IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アボット・ダイアグノスティックス・スカボロー・インコーポレイテッドの特許一覧

特開2024-45115二重ハプテンプローブを用いたリコンビナーゼポリメラーゼ増幅の検出
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024045115
(43)【公開日】2024-04-02
(54)【発明の名称】二重ハプテンプローブを用いたリコンビナーゼポリメラーゼ増幅の検出
(51)【国際特許分類】
   C12N 9/16 20060101AFI20240326BHJP
   C12Q 1/6876 20180101ALI20240326BHJP
   C12Q 1/6813 20180101ALI20240326BHJP
   C12Q 1/6844 20180101ALI20240326BHJP
   C12M 1/00 20060101ALI20240326BHJP
   C12N 9/12 20060101ALI20240326BHJP
   G01N 33/543 20060101ALI20240326BHJP
   G01N 33/53 20060101ALI20240326BHJP
【FI】
C12N9/16 Z
C12Q1/6876 Z ZNA
C12Q1/6813 Z
C12Q1/6844 Z
C12M1/00 A
C12N9/12
G01N33/543 521
G01N33/53 M
G01N33/53 S
【審査請求】有
【請求項の数】3
【出願形態】OL
(21)【出願番号】P 2023217713
(22)【出願日】2023-12-25
(62)【分割の表示】P 2020514986の分割
【原出願日】2018-09-14
(31)【優先権主張番号】62/558,705
(32)【優先日】2017-09-14
(33)【優先権主張国・地域又は機関】US
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.TRITON
2.BRIJ
(71)【出願人】
【識別番号】520474495
【氏名又は名称】アボット・ダイアグノスティックス・スカボロー・インコーポレイテッド
(74)【代理人】
【識別番号】110001173
【氏名又は名称】弁理士法人川口國際特許事務所
(72)【発明者】
【氏名】パウエル,マイケル エル.
(72)【発明者】
【氏名】ボウラー,フランク レイ
(72)【発明者】
【氏名】グリーンウッド,キャサリン ジーン
(72)【発明者】
【氏名】パイペンブルグ,オラフ
(72)【発明者】
【氏名】アルメス,ナイアル エー.
(57)【要約】      (修正有)
【課題】二重ハプテンプローブを用いて標的核酸の存在または不在を検出するためのRPA組成物および方法を提供する。
【解決手段】本開示は、二重ハプテンプローブを用いて標的核酸配列を検出する方法および組成物に関する。より具体的には、本開示は、リコンビナーゼポリメラーゼ増幅(RPA)および二重ハプテンプローブを使用して、標的核酸配列を検出することに関する。場合によっては、検出はラテラルフローストリップ上である。
【選択図】図4
【特許請求の範囲】
【請求項1】
クラウディング剤、
二重ハプテン脱離基を含むオリゴヌクレオチドプローブ、および
ヌクレアーゼ酵素
を含むリコンビナーゼポリメラーゼ増幅組成物。
【請求項2】
クラウディング剤が、ポリエチレングリコール(PEG)、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)、フィコール、またはデキストランを含む、請求項1に記載の組成物。
【請求項3】
クラウディング剤が、少なくとも1kDa、少なくとも2kDa、少なくとも3kDa、少なくとも4kDa、少なくとも5kDa、少なくとも6kDa、少なくとも8kDa、または少なくとも10kDaの分子量を有する、請求項1または2に記載の組成物。
【請求項4】
クラウディング剤が、少なくとも15%v/vの濃度、少なくとも12%v/vの濃度、少なくとも10%v/vの濃度、少なくとも8%v/vの濃度、少なくとも6%v/vの濃度、少なくとも5%v/vの濃度、少なくとも4%v/vの濃度、または少なくとも3%v/vの濃度で組成物中に存在する、請求項1~3のいずれか一項に記載の組成物。
【請求項5】
クラウディング剤が、20℃で5mPa/s以下、4mPa/s以下、3mPa/s以下、2mPa/s以下、または1mPa/s以下の粘度プロファイルを有する、請求項1~4のいずれか一項に記載の組成物。
【請求項6】
クラウディング剤が、20℃で3mPa/s以下の粘度を有するPEGである、請求項1~5のいずれか一項に記載の組成物。
【請求項7】
クラウディング剤が、3kDaの分子量を有するPEGであり、かつPEGが6.5%v/vの濃度である、請求項1~6のいずれか一項に記載の組成物。
【請求項8】
オリゴヌクレオチドプローブが、オリゴヌクレオチドに脱離基を結合させる塩基を欠くdR-O-[C]nヌクレオチドを含む、請求項1に記載の組成物。
【請求項9】
ヌクレアーゼが、ホルムアミドピリミジンDNAグリコシラーゼである、請求項1に記載の組成物。
【請求項10】
二重ハプテンを有するオリゴヌクレオチドプローブが、相補的ヌクレオチド配列にハイブリダイズする際にホルムアミドピリミジンDNAグリコシラーゼにより切断されると、二重ハプテン脱離基を放出する、請求項1~9のいずれか一項に記載の組成物。
【請求項11】
二重ハプテン脱離基が、異なるエピトープを有する2つの免疫原性基を含む、請求項1に記載の組成物。
【請求項12】
免疫原性基が、蛍光基、酵素またはそのフラグメント、ペプチドまたはそのフラグメント、ビオチンを含む、請求項11に記載の組成物。
【請求項13】
免疫原性基が、ビオチン、フルオレセイン、ジゴキシゲニンまたはジニトロフェニルを含む群から選択される、請求項12に記載の組成物。
【請求項14】
前記オリゴヌクレオチドプローブが、エキソヌクレアーゼにより切断可能であり、かつ前記オリゴヌクレオチドが、切断されると前記二重ハプテン脱離基を放出する、請求項1に記載の組成物。
【請求項15】
前記エキソヌクレアーゼが、エキソヌクレアーゼIIIである、請求項14に記載の組成物。
【請求項16】
前記オリゴヌクレオチドプローブが、構造式5’X(n)L(n)H(n)B3’(式中、nはヌクレオチドであり、a、bおよびcは整数であり、Xは5’ヘキシルであり、HはTHF残基であり、BはC3スペーサーであり、Lは複数のハプテンを含む分枝修飾因子である)を有する、請求項14に記載の組成物。
【請求項17】
前記ハプテンが、DNP、FAM、およびビオチンからなる群から選択される、請求項16に記載の組成物。
【請求項18】
前記オリゴヌクレオチドプローブが、ハプテン間のホスホロチオエート結合を含む、請求項16に記載の組成物。
【請求項19】
前記C3スペーサーが、プロパノールである、請求項16に記載の組成物。
【請求項20】
次式
【化1】
(式中、RはOHまたは-NH(CH2)OHである)
を含む組成物。
【請求項21】
次式
【化2】
(式中、RはOHまたは-NH(CH2)OHである)
を含む組成物。
【請求項22】
次式
【化3】
(式中、DMTrはジメトキシトリチルである)
を含む組成物。
【請求項23】
次式
【化4】
(式中、DMTrはジメトキシトリチルである)
を含む組成物。
【請求項24】
次式
【化5】
(式中、ハプテン1およびハプテン2は請求項22または23に記載の免疫原性基であり、
Zは(i)アノマー炭素原子でβ立体配置を有する、RNAまたはDNAオリゴヌクレオチド各々における脱塩基リボースまたはデオキシリボース環のCl’;(ii)DNAまたはRNAオリゴヌクレオチドに結合するように構成されたホスホロアミダイト化合物:から選択され、かつZがDNAまたはRNAホスホロアミダイトである場合、ハプテン1およびハプテン2の反応基は任意でピバロイル、tert-ブチルベンゾイル、アシル、ベンゾイル、またはイソブチリルで保護され得、
Rは水素、または直鎖もしくは分枝C1~C6アルキルを表し、
X1、X2およびX4は結合基であり、それは独立に不在であり得るか、または1つ以上の-O-、-C(=O)-もしくは-NR-基により任意で中断され得る直鎖若しくは分枝C1~C12アルキルであり得、
X3は直鎖または分枝C1~C6アルキルであり、かつ
X5は1つ以上の-O-、-C(=O)-または-NR-基により任意で中断される直鎖または分枝C1~C12アルキルである)
を含む組成物。
【請求項25】
試料適用領域、
前記試料適用領域下流にありかつそれと流体連通している試薬領域であって、標的核酸を増幅するための乾燥RPA試薬組成物、増幅された標的核酸産物に特異的な結合剤および検出分子を含む、試薬領域、
前記試薬領域の下流にありかつそれと流体連通している少なくとも1つの試験領域であって、前記増幅された標的核酸産物に特異的な固定化捕捉分子を含む、試験領域、ならびに
前記試験領域の下流にあるコントロール領域
を含む、ラテラルフローストリップ
を含む、装置。
【請求項26】
乾燥されたRPA試薬組成物が、クラウディング剤、リコンビナーゼ、ポリメラーゼ、ヌクレアーゼ、二重ハプテンプローブおよび検出分子を含む、請求項25に記載の装置。
【請求項27】
二重ハプテンプローブが、ビオチンとカルボキシフルオレセイン(FAM)のまたはビオチンとジニトロフェニル(DNP)のコンジュゲートを含む、請求項26に記載の装置。
【請求項28】
増幅された標的核酸に特異的な固定化捕捉分子が、抗FAM捕捉分子または抗DNP捕捉分子からなる群から選択される、請求項25に記載の装置。
【請求項29】
抗FAMまたは抗DNPが、ポリクローナル抗体、モノクローナル抗体、およびFAB、ScFv、FvまたはDABを含むこれらの機能的結合フラグメントからなる群から独立に選択される、請求項28に記載の装置。
【請求項30】
検出分子が、金ゾル、銀ゾル、ラテックスゾル、セルロースナノビーズ、またはカーボンナノストリング、および抗ビオチン捕捉分子からなる群から選択される、請求項25に記載の装置。
【請求項31】
コントロール領域が、ラテラルフローストリップの正確な操作を示す結合領域を含む、請求項25に記載の装置。
【請求項32】
コントロール領域が、抗マウス抗体捕捉ラインを含む、請求項25に記載の装置。
【請求項33】
目的の標的核酸を含有することが疑われる試料を前記標的核酸を増幅するためのRPA試薬、前記標的核酸に相補的な核酸配列および共有結合された二重ハプテン脱離基を含むオリゴヌクレオチドプローブ、ならびにヌクレアーゼと接触させることと、
前記標的核酸を増幅して標的核酸産物を生成することと、
前記標的核酸にハイブリダイズされたオリゴヌクレオチドプローブから切断された遊離二重ハプテン部分を検出することにより前記標的核酸産物を検出すること
を含む、増幅産物を検出する方法。
【請求項34】
RPA試薬が、ラテラルフローストリップの試料適用領域上に位置する、請求項33に記載の装置。
【請求項35】
核酸増幅が、試料とRPA試薬の接触の際にラテラルフローストリップ上で行われて核酸増幅混合物を形成する、請求項33に記載の方法。
【請求項36】
核酸増幅が、RPA混合物への希釈または他の液体の添加なしにラテラルフローストリップ上で行われる、請求項33に記載の方法。
【請求項37】
オリゴヌクレオチドプローブから切断された二重ハプテン部分が、試料適用領域の下流に位置するラテラルフロー上の試験領域で選択的に捕捉される、請求項33に記載の方法。
【請求項38】
共有結合された二重ハプテンを含むオリゴヌクレオチドが、ラテラルフローストリップ上の試験領域で選択的に捕捉されない、請求項33~37のいずれか一項に記載の方法。
【請求項39】
ラテラルフローストリップが、試験領域およびコントロール領域を含み、前記試験領域が、オリゴヌクレオチドから切断された二重ハプテンの捕捉のための結合対メンバーを含みかつ前記コントロール領域が、内部コントロールのための結合対メンバーを含む、請求項33~38のいずれか一項に記載の方法。
【請求項40】
コントロール領域が、抗マウス抗体またはそのフラグメントを含む、請求項39に記載の方法。
【請求項41】
試験領域が、抗DNP捕捉分子または抗FAM捕捉分子を含む、請求項39に記載の方法。
【請求項42】
抗FAM捕捉分子が、モノクローナル抗体、ポリクローナル抗体、またはこれらの機能的結合フラグメントからなる群から選択される、請求項40に記載の方法。
【請求項43】
抗DNP捕捉分子がモノクローナル抗体、ポリクローナル抗体、またはこれらの機能的結合フラグメントからなる群から選択される、請求項42に記載の方法。
【請求項44】
増幅産物を検出することが、試験領域で二重ハプテン脱離基を捕捉することおよび捕捉された二重ハプテン脱離基を検出分子で標識することを含む、請求項33~43のいずれか一項に記載の方法。
【請求項45】
検出分子が、金ゾル、銀ゾル、ラテックスゾル、セルロースナノビーズ、およびカーボンナノストリングからなる群から選択される、請求項44に記載の方法。
【請求項46】
標的核酸を含有することが疑われる試料をラテラルフローストリップに適用することと、
前記試料をラテラルフローストリップの試薬領域上に乾燥された標的核酸を増幅するためのRPA試薬混合物と接触させることと、
増幅産物を、存在する場合、ラテラルフローストリップの試験領域上で検出すること
を含む方法。
【請求項47】
標的核酸を含有することが疑われる試料が、ラテラルフローストリップの適用領域に適用される、請求項46に記載の方法。
【請求項48】
RPA試薬混合物が、クラウディング剤、リコンビナーゼ、ポリメラーゼ、ヌクレアーゼ、および二重ハプテンオリゴヌクレオチドプローブを含む、請求項47に記載の方法。
【請求項49】
クラウディング剤が、ポリエチレングリコール(PEG)、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)、フィコール、およびデキストランからなる群から選択される、請求項48に記載の方法。
【請求項50】
クラウディング剤が、少なくとも1kDa、少なくとも2kDa、少なくとも3kDa、少なくとも4kDa、少なくとも5kDa、少なくとも6kDa、少なくとも8kDaまたは少なくとも10kDaの分子量を有する、請求項48または49に記載の方法。
【請求項51】
クラウディング剤が、少なくとも15%v/v、少なくとも12%v/vの最終濃度、少なくとも10%v/v、少なくとも8%v/v、少なくとも6%v/v、少なくとも5%v/v、少なくとも4%v/vまたは少なくとも3%v/vの最終濃度の濃度で混合物中に存在する、請求項49または50に記載の方法。
【請求項52】
