102AH02
5K102AH11
5K102AH14
5K102AH24
5K102AH26
5K102MA01
5K102MB02
5K102MB12
5K102MC03
5K102MD01
5K102MD03
5K102MH02
5K102MH13
5K102MH22
5K102PA01
5K102PB01
5K102PC06
5K102PC12
5K102PH01
5K102PH11
5K102PH31
5K102PH47
5K102PH48
5K102RB01
(57)【要約】
【課題】光送受信器のサイズとコストの増大を抑えて周波数効率を改善する。
【解決手段】光送受信器は、光送受信回路と、異なる波長の複数の光源素子からの出射光を合波して出力する光源装置と、前記光源装置から出力された光を複数の波長に分波して前記光送受信回路に供給する分波器と、前記分波器の出力ポートで前記複数の波長のそれぞれをモニタするモニタと、前記モニタのモニタ結果に基づいて前記複数の光源素子の波長を制御する波長コントローラと、を有し、前記分波器は、所定のアーム長差をもつ3つの非対称マッハツェンダ干渉計がツリー状に接続された単位回路を複数有し、複数の前記単位回路はツリー状にカスケード接続されており、前記モニタは、カスケードされたツリーの末端の非対称マッハツェンダ干渉計の出力導波路に配置されて、前記波長コントローラと信号線で接続されている。
【選択図】図6
【特許請求の範囲】
【請求項1】
光送受信回路と、
異なる波長の複数の光源素子からの出射光を合波して出力する光源装置と、
前記光源装置から出力された光を複数の波長に分波して前記光送受信回路に供給する分波器と、
前記分波器の出力ポートで前記複数の波長のそれぞれをモニタするモニタと、
前記モニタのモニタ結果に基づいて前記複数の光源素子の波長を制御する波長コントローラと、
を有し、
前記分波器は、所定のアーム長差をもつ3つの非対称マッハツェンダ干渉計がツリー状に接続された単位回路を複数有し、複数の前記単位回路はツリー状にカスケード接続されており、前記モニタは、カスケードされたツリーの末端の非対称マッハツェンダ干渉計の出力導波路に配置されて、前記波長コントローラと信号線で接続されている、
光送受信器。
【請求項2】
前記光源装置は、前記複数の光源素子の中の第1の光源素子に対してのみ波長モニタまたは波長ロッカを備えており、
前記波長コントローラは、前記波長モニタまたは前記波長ロッカにより前記第1の光源素子の波長を固定させ、前記モニタ結果に基づいて、前記第1の光源素子を除く光源素子の前記波長を制御する、
請求項1に記載の光送受信器。
【請求項3】
前記波長コントローラは、前記複数の波長が等間隔になるように前記複数の光源素子の前記波長を制御する、
請求項1に記載の光送受信器。
【請求項4】
前記波長コントローラは、前記複数の波長が所定の絶対値をもち、かつ等間隔になるように前記複数の光源素子の前記波長を制御する、
請求項2に記載の光送受信器。
【請求項5】
前記末端の非対称マッハツェンダ干渉計の出力導波路は2つに分岐しており、
前記分波器は、前記末端の非対称マッハツェンダ干渉計の一方の出力導波路に接続されて対応する波長の光をモニタする第1モニタと、他方の出力導波路に接続される第2モニタとを有し、
前記波長コントローラは、前記第1モニタの第1モニタ結果が増加し、前記第2モニタの第2モニタ結果が減少する方向に、前記複数の光源素子の波長を制御する、
請求項1に記載の光送受信器。
【請求項6】
前記分波器は、前記第1モニタ結果と前記第2モニタ結果に基づいて前記分波器の透過特性を制御する制御機構を有し、
前記波長コントローラは、前記制御機構による前記透過特性の制御と並行して、前記複数の光源素子の前記波長を制御する、
請求項5に記載の光送受信器。
【請求項7】
請求項1~6のいずれか1項に記載の光送受信器を備えたサブキャリア伝送用の光送受信装置。
【請求項8】
異なる波長の複数の光源素子を有する光源装置を準備し、
所定のアーム長差をもつ3つの非対称マッハツェンダ干渉計がツリー状に接続された単位回路が複数個ツリー状にカスケード接続されている分波器に、前記光源装置から複数の波長の光を入射し、
前記分波器で分波された前記複数の波長の光を前記分波器の出力ポートでモニタし、
モニタ結果に基づいて、波長コントローラで前記複数の光源素子の波長を制御する、
光源波長制御方法。
【請求項9】
前記複数の光源素子の中の第1の光源素子の第1波長を固定し、
前記波長コントローラにより、前記第1の光源素子を除く光源素子の波長を制御する、
請求項8に記載の光源波長制御方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は光送受信器、これを用いた光送受信装置、及び光源波長制御方法に関する。
【背景技術】
【0002】
通信容量を拡大する方法のひとつに、多数の波長の光を多重するWDM(Wavelength Division Multiplexing:波長分割多重)がある。WDMは、複数の光送受信モジュールに割り当てられた複数のチャネルを一本の光ファイバに多重して伝送することで、通信容量を拡大する。光スペクトルの利用効率を高めるため、多数の波長を狭い間隔で密に多重するデンスWDMも実用化されている。光送受信モジュールの受信側では、分波器を用いて多重された各波長の光を分波する(たとえば、特許文献1、及び2参照)。アーム長差が同一の3つの非対象マッハツェンダ(AMZ:Asymmetric Mach-Zehnder)干渉計で形成される単位回路を複数接続した分波器の構成が提案されている(たとえば、特許文献3参照)。
【0003】
一方で、一組の光送受信モジュールの間で、複数のサブキャリアを用いて周波数多重するサブキャリア伝送が知られている。サブキャリア伝送では、光送受信器の受信側で各サブキャリアを正確に分波できるように、波長間隔を等間隔に制御する技術が求められる。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平9-261181号公報
【特許文献2】特開2016-225923号公報
【特許文献3】特開2019-135524号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
サブキャリア伝送方式の送受信器では、波長の異なる光を出力する複数のレーザ素子を有する光源装置が用いられる。サブキャリアの数に応じたレーザ素子を用いて波長間隔を密に、かつ等間隔に制御するために、レーザ素子ごとに波長モニタまたは波長ロッカが設けられる。多重されるサブキャリアの数に比例して光源装置の規模が増大し、光送受信器の大型化とコスト増大をまねく。本発明の一つの側面では、周波数利用効率を改善しつつ、光送受信器のサイズとコストの増大を抑えることを目的とする。
【課題を解決するための手段】
【0006】
一つの態様では、光送受信器は、
光送受信回路と、
異なる波長の複数の光源素子からの出射光を合波して出力する光源装置と、
前記光源装置から出力された光を複数の波長に分波して前記光送受信回路に供給する分波器と、
前記分波器の出力ポートで前記複数の波長のそれぞれをモニタするモニタと、
前記モニタのモニタ結果に基づいて前記複数の光源素子の波長を制御する波長コントローラと、
を有し、
前記分波器は、所定のアーム長差をもつ3つの非対称マッハツェンダ干渉計がツリー状に接続された単位回路を複数有し、複数の前記単位回路はツリー状にカスケード接続されており、前記モニタは、カスケードされたツリーの末端の非対称マッハツェンダ干渉計の出力導波路に配置されて、前記波長コントローラと信号線で接続されている。
