(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024045362
(43)【公開日】2024-04-02
(54)【発明の名称】PD-1シグナル阻害剤含有薬剤による治療有効性の予測及び/又は判定マーカー
(51)【国際特許分類】
G01N 33/50 20060101AFI20240326BHJP
G01N 33/53 20060101ALI20240326BHJP
G01N 33/574 20060101ALI20240326BHJP
【FI】
G01N33/50 K
G01N33/53 K
G01N33/53 D
G01N33/574 Z
【審査請求】有
【請求項の数】9
【出願形態】OL
(21)【出願番号】P 2024012632
(22)【出願日】2024-01-31
(62)【分割の表示】P 2020566134の分割
【原出願日】2019-11-28
(31)【優先権主張番号】P 2019000181
(32)【優先日】2019-01-04
(33)【優先権主張国・地域又は機関】JP
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.TRITON
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成30年度、国立研究開発法人日本医療研究開発機構、「次世代がん医療創生研究事業」「抗PD-1抗体不応性がん患者に有効な併用療法の開発」委託研究開発、産業技術力強化法第17条の適用を受ける特許出願
(71)【出願人】
【識別番号】504132272
【氏名又は名称】国立大学法人京都大学
(74)【代理人】
【識別番号】100098121
【弁理士】
【氏名又は名称】間山 世津子
(74)【代理人】
【識別番号】100107870
【弁理士】
【氏名又は名称】野村 健一
(72)【発明者】
【氏名】本庶 佑
(72)【発明者】
【氏名】茶本 健司
(72)【発明者】
【氏名】松田 文彦
(57)【要約】 (修正有)
【課題】PD-1シグナル阻害剤を含む薬剤による疾患治療の前や早い段階で有効性を判別するマーカーを提供すること。
【解決手段】PD-1シグナル阻害剤を含む薬剤による治療の有効性を予測又は判定するためのバイオマーカーとして、下記を用いる。PD-1を高発現するCD8
+T細胞集団の頻度、CD8
+T細胞中でT-bet及びEOMESを発現するT細胞集団の頻度、及びCD4
+T細胞中でT-betを高発現するT細胞集団の頻度からなる群より選択される少なくとも一つの細胞マーカー。
【選択図】
図4
【特許請求の範囲】
【請求項1】
PD-1を高発現するCD8+T細胞集団の頻度(% of PD-1high among CD8+ T cells)、CD8+ T細胞中でT-bet及びEOMESを発現するT細胞集団の頻度(% of T-bet+ EOMES+ among CD8+ T cells)及びCD4+ T細胞中でT-betを高発現するT細胞集団の頻度(% of T-bethigh among CD4+ T cells)からなる群より選択される少なくとも一つの細胞マーカーを指標として、PD-1シグナル阻害剤を含む薬剤による治療の有効性を予測及び/又は判定することを補助する方法。
【請求項2】
下記の時点(Time point)での末梢血における細胞マーカーの値及び下記の2つの時点での末梢血における細胞マーカーの値の比の少なくとも1つが高い又は低いことを基準として、PD-1シグナル阻害剤を含む薬剤による治療の有効性を予測及び/又は判定することを補助する、請求項1記載の方法。
(治療(薬剤投与)前(Time point: 1st))
・PD-1を高発現するCD8+T細胞集団の頻度(% of PD-1high among CD8+ T cells)の値が治療(薬剤投与)前(Time point: 1st)に低い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測することを補助する。
(治療(薬剤投与)前の値に対する薬剤2回目投与後の値の比(Ratio of two time points :3rd/1st))
・・・・・治療(薬剤投与)前のCD4+ T細胞中でT-betを高発現するT細胞集団の頻度(% of T-bethigh among CD4+ T cells)の値に対する薬剤2回目投与後のCD4+ T細胞中でT-betを高発現するT細胞集団の頻度(% of T-bethigh among CD4+ T cells)の値の比が高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定することを補助する。
(薬剤1回目投与後の値に対する薬剤2回目投与後の値の比(Ratio of two time points :3rd/2nd))
・・・・・薬剤1回目投与後のCD8+ T細胞中でT-bet及びEOMESを発現するT細胞集団の頻度(% of T-bet+ EOMES+ among CD8+ T cells)の値に対する薬剤2回目投与後のCD8+ T細胞中でT-bet及びEOMESを発現するT細胞集団の頻度(% of T-bet+ EOMES+ among CD8+ T cells)の値の比が高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定することを補助する。
【請求項3】