クラウディング剤が、20℃で5mPa/s以下、4mPa/s以下、3mPa/s以下、2mPa/s以下または1mPa/s以下の粘度プロファイルを有する、請求項46~51のいずれか一項に記載の方法。
【請求項53】
クラウディング剤が、PEGでありかつ20℃で3mPa/s以下の粘度を有する、請求項46に記載の方法。
【請求項54】
クラウディング剤が、3kDaの分子量を含むPEGでありかつPEGが、6.5%v/vの最終濃度である、請求項46に記載の方法。
【請求項55】
増幅産物を、存在する場合、検出することが、増幅産物にハイブリダイズされたオリゴヌクレオチドプローブから切断された二重ハプテン部分を検出することを含む、請求項48に記載の方法。
【請求項56】
RPA混合物の希釈が、増幅産物の検出前に必要とされない、請求項46に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、2017年9月14日に出願された「二重ハプテンプローブを用いたリコンビナーゼポリメラーゼ増幅の検出」という表題の米国仮特許出願第62/558,705号の利益を主張するものであり、その全体が参照により本明細書に組み込まれる。
【0002】
本開示は、二重ハプテンプローブを用いた標的核酸配列を検出するための方法および組成物に関する。より具体的には、本開示は、リコンビナーゼポリメラーゼ増幅(RPA)および二重ハプテンプローブを用いて標的核酸配列を検出する方法および組成物に関する。場合によっては、検出はラテラルフローストリップ上での検出である。
【背景技術】
【0003】
特定の等温増幅法は、わずか数分以内で標的核酸を微量レベルから非常に高い検出可能なレベルに増幅することが可能である。このような等温法、例えば、リコンビナーゼポリメラーゼ増幅(RPA)は、ユーザーが特定の配列を微量で検出することを可能にし得、ポイントオブケア検査を促進し診断の利便性およびスピードを向上させる。
【0004】
RPAは、非実験室環境における使用に好適であることが示されており、標的DNAのPCRベースの診断およびリアルタイム検出に相当する感受性が報告されている。しかし、これらのアッセイは、依然として実験室環境における使用またはスーツケースラボ型装置での使用により適している。したがって、いくつかのグループは、定性データのみが必要とされる状況のためのラテラルフローアッセイを開発した。ラテラルフロー試験は、訓練を受けていない人/家庭用の、実施が比較的簡単な試験であり、実施に高額な設備を必要としないため、資源の限られた環境における使用に好ましいフォーマットの1つである。しかし、ラテラルフロー技術は依然として、ラテラルフロー分析前の希釈工程を含む、多数の操作を必要とする。必要とされる操作数を削減することによる、RPA増幅およびラテラルフロー検出の使用方法の単純化が依然として必要とされている。この改善は、RPAラテラルフローアッセイの消耗品の製造に有益であり、試験装置の簡素化、したがって消耗品のコスト削減を可能にし、このようなアッセイを実験室外での使用により適したものにする。
【発明の概要】
【発明が解決しようとする課題】
【0005】
本開示は少なくとも部分的には、標的核酸配列のRPAを、二重ハプテンプローブを用いて、ラテラルフローストリップ上で希釈工程なしで正確にかつ効率的に検出できるという発見に基づく。この発見を考慮して、二重ハプテンプローブを用いて標的核酸の存在または不在を検出するためのRPA組成物および方法が本明細書において提供される。これらの標的核酸配列は、疾患または障害の診断であり得る。
【0006】
一態様において、本開示は、クラウディング剤;二重ハプテン脱離基を有するオリゴヌクレオチドプローブ;およびヌクレアーゼ酵素を含むか、これらからなるか、またはこれらから本質的になるリコンビナーゼポリメラーゼ増幅組成物を特徴とする。別の態様において、本開示は、試料中に存在する標的核酸のラテラルフロー分析における使用のためのリコンビナーゼポリメラーゼ増幅組成物であって、ラテラルフロー試験ストリップ上での増幅産物の分離前の増幅混合物の希釈が不要であり、クラウディング剤;二重ハプテン脱離基を有するオリゴヌクレオチドプローブ;およびヌクレアーゼ酵素を含むか、これらからなるか、またはこれらから本質的になる、上記組成物を特徴とする。
【0007】
すべての態様のいくつかの実施形態において、本明細書に記載の組成物および方法のクラウディング剤は、ポリエチレングリコール(PEG)、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)、フィコールまたはデキストランを含むか、これらからなるか、またはこれらから本質的になる。すべての態様のいくつかの実施形態において、クラウディング剤は、少なくとも1kDa、少なくとも2kDa、少なくとも3kDa、少なくとも4kDa、少なくとも5kDa、少なくとも6kDa、少なくとも8kDaまたは少なくとも10kDaの分子量を有する。すべての態様のいくつかの実施形態において、クラウディング剤は、少なくとも15%v/vの濃度、少なくとも12%v/vの濃度、少なくとも10%v/vの濃度、少なくとも8%v/vの濃度、少なくとも6%v/vの濃度、少なくとも5%v/vの濃度、少なくとも4%v/vの濃度または少なくとも3%v/vの濃度で組成物中に存在する。すべての態様のいくつかの実施形態において、クラウディング剤は、20℃で5mPa/s以下、4mPa/s以下、3mPa/s以下、2mPa/s以下または1mPa/s以下の粘度プロファイルを有する。すべての態様のいくつかの実施形態において、クラウディング剤はPEGであり、20℃で3mPa/s以下の粘度を有する。すべての態様のいくつかの実施形態において、クラウディング剤は3kDaの分子量を有するPEGであり、PEGは6.5%v/vの濃度である。
【0008】
すべての態様のいくつかの実施形態において、本明細書に記載の組成物および方法のオリゴヌクレオチドプローブは、脱離基をオリゴヌクレオチドに結合する塩基を欠くdR-O-[C]nヌクレオチドを含む。すべての態様のいくつかの実施形態において、二重ハプテンを有するオリゴヌクレオチドプローブは、相補的ヌクレオチド配列にハイブリダイズされる場合にホルムアミドピリミジンDNAグリコシラーゼにより切断されると、二重ハプテン脱離基を放出する。すべての態様のいくつかの実施形態において、二重ハプテン脱離基は、異なるエピトープを有する2つの免疫原性基を含むか、これらからなるか、またはこれらから本質的になる。すべての態様のいくつかの実施形態において、免疫原性基は、蛍光基、酵素またはそのフラグメント、ペプチドまたはそのフラグメント、ビオチンを含むか、これらからなるか、またはこれらから本質的になる。すべての態様のいくつかの実施形態において、免疫原性基は、ビオチン、フルオレセイン、ジゴキシゲニンまたはジニトロフェニルを含む群から選択される。
【0009】
すべての態様のいくつかの実施形態において、本明細書に記載の組成物および方法のヌクレアーゼはホルムアミドピリミジンDNAグリコシラーゼである。
【0010】
別の態様において、本開示は、
【化1】
(式中、RはOHまたは-NH(CH2)OHである)
を含むか、これらからなるか、またはこれらから本質的になる組成物を特徴とする。
【0011】
別の態様において、本開示は、
【化2】
(式中、RはOHまたは-NH(CH2)OHである)
を含むか、これらからなるか、またはこれらから本質的になる組成物を特徴とする。
【0012】
別の態様において、本開示は、
【化3】
(式中、DMTrはジメトキシトリチルである)
を含むか、これらからなるか、またはこれらから本質的になる組成物を特徴とする。
【0013】
別の態様において、本開示は、
【化4】
(式中、DMTrはジメトキシトリチルである)
を含むか、これらからなるか、またはこれらから本質的になる組成物を特徴とする。
【0014】
別の態様において、本開示は、
【化5】
(式中、ハプテン1およびハプテン2は本明細書に記載の免疫原性基であり;Zは(i)アノマー炭素原子でβ立体配置の、各々RNAまたはDNAオリゴヌクレオチドにおける脱塩基リボースまたはデオキシリボース環のCl’;(ii)DNAまたはRNAオリゴヌクレオチドに結合するように構成されたホスホロアミダイト化合物、から選択され、そこでZがDNAまたはRNAホスホロアミダイトである場合、ハプテン1およびハプテン2の反応基は任意でピバロイル、tert-ブチルベンゾイル、アシル、ベンゾイル、またはイソブチリルで保護され得;Rは水素または直鎖もしくは分枝C1~C6アルキルを表し;X1、X2およびX4は結合基であり、独立に不在であり得るか、または1つ以上の-O-、-C(=O)-もしくは-NR-基により任意で中断され得る直鎖若しくは分枝C1~C12アルキルであり得;X3は直鎖または分枝C1~C6アルキルであり;X5は、1つ以上の-O-、-C(=O)-または-NR-基により任意で中断される直鎖または分枝C1~C12アルキルである)
を含むか、これらからなるか、またはこれらから本質的になる組成物を特徴とする。
【0015】
いくつかの実施形態において、オリゴヌクレオチドプローブは、エキソヌクレアーゼにより切断可能であり、オリゴヌクレオチドは、切断されると二重ハプテン脱離基を放出する。いくつかの実施形態において、エキソヌクレアーゼはエキソヌクレアーゼIIIである。いくつかの実施形態において、オリゴヌクレオチドプローブは構造式5’X(n)L(n)H(n)B3’(式中、nはヌクレオチドであり、a、bおよびcは整数であり、Xは5’ヘキシルまたはハプテンであり、HはTHF残基であり、BはC3スペーサーであり、Lは複数のハプテンを含む分枝修飾因子である)を有する。いくつかの実施形態において、ハプテンは、例えば、DNPおよびビオチンであるが、他のハプテン(例えば、FAM)を利用してもよい。いくつかの実施形態において、オリゴヌクレオチドプローブはハプテン間のホスホロチオエート結合を含む。いくつかの実施形態において、aおよびcは少なくとも15ヌクレオチドである。いくつかの実施形態において、bはゼロである。いくつかの実施形態において、aは約15であり、cは約30である。いくつかの実施形態において、オリゴヌクレオチドプローブは標的核酸に相補的である。いくつかの実施形態において、Lはシトシンヌクレオチドに置き換えられる。
【0016】
別の態様において、本開示は、試料適用領域;試料適用領域下流にありそれと流体連通している試薬領域であって、標的核酸を増幅するための乾燥RPA試薬組成物、増幅された標的核酸産物に特異的な結合剤および検出分子を含む、試薬領域;試薬領域の下流にあり、それと流体連通している少なくとも1つの試験領域であって、増幅された標的核酸産物に対し特異的な固定化捕捉分子を含む、少なくとも1つの試験領域;ならびに試験領域の下流にあるコントロール領域、を含むか、これからなるか、またはこれから本質的になる、ラテラルフローストリップを含むか、これからなるか、またはこれから本質的になる装置を特徴とする。いくつかの実施形態において、装置は、連続的な(例えば、同時の)RPAおよび検出を提供する。いくつかの実施形態において、装置は、試験領域に大重量吸収パッドを備える。
【0017】
すべての態様のいくつかの実施形態において、乾燥RPA試薬組成物は、クラウディング剤、リコンビナーゼ、ポリメラーゼ、ヌクレアーゼ、二重ハプテンプローブおよび検出分子を含む。すべての態様のいくつかの実施形態において、二重ハプテンプローブは、ビオチンとカルボキシフルオレセイン(FAM)の、またはビオチンとジニトロフェニル(DNP)のコンジュゲートを含む。すべての態様のいくつかの実施形態において、増幅された標的核酸に特異的な固定化捕捉分子は、抗FAM捕捉分子または抗DNP捕捉分子からなる群から選択される。すべての態様のいくつかの実施形態において、抗FAMまたは抗DNPは、ポリクローナル抗体、モノクローナル抗体、およびFAB、ScFv、FvまたはDABを含むこれらの機能的結合フラグメントからなる群から独立に選択される。すべての態様のいくつかの実施形態において、検出分子は、金ゾル、銀ゾル、ラテックスゾル、セルロースナノビーズまたはカーボンナノストリングおよび抗ビオチン捕捉分子からなる群から選択される。
【0018】
すべての態様のいくつかの実施形態において、コントロール領域は、ラテラルフローストリップの正確な操作を示す結合領域を含む。すべての態様のいくつかの実施形態において、コントロール領域は抗マウス抗体捕捉ラインを含む。
【0019】
別の態様において、本開示は、目的の標的核酸を含有することが疑われる試料を、標的核酸を増幅するためのRPA試薬、標的核酸に相補的な核酸配列および共有結合された二重ハプテン脱離基を含むオリゴヌクレオチドプローブ、ならびにヌクレアーゼと接触させることと;標的核酸を増幅して標的核酸産物を生成することと;標的核酸にハイブリダイズされたオリゴヌクレオチドプローブから切断された遊離二重ハプテン部分を検出することにより標的核酸産物を検出することを含むか、これらかなるか、またはこれらから本質的になる、増幅産物を検出する方法を特徴とする。
【0020】
すべての態様のいくつかの実施形態において、RPA試薬はラテラルフローストリップの試料適用領域に位置する。すべての態様のいくつかの実施形態において、試料とRPA試薬とが接触すると、核酸増幅がラテラルフローストリップ上で行われて、核酸増幅混合物を形成する。すべての態様のいくつかの実施形態において、核酸増幅は、RPA混合物への他の液体の希釈または添加なしにラテラルフローストリップ上で行われる。いくつかの実施形態において、RPA反応および検出は同時である。
【0021】
すべての態様のいくつかの実施形態において、オリゴヌクレオチドプローブから切断された二重ハプテン部分は、試料適用領域の下流に位置するラテラルフローの試験領域で選択的に捕捉される。すべての態様のいくつかの実施形態において、共有結合した二重ハプテンを含むオリゴヌクレオチドプローブは、ラテラルフローストリップの試験領域で選択的に捕捉されない。すべての態様のいくつかの実施形態において、ラテラルフローストリップは試験領域およびコントロール領域を含むか、これらからなるか、またはこれらから本質的になり、ここで試験領域はオリゴヌクレオチドから切断された二重ハプテンの捕捉のための結合対メンバーを含むか、これらからなるか、またはこれらから本質的になり、コントロール領域は、内部コントロールのための結合対メンバーを含む。すべての態様のいくつかの実施形態において、コントロール領域は、抗マウス抗体またはそのフラグメントを含むか、これらからなるか、またはこれらから本質的になる。すべての態様のいくつかの実施形態において、試験領域は、抗DNP捕捉分子または抗FAM捕捉分子を含むか、これらからなるか、またはこれらから本質的になる。すべての態様のいくつかの実施形態において、抗FAM捕捉分子は、モノクローナル抗体、ポリクローナル抗体およびこれらの機能的結合フラグメントからなる群から選択される。すべての態様のいくつかの実施形態において、抗DNP捕捉分子は、モノクローナル抗体、ポリクローナル抗体またはこれらの機能的結合フラグメントからなる群から選択される。