【発明の効果】
【0007】
周波数利用効率を改善しつつ、光送受信器のサイズとコストの増大を抑えることができる。
【図面の簡単な説明】
【0008】
図1】本開示が適用される光伝送装置の模式図である。
図2】サブキャリア伝送のWDMへの適用を示す模式図である。
図3】サブキャリア方式の光送受信器の模式図である。
図4】第1実施形態の光送受信器の模式図である。
図5図4の光送受信器で用いられる分波器の模式図である。
図6図4の分波器のモニタ機能を利用した光源波長制御の模式図である。
図7】初期状態の光源波長と分波器の透過特性を示す図である。
図8】各波長のポート割り当ての一例を示す図である。
図9】各波長のポート割り当ての一例を示す図である。
図10】各波長のポート割り当ての一例を示す図である。
図11】各波長のポート割り当ての一例を示す図である。
図12】波長補正の過程を示す図である。
図13】波長補正の過程を示す図である。
図14】波長補正の過程を示す図である。
図15】最終的な光源波長設定状態を示す図である。
図16A】制御中の各波長の変化を示す図である。
図16B】制御中の各波長間隔の変化を示す図である。
図17】第2実施形態の光送受信器の模式図である。
図18図17の分波器のモニタ機能を利用した光源波長制御の模式図である。
図19】初期状態の光源波長と分波器の透過特性を示す図である。
図20】各波長のポート割り当ての一例を示す図である。
図21】各波長のポート割り当ての一例を示す図である。
図22】各波長のポート割り当ての一例を示す図である。
図23】基準波長を除く光源波長補正を示す図である。
図24】ヒータ制御による波長補正を示す図である。
図25】最終的な光源波長設定状態を示す図である。
図26A】制御中の各波長の変化を示す図である。
図26B】制御中の各波長間隔の変化を示す図である。
図27】第2実施形態の光源波長制御の効果を比較例と比較して示す図である。
【発明を実施するための形態】
【0009】
図1は、本開示が適用される光伝送装置100の模式図である。光伝送装置100は、たとえばWDM伝送システムのネットワークノードとして用いられる。光伝送装置100は、複数のトランスポンダ130-1~130-n(適宜「トランスポンダ130」と総称する)と、光合分波器140と、光アンプ160と、制御部150を有する。制御部1501はプロセッサとメモリで実現され、各トランスポンダ130、光合分波器140、および光アンプ160の動作を制御する。トランスポンダ130は、たとえばサブキャリア伝送用のトランスポンダであり、光送受信装置の一例である。
【0010】
ルータ等のクライアント装置からの信号は、トランスポンダ130-1~130-nの各々で光伝送用のフレームフォーマットに変換され、対応する光送受信器10-1~10-n(適宜「光送受信器10」と総称する)で複数のサブキャリアを含むサブキャリア信号が生成される。光送受信器10で生成されたサブキャリア信号は、光合分波器140の合波器(「MUX」と表記)140Mで波長多重され、光アンプ160Tで増幅されてネットワーク側の伝送路に出力される。ネットワークから受信された光は、光アンプ160Rで増幅された後、光分波器(「DEMUX」と表記)140Dで各チャネルに分波され、各トランスポンダ130に供給される。各トランスポンダ130で受信された光信号には複数のサブキャリアが含まれている。トランスポンダ130の光送受信器10は、受信した光信号をサブキャリアに分波して検出する。
【0011】
図2は、サブキャリア伝送のWDMへの適用を示す模式図である。WDM通信で各トランスポンダ130(または光送受信器10)に割り当てられる波長帯域をWとする。ひとつの波長帯域Wに複数のサブキャリアλ1、λ2、...、λnが含まれている。各サブキャリアλ1、λ2、…、λnは、4値パルス振幅変調(PAM4)などの強度変調を受けている。ある光送受信器10で波長帯域Wiが用いられ、別の光送受信器10で隣接する波長帯域Wjが用いられる。それぞれが複数のサブキャリアλiを含んでいる多数の波長帯域Wの信号は多重され、WDM信号として伝送される。送信側で各サブキャリアが強度変調されている場合は、受信側で一定の波長間隔でサブキャリアに分波され、サブキャリアごとに光検出器でパワーが検出される。
【0012】
図3は、実施形態の光送受信器10の模式図である。光送受信器は、光源装置11と、光集積回路(PIC:Photonic Integrated Circuit)15と、プロセッサ19を有する。光源装置11は、複数の光源素子12-1~12-n(適宜、「光源素子12」と総称する)と、合波器13を有する。光源素子12は、この例ではレーザダイオードであり、図中で「LD」と表記されている。光集積回路15は、分波器20と、光送受信回路17を有する。光送受信回路17は送信回路171と受信回路172を含む。分波器20と光送受信回路17は、たとえばシリコンフォトニクス技術を用いて、同じ基板上に集積されている。分波器20からの出力光のうち、送信回路171に入射した光は、変調されて変調光信号として出射される。分波器20から受信回路172に入射した光は局発光(LO:Locally Oscillated Light)として用いられる。
【0013】
実施形態では、分波器20で分波される各波長の光のモニタ結果をもとに、分波器20の透過特性を制御する際に、モニタ結果を利用して、光源装置11の各光源素子12の波長をプロセッサ19で制御する。複数の光源素子12の発振波長は、等間隔になるように設計されていても、製造ばらつき、環境の変化、経年的な変化により、設計された発振波長からずれることが多い。そのため、一般的には光源素子ごとに波長をモニタし制御する波長モニタまたは波長ロッカが設けられている。これに対し、実施形態では分波器20の透過特性の制御と並行して各光源素子12の発振波長を制御することで、光源素子12ごとに波長モニタまたは波長ロッカを設置しなくても、均等に設計された波長間隔が得られる。均等な波長間隔というときは、厳密に同一の波長間隔を意味するのではなく、サブキャリア伝送で許容される範囲の誤差を含んでいてもよい。サブキャリア伝送は、狭帯域の直交サブキャリアを密に並べることで周波数利用効率を向上するので、波長間隔を均等に保つことが重要である。サブキャリアの「直交」とは、隣接するサブキャリアで搬送される信号方程式が互いに合成、分離可能であるという数学的な意味での「直交」であり、光位相の直交とは異なる。以下では、波長間隔を均等に制御する構成(第1実施形態)と、均等な波長間隔とともに波長の絶対値を制御する構成(第2実施形態)を詳細に説明する。
【0014】
<第1実施形態>
図4は、第1実施形態の光送受信器10Aの模式図である。光送受信器10Aは、光源装置11Aと、光集積回路15Aと、波長コントローラ191Aを有する。波長コントローラ191Aは、プロセッサ19の機能で実現される。光集積回路15Aは、分波器20と光送受信回路17Aを有する。分波器20と光送受信回路17Aは、たとえばシリコンフォトニクス技術により、一つの基板上に形成されていてもよい。光送受信回路17Aの受信回路172は、光分波器176と、複数の光検出器(図中で「PD」と表記)174-1、174-2、…、174-n(適宜、「光検出器174」と総称する)を有する。送信回路171は、複数の光変調器173-1、173-2、…、173-n(適宜、「光変調器173」と総称する)と、光合波器175を有する。