薬剤投与前の末梢血におけるPD-1を高発現するCD8+T細胞集団の頻度が低く、かつ薬剤投与前の末梢血におけるCD4+T細胞のミトコンドリア活性酸素発現量に対するCD8+T細胞のミトコンドリア活性酸素発現量の比が高い場合に、薬剤による治療が有効であると予測することを補助する請求項1又は2に記載の方法。
【請求項4】
薬剤投与前の末梢血におけるPD-1を高発現するCD8+T細胞集団の頻度が低く、薬剤投与前の末梢血におけるCD4+T細胞のミトコンドリア活性酸素発現量に対するCD8+T細胞のミトコンドリア活性酸素発現量の比が高く、末梢血におけるCD8+T細胞のPGC-1α及びPGC-1βの発現の薬剤投与前に対する薬剤1回目投与後の比が低く、かつ末梢血単核球(PBMC)中のCD4+T細胞の頻度の薬剤投与前に対する薬剤1回目投与後の比が高い場合に、薬剤による治療が有効であると判定することを補助する請求項1又は2に記載の方法。
【請求項5】
薬剤投与前の末梢血におけるPD-1を高発現するCD8+T細胞集団の頻度が低く、薬剤投与前の末梢血におけるCD4+T細胞のミトコンドリア活性酸素発現量に対するCD8+T細胞のミトコンドリア活性酸素発現量の比が高く、末梢血におけるCD8+T細胞のPGC-1α及びPGC-1βの発現の薬剤1回目投与後に対する薬剤2回目投与後の比が高く、かつ末梢血単核球(PBMC)中のCD4+T細胞の頻度の薬剤投与前に対する薬剤1回目投与後の比が高い場合に、薬剤による治療が有効であると判定することを補助する請求項1又は2に記載の方法。
【請求項6】
薬剤1回目投与後のCD8+ T細胞中でT-betを発現するT細胞集団の頻度(% of T-bet+ among CD8+ T cells)の値に対する薬剤2回目投与後のCD8+ T細胞中でT-betを発現するT細胞集団の頻度(% of T-bet+ among CD8+ T cells)値の比が高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定することを補助する方法。
【請求項7】
PD-1シグナル阻害剤が抗体である請求項1~6のいずれかに記載の方法。
【請求項8】
抗体が、抗PD-1抗体、抗PD-L1抗体及び抗PD-L2抗体からなる群より選択される少なくとも1つの抗体である請求項7記載の方法。
【請求項9】
PD-1シグナル阻害剤を含む薬剤が、抗がん剤、感染症治療剤又はそれらの組み合わせにおける有効成分として使用される請求項1~8のいずれかに記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、PD-1シグナル阻害剤含有薬剤による治療有効性の予測及び/又は判定マーカーに関する。
【背景技術】
【0002】
近年の臨床試験の結果より、抗PD-1抗体治療は、様々ながんで従来の標準治療より有効であることが明らかになってきた [非特許文献1-3]。従来の免疫治療法と比較すると、抗PD-1抗体治療の奏功率は単独で20-30%、併用で60-70%と劇的に向上した。しかし、不応答性を示す患者が約半数程度いるのも事実である。なぜこれらの患者は抗PD-1抗体治療に不応答なのか、まだほとんどわかっていない。
【0003】
現在、アメリカ食品医薬品局(Food and Drug Administration; FDA)に認可されている抗PD-1抗体治療のマーカーは2つある。
【0004】
一つはがん細胞上のPD-L1の発現が50%以上というもので、50%の患者に対してはfirst lineでペンプロリズマブが適応できるというものである[非特許文献4]。
【0005】
もう一つはがん細胞の変異数で一定以上の変異数が固形がん細胞にあれば、それらのがんにニボルマブを適応しても良いというものである[非特許文献5]。
【0006】
FDAに認可されたマーカーは腫瘍に焦点を当てたものであるが、本発明者らは、宿主の血中メタボライト(代謝産物)や免疫活性化に着目したマーカーを見出している(特許文献1)。
【先行技術文献】
【非特許文献】
【0007】
【非特許文献1】Borghaei H, Paz-Ares L, Horn L, et al: Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N Engl J Med, 373:1627-1639,2015.
【非特許文献2】Hamanishi J, Mandai M, Ikeda T, et al: Safety and Antitumor Activity of Anti-PD-1 Antibody, Nivolumab, in Patients With Platinum-Resistant Ovarian Cancer. J Clin Oncol,2015.
【非特許文献3】Motzer RJ, Escudier B, McDermott DF, et al: Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N Engl J Med, 373:1803-1813,2015.
【非特許文献4】Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. Martin Reck et al. KEYNOTE-024 Investigators. N Engl J Med. 2016 Nov 10;375(19):1823-1833. Epub 2016 Oct 8.