【0022】
すべての態様のいくつかの実施形態において、増幅産物を検出することは、二重ハプテン脱離基を試験領域で捕捉すること、および捕捉された二重ハプテン脱離基を検出分子で標識することを含むか、これらからなるか、またはこれらから本質的になる。すべての態様のいくつかの実施形態において、検出分子は、金ゾル、銀ゾル、ラテックスゾル、セルロースナノビーズおよびカーボンナノストリングからなる群から選択される。
【0023】
別の態様において、本開示は、標的核酸を含有することが疑われる試料をラテラルフローストリップに適用することと;試料を、ラテラルフローストリップの試薬領域上で乾燥された標的核酸を増幅するためのRPA試薬混合物と接触させることと;増幅産物を、存在する場合、ラテラルフローストリップの試験領域上で検出することを含むか、これらからなるか、またはこれらから本質的になる方法を特徴とする。
【0024】
すべての態様のいくつかの実施形態において、標的核酸を含有することが疑われる試料は、ラテラルフローストリップの適用領域に適用される。すべての態様のいくつかの実施形態において、RPA試薬混合物は、クラウディング剤、リコンビナーゼ、ポリメラーゼ、ヌクレアーゼおよび二重ハプテンオリゴヌクレオチドプローブを含むか、これらからなるか、またはこれらから本質的になる。
【0025】
すべての態様のいくつかの実施形態において、クラウディング剤は、ポリエチレングリコール(PEG)、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)、フィコールおよびデキストランからなる群から選択される。すべての態様のいくつかの実施形態において、クラウディング剤は少なくとも1kDa、少なくとも2kDa、少なくとも3kDa、少なくとも4kDa、少なくとも5kDa、少なくとも6kDa、少なくとも8kDaまたは少なくとも10kDaの分子量を有する。すべての態様のいくつかの実施形態において、クラウディング剤は、少なくとも15%v/v、少なくとも12%v/vの最終濃度、少なくとも10%v/v、少なくとも8%v/v、少なくとも6%v/v、少なくとも5%v/v、少なくとも4%v/vまたは少なくとも3%v/vの最終濃度の濃度で混合物中に存在する。すべての態様のいくつかの実施形態において、クラウディング剤は、20℃で5mPa/s以下、4mPa/s以下、3mPa/s以下、2mPa/s以下または1mPa/s以下の粘度プロファイルを有する。すべての態様のいくつかの実施形態において、クラウディング剤はPEGであり、20℃で3mPa/s以下の粘度を有する。すべての態様のいくつかの実施形態において、クラウディング剤は3kDaの分子量を含むPEGであり、ここでPEGは6.5%v/vの最終濃度である。
【0026】
すべての態様のいくつかの実施形態において、存在する場合、増幅産物を検出することは、増幅産物にハイブリダイズされたオリゴヌクレオチドプローブから切断された二重ハプテン部分を検出することを含むか、これらからなるか、またはこれらから本質的になる。すべての態様のいくつかの実施形態において、RPA混合物の希釈は、増幅産物の検出前に必要とされない。
【0027】
本開示で使用する用語「1つ以上の」または「少なくとも1つ」は、1、2、3、4、5、6、7、8、9、10個のまたはさらにそれより多い化合物を表す。
【0028】
本明細書で使用する「試料」は、その環境(動物、細胞由来の血液もしくは組織、または組織培養物由来の順化培地)から分離された、かつ分析物または他の所望の物質を含有することが疑われるか、またはこれらを含有することが公知である、生物学的物質を指す。試料はまた、例えば、特定の疾患または状態を有する対象由来の、組織または体液の部分的に精製された画分であり得る。参照試料は、疾患または状態を有しないドナーからの「正常な」試料であり得る。参照試料はまた、未処理のドナーもしくは活性剤で処理されていない(例えば、未処理またはビヒクルのみの投与)または疾患状態を誘発する条件に曝されていない細胞培養物に由来するものであり得る。参照試料はまた、細胞を試験される剤と接触させる前の「ゼロ時点」で取得され得る。
【0029】
本明細書で使用する節の見出しは、構成上の目的のためであるにすぎず、記載する対象物を限定するものとして決して解釈されるべきではない。組み込まれた参考文献の用語の定義が、本教示に提供される定義と異なると思われる場合、本教示で提供される定義が優先されるべきである。わずかで非実質的な偏差が、本明細書の本教示の範囲内であるとして、本教示で考察される温度、濃度および時間などの測定値の前に「約」が含蓄されることが認識されるであろう。本出願において、特に特に明記しない限り、単数形の使用は、複数形の使用を含む。また、「含む(comprise)」、「含む(comprises)」、「含んでいる(comprising)」、「含有する(contain)」、「含有する(contains)」、「含有している(containing)」、「含む(include)」、「含む(includes)」および「含んでいる(including)」は、限定することを意図しない。先行の一般的説明および以下の詳細な説明はいずれも単なる例示および説明にすぎず、開示を限定するものではないことが理解されるべきである。本明細書で使用する冠詞「1つの(a、an)」は、冠詞の文法上の目的語の1つまたは1超(すなわち、少なくとも1つ)を指す。例として、「1つの要素」は、1つの要素または1超の要素を意味する。
【0030】
特に定義されない限り、本明細書で使用するすべての技術および科学用語は、本開示が属する技術分野の当業者に一般に理解されているのと同じ意味を有する。方法および材料は、本開示における使用のために本明細書に記載され、当技術分野で公知の他の好適な方法および材料も使用できる。材料、方法および例は、例示にすぎず、限定することを意図するものではない。本明細書で言及されるすべての刊行物、特許出願、特許、配列、データベースエントリーおよび他の参考文献は、その全体が参照により組み込まれる。矛盾する場合、定義を含む本明細書が優先される。
【0031】
本開示の1つ以上の実施形態の詳細は、添付の図面および以下の説明に記載される。本開示の他の特徴、目的および利点は、説明および図面から、ならびに特許請求の範囲から明らかとなるであろう。
【図面の簡単な説明】
【0032】
図1i-iii】ラテラルフローストリップ上での無希釈検出のための少量の二重ハプテン分析物を用いる例示的なRPA反応方法を示す。図1i)は、偽RPA反応における3kDa PEG誘導性コアセルベートの形成およびコアセルベートへのFAM標識核酸の局在化を示す画像である。図1ii)は、本開示による例示的な二重ハプテン分析物の構造式を示す図であり、アミノ修飾プローブオリゴヌクレオチドへの合成後結合のための、ビオチン-FAM、ビオチン-DNPおよび一般的な標識の構造式が示されている。図1iii)は、偽RPA反応において泳動緩衝液で希釈されたか、または無希釈で行われた、二重標識オリゴヌクレオチド、ビオチン-FAM二重標識(R=OH)およびビオチン-FAM Fpgプローブの検出を示す画像である。
図2i-iii】本開示による二重ハプテンFpgプローブを用いるラテラルフローストリップ上でのRPAの直接分析を示す。図2i)は、RPAコアセルベートからの増幅誘導分析物の放出、およびラテラルフローストリップ上でのその後の検出を示す略図である。図2ii)は、無希釈RPA検出のためのプロトタイプアッセイの画像である。図2iii)は、フローコントロールを組み込む乾燥コンジュゲートフォーマット試験ストリップの画像である。
図3i-iii】プローブ最適化による偽陽性シグナルの減少を示す。図3i)は例示的なラテラルフローアッセイの画像を示し、ここで非特異的シグナルはFpg依存性であり得る。図3ii)は、例示的なFpg二重ハプテンプローブ(標識された「プローブ1」または「rs1207445」)のヘアピンおよび自己二量体構造の図である。図3iii)は、減少された二次構造を有する例示的なFpg二重ハプテンプローブを含有する増幅の画像を示し、例示的なFpg二重ハプテンプローブはラテラルフロー上で分析したとき、減少された偽陽性シグナルを示す。
図4】rs1207445(ゲノムDNA)およびカンピロバクタージェジュニ(PCR産物)鋳型DNAの無希釈RPA検出の画像を示す。
図5i-ii】大腸菌O157:H7血清マーカーアッセイを示す。図5i)は、rfbEO157アッセイのTwistAmp Fpg蛍光データである。NTC(赤)、ならびに10(黄)、100(緑)および1000(青)を含有する反応を4連で行った。蛍光反応を、プロトタイプの直接ラテラルフローアッセイと比較した。図5ii)はfliCH7のTwistAmp Fpgの、各Fpg二重ハプテンプローブアッセイとの比較である。
図6】「連続フロー」ラテラルフローストリップ分析を示す画像である。
図7】サルモネラInvA標的に対するTwistAmp Nfoアッセイのラテラルフロー分析の画像である。
図8】ラテラルフローストリップ上にて無希釈で行った場合の、二重標識アンプリコンの限定的な検出についての機構を示す図である。
図9】無希釈Exo RPA LF検出の概要を示す。
図10】無希釈Fpg対Exo RPA LFを示す。
図11】Exo LFを用いる同時増幅/検出を示す。
図12】例示的な連続フロー装置を示す。
【発明を実施するための形態】
【0033】
本開示は、少なくとも一部は、標的核酸配列のRPAを、二重ハプテンプローブを用いて、ラテラルフローストリップ上で希釈工程なしで正確かつ効率的に検出できるという発見に基づく。その目的で、二重ハプテンプローブを用いて標的核酸の存在または不在を検出するためのRPA組成物が、本明細書において提供される。また、その目的で、本出願は、二重ハプテンプローブを用いてラテラルフローストリップ上で標的核酸配列を検出する方法を開示する。
【0034】
本開示は、二重ハプテンプローブを用いてラテラルフローストリップ上で標的核酸配列を検出するためのRPA組成物および方法を記載するが、当業者であれば、開示された方法および組成物が、当技術分野で公知の他の核酸増幅法(例えば、等温核酸増幅法)に適当であり得ることを認識するであろう。
【0035】
核酸の迅速で費用対効果の高い高感度の検出は、感染症の診断における病原体検出および食品検査に用いられる現在の慣行を改善することができる。さらに、アッセイの複雑性を低減できれば、核酸増幅試験を、資源の限られた家庭用のシナリオで展開することができよう。
【0036】
新規なRPA Fpg(ホルムアミドピリミジンDNAグリコシラーゼ)プローブ化学が開発され、これは、無希釈RPA反応における増幅産物のラテラルフロー検出を可能にする。RPA反応の粘性の性質を克服するために、新しいタイプの二重ハプテン標識が、Fpg RPAプローブ用に開発された。例示的なアッセイは既存のFpg蛍光アッセイ(rs1207445ヒトゲノム遺伝子座およびカンピロバクタージェジュニの16S rRNA)に基づき、それを新規な二重ハプテンプローブ化学での使用のために修飾した。本明細書に開示された二重ハプテンプローブ技術は次いで、大腸菌O157:H7(rfbO157およびfliCH7)の遺伝子をセロタイピングするための2つの新規なシングルプレックスアッセイの開発に適用された。これらの遺伝子マーカーは、O157:H7の複雑な遺伝的特徴により他のNAATが見逃し得る大腸菌O157:H7の形態を同定することが予想される。目的は、食品衛生検査における使用のためのO157:H7のマルチプレックス検査のための一段階「試料イン/結果アウト」核酸ラテラルフローイムノアッセイ(NALFIA)および消耗品を開発することであった。さらに、新規な二重ハプテンプローブ化学の汎用性は、この技術を幅広い標的種に容易に適用でき、非実験室アッセイの開発を可能にすることを意味する。
【0037】
以下の実施例において、新規な核酸ラテラルフロー化学が、ヒトゲノム標的(rs1207445)、カンピロバクタージェジュニ16SrDNAおよび重要な食品病原体大腸菌O157:H7の2つの遺伝子マーカーに適用された。4つのアッセイはすべて、増幅反応あたり10~100コピーのDNAの分析感受性を有する。さらにアッセイは、既存のRPA Nfoラテラルフローアッセイ法と比較してより少ないハンズオン工程を必要とする。
【0038】
データは、増幅された標的核酸の検出をRPAと同時に行うことができることを示した(「連続フロー」)。これにより、試験時間を短縮することが可能である(試料から結果まで約30分)。単純化されたワークフローは、連続フロー化学を、ポイントオブケアなどの(例えば、図12に示す装置または他の装置を用いる)、非実験室環境での使用に理想的な、費用対効果のある使い捨ての消耗品に容易に適応できることを意味する。
【0039】
場合によっては、本明細書に記載される二重標識オリゴヌクレオチドプローブは、二機能性構造(例えば、二重ハプテン脱離基)に結合されたオリゴヌクレオチドを含む。二機能性構造は、2つの部分、例えば、2つのハプテンを含んでよく、ハプテンの1つが、第1の結合対の第1のメンバーであり、第2のハプテンが、第2の結合対の第1のメンバーである。プローブは、標的核酸に結合される場合、二機能性構造がオリゴヌクレオチドから切断され二機能性構造を放出するように構成される。この遊離二機能性構造(例えば、遊離二重標識)は次いで、例えば、ラテラルフローストリップ上を含む、いくつかの方法により検出され得る。
【0040】
「結合対のメンバー」は、第1および第2の部分の1つであることを意味し、前記第1および前記第2の部分が、互いに対して特異的な結合親和性を有する。本開示における使用に適した結合対としては、抗原/抗体(例えば、ジゴキシゲニン/抗ジゴキシゲニン、ジニトロフェニル(DNP)/抗DNP、ダンシル-X/抗ダンシル、フルオレセイン/抗フルオレセイン、ルシファーイエロー/抗ルシファーイエロー、ペプチド/抗ペプチド、配位子/受容体およびローダミン/抗ローダミン)、ビオチン/アビジン(またはビオチン/ストレプトアビジン)およびカルモジュリン結合タンパク質(CBP)/カルモジュリンが挙げられるが、これらに限定されない。他の好適な結合対としては、ポリペプチド、例えば、FLAGペプチド(DYKDDDDK)[Hoppら、BioTechnology,6:1204 1210(1988)];KT3エピトープペプチド(Martinら、Science 255:192 194(1992));チューブリンエピトープペプチド(Skinnerら、J.Biol.Chem 266:15163 15166(1991);およびT7遺伝子10タンパク質ペプチドタグ(Lutz-Freyermuthら、Proc.Natl.Acad.Sci.USA、87:6393 6397(1990))およびこれらに対する各抗体が挙げられる。一般に、好ましい実施形態において、結合対パートナーのより小さいものが、立体的な条件が重要であり得るため、検出可能な標識として作用する。