【0015】
光源装置11Aはn個(nは2以上の整数)の光源素子12を有する。各光源素子12は異なる波長λ1、λ2、…、λnで発振する。複数の波長の光は、光カプラ等の合波器13で合波されて、光源装置11Aから出力される。光源装置11Aから出力された光は光集積回路15Aに入射する。光集積回路15Aに形成された分波器20は、波長の数に応じた光路長制御器201-1、201-2、…、201-n(適宜、「光路長制御器201」と総称する)と、出力ポートPoutに設けられたモニタ用の光検出器202-1、202-2、…、202-nを有する。モニタ用の光検出器202-1、202-2、…、202-nは、受信回路172の光検出器174と区別する目的で、PD、PD、…、PDと表記されている。以下では、光検出器202-1、202-2、…、202-nをモニタPD202-1、202-2、…、202-nと呼び、適宜、「モニタPD202」と総称する。
【0016】
光路長制御器201-1~201-nは、分波器20に形成されている光導波路の実効光路長を制御する。光路長制御器201-1~201-nは、加熱、電圧印加等により光導波路の屈折率を変化させて実効光路長または光位相を制御する制御機構の一例である。制御機構は、光位相を変化させることで分波器20の透過特性を制御し、分波器20に入射した複数波長の光を分波する。分波器20で分波される各波長の光は、モニタPD202-1、202-2、…、202-nでモニタされる。
【0017】
モニタPD202-1~201-nの出力は、フィードバック信号線200により、波長コントローラ191Aにフィードバックされる。モニタ結果は、波長コントローラ191Aにて、光源装置11Aの各光源素子12-1~12-nの発振波長の制御に用いられる。分波器20でのモニタ結果を用いて、各光源素子12-1~12-nの発振波長λ1、λ2、…、λnが、所定の光周波数間隔となるように光源装置11Aを制御する。後述するように、光源装置11Aの発振波長の制御は、光路長制御器201-1~201-nによる分波器20の透過特性の制御と並行して行われる。
【0018】
第1実施形態では、光源装置11Aから出射された各波長の光は、送信回路171で強度変調されて送信される。受信側において、一定間隔でサブキャリアを分波してパワー検出するので、均等な波長間隔は要求されるが、波長の絶対値までは要求されない。波長の絶対値がわずかにずれていても、波長間隔が均等に制御されているので、同一方向への同一量の中心波長のずれは、対向する一対の光送受信器の間で、デジタル信号プロセッサを含めたコヒーレント信号処理で吸収可能である。
【0019】
分波器20の透過特性の制御と光源装置11Aの波長間隔の制御は、新たなトランスポンダ130が光伝送装置100に設置されるとき、あるいは、光送受信器10Aまたはトランスポンダ130が再起動されるときに実施される。光送受信器10Aの起動時以外にも、運用中に定期的、または非定期に、分波器20の透過特性と光源装置11Aの波長間隔の制御が行われてもよい。
【0020】
図5は、図4の分波器20の模式図である。分波器20は、ツリー状にカスケード接続された単位回路21-1、21-2、及び21-3を有する。単位回路21-1、21-2、及び21-3の各々は、ツリー状にカスケード接続された3つの非対象マッハツェンダ(AMZ:Asymmetric Mach-Zehnder)干渉計25で形成されている。この分波器構成をCAT(Cascaded AMZ Triplet)と呼ぶ。
【0021】
図5の例では、4つの波長λ1、λ2、λ3、及びλ4を分波するために、分波器20の先頭の単位回路21-1の2つの出力に、単位回路21-2と21-3がそれぞれ接続された2段構成のCATを用いている。より多くの波長を分離するときは、2段目の単位回路21-2と21-3のそれぞれの出力にさらに別の単位回路を接続して、3段のCATで8つの波長を分離してもよい。
【0022】
先頭の単位回路21-1は、同一のアーム長差ΔLを有する3つのAMZ2511、2512、及び2513を含む。アーム長差が「同一」という場合は、設計上の実効アーム長差が同じであることを意味し、実際の製品では、許容誤差、製造ばらつき等を含むものとする。AMZ2511、2512、および2513の非対称の光導波路には、それぞれヒータH11、H12、およびH13が設けられている。
【0023】
AMZ2511の出力は2つに分岐されて、AMZ2512の入力と、AMZ2513の入力にそれぞれ接続されている。AMZ2512の出力は2つに分岐され、一方の出力導波路にモニタ1AUPが接続され、他方の出力導波路にモニタ1Alоwが接続されている。モニタ1AUPが接続された出力導波路は、2段目の単位回路21-2に接続されるポート(a)となる。同様に、AMZ2513の出力は2つに分岐され、一方の出力導波路にモニタ1BUPが接続され、他方の出力導波路にモニタ1Blоwが接続されている。モニタ1BUPが接続された出力導波路は、2段目の単位回路21-3に接続されるポート(b)となる。
【0024】
モニタ1AUPとモニタ1BUPのモニタ結果は、制御回路23-1に供給される。制御回路23-1は、モニタ1AUPとモニタ1BUPで検出されるパワーが増加する方向に、ヒータH11のパワーP11を制御する。この理由で、図中で制御回路23-1は「Inc」と表記されている。モニタ1Alоwのモニタ結果は、制御回路22aに供給され、モニタ1Blоwのモニタ結果は、制御回路22bに供給される。制御回路22aは、モニタ1Alоwで検出されるパワーが減少する方向にヒータH12のパワーP12を制御する。制御回路22bは、モニタ1Blоwで検出されるパワーが減少する方向にヒータH13のパワーP13を制御する。この理由で、制御回路22aと22bは、図中で「Dec」と表記されている。各モニタと制御回路23または22の間、及び制御回路22または23とヒータHの間を結ぶ点線は、電気制御線を示す。
【0025】
制御回路23-1と、制御回路22a及び22bで1段目の単位回路21-1の透過特性が制御される。制御回路23-1、22a、及び22bと、ヒータH11、H12、及びH13は、図4の光路長制御器201の一例である。ヒータH11、H12、及びH13に替えて、AMZ2511、2512、2513の非対称導波路の屈折率を変化させて光位相を制御することのできる別の構成(電界印加など)を用いてもよい。単位回路21-1に入射した波長λ1、λ2、λ3、及びλ4のうち、λ1とλ3が2段目の単位回路21-2へ透過し、λ2とλ4が2段目の単位回路21-3に透過する。
【0026】
2段目の単位回路21-2を形成する3つのAMZ2521、2522、及び2523は、1段目の単位回路21-1の3つのAMZ2511、2512、及び2513のアーム長差ΔLの半分のアーム長差を有する。同様に、2段目の単位回路21-3を形成する3つのAMZ2531、2532、及び2533は、1段目の単位回路21-1の3つのAMZ2511、2512、及び2513のアーム長差ΔLの半分のアーム長差を有する。3段目の単位回路をカスケード接続する場合、3段目の単位回路の各AMZは、2段目の単位回路21-2及び21-3のAMZのアーム長差のさらに半分のアーム長差を有する。
【0027】