【非特許文献5】Tumor Mutational Burden and Response Rate to PD-1 Inhibition. Yarchoan M, Hopkins A, Jaffee EM. N Engl J Med. 2017 Dec 21;377(25):2500-2501
【特許文献】
【0008】
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明は、PD-1シグナル阻害剤を含有する薬剤による疾患治療の前や早い段階で有効性を判別(予測及び/又は判定)するマーカーを提供することを目的とする。
【課題を解決するための手段】
【0010】
本発明者らは、抗PD-1抗体ニボルマブで治療する前および後の非小細胞肺がん(NSCLC; non-small cell lung cancer)患者の血液に由来する、血漿メタボライトおよび細胞マーカー(ミトコンドリア関連マーカーを含む)を調査した。その結果、マイクロバイオーム、エネルギー代謝および酸化還元に関連するメタボライトが、ニボルマブ応答性と相関していることが示された。また、細胞マーカーが血漿メタボライトと相関していることも明らかにした。本発明はこれらの知見により完成されたものである。
【0011】
本発明の要旨は、以下の通りである。
(1)下記の(i)及び/又は(ii)を指標として、PD-1シグナル阻害剤を含む薬剤による治療の有効性を予測及び/又は判定することを含む、検査法。
(i) 血清及び/又は血漿における、Alanine、4-Cresol、Cysteine、Hippuric acid、Oleic acid、Indoxyl sulfate、Ribose、Indoleacetate、Uric acid、Trans-urocanic acid、Pipecolic acid、N-Acetylglucosamine、Indolelactic acid、Arabinose、Arabitol、Cystine、Indoxyle sulfate、Gluconic acid、Citrulline、Creatinine、N-Acetylaspartic acid、Pyroglutamic acid、Trimethyyllysine、Asy-Dimethylarginine、Sym-Dimethylarginine、Methylhistidine、アシルカルニチン、3-Aminoisobutyric acid、Acethykcarnosine、Arginine、N-acetylornitine、3-Hydroxyisovaleric acid、Pyruvic acid、α-ketoglutaric acid、GSSG、2-Hydrobutyric acid、1,5-Anhydro-D-sorbitol、Glutamine、Glycine、Lysine、Taurine、AMP、Acetylcarnosine、3-Hydroxybutyric acid、2-Hydroxyisovaleric acid、Acetoacetic acid、Tryptophan、2-Hydroxyglutaric acid、Malic acid、Quinolinic acid、Caproic acid、Isoleucine、GSH及び3-OH-Kynurenineからなる群より選択される少なくとも一つのメタボライト
(ii) 末梢血における、末梢血単核球(PBMC)中のCD4+ T細胞の頻度(% of CD4+ T cells among PBMC)、末梢血単核球(PBMC)中のCD8+ T細胞の頻度(% of CD8+ T cells among PBMC)、CD8+ T細胞中のナイーブT細胞の頻度(% of Tnaive among CD8+ T cells)、CD4+ T細胞中のセントラルメモリーT細胞の頻度(% of Tcm among CD4+ T cells)、CD8+ T細胞中のセントラルメモリーT細胞の頻度(% of Tcm among CD8+ T cells)、CD8+ T細胞中のエフェクターメモリーT細胞の頻度(% of Tem among CD8+ T cells)、CD4+ T細胞中の最終分化エフェクターメモリーT細胞の頻度(% of Temra among CD4+ T cells)、CD8+ T細胞中の最終分化エフェクターメモリーT細胞の頻度(% of Temra among CD8+ T cells)、CD4+T細胞のミトコンドリア活性化状態に対するCD8+T細胞のミトコンドリア活性化状態の比(例えば、CD4+T細胞のミトコンドリア活性酸素発現量に対するCD8+T細胞のミトコンドリア活性酸素発現量の比(Mito SOX CD8/CD4)、CD4+T細胞のミトコンドリアの体積(mass)に対するCD8+T細胞のミトコンドリアの体積の比(Mito mass CD8/CD4))、CD8+T細胞のPGC-1α及びPGC-1βの発現(PGC-1αβ(MFI) of CD8+ T cells)、PD-1を高発現するCD8+T細胞集団の頻度(% of PD-1high