【0041】
本発明の方法に関連して増幅に適した核酸(例えば、ポリヌクレオチド)としては、二本鎖および一本鎖核酸分子、例えば、DNAおよびRNA分子が挙げられる。ポリヌクレオチドは、ゲノム、染色体、プラスミド、ミトコンドリア、細胞およびウイルス核酸起源のものであり得る。二本鎖ポリヌクレオチドについて、増幅は1本または両方の鎖のいずれかの増幅であり得る。
【0042】
本明細書に記載されるように、RPAは、オリゴヌクレオチドプライマーと鋳型二本鎖核酸中の相同配列をペアリングさせることができる、リコンビナーゼとして公知の酵素を使用する。このような方法で、DNA合成は、鋳型二本鎖核酸における定められた地点に向けられる。配列特異的(例えば、遺伝子特異的)プライマーを用いて、鋳型核酸が存在する場合、指数関数的増幅反応が開始される。反応は急速に進行し、わずか数コピーの鋳型核酸から、検出可能なレベルの増幅産物へと、鋳型二本鎖核酸中に存在する配列が数分以内に特異的に増幅される。RPA法は、例えば、米国特許第7,270,981号、米国特許第7,399,590号、米国特許第7,666,598号、米国特許第7,435,561号、米国特許出願公開第2009/0029421号および国際公開第2010/141940号に開示されており、これらはすべて本明細書に参照により組み込まれる。
【0043】
本明細書に開示される組成物は、標的核酸配列を増幅する一組のプライマーを含有し得る。プライマーは、標的核酸配列に相補的である配列、または標的核酸配列と1つ以上の位置で異なる配列からなり得る。本明細書に記載されるように、標的核酸配列と1つ以上の位置で異なるプライマーを有するRPAの増幅産物は、標的配列と1つ以上の位置で異なり得る。本明細書に記載されるRPA反応の増幅産物は、標的配列を含み得る。
【0044】
一組のプライマーは、標的核酸配列を増幅し得るか、またはこれらは、標的核酸配列と1つ以上の位置で異なる配列を導入し得る。この導入された配列は、標的核酸配列からなり得る。第1のプライマーは標的核酸配列に相補的であり得る。第2のプライマーは、標的核酸配列に相補的である第1の部分、および標的核酸配列と1つ以上の位置で異なる第2の部分を含み得る。2つのプライマーが核酸配列を増幅する場合、第2のプライマーは、増幅される産物に1つ以上の異なる位置を組み込む。この増幅された領域は、標的核酸配列と1つ以上の位置で異なり、標的配列からなり得る。場合によっては、増幅された領域は、標的核酸配列と同じである。
【0045】
用語「第1」および「第2」は、これらの相対的な意味においてのみ本開示で用いられる。特に明記しない限り、これらの用語は、実施形態の1つ以上の説明において単に便宜上用いられることが理解されるであろう。用語「第1」および「第2」は、1つの要素を別の要素と区別するためにのみ用いられ、開示された技術の権利の範囲が、これらの用語により限定されるべきではない。例えば、第1の要素を、第2の要素と称してもよく、同様に、第2の要素を第1の要素と称してもよい。
【0046】
本明細書に開示されるRPA組成物は、原核生物、ウイルスまたは真核生物起源に由来し得るリコンビナーゼを含有する。例示的なリコンビナーゼとしては、RecAおよびUvsX(例えば、任意の種から得られるRecAタンパク質またはUvsXタンパク質)、ならびにこれらのフラグメントまたは変異体、ならびにこれらの組み合わせが挙げられる。RecAおよびUvsXタンパク質は、任意の種から得られ得る。RecAおよびUvsXフラグメントまたは変異体タンパク質はまた、利用可能なRecAおよびUvsXタンパク質および核酸配列、ならびに分子生物学技術(例えば、米国特許第8,071,308号に記載のUvsXの変異体型を参照)を用いて生成され得る。例示的なUvsXタンパク質としては、ミオウイルス科ファージに由来するもの、例えば、T4、T2、T6、Rb69、Aeh1、KVP40、アシネトバクターファージ133、エロモナスファージ65、シアノファージP-SSM2、シアノファージPSSM4、シアノファージS-PM2、Rb14、Rb32、アエロモナスファージ25、ビブリオファージnt-1、phi-1、Rb16、Rb43、ファージ31、ファージ44RR2.8t、Rb49、ファージRb3およびファージLZ2が挙げられる。追加の例示的なリコンビナーゼタンパク質としては、古細菌RADAおよびRADBタンパク質、ならびに真核生物(例えば、植物、哺乳動物および真菌)Rad51タンパク質(例えば、RAD51、RAD51B、RAD51C、RAD51D、DMC1、XRCC2、XRCC3およびrecA)が挙げられる(例えば、Linら、Proc.Natl.Acad.Sci.U.S.A.103:10328~10333、2006を参照)。
【0047】
本開示の任意の方法において、リコンビナーゼ(例えば、UvsX)は、変異体またはハイブリッドリコンビナーゼであり得る。いくつかの実施形態において、変異体UvsXは、Rb69 UvsXアミノ酸配列に少なくとも1つの変異を含むRb69UvsXであり、そこで変異は、(a)64位でのヒスチジンではないアミノ酸、64位でのセリン、C端での1つ以上のグルタミン酸残基の付加、C端での1つ以上のアスパラギン酸残基の付加、およびこれらの組み合わせからなる群から選択される。他の実施形態において、変異体UvsXは、T6UvsXアミノ酸配列中に少なくとも1つの変異体を有するT6UvsXであり、そこで変異は、(a)66位でのヒスチジンではないアミノ酸;(b)66位でのセリン;(c)C端での1つ以上のグルタミン酸残基の付加;(d)C端での1つ以上のアスパラギン酸残基の付加;ならびに(e)これらの組み合わせからなる群から選択される。ハイブリッドリコンビナーゼタンパク質を使用する場合、ハイブリッドタンパク質は、例えば、異なるUvsX種由来のアミノ酸配列を含む少なくとも1つの領域を含むUvsXタンパク質であり得る。領域は、例えば、UvsXのDNA結合ループ-2領域であり得る。
【0048】
本明細書に開示されるDNAポリメラーゼは、真核生物または原核生物ポリメラーゼであり得る。真核生物ポリメラーゼの例としては、Pol-α、Pol-β、Pol-δ、Pol-εおよびこれらの変異体もしくはフラグメント、またはこれらの組み合わせが挙げられる。原核生物ポリメラーゼの例としては、大腸菌DNAポリメラーゼI(例えば、クラノウフラグメント)、バクテリオファージT4 gp43 DNAポリメラーゼ、バシルスステアロサーモフィルスポリメラーゼI大フラグメント、Phi-29 DNAポリメラーゼ、T7DNAポリメラーゼ、バチルスサブティリスPolI、黄色ブドウ球菌PolI、大腸菌DNAポリメラーゼI、大腸菌DNAポリメラーゼII、大腸菌DNAポリメラーゼIII、大腸菌DNAポリメラーゼIV、大腸菌DNAポリメラーゼV、およびこれらの変異体もしくはフラグメント、またはこれらの組み合わせが挙げられる。いくつかの実施形態において、DNAポリメラーゼは、3’-5’エキソヌクレアーゼ活性を欠く。いくつかの実施形態において、DNAポリメラーゼは鎖置換特性を有し、例えば、クラスPolIまたはPolVの真核生物ポリメラーゼの大フラグメントである。
【0049】
いくつかの実施形態において、1つ以上のプローブ(例えば、分子ビーコンプローブ)は、免疫原性であり得る、検出可能な標識で二重標識される。場合によっては、検出可能な標識はハプテンである。プローブ上の2つのハプテンは同じであるか、またはこれらは異なり得る。場合によっては、検出可能な標識の1つは、結合対の1つのメンバーである。本明細書に記載のプローブは、ハプテン、酵素、酵素基質、補酵素、酵素阻害剤、蛍光体、消光剤、染色体、磁性粒子またはビーズ、レドックス感受性部分(例えば、電気化学的に活性な部分)、発光マーカー、放射性同位体(放射性ヌクレオチドを含む)、および結合対のメンバーで標識され得る。より具体的な例としては、フルオレセイン、フィコビリタンパク質、テトラエチルローダミンおよびβ-ガラクトシダーゼが挙げられる。結合対としては、ビオチン/ストレプトアビジン、ビオチン/アビジン、ビオチン/ニュートラアビジン、ビオチン/キャプトアビジン、エピトープ/抗体、タンパク質A/免疫グロブリン、タンパク質G/免疫グロブリン、タンパク質L/免疫グロブリン、GST/グルタチオン、Hisタグ/金属(例えば、ニッケル、コバルトまたは銅)、抗原/抗体、FLAG/M1抗体、マルトース結合タンパク質/マルトース、カルモジュリン結合タンパク質/カルモジュリン、酵素/酵素基質、受容体/配位子の結合対、ならびに結合対の類似体および変異体が挙げられ得る。
【0050】
本明細書で使用する用語「ハプテン」は、例えば、これに対して産生される抗体などの、結合対と特異的に反応する免疫原性の小分子を指す。本明細書で提供する方法における使用のためのハプテンとしては、例えば、ジゴキシゲニン、フルオレセイン、ジニトロフェニル、グルタチオンおよびビオチンが挙げられる。本明細書に記載のハプテンはまた、例えば、免疫原性基を含み得る。場合によっては、免疫原性基は、蛍光基、その酵素もしくはフラグメント、そのペプチドもしくはフラグメント、またはビオチンを含む。場合によっては、免疫原性基は、ビオチン、フルオレセイン、ジゴキシゲニンまたはジニトロフェニルを含むリストから選択される。
【0051】
本明細書で使用する用語「蛍光標識」および「蛍光体」は、互換的に用いられ、物質が、様々な波長(励起波長)の放射線により照射されたとき、特定の波長(放出波長)の電磁エネルギーを放出する任意の物質を指し、かつ試料中の目的の分析物と特異的に相互作用または反応して1種以上の光シグナルを発生できる、化学または生化学分子またはそのフラグメントを包含することが意図される。
【0052】
本明細書で提供する方法における使用のための代表的な蛍光体としては、例えば、FAM、(テトラメチルローダミン)Texas Red(商標)、緑色蛍光タンパク質、青色蛍光タンパク質、赤色蛍光タンパク質、フルオレセイン、フルオレセイン-5-イソチオシアネート(FITC)、シアニン色素(Cy3、Cy3.5、Cy5、Cy5.5、Cy7)、ボディピー色素(Invitrogen)および/またはAlexa Fluor色素(Invitrogen)、ダンシル、ダンシルクロリド(DNS-C1)、5-(ヨードアセトアミダ)フルオレセイン(5-IAF)、6-アクリロイル-2-ジメチルアミノナフタレン(アクリロダン)、7-ニトロベンゾ-2-オキサ-1,3-ジアゾール-4-イルクロリド(NBD-C1)、臭化エチジウム、ルシファーイエロー、ローダミン色素(5-カルボキシローダミン6G塩酸塩、リサミンローダミンB塩化スルホニル、ローダミン-B-イソチオシアネート(RITC)、ローダミン800)、テトラメチルローダミン5-(および6-)イソチオシアネート(TRITC)、Texas Red(商標)、塩化スルホニル、1-アニリノナフタレン-8-スルホン酸(ANS)および6-(p-トルイジニル)ナフタレン-2-スルホン酸(TNS)を含むがこれらに限定されないナフタルアミンスルホン酸、アントロイル脂肪酸、DPH、パリナリン酸、TMA-DPH、フルオレニル脂肪酸、フルオレセイン-ホスファチジルエタノールアミン、Texas red-ホスファチジルエタノールアミン、ピレニル-ホスファチジルコリン、フルオレニル-ホスホチジルコリン、メロシアニン540、ナフチルスチリル、3,3’ジプロピルチアジカルボシアニン(diS-C3-(5))、4-(p-ジペンチルアミノスチリル)-1-メチルピリジニウム(di-5-ASP)、Cy-3ヨードアセトアミド、Cy-5-N-ヒドロキシスクシンイミド、Cy-7-イソチオシアネート、IR-125、チアゾールオレンジ、アズールB、ナイルブルー、Alフタロシアニン、オキサシン1,4’,6-ジアミジノ-2-フェニルインドール(DAPI)、ヘキスト33342、TOTO、アクリジンオレンジ、エチジウムホモダイマー、N(エトキシカルボニルメチル)-6-メトキシキノリニウム(MQAE)、フラ-2、カルシウムグリーン、カルボキシSNARF-6、BAPTA、クマリン、フィトフルオース、コロネン、ならびに金属配位子錯体が挙げられる。
【0053】
蛍光消光剤はまた、検出可能な標識と見なされることに留意されるべきである。例えば、蛍光消光剤を蛍光色素に接触させ得、消光量を検出する。
【0054】
本明細書に記載の実施形態はまた、特定の標的核酸配列を切断できる薬剤またはヌクレアーゼを含み得る。本明細書で使用する用語「ヌクレアーゼ」は、核酸の加水分解を触媒し、核酸のヌクレオチドサブユニット間でのホスホジエステル結合を切断できる酵素を指す。「制限ヌクレアーゼ」は、制限部位として公知の特定の認識ヌクレオチド配列でまたはその近くで核酸分子を標的とし切断するヌクレアーゼである。ヌクレアーゼは、エンドヌクレアーゼ(すなわち、ポリヌクレオチド鎖内のホスホジエステル結合を切断する酵素)およびエキソヌクレアーゼ(すなわち、ポリヌクレオチド鎖の末端(exo)から一つずつ切断することにより作用する酵素)にさらに分類され得るが、一部の酵素は、両方に分類され得る。ヌクレアーゼは天然の制限エンドヌクレアーゼまたは人工エンドヌクレアーゼであり得る。
【0055】
場合によっては、本明細書に記載の二重ハプテンプローブは、オリゴヌクレオチドプローブが、相補的ヌクレオチド配列にハイブリダイズされると、ホルムアミドピリミジンDNAグリコシラーゼ(「fpg」)により切断されて、二重ハプテン脱離基(例えば、二重標識)を放出するように構成される。場合によっては、ヌクレアーゼはホルムアミドピリミジンDNAグリコシラーゼである。
【0056】
いくつかの実施形態において、エキソヌクレアーゼ(例えば、ExoIII)により切断可能なハプテン(例えば、二重ハプテンまたは高次のハプテン)プローブが本明細書で提供される。いくつかの実施形態において、オリゴヌクレオチドプローブは、構造式5’X(n)L(n)H(n)B3’(式中、nはヌクレオチドであり、a、bおよびcは整数であり、Xは5’ヘキシルまたはハプテンであり、HはTHF残基であり、BはC3スペーサーであり、Lは複数のハプテンを含む分枝修飾因子である)を有する。いくつかの実施形態において、ハプテンは、例えば、DNPおよびビオチンであるが、他のハプテンを利用してもよい(例えば、FAM)。いくつかの実施形態において、オリゴヌクレオチドプローブは、ハプテン間のホスホロチオエート結合を含む。いくつかの実施形態において、aおよびcは1~50ヌクレオチドであり、bは0~50ヌクレオチドである。いくつかの実施形態において、aおよびcは少なくとも15ヌクレオチドである。いくつかの実施形態において、bはゼロである。いくつかの実施形態において、aは約15であり、cは約30である。いくつかの実施形態において、オリゴヌクレオチドプローブは標的核酸に相補的である。いくつかの実施形態において、Lはシトシンヌクレオチドに置き換えられる。プローブのさらなる詳細は以下の実施例16に記載される。