単位回路21-2のAMZ2521、2522、及び2523の非対称の光導波路に、それぞれヒータH21、H22、及びH23が設けられている。単位回路21-3のAMZ2531、2532、及び2533の非対称の光導波路に、それぞれヒータH31、H32、及びH33が設けられている。
【0028】
AMZ2522の出力は2つに分岐され、一方の出力導波路のモニタ1AUPが接続され、他方の出力導波路にモニタ2Alоwが接続されている。モニタ2AUPが接続された出力導波路は、波長λ1の出力ポート(c)となる。AMZ2523の出力は2つに分岐され、一方の出力導波路の一方にモニタ2BUPが接続され、他方の出力導波路にモニタ2Blоwが接続されている。モニタ2BUPが接続された出力導波路は、λ3の出力ポート(d)となる。
【0029】
モニタ2AUPとモニタ2BUPのモニタ結果は、制御回路23-2に供給される。制御回路23-2は、モニタ2AUPとモニタ2BUPで検出されるパワーが増加する方向に、ヒータH21のパワーP21を制御する。この理由で、図中で制御回路23-2は「Inc」と表記されている。モニタ2Alоwのモニタ結果は、制御回路22cに供給され、モニタ2Blоwのモニタ結果は、制御回路22dに供給される。制御回路22cは、モニタ2Alоwで検出されるパワーが減少する方向にヒータH22のパワーP22を制御する。制御回路22dは、モニタ2Blоwで検出されるパワーが減少する方向にヒータH23のパワーP22を制御する。この理由で、制御回路22cと22dは、図中で「Dec」と表記されている。
【0030】
単位回路21-3のAMZ2532の出力は2つに分岐され、一方の出力導波路にモニタ3AUPが接続され、他方の出力導波路にモニタ3Alоwが接続されている。モニタ3AUPが接続された出力導波路は、波長λ2の出力ポート(e)となる。AMZ2533の出力は2つに分岐され、一方の出力導波路にモニタ3BUPが接続され、他方の出力導波路にモニタ3Blоwが接続されている。モニタ3BUPが接続された出力導波路は、λ4の出力ポート(f)となる。
【0031】
モニタ3AUPとモニタ3BUPのモニタ結果は、制御回路23-3に供給される。制御回路23-3は、モニタ3AUPとモニタ3BUPで検出されるパワーが増加する方向に、ヒータH31のパワーP31を制御する。この理由で、図中で制御回路23-3は「Inc」と表記されている。モニタ3Alоwのモニタ結果は、制御回路22eに供給され、モニタ3Blоwのモニタ結果は、制御回路22fに供給される。制御回路22eは、モニタ3Alоwで検出されるパワーが減少する方向にヒータH32のパワーP32を制御する。制御回路22fは、モニタ3Blоwで検出されるパワーが減少する方向にヒータH33のパワーP33を制御する。この理由で、制御回路22eと22fは、図中で「Dec」と表記されている。
【0032】
制御回路23-2と、制御回路22c及び22dで2段目の単位回路21-2の透過特性が制御される。制御回路23-3と、制御回路22e及び22fで単位回路21-3の透過特性が制御される。制御回路23-2、23-3、22c、22d、22e、及び22fと、ヒータH21、H22、H23、H31、H32、及びH33は、図4の光路長制御器201の一例である。ヒータに替えて別の光路長制御機構を用いてもよいことは上述したとおりである。
【0033】
図5のCAT構成の分波器20では、各AMZ25の光導波路の製造ばらつきや、温度変動による屈折率のばらつきを補償し、各AMZを入力信号波長に対する最適条件に制御することができる。単位回路21を3つのAMZ25で構成することで、各出力ポートでタップしたモニタ値から各波長の透過特性が最適制御されているかどうかを判別できる。各タップのモニタ結果に基づいて、着目している波長のパワーを増大し、不要な波長のパワーを低減する個別の制御が可能になる。しかし、光源装置11Aの各光源素子12の出力波長が均等でない場合は、波長ごとに最適なパワー制御で透過特性を制御しても、不均一な光周波数間隔で波長が分離されることになる。そこで、ポート(c)、(d)、(e)、及び(f)から出力される各波長λ1、λ2、λ3、λ4を、図4のようにモニタPD202でモニタし、モニタ結果を波長コントローラ191Aにフィードバックして光源装置11Aの各光源素子12の発振波長を制御する。モニタPD202を別途設ける替わりに、分波器20のモニタ2AUP、2BUP、3AUP、及び3BUPのモニタ結果を、光源装置11Aの波長制御に利用してもよい。
【0034】
図6は、分波器20のモニタ機能を利用した光源波長制御の模式図である。図6では、分波器20の透過特性制御用のモニタ2AUP、2BUP、3AUP、及び3BUPの出力を、フィードバック信号線200で波長コントローラ191Aの入力に接続する。上述のように、モニタ2AUP、2BUP、3AUP、及び3BUPの出力は、着目する波長ごとのモニタ結果を表している。波長コントローラ191Aは、モニタ結果に基づいて、光源装置11Aの各光源素子12-1、12-2、12-3、及び12-4の発振波長λ1、λ2、λ3、及びλ4を等間隔になるように制御する。具体的な制御手順は図7から図15を参照して以下で説明する。
【0035】
実際の運用中は、各光源素子12-1、12-2、12-3、及び12-4から出力される光は光カプラ13Aで合波されて、分波器20に入射する。分波器20で分波された各波長の光は送信回路171の対応する光変調器173で変調される。分波器20の透過特性の制御時には、一波長ずつ分波器20に入力され、その波長の光が通る光導波路でのモニタ結果に基づいて分波器20の透過特性が制御される。すべての光源素子12-1~12-4の出力光が分波器20に入射した状態で、分波器20の透過特性の制御と並行して(透過特性制御のためのモニタ結果を利用して)、波長コントローラ191Aにより各光源素子12-1~12-4の波長間隔が制御される。
【0036】
図7は、初期状態の光源波長と分波器の透過特性を示す。図5のポート(a)、(b)、(c)、(d)、(e)、及び(f)における波長と透過特性をそれぞれ示す。点線の波長λ1、λ2、λ3、λ4は、等間隔に設定されるサブキャリアの中心波長である。λ'1、λ'2、λ'3、λ'4は、光源装置11Aから出力され分波器20に入射した光に含まれる波長である。λ'1、λ'2、及びλ'4は、λ1、λ2、及びλ4から低周波側(長波長側)にずれており、λ'3は、λ3から高周波側(短波長側)にずれている。
【0037】
1段目のAMZ25-1のポート(a)では、透過スペクトルのピークをλ'1とλ'3に合わせ、ポート(b)では透過スペクトルのピークをλ'2とλ'4を合わせたい。2段目のAMZ25-2のポート(c)では、透過スペクトルのピークをλ'1に合わせ、ポート(d)で透過スペクトルのピークをλ'3に合わせたい。2段目のAMZ25-3のポート(e)では、透過スペクトルのピークをλ'2に合わせ、ポート(f)で透過スペクトルのピークをλ'4に合わせたい。
【0038】
図8図11は、各ポートへの波長の割り当ての一例を示す。各波長のポート割り当ては、1波長ずつ分波器20に光を入射し、分波器20の透過特性を調整して、波長を順次対応するポートに割り当てる。図8で、光源素子12-1をオン(アクティブ)にして、波長λ'1を分波器20に入射する。ポート(a)で、モニタ1AUPのモニタ結果が増加し、モニタ1Alоwのモニタ結果が減少する方向にヒータH11とH12のパワーP11とP12を制御して、透過スペクトルをシフトさせる。このとき、ポート(b)ではモニタ1BUPと1Blоw(以下、まとめてモニタ1Bとする)のフィードバックはないが、パワーP11の制御の影響により、透過スペクトルが移動する。