【0057】
標的アンプリコンを含有するRPA反応で、ExoIIIは、プローブの脱塩基残基Hを切断し、ExoIIIによるその後の3’-5’消化が、2つの別個のハプテンで標識されたモノヌクレオチドL(5’-ホスフェートおよび3’-OH)を遊離させる。この二重ハプテン標識モノヌクレオチドは、自由にRPAコアセルベートを出て、可視化粒子およびLFストリップの試験ライン上の抗体と相互作用する。
【0058】
さらに、1つ以上の一本鎖DNA結合タンパク質が、反応中に進行する様々な交換反応の際に核酸を安定化するために用いられ得る。1つ以上の一本鎖DNA結合タンパク質は、任意の種、例えば、原核生物、ウイルスまたは真核生物種に由来し得るか、またはこれらから得られ得る。非限定的な例示的一本鎖DNA結合タンパク質としては、大腸菌SSB、およびミオウイルス科ファージに由来するもの、例えば、T4、T2、T6、Rb69、Aeh1、KVP40、アシネトバクターファージ133、アエロモナスファージ65、シアノファージP-SSM2、シアノファージPSSM4、シアノファージS-PM2、Rb14、Rb32、アエロモナスファージ25、ビブリオファージnt-1、phi-1、Rb16、Rb43、ファージ31、ファージ44RR2.8t、Rb49、ファージRb3およびファージLZ2が挙げられる。一本鎖DNA結合タンパク質のさらなる例としては、A.デニトリフィカンスAlide_2047、バークホルデリアタイランデンシスBthaB_33951、プレボテラパレンスHMPREF9144_0124および真核生物一本鎖DNA結合タンパク質複製タンパク質Aが挙げられる。
【0059】
本開示の方法のいずれかは、クラウディング剤の存在下で行われ得る。いくつかの実施形態において、クラウディング剤は、ポリエチレングリコール、ポリエチレンオキシド、ポリビニルアルコール、ポリスチレン、フィコール、デキストラン、ポリ(ビニルピロリドン)(PVP)およびアルブミンの1つ以上を含み得る。いくつかの実施形態において、クラウディング剤は、200,000Da未満の分子量を有する。さらにクラウディング剤は、例えば、約0.5%~約15%重量対体積(w/v)の量で存在し得る。場合によっては、クラウディング剤はPEGである。
【0060】
場合によっては、クラウディング剤は、少なくとも1kDa、少なくとも2kDa、少なくとも3kDa、少なくとも4kDa、少なくとも5kDa、少なくとも6kDa、少なくとも8kDaまたは少なくとも10kDaの分子量を有する。
【0061】
いくつかの実施形態において、クラウディング剤は、少なくとも15%v/vの濃度、少なくとも12%v/vの濃度、少なくとも10%v/vの濃度、少なくとも8%v/vの濃度、少なくとも6%v/vの濃度、少なくとも5%v/vの濃度、少なくとも4%v/vの濃度、または少なくとも3%v/vの濃度で組成物中に存在する。
【0062】
場合によっては、クラウディング剤は、20℃で5mPa/s以下、4mPa/s以下、3mPa/s以下、2mPa/s以下または1mPa/s以下の粘度プロファイルを有する。
【0063】
場合によっては、クラウディング剤は、3kDaの分子量および6.5%の最終濃度を有するPEGである。場合によっては、クラウディング剤はPEGであり、20℃での粘度は3mPa/s以下である。
【0064】
リコンビナーゼ負荷タンパク質を使用する場合、リコンビナーゼ負荷タンパク質は、原核生物、ウイルスまたは真核生物起源のものであり得る。例示的なリコンビナーゼ負荷タンパク質としては、大腸菌RecO、大腸菌RecR、UvsY、およびこれらの変異体もしくはフラグメント、またはこれらの組み合わせが挙げられる。例示的なUvsYタンパク質としては、ミオウイルス科ファージ由来のもの、例えば、T4、T2、T6、Rb69、Aeh1、KVP40、アシネトバクターファージ133、アエロモナスファージ65、シアノファージP-SSM2、シアノファージPSSM4、シアノファージS-PM2、Rb14、Rb32、アエロモナスファージ25、ビブリオファージnt-1、phi-1、Rb16、Rb43、ファージ31、ファージ44RR2.8t、Rb49、ファージRb3およびファージLZ2が挙げられる。本開示の方法のいずれかにおいて、リコンビナーゼ負荷剤は、ミオウイルス科ファージ由来であり得る。ミオウイルス科ファージは、例えば、T4、T2、T6、Rb69、Aeh1、KVP40、アシネトバクターファージ133、アエロモナスファージ65、シアノファージP-SSM2、シアノファージPSSM4、シアノファージS-PM2、Rb14、Rb32、アエロモナスファージ25、ビブリオファージnt-1、phi-1、Rb16、Rb43、ファージ31、ファージ44RR2.8t、Rb49、ファージRb3またはファージLZ2であり得る。
【0065】
さらに、本開示の方法のいずれかは、ブロックされたプライマーで行われ得る。ブロックされたプライマーは、ポリメラーゼで伸長できないプライマーである。ブロックされたプライマーを使用する場合、プライマーをブロック解除して伸長を可能にするために、ブロック解除剤が用いられ得る。ブロック解除剤は、プライマーからブロッキング基を切断できるエンドヌクレアーゼまたはエキソヌクレアーゼであり得る。例示的なブロック解除剤としては、大腸菌エキソヌクレアーゼIIIおよび大腸菌エンドヌクレアーゼIVが挙げられる。
【0066】
本開示の方法は、標的核酸が制限エンドヌクレアーゼまたはヌクレアーゼのための天然の切断部位を含み得る、標的核酸配列の検出を含む。さらに切断部位は、標的核酸配列と1つ以上の位置で異なるプライマーで標的配列を増幅することにより標的核酸配列中に導入され得る。人工的な切断部位、または標的核酸配列において見出されなかった切断部位の導入は、標的核酸配列または標的核酸配列中のSNPの存在を検出するために用いられ得る。
【0067】
本明細書に記載の方法はまた、本明細書に記載の様々な制限エンドヌクレアーゼまたはヌクレアーゼを用いて並行して行われ得る。増幅産物の検出は並行して行われ得、増幅率が参照試料と比較される。本明細書に記載の方法は、標的配列の検出、または配列のジェノタイピングに用いられ得る。
【0068】
実施形態のいくつかにおいて、核酸増幅産物の増加のモニタリングは、経時的な反応混合物中の増幅産物の数もしくは割合を決定すること、または二重標識、例えば、二重ハプテンもしくは遊離二重ハプテン/標識の数もしくは割合を決定することを含み得る。
【0069】
いくつかの実施形態において、二重ハプテンは目視検出できる。いくつかの実施形態において、二重ハプテン標識は、蛍光、位相差顕微鏡、発光検出、スペクトル(カラー)検出、磁性検出、放射性同位体検出および/または電気化学検出を用いて検出される。当業者であれば、混合物中の核酸増幅産物の量を測定する当技術分野で公知の任意の技術が、増幅産物を検出し経時的な増幅産物の増加をモニタリングするために用いられ得ることを認識するであろう。本明細書に記載のRPA法の一部において、検出可能な標識は、RPA反応の進行(増幅産物の生成)をモニタリングするために用いられ得る。
【0070】
本明細書に開示される方法および組成物は、例えば、標的核酸配列を検出するために用いられ得る。本開示はまた、野生型アレルと比較してSNPを含む変異型アレルを同定できる。場合によっては、このSNPは、特定の疾患状態もしくは診断と(例えば、鎌状赤血球貧血症の診断、または腫瘍もしくは癌の診断と)、または薬物耐性もしくは感受性と関連し得る。本明細書に記載の等温増幅反応法および組成物は、標的配列および/またはこれに関連する多型の迅速な検出を可能にする。
【0071】
実施例
実施例1:ラテラルフローストリップ材料および製造
緩衝剤用の試薬および化学物質を、FisherまたはSigmaから購入した。
【0072】
ラテラルフローストリップを、特に明記しない限り、Prima40ニトロセルロース(GE)、接着性バッキングカード(HF000MC100、Millipore)およびCF5吸収パッド材料(GE)を用いて調製した。連続フロー実験については、試験した追加のウィッキングパッド材料は、CF6(GE)およびGrade320濃重量セルロース(Ahlstrom)を含んだ。DNP(MAB2223、Millipore)および抗FAM(MIF2902、Thermo Fisher)モノクローナル抗体、ならびに抗マウスポリクローナル抗体(A16162、Novex)を、製造業者の使用説明書に従って、Amicon Ultra10k MWCO遠心分離濃縮器を用いて貯蔵緩衝液を10mMリン酸ナトリウムpH7.4+0.005%Triton X100と交換することにより抗調製し、分注した。精製した抗体を予め切断されたストリップ上にスポットする(0.5μg/ストリップ)か、またはBiodot ZX1010分注プラットフォームを用いて1μg/cm膜の速度で膜上に分注した。膜またはドットストリップを、強制空気オーブン内で40℃にて1時間乾燥した後、積層した。
【0073】
特に明記しない限り、ストリップ積層体を、バッキングカード(300mm×45mmに予め切断)の1つの長辺と同一平面上に300mm×25mmの抗FAM/抗DNP膜を積層することにより調製した。次いで、ウィッキングパッドが膜と2mm重なるように、CF5吸収材の300mm×22mmストリップをバッキングカードの上辺と同一平面上に積層した。積層したカードを次いで、Biodot CM5000ギロチンを用いて5mm×45mmのストリップに切断した。切断したストリップをデシケーター中で室温にて貯蔵した後、使用した。
【0074】
コンジュゲートパッドを使用した場合、金コンジュゲートを9000×gで20分間の遠心分離により緩衝液交換し、上清を除去し、金を、50mMホウ砂、10%スクロース、1%カゼインおよび0.5%Brij-35中で原体積に再構成した。コンジュゲートを、3μl/cmの速度でBiodot ZX1010分注器を用いてガラス繊維ストリップ(GFDX103000、Millipore)上に噴霧した。次いで、金コンジュゲートパッドを40℃で2時間乾燥した後、積層した。
【0075】
実施例2:20nm金コロイドへの抗ビオチンのコンジュゲーション
モノクローナル抗ビオチン(ab201341、Abcam)を、製造業者の使用説明書に従ってAbPure BSA除去キット(Innova Biosciences)を用いて調製しコンジュゲートした。精製した抗ビオチンを、コンジュゲーション行程中に抗ビオチンが0.5mg/mlで存在した以外は、同様に製造業者の使用説明書に従ってInnovaCoat金20nmキット(Innova Biosciences)を用いて金にコンジュゲートした。抗ビオチン金を、上に記載されるようにコンジュゲートパッド上に噴霧する場合を除き、典型的にはRPA反応に直接添加した。
【0076】
実施例3:オリゴヌクレオチドおよびプローブ標識化
オリゴヌクレオチドプライマーおよび非標識FpgラテラルフロープローブをEurogentecから得た。脱塩基dR部位にアミノ修飾および3’末端にC3スペーサー修飾を有する非標識プローブを購入した。蛍光FpgプローブはすべてLGC Biosearchから得た。
【0077】
実施例4:二重ハプテン標識の合成およびオリゴ標識化
Fmoc-Lys(Mtt)-Wang樹脂をMerckから購入した。定性ニンヒドリン試験キットをAnaspecから購入した。ジクロロメタン(DCM)、ペプチド合成グレードのN,N-ジメチルホルムアミド(DMF)、(ベンゾトリアゾル-1-イルオキシ)トリピロリジノホスホニウムヘキサフルオロホスフェート(PyBOP)、N-メチルモルホリン(NMM)、ピペリジン、D-ビオチン、トリイソプロピルシラン(TIS)、5(6)-カルボキシフルオレセイン、メタノール、ギ酸、アセトニトリル、ジエチルエーテル、HPLC用トリエチルアミン(TEA)、酢酸、NaHCO、NaOH、2,4-ジニトロフルオロベンゼンおよびN,N,N’,N’-テトラメチル-O-(N-スクシンイミジル)ウロニウムテトラフルオロボレート(TSTU)をFisher Scientificから購入した。トリフルオロ酢酸(TFA)、N,N’-ジクロロヘキシルカルボジイミド(DCC)、N-ヒドロキシスクシンイミド(NHS)、N-DNP-L-Lys、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール(HFIP)、N,N-ジイソプロピルエチルアミン(DiPEA)、LCMS用トリエチルアミン(TEA)およびLCMS用水をSigma-Aldrichから購入した。ジメチルスルホキシド(DMSO)をAppliChemから購入した。HClおよびアセトンをVWRから購入した。ミリポア水を合成および脱塩に使用した。HPLCグレードの水をHPLC精製に使用した。NAP-10サイズ排除(SE)カラムをGEから購入した。N-ヒドロキシスクシンイミドビオチン(ビオチン-OSu)をIris Biotechから購入した。
【0078】
LCMS分析をAgilent 6410Bトリプル四重極ESI-MSを備えたAgilent 1200 LCシステムで行った。すべてのLC法で、Agilent Eclipse Plus C18、3.5μm、3.0×150mmカラムを室温で使用した。引用した収率はすべて、254nmでの吸光度に基づく。LC溶媒:A=水+0.1%ギ酸;B=アセトニトリル+0.1%ギ酸;C=200mM HFIP、4mM TEA水溶液;D=メタノール。LC法:1(溶媒AおよびB)=25分にわたって5~95%B、次いで5分間95%B;2(溶媒CおよびD)=3分にわたって20%D、次いで、5分にわたって20~30%D、7分にわたって30~50%D、次いで5分にわたって50~60%D、次いで1分にわたって60~80%D、次いで1分にわたって80%D。
【0079】
標識オリゴヌクレオチドのRP-HPLC精製を、フラクションコレクターを備えたAgilent 1100/1200 LCシステムおよびOligo-RPガードカートリッジ(AJO-8135、Phenomenex)を備えたPhenomenex Clarity 10μ Origo-RP250×4.6mmカラムで行った。LC溶媒A=メタノール;B=50mM TEAA、pH7.4中の5%v/vアセトニトリル。精製のためのLC法:5分にわたって5%B;35分にわたって5~50%B;5分にわたって50~60%B。クロマトグラムを254nmおよび494nm(Bio-FAM標識化)または360nm(Bio-DNP標識化)のいずれかで記録した。
【0080】
最終標識オリゴヌクレオチドを、Thermo-Fisher NanoDrop2000を用いて260nmで定量し、Bio-FAM標識についてはε260=20960M-1cm-1を想定し、Bio-DNP標識についてはε260を無視した。NMR分析を、Bruker Avanceコンソールを備えたOxford 400MHzマグネットを用いて行った。d6-DMSO(99.9%原子D)をSigma-Aldrichから購入した。
【0081】
実施例5:Bio-FAM二重ハプテン標識の固相合成
(D-)Bio-(L-)Lys(5(6)FAM)-OHを、Fmoc-Lys(Mtt)-Wang樹脂から出発して、標準的な固相合成技術(W.C.ChanおよびP.D.White、in Fmoc Solid Phase Peptide Synthesis、W.C.ChanおよびP.D.White、Oxford University Press、Oxford、2000、ch.3、41~76頁)を用いて合成した。具体的には、樹脂(0.25g、0.57mmol/g負荷)をDCMで1時間膨張させた後、小試料を試験して遊離アミンの不在を確認した(定性ニヒドリン試験)。Fmoc保護基を、DMF中の20%v/vピペリジンを用いて除去し(2×6分)、樹脂をDMF(3回)、次いでDCM(3回)で洗浄した後、遊離アミンの存在を定性ニヒドリン試験で確認した。D-ビオチン(3当量)を、超音波処理しながらDMF(4.3mL)中のPyBOP(3当量)およびNMM(5当量)で4分間活性化した後、樹脂と60℃で38分間反応させた。その後、樹脂をDMF(3回)およびDCM(3回)で洗浄した。樹脂試料のニヒドリン試験により遊離アミンの不在を確認した後、これをDCM中の1%v/v TFA、5%v/v TISで30分間脱保護し(2回)、その後DMF(3回)およびDCM(3回)で洗浄した。樹脂試料のニヒドリン試験は、遊離アミンを示した。5(6)-カルボキシフルオレセイン(3当量)を、DMF(4.3mL)中のPyBOP(3当量)およびNMM(5当量)で10秒間活性化した後、樹脂と60℃で38分間反応させた。その後、樹脂をDMF(3回)およびDCM(3回)で洗浄した。樹脂をDMF中の20%v/vピペリジンで処理して(2×10分)フルオレセイン二量体を切断した後、樹脂をDMF(3回)、DCM(3回)、次いでMeOH(3回)で洗浄した。洗浄した樹脂を乾燥し、冷蔵庫(約5℃)に一晩貯蔵した。遊離標識を得るために、樹脂をDCM中で膨張させ(2時間)、次いで、膨張した樹脂の約半分を2.5mLの90/2.5/2.5 v/v/v TFA/TIS/HOで室温にて2時間切断し、TFA(2×1mL)で洗浄した。合わせた切断混合物およびTFA洗浄液をガラスRBフラスコ内で真空乾燥し、次いでDCM洗浄液を含む5mLエッペンドルフチューブに移し、Ar(g)で送風除去し、氷冷ジエチルエーテル(4.5mL)を添加して、黄色固体を沈殿させ、遠心分離によりペレット化した。上清を捨て、ペレットをジエチルエーテル(2×4.5mL)で遠心洗浄した。30mg(収率58%)の黄色固体を得た。産物のLCMS(方法1)は良好な純度(90%、t11.85分);ESI-MS(pos.m/z):731.3(100%、[M+H])を示した。遊離標識の2.05mM DMSO溶液を調製し、これを遊離Bio-FAM標識を使用するラテラルフロー試験のためにさらに水で希釈した。
【0082】
実施例6:アミノ修飾FPGプローブへのBio-FAM標識の結合
Bio-FAM二重標識(5mg、6.8μmol)をDCC(2.1mg、10μmol)およびNHS(1.2mg、10μmol)で暗所にて3時間活性化し、次いで、反応混合物の試料を、メタノールで希釈し、LCMS(方法1)により分析し、それは収率21%でBio-FAM NHSエステルの存在を示した(t12.97分;ESI-MS(pos.m/z):828.8(9%、[M+H])。3.5時間の反応時間後、10μLの活性化混合物を水(20μL)および1M pH9 NaHCO水溶液(10μL)中約1mMでアミノ修飾プローブオリゴ(rs1207445)の混合物に添加した。標識化混合物をボルテックスし、10分間超音波処理し、ボルテックスし、次いで暗所で室温において一晩放置した。混合物を次いで、NAP-10 SEカラムにより脱塩し、RP-HPLC(標的t29.78分)により精製し、標的画分を真空濃縮し、NAP-10SEにより脱塩し、さらに真空濃縮して、190μLの13.4μM標的Bio-FAM標識オリゴ溶液を得た(収率25%)。標識オリゴをLCMS(方法2により)により特性評価した;純度94%、tR11.58分、ESI-MS(負):計算値11584.4、実測値11584.4。UV-Vis特性評価(Thermo-Fisher NanoDrop2000)は、259および496nmに吸収ピークを示し、FAM-標識DNAオリゴと一致していた。
【0083】
実施例7:Bio-DNP二重ハプテン標識の溶液相合成
(D-)Bio-(L-)Lys(DNP)-OHを、FAMの代わりにDNP部分を組み込むためにDMF(4.3mL)中の2,4-ジニトロフルオロベンゼン(3当量)およびDiPEA(4当量)を用いて、Bio-FAM標識について上記したように標準的な固相合成技術を用いて合成した。しかし、改善された溶液相合成を、本明細書に記載されるように開発した。具体的には、ビオチン-OSu(602μmol、1.05当量)およびN-DNP-L-Lys(1当量)をDMF(5.7mL)およびDiPEA(0.25mL)中に懸濁し、30分間超音波処理して透明な溶液を得た後、室温で撹拌した。2時間後、沈殿物が反応混合物中で観察され、これを室温で一晩撹拌放置した後、濾過し(2回、Whatman No.1濾紙)、アセトン(10mL)およびジエチルエーテル(130mL)で洗浄して、黄色固体(244mg)を回収した。黄色固体の第2収穫物(30mg)を、有機洗浄液を合わせ、追加のジエチルエーテル(100mL)を添加した後上記のように濾過し、さらなるジエチルエーテル(100mL)で洗浄することにより得た。標的標識のDiPEA塩の収穫物両方を合わせ、0.5M NaOH水溶液(5mL)に溶解して、濃オレンジ-黄色溶液を得た後、1M HCl水溶液(5mL)を添加して、カルボン酸標的を黄色固体として沈殿させた。混合物を氷上で冷却した後、固体を吸引濾過して(2回、Whatman No.1濾紙により)回収し、氷冷1M HCl水溶液(2×25mL)、次いでHO(2×25mL)、次いでジエチルエーテル(650mL)で洗浄した。洗浄液を捨て、黄色固体を真空乾燥して、標的を良好な収率で得た(0.41mmol、72%)。LCMS(方法1)純度97%、t13.71分、ESI-MS(pos.m/z):539.2(18%、[M+H]);1H NMR(400MHz、d6-DMSO)δ12.51(brs、1H、OH)、8.88(d、1H、J=5.8Hz、NH-Ar)、8.86(d、1H、J=2.7Hz、Ar-H3)、8.25(dd、1H、J=9.7、2.6Hz、Ar-H5)、8.05(d、1H、J=7.8Hz、NHC(O)CH)、7.22(d、1H、J=9.7Hz、Ar-H6)、6.38(d、2H、J=16.2Hz、NHC(O)NH)、4.29(dd、1H、J=7.5、5.0Hz、CH(CH)S)、4.20~4.10(m、2H、CHCOH、NHCHCH(R)S)、3.52~3.43(m、2H、CHNHAr)、3.10~3.06(m、1H、NHCHCH(R)S)、2.80(dd、1H、J=12.4、5.0Hz、CH(H)S)、2.56(d、1H、J=12.4Hz、CH(H)S)、2.11(t、2H、NHC(O)CH)、1.78~1.25(m、12H、6xCH)。
【0084】
実施例8:アミノ修飾FPGプローブへのBio-DNP標識の結合
Bio-DNP二重標識(10mg、18.6μmol)をTSTU(8.4mg、27.9μmol)およびDiPEA(9.7μL、27.9μmol)で8分間活性化し、次いで、反応混合物の試料をアセトニトリルで希釈し、LCMS(方法1)により分析し、それは収率19%でBio-DNP NHSエステルの存在を示した(t15.09分;ES-MS(pos.m/z):636.3(9%、[M+H])。1.5時間の反応時間後、10μLの活性化混合物を水(20μL)および1M pH9 NaHCO水溶液(10μL)中約1mMでアミノ修飾プローブオリゴ(rs1207445)の混合物に添加した。標識化混合物をボルテックスし、10分間超音波処理し、次いで暗所で室温において一晩放置した。混合物を次いで、NAP-10 SEカラムにより脱塩し、RP-HPLC(標的t31.10分)により精製し、標的画分を真空濃縮し、NAP-10SEにより脱塩し、さらに真空濃縮して、470μLの7.1μM標的Bio-DNP標識オリゴ溶液を得た(収率17%)。標識オリゴをLCMS(方法2)により特性評価した;純度90%、t10.48分、ESI-MS(負):計算値11392.4、実測値11392.2。
【0085】
実施例9:RPA条件
すべてのRPA反応を、特に明記しない限り40℃で20分間インキュベートした。ラテラルフロー用のRPA製剤(Fpg)は、各々420nMの適当なフォワードおよびリバースプライマー、120nMの二重ハプテンFpgプローブ、50mMトリス酢酸pH8.3、100mM KOAc、5mM DTT、1×クレアチンキナーゼ、30μg Gp32、30μg UvsX、7μg UvsY、6.5% 3kDa PEG、5.7%トレハロース、8.6μg DNAポリメラーゼI(黄色ブドウ球菌)、9.48μg Fpg、1×E-mix、1.8mM dNTPおよび0.5%Brij-35を含有する。反応を、100μlの最終体積に適当な鋳型およびMg(OAc)(最終濃度22.5mM)を含有する混合物を添加することにより開始した。
【0086】
Nfo RPA反応製剤は、Gp32(28μg/反応)およびポリメラーゼ(12.8μg/反応)以外はFpgと同じであった。さらに、FpgをNfo(エンドヌクレアーゼIV;4.6μg/反応)で置き換えた。
【0087】
蛍光Fpg反応を、T8装置(Axxin)で製造業者の使用説明書に従い市販のTwistAmp Fpgキットを用いて行った。反応を40℃で20分間インキュベートした。
【0088】
実施例10:ラテラルフローストリップ検出
特に明記しない限り、1.5μl抗ビオチン金を、終了したRPA反応に直接添加し、ラテラルフローストリップを添加した。ストリップを20分間ウィッキングさせた後、室温で10分間乾燥した。吸収パッドおよびガラス繊維コンジュゲートパッド(適当な場合)を除去し、ストリップをスキャンした。
【0089】
PCRDストリップ(Abingdon Health)上での希釈検出を、70μl PCRD抽出緩衝液中での5μlアンプリコンの希釈により行った。全75μlを製造業者の使用説明書に従ってPCRD装置で処理した。
【0090】
実施例11:ラテラルフローストリップ上での新規な分析物の無希釈検出
今日まで、ラテラルフロー装置でのRPA産物の検出は、TwistAmp Nfo化学と組み合わせて市販のNALFIAストリップ、例えば、Milenia Hybridetectストリップ、Abingdon Health PCRDストリップおよびUStar装置などを用いることにより行われており、これは一本鎖核酸に結合された各標識を含む二重ハプテン標識アンプリコンを生成し、これはハイブリダイズして、サンドイッチラテラルフローイムノアッセイにより検出され得る二重ハプテン標識を形成する。この技術は、感受性および特異性に関して蛍光プローブに基づく方法と同等の働きをするが、エンドユーザーは、アッセイストリップに沿った標識の移動を可能にし、したがってこのようなラテラルフローストリップ上で増幅産物を成功裏に決定できるように、粘性の高いアンプリコンを最初に希釈しなくてはならない(図8)。ラテラルフローストリップ上で無希釈で行った場合の二重標識アンプリコンの限定的な検出についての機構を示す図を、図8に示す。TwistAmp Nfo反応は3’ブロックハプテン標識プローブ(内部テトラヒドロフラン(THF)残基を含有)、ハプテン標識リバースプライマーおよびエンドヌクレアーゼIV(Nfo)を含有する。この試験において、プローブは典型的にはビオチンで標識され、リバースプライマーはDNPまたはFAMのいずれかで標識された。増幅すると、ビオチン標識プローブは新たに合成されたDNP/FAM標識鎖に結合する。プローブが結合したら、NfoはTHF残基のホスホジエステル結合5’を切断する(工程1)。切断されたプローブは、プローブを効果的に伸長する鎖置換ポリメラーゼのプライマーとして作用し、3’ブロックを除去する(工程2)。RPAの連続ラウンドはしたがって、二重ハプテン標識アンプリコンを生成する(工程3)。しかし、反応が希釈されない限り、分析物の大部分がRPAコアセルベート中に補足されたままであり(工程4)、それを試験ラインでの結合にほとんど利用できず、偽陰性/弱い真陽性の試験ラインシグナルを生じると考えられる。
【0091】
本開示は、エンドユーザーが、少ない数のハンズオン工程で、特に、RPAアンプリコン混合物からの直接の良好なラテラルフロー分離のために希釈工程を必要とせずに、ラテラルフロー測定を行う手段を提供する(直接検出)。
【0092】
最初に、ラテラルフロー装置上での希釈なしでのRPAの直接分析は失敗に終わった。標準的なRPA増幅混合物で用いられる35kDa PEGの高い濃度は、反応の粘性が高すぎて十分にウィッキングできず、金コロイドのかなりの部分がストリップの近位端で凝集したことを意味した。本開示は改善されたRPA混合物を提供し、それは35kDa PEGを用いる場合に観察される影響を軽減するように設計される。改質されたRPA混合物は、クラウディング剤として低分子量PEG(6.5% 3kDa PEG)および0.5%v/vBrij-35を利用し、これはニトロセルロース膜からの金コロイドの移動を著しく改善する。市販のTwistAmp Nfo化学(35kDa PEGを含む)は、アンプリコンが、市販またはインハウスで製造された既存のラテラルフローアッセイストリップ上で、泳動用緩衝液で適切に希釈されると、アンプリコンの何らかの検出を可能にするが、低MW PEG(6.5% 3kDa PEG)Nfo RPAをストリップ上で無希釈で行った場合、1000コピーの鋳型対NTCを含有するRPA反応において試験スポットでの検出可能なシグナルの刺激はほとんどなかった(図7)。
【0093】
サルモネラInvA標的に対するTwistAmp Nfoアッセイのラテラルフロー分析を、図7に示す。TwistAmp Nfo反応(NTCおよび反応あたり1000コピーの鋳型DNA;TwistAmp Nfo反応は35kDa PEGを含有する)。RPAを、市販のラテラルフローストリップ(PCRD、左のパネル)およびインハウスで製造された抗FAMストリップ(中央のパネル)上で泳動用緩衝液中で1/50に希釈して分析した。並行して、3kDa PEG RPA反応を、同じバッチの抗FAMストリップ(右のパネル)上で無希釈で分析した。