【0039】
ポート(c)で、モニタ2AUPのモニタ結果が増加し、モニタ2Alоwのモニタ結果が減少する方向にパワーP21とP22を制御して、透過スペクトルをシフトさせる。このとき、ポート(d)ではモニタ2Bからのフィードバックはないが、パワーP21の制御の影響により、透過スペクトルが移動する。ポート(e)と(f)では、単位回路21-3への光入力がないので、透過スペクトルはほとんど変化しない。
【0040】
次に、図9で光源素子12-2をオンにして、波長λ'2を追加する。光源素子12-1と12-2がアクティブ状態である。ポート(a)で、モニタ1AUPのモニタ結果が増加し、モニタ1Alоwのモニタ結果が減少する方向にパワーP11とP12を制御して、透過スペクトルをシフトさせる。ポート(b)で、モニタ1BUPのモニタ結果が増大し、モニタ1Blоwのモニタ結果が減少する方向にパワーP11とP13を制御して、透過スペクトルを調整する。
【0041】
ポート(c)で、モニタ2AUPのモニタ結果が増加し、モニタ2Alоwのモニタ結果が減少する方向にパワーP21とP22を制御し、透過スペクトルを調整する。このとき、ポート(d)では、パワーP21の制御量がごくわずかであり、パワーP21の制御の影響はほとんどない。ポート(e)で、モニタ3AUPのモニタ結果が増加し、モニタ3Alоwのモニタ結果が減少する方向にパワーP31とP32を制御して透過スペクトルを調整する。このとき、ポート(f)では、モニタ3Bからのフィードバックはないが、パワーP31の制御の影響により、透過スペクトルが移動する。
【0042】
次に、図10で、光源素子12-3をオンにして波長λ'3を追加する。光源素子12-1、12-2、及び12-3がアクティブ状態である。ポート(a)で、モニタ1AUPのモニタ結果が増加し、モニタ1Alоwのモニタ結果が減少する方向にパワーP11とP12を制御して、透過スペクトルをシフトさせる。ポート(b)で、モニタ1BUPのモニタ結果が増大し、モニタ1Blоwのモニタ結果が減少する方向にパワーP11とP13を制御して透過スペクトルを調整する。
【0043】
ポート(c)で、モニタ2AUPのモニタ結果が増加し、モニタ2Alоwのモニタ結果が減少する方向にパワーP21とP22を制御して透過スペクトルを調整する。ポート(d)で、モニタ2BUPのモニタ結果が増加し、モニタ2Blоwのモニタ結果が減少する方向にパワーP21とP23を制御して透過スペクトルを調整する。ポート(e)と(f)では、単位回路21-3への光入力は波長λ'2の光だけなので、透過スペクトルはほとんど変化しない。
【0044】
最後に、図11で、光源素子12-4をオンにして波長λ'4を追加する。すべての光源素子12-1~12-4がアクティブ状態である。ポート(a)で、モニタ1AUPのモニタ結果が増加し、モニタ1Alоwのモニタ結果が減少する方向にパワーP11とP12を制御して、透過スペクトルを調整する。ポート(b)で、モニタ1BUPのモニタ結果が増大し、モニタ1Blоwのモニタ結果が減少する方向にパワーP11とP13を制御して透過スペクトルを調整する。
【0045】
ポート(c)で、モニタ2AUPのモニタ結果が増加し、モニタ2Alоwのモニタ結果が減少する方向にパワーP21とP22を制御して透過スペクトルを調整する。ポート(d)で、モニタ2BUPのモニタ結果が増加し、モニタ2Blоwのモニタ結果が減少する方向にパワーP21とP23を制御して透過スペクトルを調整する。ポート(e)で、モニタ3AUPのモニタ結果が増加し、モニタ3Alоwのモニタ結果が減少する方向にパワーP31とP32を制御して透過スペクトルを調整する。ポート(f)で、モニタ3BUPのモニタ結果が増加し、モニタ3Blоwのモニタ結果が減少する方向にパワーP31とP33を制御して透過スペクトルを調整する。これにより各ポートへの波長の割り当てが完了する。
【0046】
図11の状態で、ポート(c)、(d)、(e)、及び(f)のそれぞれで、透過スペクトルのピークが対応する波長λ'1、λ'2,λ'3、λ'4の近傍にあり、透過特性は制御されているが、波長間隔が不均一である。そこで、光源装置11Aの発振波長と分波器20の透過特性をさらに制御して、各波長λ'1、λ'2,λ'3、λ'4の光周波数間隔を均等に補正する。
【0047】
図12は、光源制御による波長補正の過程を示す。4つの波長がすべて分波器20に入射した状態で、波長コントローラ191Aにより、光源装置11Aの光源素子12-1~12-4の波長λ'1、λ'2,λ'3、λ'4を以下のように制御する。単位回路21-2のポート(c)でモニタ2AUPのモニタ結果が増加し、モニタ2Alоwのモニタ結果が減少する方向に、光源素子12-1の発振波長λ'1を制御する。ポート(d)で、モニタ2BUPのモニタ結果が増加し、モニタ2Blоwのモニタ結果が減少する方向に、光源素子12-3の発振波長λ'3を制御する。単位回路21-3のポート(e)でモニタ3AUPのモニタ結果が増加し、モニタ3Alоwのモニタ結果が減少する方向に、光源素子12-2の発振波長λ'2を制御する。ポート(f)でモニタ3BUPのモニタ結果が増加し、モニタ3Blоwのモニタ結果が減少する方向に、光源素子12-4の発振波長λ'4を制御する。
【0048】
次に、図13で再度、分波器20のヒータを制御して、各ポートでの透過スペクトルを調整する。ポート(a)で、モニタ1AUPのモニタ結果が増加し、モニタ1Alоwのモニタ結果が減少する方向にパワーP11とP12を制御して、透過スペクトルをシフトさせる。ポート(b)で、モニタ1BUPのモニタ結果が増大し、モニタ1Blоwのモニタ結果が減少する方向にヒータH11とH13のパワーP11とP13を制御して、透過スペクトルをシフトさせる。
【0049】
ポート(c)で、モニタ2AUPのモニタ結果が増加し、モニタ2Alоwのモニタ結果が減少する方向にパワーP21とP22を制御して透過スペクトルをシフトさせる。ポート(d)で、モニタ2BUPのモニタ結果が増加し、モニタ2Blоwのモニタ結果が減少する方向にパワーP21とP23を制御して透過スペクトルをシフトさせる。ポート(e)では、モニタ3AUPのモニタ結果が増加し、モニタ3Alоwのモニタ結果が減少する方向にパワーP31とP32を制御して透過スペクトルを調整する。ポート(f)では、モニタ3BUPのモニタ結果が増加し、モニタ3Blоwのモニタ結果が減少する方向にパワーP31とP33を制御して透過スペクトルを調整する。
【0050】
次に、図14で、波長コントローラ191Aにより再度、光源装置11Aの光源素子12-1~12-4の発振波長λ'1、λ'2,λ'3、λ'4を制御する。単位回路21-2のポート(c)で、モニタ2AUPのモニタ結果が増加し、モニタ2Alоwのモニタ結果が減少する方向に、光源素子12-1の発振波長λ'1を制御する。ポート(d)でモニタ2BUPのモニタ結果が増加し、モニタ2Blоwのモニタ結果が減少する方向に、光源素子12-3の発振波長λ'3を制御する。単位回路21-3のポート(e)で、モニタ3AUPのモニタ結果が増加し、モニタ3Alоwのモニタ結果が減少する方向に、光源素子12-2の発振波長λ'2を制御する。ポート(f)で、モニタ3BUPのモニタ結果が増加し、モニタ3Blоwのモニタ結果が減少する方向に、光源素子12-4の発振波長λ'4を制御する。