【0094】
二重ハプテン標識がラテラルフローストリップ上での直接無希釈検出により適しているかどうかを決定するために、3種類の分析物を、TBST(0~120nM)または6.5% 3kDa PEG中のRPA成分すべてを含有する偽RPA反応にスパイクした後、ストリップ上で分析した。3つの分析物は以下のものであった:1)各々FAMおよびビオチンにより5’および3’末端で標識された28merオリゴヌクレオチド;ハプテン標識アンプリコンを刺激するために使用される;2)新規なBio-FAM二重ハプテンプローブ;3)脱塩基dR基がBio-FAM二重ハプテンで標識される、Fpgプローブ。重要なことに、すべての3つの分析物は緩衝液にスパイクされたとき同程度に検出され、陽性シグナルは試験した最小濃度の分析物(約1nM)に観察された。検出をスパイクした偽RPAに対して無希釈で行った場合、分析物の不在下で泳動したストリップは、いくらかの弱い非特異的シグナルを示した。弱いシグナルはまた、二重標識オリゴヌクレオチドおよび二重ハプテンFpgプローブについて最大120nMの分析物で観察された。しかし、陰性試料に対する試験ラインシグナルの顕著な刺激は、遊離二重ハプテン分析物についてのみ観察された(図1iii)。これらのデータは、小さな標識はラテラルフローストリップ上でのRPA産物の無希釈検出に使用できるが、標識された核酸標識(既存の市販のNfo RPA反応から遊離される)は、RPAコアセルベート内でのこのような嵩高いプローブの局在化により、容易に検出できないという仮説と一致し、このことはラテラルフローストリップ上でのこのような標識の検出の利用可能性を制限する。
【0095】
実施例12:ラテラルフローストリップ上でのRPAの直接検出
RPAの検出に二重ハプテン分析物を使用するには、増幅が行われるまで標識を効果的に捕捉することが必要とされる。したがって、二重ハプテン標識(rs1207445プローブ1)にコンジュゲートし得る、内部アミノ修飾dR脱塩基部位を有する、rs1207445標的に対するFpgプローブを購入した。RPA中、プローブはアンプリコンにハイブリダイズし、この時点でFpgはβδ除去によりdR基の5’および3’で脱塩基部位を切断し(図2i)、工程1)、二重ハプテン標識を放出する(図2i)、工程2)。二重ハプテン分析物は、そのサイズが小さいので、RPAコアセルベートから自由に脱出でき(図2i)、工程3)、このようにしてそれはラテラルフローストリップ上でサンドイッチイムノアッセイにより検出され得る(図2i、工程4)。重要なことに、未処理のプローブ(それは両方のハプテンに結合されるため理論上検出可能であり得る)は、RPAコアセルベート中に捕捉されている可能性があり、これによりそれは、増幅が起こらないRPA反応においてほぼ検出不可能になる。この影響は、偽RPA反応にスパイクされた純粋なプローブが、遊離標識よりも検出しにくいという事実により例証される(図1iii)。
【0096】
Fpg二重ハプテンプローブをラテラルフロー上でのRPAの直接エンドポイント検出に使用できることの原理証明を得るために、rs1207445二重ハプテンプローブ(プローブ1)を含有する10、100および1000コピー/反応のヒトgDNA(さらにNTC)に対して低MW PEG RPA反応を4連で行った。1.5μl抗ビオチン金を添加し、ストリップをアンプリコン/金混合物に滴下した。いくらかの非特異的シグナルがNTC反応で観察されたが、試験ラインシグナルのわずかな刺激が10コピーの鋳型を含有するRPAの複製物の2/4で観察された。NTCに対する試験ラインシグナルの強力な刺激は、反応あたり≧100コピーのgDNAを含有するすべての反応で観察された(図2ii)。これらの予備データは、新しいFpgプローブ化学が、ラテラルフローストリップ上でのRPA産物の無希釈検出を可能にすることを示している。
【0097】
多くの市販のNALFIAストリップは、コロイドをコンジュゲートパッド中に乾燥させることにより、検出コンジュゲートをストリップ上に組み込む。さらに、ほとんどのストリップはフローコントロールラインも含み、それはストリップが効果的にウィッキングされたことを確認するように作用する。ストリップがこれらの特徴を組み込むRPAの直接検出用に製造されたかどうかを決定するために、ストリップに、抗DNP試験ライン、抗マウスフローコントロールライン(試験ラインをバイパスする任意のコンジュゲートを結合する)および乾燥抗ビオチン金コロイドを含有するガラス繊維コンジュゲートパッドを並べた。rs1207445アッセイを次いで、1000コピーのヒトgDNAの存在下または不在下で行った後、反応が終了したらストリップをRPAに直接滴下した。すべての場合において、フローコントロールラインの強いシグナルから明らかなように、有効なフローが観察された。先に観察されたものと同様に、いくらかの弱い非特異的シグナルが陰性増幅で抗DNP試験ラインに観察されたが、試験ラインシグナルの顕著な刺激が鋳型不含増幅と比較して陽性増幅で観察された(図2iii)。
【0098】
総合すれば、これらのデータは、新しい二重Fpgハプテンプローブを、ラテラルフローストリップ上でのRPA産物の直接無希釈検出に使用できることを示している。
【0099】
実施例13:陰性RPA反応における偽陽性シグナルに対するプローブ設計の影響
非特異的シグナルがいくつかの陰性反応で目視観察できる。しかし、デジタルリーダー(このような装置は、市販のラテラルフローアッセイで常套的に用いられる)を利用するならば、計装は画像分析アルゴリズムによりバックグランドシグナルを減算するように構成され得る。アッセイ試験ストリップが、資源の限られた環境で用いられる場合、アッセイストリップを目で可視化する必要があり得、この場合、ユーザーが結果を誤って解釈する可能性を軽減するために、試験ラインでの非特異的シグナルを最小限に抑える能力が望ましい。
【0100】
ラテラルフローストリップがストリップリーダーを用いて分析される場合、これは任意の分析でバックグラウンドシグナルを減算し得るため、非特異的シグナルが陰性反応で観察されるという事実は、必ずしも問題になるわけではない。しかし、ストリップが、資源が不足した環境で用いられる場合、ストリップを目で可視化できることが望ましく、この場合、試験ラインでの非特異的シグナルはあまり望ましくない。したがって、ノイズが試験ラインへのオリゴヌクレオチドプローブの直接的な結合によるものであるのか、またはFpg酵素によるプローブの異常な処理の結果であるのかを決定するために、Fpgの存在下または不在下でrs1207445の低MW PEG Fpg RPA反応を行うことにより偽陽性シグナルの原因を決定した。Fpgの存在下で、rs1207445 RPAは、NTC反応中の偽陽性シグナルを示し、1000コピーのヒトゲノムDNA鋳型を含有する反応で試験ラインシグナルの刺激が示された。Fpgの不在下で行われた反応は、NTC反応での大幅に減少された非特異的シグナル(および1000コピーの鋳型DNAを含有する反応での増幅なし)を示し、rs1207445二重ハプテンプローブが異常に処理され、偽陽性シグナルを生じたことを示唆している(図3i)。場合によっては、Fpgの不在下でいくらかの非特異的シグナルが残り、このシグナルは、膜のブロッキングにより効果的に除去され得る。
【0101】
Fpg-依存性非特異的シグナルの原因を決定するために、rs1207445二重ハプテンプローブ配列をNetPrimer(http://wwwpremierbiosoft.com/netprinterで入手可能)またはOligoAnalyser 3.1プログラム(IDT;https://eu.idtdna.com/calc/analyzerで入手可能)を用いて、ヘアピン、プライマー/プローブおよびプローブ/プローブ二量体について分析した。これらの分析は、プローブが弱いヘアピン構造(ΔG=-7.9kcal/mol)および強い自己二量体(ΔG=-14.19kcal/mol)を形成し得ることを示した。いずれの場合においても、dR基(図3iiにおいて赤でハイライト表示)は、二本鎖領域にあり、したがってFpg酵素のための基質として作用し得、NTC RPA反応においてFpg依存性ノイズが存在する理由についての有力な説明を提供する。
【0102】
2つの新しいrs1207445プローブを設計した:1)プローブ1mod-このプローブは、プローブ1と同じ配列を有し、同じ構造を形成する。しかし、ここで、脱塩基部位は推定二本鎖領域の外に位置し、Fpgで処理されないはずである;2)プローブ2-この二重ハプテンプローブは、rs1207445アンプリコン内の異なる領域にハイブリダイズするように設計される。このプローブは、プローブ1およびプローブ1modに対し減少されたヘアピン(ΔG=-2.07kcal/mol)および自己二量体(ΔG=-8.05kcal/mol)を示している。さらにdR基は、二本鎖領域の外側に位置し、Fpgの基質として作用しないはずである(図3iiおよびiii)。
【0103】
改善されたプローブ設計が、陽性増幅におけるRPAを検出する能力を維持しながら陰性増幅における非特異的シグナルを減少し得るかどうかを決定するために、3つのプローブの存在下でNTCおよび陽性(1000コピーのヒトgDNAを含有)RPA反応をラテラルフローストリップ上で無希釈で検出した。すべての陽性反応は、陰性増幅を上回る試験ラインシグナルでの顕著な刺激を示し、RPAが予想通りに行われたことを示唆する(図3iii)。rs1207445プローブ1は、陰性増幅で最大のバックグラウンドシグナルを示した。非特異的シグナルはプローブ1modを含有する陰性増幅でかろうじて検出でき、プローブ2を含有する反応では視認できなかった(図3iii)。したがって、二次構造、自己もしくは交差二量体を形成しないか、またはこれを形成する可能性を低減するプローブを設計することにより、陰性増幅における非特異的シグナルを効果的に低減または排除できる。場合によっては、これらの構造は回避できず、脱塩基部位は任意の二本鎖領域の外側に位置しなくてはならない。
【0104】
実施例14:ラテラルフロー上でのRPAの直接検出―他の標的に対する分析感受性および適用性
RPAの直接検出についてFpg二重ハプテンプローブのさらなる例証を行った。rs1207445アッセイとカンピロバクタージェジュニに対する別の既存のインハウスアッセイを最初に比較した。C.ジェジュニアッセイは、16S rRNAに対して標的化された先に設計したプライマーを利用し、唯一の変更は、既存のFpgプローブ配列を、直接ラテラルフロー検出用に設計された新しい二重ハプテン標識プローブと交換したことであった。
【0105】
両方の例において、低MW PEG RPAを4連で行い、反応は10、100または1000コピーの適当な鋳型DNA(rs1207445およびカンピロバクターアッセイ各々に対するヒトgDNAおよび合成16S C.ジェジュニrDNA鋳型)を含有した。RPA産物を次いで、抗DNPラテラルフローストリップ上で無希釈で分析した。改善されたrs1207445アッセイ(rs1207445プローブ2を利用)では、シグナルはNTC反応での試験ラインで観察されなかった。試験ラインは弱かったが、10コピーの鋳型DNAを含有するすべてのRPAに存在し(図4iに緑の輪郭で示される、ストリップ端でより明らかである)、良好なシグナルが≧100コピーのヒトgDNAを含有するすべてのRPA反応の試験ストリップ上で観察された(図4i)。
【0106】
C.ジェジュニアッセイでは、弱い偽陰性シグナルがすべてのNTCに存在した(このプローブはラテラルフロー用に再設計されなかったことに留意されるべきであり、これは、何らかの微量の二次構造および自己二量体化を示す)。しかし、非常に強い試験ラインシグナルが、≧10コピーの鋳型DNAを含有するすべての増幅で観察された(図4ii)。
【0107】
総合すると、これらのデータは、ラテラルフローストリップ検出が、増幅反応の成功によってのみ制限されることを示唆している。直接検出ラテラルフローアッセイでの使用のための同じ改善されたRPA化学が、両方のケースで用いられた。さらに、データは、改善されたFpgプローブ化学が、標的核酸の検出のために広範なRPA法に適用され得ることを示している。このように改善された技術は多くの可能性のある標的に容易に適用でき、分析感受性は、他の市販のNAATアッセイフォーマットに相当すると予想される。いくらかの偽陽性シグナルがC.ジェジュニアッセイで観察されたが、このような観察は、rs1207445に対するアッセイで使用した修正されたプローブで観察されたように、プローブヌクレオチド配列を慎重に選択して、自己二量体/二次構造の形成の可能性を最小化するプロセスを通じて軽減され得ることが予想される。
【0108】
改善された直接検出ラテラルフロー技術のさらなる例証を行った。大腸菌O157:H7の検出のための新規なRPAプライマーおよびプローブを調製した。このようなアッセイは食品検査に使用でき、便試料を用いる疾患の迅速な診断における使用可能性を有する。大腸菌O157:H7のすべての菌株において高度に保存された領域を表す血清マーカー遺伝子(rfbO157)および(fliCH7)を同定するために使用できるRPAラテラルフローアッセイを、開発した。新たに開発されたRPAアッセイは、シングルプレックス検査として最初に設計され、将来のある時点で試験を生化学的にマルチプレックス化するための余地を有した(このようなプローブは、ラテラルフロー試験ストリップ上の異なる捕捉ラインで独立して検出され得るため、各々Bio-DNPおよびBio-FAM二重ハプテン標識で標識されたFpgプローブを使用する)。
【0109】
大腸菌血清型に対するすべてのプライマー/プローブの組み合わせの予備スクリーニングを、迅速増幅動態(10コピーで<6分の開始時間、高い最大蛍光を有する)で、反応あたり約10コピーの分析感受性を示すプライマー/プローブの組み合わせを発見する意図で、等温T8装置を用いるTwistAmp Fpg蛍光プローブアッセイ(5.5%35kDa PEGを含有)を使用して行った。蛍光アッセイで最適な性能を示したプローブを次いで修飾して、直接アッセイラテラルフローにおける使用のための低MW PEG RPAでの二重ハプテンFpgプローブとして使用した(プライマーは、蛍光アッセイとラテラルフローアッセイとで同じである)。
【0110】
図5i)は、ラテラルフローストリップ上での低MW PEG RPA反応の直接無希釈検出のためのアッセイに対する新規なrfbO157蛍光Fpgアッセイ(35kDa PEG)の比較を示す。蛍光プローブアッセイ(35kDa PEGを使用)は、10コピーの鋳型DNA(定量された合成DNA)ですべての複製物においてNTCベースライン(赤)を超えるシグナルを示す。予想通り、100コピー(緑)および1000コピー(青)を含有するすべての反応は陽性であり、開始時間および最大蛍光は反応あたりの鋳型DNAの量と十分に相関した。直接ラテラルフローアッセイにおいて、陽性試験ラインシグナルが10コピーの鋳型DNAでの複製物4つのうち3つに観察された(≧100コピーの鋳型を含有するすべての複製物は強く陽性であった)。視認できる偽陽性シグナルはNTCでは観察されず、優れたプローブ設計はこのような人工産物を排除できることをさらに示す(rs1207445アッセイに使用したのと同じストリップ化学を大腸菌の検出でも利用したため)。
【0111】
図5ii)は、直接ラテラルフロー方法と比較したfliCH7蛍光プローブシングルプレックスの性能を示す。やはり、蛍光プローブアッセイは、試験したすべての複製物で10コピー(黄)に対し強い増幅を示し、最大蛍光および開始時間は反応に存在する定量された合成DNA鋳型のコピーの量と十分に相関した。Fpg二重ハプテンラテラルフローアッセイでは、弱いシグナルが10コピーで複製物4つのうち3つに観察され、より強いシグナルが1つの複製物に観察された。非常に弱い偽陽性シグナルが、fliCH7アッセイについてすべてのNTCで観察された。しかし、このような非特異的シグナルは、先に示したようにさらなる反復プローブ設計およびブロッキング試薬の使用により排除され得るであろう。
【0112】
これらのデータは、新規な二重ハプテンFpgプローブ化学の汎用性を示し、感受性アッセイを、重要な病原体に対して比較的簡単に設計でき、既存の市販の蛍光Fpgアッセイと比較して同等のアッセイ感受性を達成できることを示す。
【0113】
実施例15:改善された使いやすいFpg二重ハプテンラテラルフローアッセイ-「連続フロー」
RPA産物の直接の無希釈検出は、アッセイ消耗品の複雑性を低減でき、それによりエンドユーザーにとって試験手順がより簡単になると同時に、製造コストを削減する。本開示は試験時間を、Fpg二重ハプテンラテラルフローRPAアッセイを用いる約40分から、必要とされるアッセイ感受性に応じて30分以下に短縮できる。
【0114】
実現可能性試験を行って、増幅サイクル全体でRPA反応に存在するラテラルフローアッセイストリップを有する利点を証明した。反応体積を100μlから200μlに増加させて、混合物がストリップに沿って移動した後に顕著な増幅が起こるという事実に合わせた。最初に、抗ビオチン金コロイド標識を、増幅の前にRPA反応混合物に直接入れて、アンプリコンの蓄積前にパッドからコンジュゲートが放出されるのを防止した。ストリップ上で処理できる反応体積を増加させるために、様々な大重量ウィッキングパッド材料(対照材料:CF5、中重量セルロース繊維;実験材料:CF6およびGrade320、大重量セルロース)を評価した。RPAアッセイが進行するにつれてウィッキングパッドが装置から剥離するのを防止する一助となるように、アッセイストリップを接着カバーテープで積層した。
【0115】
概念実証を、ラテラルフローアッセイ(3kDa PEG)での使用のための200μl凍結乾燥RPAペレットを用い、rs1207445Fpg二重ハプテン(Bio-DNP)アッセイを用いて確立した。ペレットを、0または5000コピーいずれかの鋳型DNAプラス1.5μlの抗ビオチン金コロイドを含有する緩衝液容器で水和し、抗DNPストリップをCF5(対照)、CF6またはGrade320大重量パッドで作られたウィッキングで水和した。すべての反応混合物を各ラテラルフローストリップに直ちに添加し、これを40℃で30分間インキュベートした。
【0116】
図6において、示された吸収パッド材料で作られたストリップを、増幅中RPA反応でインキュベートした。示されたデータは、rs1207445二重ハプテンFpgアッセイに関するものであり、NTC反応を、5000コピーの鋳型DNAを含有するものと比較した。
【0117】
対照(CF5)ストリップにおいて、非常に強い偽陽性シグナルがすべてのNTC反応で観察され、ごくわずかな試験ラインシグナルの刺激が5000コピーのインプット鋳型DNAで観察された(図6i)上部パネル)。しかし、CF6ストリップはいくつかの偽陽性シグナル(対照ストリップでよりも弱い)を生じた一方で、偽陽性応答はGrade320ストリップを用いた場合効果的に除去された。これは、CF5またはCF6材料と比較して改善された毛細管作用を有し得るGrade320材料の大きい床体積に起因することが予想される。分析物は、CF5ストリップと比較してGrade320材料ベースのストリップ中をより容易に流動し得、それにより、非特異的相互作用が起こるのに利用可能な時間を削減する。さらに、試験ラインシグナルでの顕著な刺激が、鋳型DNAを含有する増幅で見られた(図6、下部パネル)。
【0118】
実施例16:エキソプローブ設計
本実施例は、エキソヌクレアーゼIII(エキソ)切断可能プローブのための例示的なプローブ設計を示す。例示的なプローブ構造を以下に示す。以下の配列は例示的なプローブである。配列は、増幅された標的DNAに相補的であるように設計される。
5’-XAAATTTCTACTTTTGGCCAGTTCTACAATTTGTTLHATATCACATGGATGTB-3’(配列番号1)
そこで
X=5’ヘキシル
H=THF残基
B=C3スペーサー(3’-5’ヌクレアーゼ消化のブロック)
L=DNP TEGおよびビオチンヘキシルを含む分枝修飾因子;DNP TEGおよびビオチンヘキシル部分の間のホスホロチオエート(PS)結合を使用して、内部ハプテン結合の安定性を確実にできる。
【0119】
3’ブロックB(例えば、C3スペーサー、例えば、プロパノール)がプローブの不要なヌクレアーゼ消化を防止するように、プローブを設計する。分枝修飾因子Lを脱塩基THF残基Hの5’側に組み込む。上記の例において、Lは、Hのすぐ5’であるが、Lを5’方向にHからさらに伸長し得ることが可能である。THF残基は相補的配列の上流の約30ntおよび相補的配列の下流の約15ntに位置する。
【0120】
Lは、修飾シトシン(C)ヌクレオベースを表し、そのためプローブ配列中のC残基を置き換えねばならない。Lは以下の構造:
【化6】

を有する市販のホスホロアミダイト(LGC LINK(Teddington、UK)型番2150)を用いて固相オリゴ合成中に組み込まれる。
【0121】
このホスホロアミダイトは、通常の固相DNAオリゴ合成の過程で組み込まれる。オリゴの5’-OHを脱保護し(DMTr保護基を除去する)、次いで5’ブロックX(例えば、C6、例えば、ヘキシル)でキャップした後、上に示した修飾シトシンの環外アミンに結合されたレブリノイル保護基を除去する。これはヒドロキシル基を遊離させ、他のホスホロアミダイトを含むシトシンヌクレオベースをさらに分枝伸長することを可能にする。ハプテンを組み込むアミダイト、例えば、DNP TEG(以下の上部、LGC LINK型番2549)、次いでビオチン(「Bio」)ヘキシル(以下の下部、LGC LINK型番2109)は、分枝修飾因子Lでハプテンにより二重標識されたプローブを生成する。
【化7】
【0122】
標的アンプリコンを含有するRPA反応で、ExoIIIはプローブの脱塩基残基Hを切断し、ExoIIIによるその後の3’-5’消化は、2つの別個のハプテンで標識されるモノヌクレオチドL(5’-ホスフェートおよび3’-OHを有する)を遊離させる。この二重ハプテン標識モノヌクレオチドは、自由にRPAコアセルベートから出て、可視化粒子およびLFストリップの試験ライン上の抗体と相互作用する。
【0123】
記載したエキソプローブ設計は、市販のホスホロアミダイトを用いて、分枝部位Lで様々なハプテンのモジュラー組み込みを可能にする。LでのBio/DNP、Bio/FAMおよびFAM/DNP標識化はすべて可能であり、Lのシトシンヌクレオベースへのハプテンの結合の順番もまた自由に変更できる。最後に、第3の別個のハプテンが、未処理のプローブを結合し選別するために所望される場合、ハプテン(例えば、DNP/FAM/BIO)を、例えば、ヘキシルの代わりにプローブの5’-キャップXとして使用できる。上に示したDNP-TEGホスホロアミダイトが5’-キャップとして用いられる場合、追加の脱保護およびキャッピング工程を利用して、DMTr基を除去し、得られた5’-OHを例えば、ヘキシルでブロックする。
【0124】
図9は、Exoプローブの例示的な構造およびそれらの使用を示す。左のパネルは、Fpgプローブ分析物とExoプローブ分析物の比較を示す。Exoプローブは、テトラヒドロフラン残基の1ヌクレオチド上流に位置するDNP TEGおよびビオチンヘキシルで標識されたレブリノイルdC分枝修飾因子を有する。右のパネルは、どのように分析物がRPAにおいて生成されるかについて企図される機構を示す。プローブがアンプリコンの相補的鎖を結合する場合、ExoはTHFで切断し、次いで、3’エキソヌクレアーゼ活性を用いて削り取り、ビオチン/DNP標識シトシンを放出し、それが次いで、ストリップ上で検出される(抗DNP試験ラインおよび抗ビオチン金コロイドまたは他のナノ粒子を使用する)。
【0125】
反応製剤
簡単に言えば、Exo LF RPA反応を40℃で20分間インキュベートする。ラテラルフロー(Exo)用のRPA製剤は、各々420nMの適当なフォワードおよびリバースプライマー、120nMの二重ハプテンExoプローブ、50mMトリス酢酸pH8.3、100mM KOAc、5mM DTT、1×クレアチンキナーゼ、30μg Gp32、30μg UvsX、7μg UvsY、6.5% 3kDa PEG、5.7%トレハロース、8.6μg DNAポリメラーゼI(黄色ブドウ球菌)、10μgエキソヌクレアーゼIII、50mMホスホクレアチン、2.5mM ATP、1.8mM dNTPおよび0.5% Brij-35を含有する。反応を、100μlの最終体積へと適当な鋳型およびMg(OAc)2を含有する混合物(最終濃度22.5mM)を添加することにより開始する。
【0126】
連続フロー-一段階RPAラテラルフロー
Exo LFプローブ化学の高感受性は、RPA核酸増幅およびストリップ検出が同時に行われる「連続フロー」システムにおける使用を可能にし、これは結果までの時間を鋳型の添加から約5分短縮できる(低いインプットDNAコピー数に対して最適な感受性で20~30分)。これを実現可能にするために、ラテラルフローストリップは、無希釈RPA LFシステム単独よりも多くの分析物を処理できなくてはならない。これは、エンドポイント検出ストリップで用いられるCF5材料に対し大重量吸収パッド材料(例えば、Grade320コットンリンター(Ahlstrom))を用いて達成され得る。この材料は、より多くの分析物をストリップ上で流動させることを可能にするだけでなく、これはまた流動速度を増加させると思われ、これにより、他のパッド型に対して非特異的シグナルを減少させる。ストリップはまたカバーテープを包含し、これは濃重量吸収パッドを使用する場合に一般的な、剥離を低減することを助ける。
【0127】
結果までの時間を短縮する以外に、全体としての連続フローシステムの利点は、1)増幅反応の処理/希釈が不要(汚染リスクを低減し、可能性のある消耗流体を単純化する)、2)消耗流体が減少される(基本的に消耗剤は、テラルフローストリップに直接接触する、RPAを行うための加熱チャンバである)。
【0128】
図10は、上の実施例に記載され上記のFpgアッセイと比較された2つの大腸菌アッセイで上記の無希釈Exo LF化学を用いたデータを示す(数はインプットDNAコピー数を示す;NTC=鋳型なし対照)。やはり、ストリップを、増幅後に添加する。Exoアッセイはより高い感受性および強い試験ラインシグナルを示した。シグナルは、Fpg化学よりも早く発生する。さらに、いくつかの偽陽性シグナルが残る一方で、それはFpg設定よりもはるかに改善されている。
【0129】
図11は、Exoプローブ化学を用いた同時増幅/検出を示す。同時増幅および検出は、結果までの時間がより速く(20~30分)、さらに消耗品の設計が単純化される利点を有する。図10のデータは、エンドポイント検出と連続フローの比較を示す。これら2つの間で類似の感受性が観察される。偽陽性シグナルは連続フローにおいてより強く、これはカバーテープの存在によるものであり得る。
【0130】
図12は、一段階RPAラテラルフローにおける使用のための例示的な装置を示す。装置は、アッセイ試薬用の反応チャンバおよび増幅中の検出用のストリップチャンバを有する。図12に示す装置において、反応チャンバとストリップチャンバの間にチャネルが存在し、これは、2つのチャンバ間の流動を可能にする。いくつかの実施形態において、チャンバは、RPA成分を含有する凍結乾燥ペレットを保持する。鋳型DNA、緩衝液を添加し、チャンバを40℃の加熱ブロック上に配置すると、増幅が開始される。いくつかの実施形態において、チャンバは混合用の磁気撹拌棒を保持する。反応がストリップを進むと増幅が起こり、試験ラインシグナルが発生する。
【0131】
他の実施形態
本開示をその詳細な説明と共に記載したが、前述の説明は例示を意図するものであり、添付の特許請求の範囲により定義される本開示の範囲を制限するものではないことを理解されるべきである。他の局面、利点および改変は、以下の特許請求の範囲内である。
図1-1】
図1-2】
図1-3】
図2-1】
図2-2】
図3-1】
図3-2】
図4
図5
図6
図7
図8
図9
図10
図11
図12
【配列表】
2024045115000001.xml
【手続補正書】
【提出日】2024-01-18
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
(i)
【化1】
又は
(ii)
【化2】
(式中、RはOHまたは-NH(CH2)OHである)
を含む組成物。
【請求項2】
(i)
【化3】
又は
(ii)
【化4】
(式中、DMTrはジメトキシトリチルである)
を含む組成物。
【請求項3】
【化5】
(式中、ハプテン1およびハプテン2は請求項1又は2に記載の免疫原性基であり、
Zは(i)アノマー炭素原子でβ立体配置を有する、RNAまたはDNAオリゴヌクレオチド各々における脱塩基リボースまたはデオキシリボース環のCl’;(ii)DNAまたはRNAオリゴヌクレオチドに結合するように構成されたホスホロアミダイト化合物:から選択され、
かつZがDNAまたはRNAホスホロアミダイトである場合、ハプテン1およびハプテン2の反応基はピバロイル、tert-ブチルベンゾイル、アシル、ベンゾイル、またはイソブチリルで保護されてもよく、
Rは水素、または直鎖もしくは分枝C1~C6アルキルを表し、
X1、X2およびX4は結合基であり、それは独立に不在であり得るか、または1つ以上の-O-、-C(=O)-もしくは-NR-基により中断され得る直鎖若しくは分枝C1~C12アルキルであってもよく、
X3は直鎖または分枝C1~C6アルキルであり、かつ
X5は、1つ以上の-O-、-C(=O)-または-NR-基により中断されてもよい直鎖または分枝C1~C12アルキルである)
を含む組成物。