【0051】
光源装置11Aの各光源素子12-1~12-4の発振波長の補正と、分波器20の透過特性の調整を交互に繰り返すことで、図15の最終状態になる。図15の制御完了状態での各サブキャリアの波長を、λ''1、λ''2,λ''3、λ''4とする、1段目の単位回路21-1のポート(a)の透過スペクトルのピークが波長λ''1とλ''3に一致し、ポート(b)の透過スペクトルのピークが波長λ''2とλ''4に一致している。2段目の単位回路21-2のポート(c)の透過スペクトルのピークが波長λ''1に一致し、ポート(d)の透過スペクトルのピークが波長λ''3に一致している。2段目の単位回路21-3のポート(e)の透過スペクトルのピークが波長λ''2に一致し、ポート(f)の透過スペクトルのピークが波長λ''4に一致している。
【0052】
この状態で、λ''1は設定されている波長λ1と同じではないが(λ''1≠λ1)が、各波長の間隔λ''1-λ'2、λ''2-λ''3、λ''3-λ''4は同じになる(λ''1-λ'2=λ''2-λ''3=λ''3-λ''4)。分波器20の各波長の出力段でのモニタ結果を波長コントローラ191Aにフィードバックすることで、光源装置11Aの各光源素子12の発振波長を均等にし、かつ分波器20の透過特性に一致させることができる。これにより、透過特性制御のモニタ結果を利用して、光源装置11Aの波長間隔が精度良く制御される。
【0053】
図16Aは、第1実施形態の光源波長制御中の各波長の変化を示す。図16Bは、光源波長制御中の各波長間隔の変化を示す。図16A図16Bは、3段にカスケード接続されたCAT構成の単位回路を用いて8つの波長を分波し、かつ光源装置の波長間隔を等間隔に制御している。横軸方向に、初期状態からポート割り当て、その後の光源波長補正へと移行する。ポート割り当ての期間は、分波器20の入射端から着目する波長の出射ポートまでに存在するモニタ結果に基づいて分波器の透過特性を制御する。レーザ波長の補正は、各波長の出力ポートに設けられたモニタのモニタ結果が増加し、その出力ポートと反対側の光導波路に接続されたモニタのモニタ結果が減少するように、対応する光源素子12の発振波長が調整される。出力ポートは、カスケードされたツリーの末端のAMZ25の2つの出力導波路の一方であり、他方の出力導波路が、出力ポートと反対側の光導波路となる。第1実施形態では、波長間隔が相対的に均一になるように制御するので、すべての光源の波長が変動するが、最終的にすべての波長(すなわち光周波数)が等間隔に収束する。
【0054】
分波器20のポート(c)、(d)、(e)、(f)でモニタパワーが最大になり、これらのポートと反対側の出力導波路でモニタパワーが最小になるように分波器20の各AMZ25の実効光路長差と、光源波長を並行して制御する。これにより、複数の波長が図16A及び16Bに示す最適状態に収束し、収束状態が維持される。
【0055】
ヒータパワーは、ヒータ電流にわずかな強度変動(ディザ±Δ)を加えてモニタ出力の変化の方向を検出することで制御され得る。「Inc」の制御回路23は、ディザ+Δのときのモニタ電流I+がディザ-Δの時のモニタ電流I-よりも大きい場合に、制御の方向が正しいとして、ヒータパワーを1ステップ高くする。「Dec」の制御回路23は、ディザ+Δのときのモニタ電流I+がディザ-Δの時のモニタ電流I-よりも小さい場合に、制御の方向が正しいとして、ヒータパワーを1ステップ下げる。
【0056】
光源波長は、各光源素子12-1~12-2の発振周波数を調整することで、制御される。たとえば、各光源素子12の発振波長にわずかなオフセット(ディザ±Δ)を加え、モニタ出力の変化の方向から発振周波数を上下させてもよい。第1実施形態の構成と光源波長制御により、周波数利用効率を改善しつつ、光送受信器10Aのサイズとコストの増大を抑えることができる。
【0057】
<第2実施形態>
図17は、第2実施形態の光送受信器10Bの模式図である。第2実施形態では、複数のサブキャリアの波長間隔とともに、波長の絶対値を制御する。複数の光源素子のうちのいずれか1つの光源素子にだけ波長モニタまたは波長ロッカを設けて、全波長の絶対値と波長間隔を制御する。
【0058】
光送受信器10Bは、光源装置11Bと、光集積回路15Bと、波長コントローラ191Bを有する。波長コントローラ191Aは、プロセッサ19(図3参照)の機能で実現される。光集積回路15Bは、分波器20と光送受信回路17Bを有する。光送受信回路17Aの受信回路172Bは、光分波器176と、複数のバランスドフォトダイオード(図中で「BPD」と表記)175-1、175-2、…、175-n(適宜、「BPD175」と総称する)と、複数の90°ハイブリッド光ミキサ177-1、177-2、…、177-n(適宜、「90°ハイブリッド光ミキサ177」と総称する)を有する。光送受信回路17Bの送信回路171Bは、複数の光変調器173-1、173-2、…、173-n(適宜、「光変調器173」と総称する)と、光合波器175を有する。光変調器173は、たとえば、IQ変調器である。
【0059】
光送受信回路17Bは、デジタルコヒーレントトランシーバ用のフロントエンド回路であり、受信回路172Bでは、光源装置11Bからの出力光の一部を局発光として用いて受信光信号を90°ハイブリッド光ミキサ177で検波する。そのため、光源装置11Bで用いられる複数の光源素子12において、均等な波長間隔とともに、波長の絶対値が必要である。
【0060】
波長の絶対値を正確に決めるために、光源装置11Bで一つの光源素子12(たとえば、光源素子12-1)に波長モニタ125を設けるが、その他の光源素子12に波長モニタは不要である。波長モニタ125を有する光源素子12-1の発振波長を基準波長として、基準波長から等間隔にその他の光源素子12-2~12-nの発振波長を制御することで、均等な波長間隔と波長の絶対値が正しく得られる。
【0061】
波長間隔と波長の絶対値の制御に、分波器20で分波される光のモニタ結果を用いる。CAT構成の分波器20を用いることで、波長ごとにヒータパワーを最適制御して透過特性を最適化できる。各波長の光のモニタ用に、モニタPD202-1、202-2、…、202-nを設けてもよいし、分波器20のモニタ機能を利用してもよい。
【0062】
図18は、分波器20のモニタ機能を利用した光源波長制御の模式図である。分波器20は、第1実施形態と同様に、CAT構成の分波器である。分波器20の透過特性制御用のモニタ2AUP、2BUP、3AUP、及び3BUPの出力を、フィードバック信号線200を介して波長コントローラ191Bの入力に接続する。波長コントローラ191Bは、モニタ結果に基づいて、光源装置11Bの各光源素子12-1、12-2、12-3、及び12-4の発振波長λ1、λ2、λ3、及びλ4の絶対値と波長間隔を制御する。
【0063】
図19は、初期状態の光源波長と分波器の透過特性を示す。図18のポート(a)、(b)、(c)、(d)、(e)、及び(f)における波長と透過特性をそれぞれ示す。点線で示される波長λ1、λ2、λ3、λ4は、等間隔に設定されている各サブキャリアの中心波長である。λ'1、λ'2、λ'3、λ'4は光源装置11Bから出力され、分波器20に入射した光に含まれる波長である。λ'1、λ'2、及びλ'4は、λ1、λ2、及びλ4から低周波側(長波長側)にずれており、λ'3は、λ3から高周波側(短波長側)にずれている。
【0064】
図20~22は、各波長のポート割り当ての例を示す。図20で、光源素子12-1をオン(アクティブ)にして、光源素子12-1の出力光を分波器20に入射する。このとき、光源装置11Bの波長モニタ125を用いて、光源素子12-1の発振波長λ'1をλ1に固定する。ポート(a)とポート(c)を波長λ1の光が通過するが、透過スペクトルのピークとλ1は一致していない。
【0065】
図21で、ポート(a)で、モニタ1AUPのモニタ結果が増加し、モニタ1Alоwのモニタ結果が減少する方向にパワーP11とP12を制御して、透過スペクトルをシフトさせる。このとき、ポート(b)ではモニタ1Bのフィードバックはないが、パワーP11の制御の影響により、透過スペクトルが移動する。
【0066】
ポート(c)で、モニタ2AUPのモニタ結果が増加し、モニタ2Alоwのモニタ結果が減少する方向にパワーP21とP22を制御して、透過スペクトルをシフトさせる。このとき、ポート(d)ではモニタ2Bからのフィードバックはないが、パワーP21の制御の影響により、透過スペクトルが移動する。ポート(e)と(f)では、単位回路21-3への光入力がないので、透過スペクトルはほとんど変化しない。
【0067】
次に、第1実施形態と同様に、光源素子12-2をオンにして波長λ'2を追加する。光源素子12-1と12-2がアクティブ状態になる。ポート(a)~(f)で、「Inc}の制御回路に接続されるモニタのモニタ結果が増加し、「Dec」の制御回路に接続されるモニタのモニタ結果が減少する方向に、ヒータパワーを調整する。その後、波長λ'3を追加して、。ポート(a)~(f)で、「Inc}の制御回路に接続されるモニタのモニタ結果が増加し、「Dec」の制御回路に接続されるモニタのモニタ結果が減少する方向に、ヒータパワーを調整する。
【0068】
図22で、最後の波長λ'4を追加して、透過スペクトルを制御する。ポート(a)で、モニタ1AUPのモニタ結果が増加し、モニタ1Alоwのモニタ結果が減少する方向にパワーP11とP12を制御して、透過スペクトルをシフトさせる。ポート(b)で、モニタ1BUPのモニタ結果が増加し、モニタ1Blоwのモニタ結果が減少する方向にヒータH11とH13のパワーP11とP13を制御して、透過スペクトルをシフトさせる。ポート(c)で、モニタ2AUPのモニタ結果が増加し、モニタ2Alоwのモニタ結果が減少する方向にパワーP21とP22を制御する。ポート(d)で、モニタ2BUPのモニタ結果が増加し、モニタ2Blоwのモニタ結果が減少する方向にパワーP21とP23を制御する。ポート(e)で、モニタ3AUPのモニタ結果が増加し、モニタ3Alоwのモニタ結果が減少する方向にパワーP31とP32を制御する。ポート(f)で、モニタ3BUPのモニタ結果が増加し、モニタ3Blоwのモニタ結果が減少する方向にパワーP31とP33を制御する。
【0069】
図22の状態で、ポート(c)、(d)、(e)、及び(f)のそれぞれで、透過スペクトルのピークと波長が一致しているが、等間隔に設計された波長と一致しているのは、基準の波長λ1だけである。そこで、光源装置11Bで、光源素子12-1を除く光源素子12-2、12-3、及び12-4の発振波長を調整する。光源素子12-1の発振波長は、波長モニタ125によりλ1にロックされている。
【0070】
図23は光源波長の補正を示す。分波器20の単位回路21-2のポート(d)でモニタ2BUPのモニタ結果が増加し、モニタ2Blоwのモニタ結果が減少する方向に、光源素子12-3の発振波長λ'3を制御する。単位回路21-3のポート(e)で、モニタ3AUPのモニタ結果が増加し、モニタ3Alоwのモニタ結果が減少する方向に、光源素子12-2の発振波長λ'2を制御する。ポート(f)で、モニタ3BUPのモニタ結果が増加し、モニタ3Blоwのモニタ結果が減少する方向に、光源素子12-4の発振波長λ'4を制御する。
【0071】
次に、図24で再度、分波器20のヒータを制御して、各ポートでの透過スペクトルを調整する。ポート(a)で、モニタ1AUPのモニタ結果が増加し、モニタ1Alоwのモニタ結果が減少する方向にパワーP11とP12を制御して、透過スペクトルをシフトさせる。ポート(b)で、モニタ1BUPのモニタ結果が増大し、モニタ1Blоwのモニタ結果が減少する方向にヒータH11とH13のパワーP11とP13を制御して、透過スペクトルをシフトさせる。
【0072】
ポート(c)で、モニタ2AUPのモニタ結果が増加し、モニタ2Alоwのモニタ結果が減少する方向にパワーP21とP22を制御して透過スペクトルをシフトさせる。ポート(d)で、モニタ2BUPのモニタ結果が増加し、モニタ2Blоwのモニタ結果が減少する方向にパワーP21とP23を制御して透過スペクトルをシフトさせる。ポート(e)では、モニタ3AUPのモニタ結果が増加し、モニタ3Alоwのモニタ結果が減少する方向にパワーP31とP32を制御して透過スペクトルを調整する。ポート(f)では、モニタ3BUPのモニタ結果が増加し、モニタ3Blоwのモニタ結果が減少する方向にパワーP31とP33を制御して透過スペクトルを調整する。
【0073】
次に、波長コントローラ191Bにより再度、光源装置11Bの光源素子12-2、12-3、及び12-4の発振波長λ'2,λ'3、λ'4を制御する。光源装置11Bの光源素子12-2、12-3、及び12-4の発振波長の補正と、分波器20の透過特性の調整を交互に繰り返すことで、図25の最終状態になる。図25では、ポート(c)、(d)、(e)、(f)のそれぞれで、等間隔に設定されている波長λ1、λ2、λ3、λ4に一致する波長の光が、最大パワーで通過する。これにより、均等な波長間隔と、波長の絶対値の双方が実現される。
【0074】
図26Aは、第2実施形態の光源波長制御中の各波長の変化を示し、図26Bは、光源波長制御中の各波長間隔の変化を示す。図26A図26Bで、横軸方向に、初期状態からポート割り当て、その後の光源波長補正へと移行する。第2実施形態では、光源素子12-1の波長は、波長モニタ125によりλ1にロックされているので、制御過程を通してLD1の波長は一定である。ポート割り当ての後、カスケードされたツリーの末端のAMZ25の一方の出力導波路に接続される出力ポートでのモニタ結果が増大し、そのAMZ25の反対側の光導波路に接続されたモニタのモニタ結果が減少するように、LD1以外の光源素子12の発振波長が調整される。
【0075】
光源波長の調整は、分波器20の入射端から各波長の出力ポートまでの間に存在するモニタ結果に基づく分波器20の透過特性の制御と並行して行われる。これにより、複数のサブキャリアが設定波長の絶対値に維持され、図26A及び26Bに示す最適状態に収束する。
【0076】
図26Bで、実施形態の制御方法により、8つの異なる波長の光の周波数間隔は75GHz近傍に収束し、そのばらつきはわずか±0.9GHzである。後述するように、一般的な構成で光源素子12ごとに波長モニタまたは波長ロッカを設けて波長制御したときの光周波数精度(ばらつき)は±1.5GHzであるから、実施形態の制御精度が高い。第2実施形態では、従来よりも高い精度で周波数利用効率を改善しつつ、光源装置11Bまたは光送受信器10Bのサイズとコストを大幅に低減できる。
【0077】
図27は、第2実施形態の光源波長制御の効果を比較例と比較して示す。図27の(A)では、実施形態の構成を用いて光源素子12-1の発振波長λ1のみを波長モニタ125でロックし、その他の波長λ2、λ3、及びλ4を波長コントローラ191Bで制御している。波長モニタ125でロックしたλ1の中心波長のばらつきは±1.5GHzであるが、実施形態の方法で調整したλ2、λ3、及びλ4の中心波長のばらつきは0.9GHzである。隣接するサブキャリア間(たとえばλ2とλ3)で、中心波長が互いに逆方向にばらついた場合でも、その間隔は最大で1.8GHzである。
【0078】
これに対し、図27の(B)の比較構成では、各光源素子12に波長モニタを配置してそれぞれの光源素子12の発振波長を波長モニタでロックしている。この場合、すべ手の光源素子で1.5GHzのばらつきが発生し、隣接するサブキャリア間(たとえばλ2とλ3)で、中心波長が互いに逆方向にばらつきたときの間隔は、最大で3GHzになる。実施形態の光源波長制御により、サブキャリアの光周波数間隔が均等、かつ密に制御されるため、スペクトルの利用効率を高めることができる。
【0079】
第1実施形態と第2実施形態を通して、複数の光源素子12を含む光源装置11で、波長モニタまたは波長ロッカを用いずに、あるいは単一の波長モニタまたは波長ロッカだけを用いて、複数波長の間隔を精度良く等間隔に制御することができる。これにより、周波数利用効率を改善しつつ、光源装置11または光送受信器10のサイズとコストの増大を抑えることができる。実施形態の構成と光源波長制御の手法は、単位回路21を一つ用いて2波長を分波する構成や、単位回路21を3段にカスケード接続して8波長を分波する構成、4段にカスケード接続して16波長を分波する構成にも適用できる。その場合も、PICの製造ばらつきや光源装置の各光源素子の製造ばらつき、環境による変動、経年変化などにかかわらず、複数の波長間の間隔を等間隔、かつ密に維持することができる。
【0080】
以上の記載に対し、以下の付記を提示する。
(付記1)
光送受信回路と、
異なる波長の複数の光源素子からの出射光を合波して出力する光源装置と、
前記光源装置から出力された光を複数の波長に分波して前記光送受信回路に供給する分波器と、
前記分波器の出力ポートで前記複数の波長のそれぞれをモニタするモニタと、
前記モニタのモニタ結果に基づいて前記複数の光源素子の波長を制御する波長コントローラと、
を有し、
前記分波器は、所定のアーム長差をもつ3つの非対称マッハツェンダ干渉計がツリー状に接続された単位回路を複数有し、複数の前記単位回路はツリー状にカスケード接続されており、前記モニタは、カスケードされたツリーの末端の非対称マッハツェンダ干渉計の出力導波路に配置されて、前記波長コントローラと信号線で接続されている、
光送受信器。
(付記2)
前記光源装置は、前記複数の光源素子の中の第1の光源素子に対してのみ波長モニタまたは波長ロッカを有し、
前記波長コントローラは、前記波長モニタまたは前記波長ロッカにより前記第1の光源素子の波長を固定させ、前記モニタ結果に基づいて、前記第1の光源素子を除く光源素子の前記波長を制御する、
付記1に記載の光送受信器。
(付記3)
前記波長コントローラは、前記複数の波長が等間隔になるように前記複数の光源素子の前記波長を制御する、
付記1に記載の光送受信器。
(付記4)
前記波長コントローラは、前記複数の波長が所定の絶対値をもち、かつ等間隔になるように前記複数の光源素子の前記波長を制御する、
付記2に記載の光送受信器。
(付記5)
前記末端の非対称マッハツェンダ干渉計の出力導波路は2つに分岐しており、
前記分波器は、前記末端の非対称マッハツェンダ干渉計の一方の出力導波路に接続されて対応する波長の光をモニタする第1モニタと、他方の出力導波路に接続される第2モニタとを有し、
前記波長コントローラは、前記第1モニタの第1モニタ結果が増加し、前記第2モニタの第2モニタ結果が減少する方向に、前記複数の光源素子の波長を制御する、
付記1に記載の光送受信器。
(付記6)
前記分波器は、前記第1モニタ結果と前記第2モニタ結果に基づいて前記分波器の透過特性を制御する制御機構を有し、
前記波長コントローラは、前記制御機構による前記透過特性の制御と並行して、前記複数の光源素子の前記波長を制御する、
付記5に記載の光送受信器。
(付記7)
前記制御機構は、前記第1モニタ結果が増加するように前記末端の非対称マッハツェンダ干渉計を含む単位回路の先頭の非対称マッハツェンダ干渉計の実効光路長を制御する第1制御回路と、前記第2モニタ結果が減少するように前記末端の非対称マッハツェンダ干渉計の実効光路長を制御する第2制御回路と、を有する、
付記6に記載の光送受信器。
(付記8)
付記1~7のいずれかに記載の光送受信器を備えた、サブキャリア伝送用の光送受信装置。
(付記9)
異なる波長の複数の光源素子を有する光源装置を準備し、
所定のアーム長差をもつ3つの非対称マッハツェンダ干渉計がツリー状に接続された単位回路が複数個ツリー状にカスケード接続されている分波器に、前記光源装置から複数の波長の光を入射し、
前記分波器で分波された前記複数の波長の光を前記分波器の出力ポートでモニタし、
モニタ結果に基づいて、波長コントローラで前記複数の光源素子の波長を制御する、
光源波長制御方法。
(付記10)
前記複数の光源素子の中の第1の光源素子の第1波長を固定し、
前記波長コントローラにより、前記第1の光源素子を除く光源素子の波長を制御する、
付記9に記載の光源波長制御方法。
(付記11)
前記波長コントローラで、前記複数の波長が等間隔になるように前記複数の光源素子の発振波長を制御する、
付記9に記載の光源波長制御方法。
(付記12)
前記波長コントローラで、前記複数の波長が所定の絶対値をもち、かつ等間隔になるように前記複数の光源素子の発振波長を制御する、
付記10に記載の光源波長制御方法。
(付記13)
カスケードされたツリーの末端の非対称マッハツェンダ干渉計の2つの出力導波路の一方に対応する波長の光をモニタする第1モニタを接続し、他方の導波路に第2モニタを接続し、
前記波長コントローラで、前記第1モニタの第1モニタ結果が増加し、前記第2モニタの第2モニタ結果が減少する方向に、対応する前記光源素子の発振波長を制御する、
付記9に記載の光源波長制御方法。
【符号の説明】
【0081】
1AUP、1Alow、1BUP、1Blow モニタ
2AUP、2BUP、3AUP、3BUP モニタ(第1モニタ)
2Alow、2Blow、3Alow、3Blow モニタ(第2モニタ)
10、10A、10B 光送受信器
11、11A、11B 光源装置
12、12-1~12n 光源素子
13 合波器
13A、13B 光カプラ
15、15A、15B 光集積回路(PIC)
17 光送受信回路
171 送信回路
172 受信回路
19 プロセッサ
191A、191B 波長コントローラ
20 分波器
21-1、21-2、21-3 単位回路
22a~22f 制御回路(第2制御回路)
23-1、23-2、23-3 制御回路(第1制御回路)
25、2511、2512、2513、2521、2522、2523、2531、2532、2533 AMZ(非対称マッハツェンダ干渉計)
100 光伝送装置
130-1~130n トランスポンダ(光送受信装置)
200 フィードバック信号線
201-1~201-n 光路長制御器(制御機構)
202-1~202-n モニタPD(モニタ)
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16A
図16B
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26A
図26B
図27