among CD8+ T cells)、CD4+ T細胞中でFoxP3を低発現するCD45RA+ T細胞集団の頻度(% of FoxP3low CD45RA+ among CD4+ T cells)、CD4+ T細胞中でT-betを高発現するT細胞集団の頻度(% of T-bethigh among CD4+ T cells)、CD4+ T細胞中でT-betを低発現するT細胞集団の頻度(% of T-betlow among CD4+ T cells)、CD8+ T細胞中でT-betを発現するT細胞集団の頻度(% of T-bet+ among CD8+ T cells)及びCD8+ T細胞中でT-bet及びEOMESを発現するT細胞集団の頻度(% of T-bet+ EOMES+ among CD8+ T cells)からなる群より選択される少なくとも一つの細胞マーカー
(2)表4及び5に示す、時点(Time point)又は2つの時点の比(Ratio of two time points)におけるメタボライト(Metabolite)及び/又は細胞マーカー(Cellular marker)の値が高い又は低い(Changes in R relative to NR)ことを基準として、PD-1シグナル阻害剤を含む薬剤による治療の有効性を予測及び/又は判定する(1)記載の方法。
(3)(i)のメタボライトが、馬尿酸、アラビノース及びアシルカルニチンからなる群より選択される少なくとも一つのメタボライトであり、(ii) の細胞マーカーが、PD-1を高発現するCD8+T細胞集団の頻度、CD4+T細胞のミトコンドリア活性酸素発現量に対するCD8+T細胞のミトコンドリア活性酸素発現量の比、並びにCD8+T細胞のPGC-1α及びPGC-1βの発現からなる群より選択される少なくとも一つの細胞マーカーである(1)又は(2)に記載の方法。
(4)薬剤投与前の血清及び/又は血漿におけるシステインの値が高く、かつ薬剤投与前の血清及び/又は血漿における馬尿酸の値が高い場合に、薬剤による治療が有効であると予測する(1)記載の方法。
(5)薬剤1回目投与後の血清及び/又は血漿におけるアラビノースの値が高く、薬剤1回目投与後の血清及び/又は血漿におけるアルギニンの値が高く、かつ薬剤1回目投与後の血清及び/又は血漿におけるブチリルカルニチンの値が低い場合に、薬剤による治療が有効であると判定する(1)記載の方法。
(6)薬剤投与前の血清及び/又は血漿における馬尿酸の値が高く、薬剤1回目投与後の血清及び/又は血漿におけるシスチンの値が高く、薬剤2回目投与後の血清及び/又は血漿におけるグルタチオンジスルフィドの値が高く、かつ薬剤2回目投与後の血清及び/又は血漿におけるブチリルカルニチンの値が低い場合に、薬剤による治療が有効であると判定する(1)記載の方法。
(7)薬剤投与前の末梢血におけるPD-1を高発現するCD8+T細胞集団の頻度が低く、かつ薬剤投与前の末梢血におけるCD4+T細胞のミトコンドリア活性酸素発現量に対するCD8+T細胞のミトコンドリア活性酸素発現量の比が高い場合に、薬剤による治療が有効であると予測する(1)~(6)のいずれかに記載の方法。
(8)薬剤投与前の末梢血におけるPD-1を高発現するCD8+T細胞集団の頻度が低く、薬剤投与前の末梢血におけるCD4+T細胞のミトコンドリア活性酸素発現量に対するCD8+T細胞のミトコンドリア活性酸素発現量の比が高く、末梢血におけるCD8+T細胞のPGC-1α及びPGC-1βの発現の薬剤投与前に対する薬剤1回目投与後の比が低く、かつ末梢血単核球(PBMC)中のCD4+T細胞の頻度の薬剤投与前に対する薬剤1回目投与後の比が高い場合に、薬剤による治療が有効であると判定する(1)~(6)のいずれかに記載の方法。
(9)薬剤投与前の末梢血におけるPD-1を高発現するCD8+T細胞集団の頻度が低く、薬剤投与前の末梢血におけるCD4+T細胞のミトコンドリア活性酸素発現量に対するCD8+T細胞のミトコンドリア活性酸素発現量の比が高く、末梢血におけるCD8+T細胞のPGC-1α及びPGC-1βの発現の薬剤1回目投与後に対する薬剤2回目投与後の比が高く、かつ末梢血単核球(PBMC)中のCD4+T細胞の頻度の薬剤投与前に対する薬剤1回目投与後の比が高い場合に、薬剤による治療が有効であると判定する(1)~(6)のいずれかに記載の方法。
(10)PD-1シグナル阻害剤が抗体である(1)~(9)のいずれかに記載の方法。
(11)抗体が、抗PD-1抗体、抗PD-L1抗体及び抗PD-L2抗体からなる群より選択される少なくとも1つの抗体である(10)記載の方法。
(12)PD-1シグナル阻害剤を含む薬剤が、抗がん剤、感染症治療剤又はそれらの組み合わせにおける有効成分として使用される(1)~(11)のいずれかに記載の方法。
(13)下記の(i)及び/又は(ii)を指標として、被験者に対するPD-1シグナル阻害剤を含む薬剤による治療の有効性を予測及び/又は判定し、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定された場合には、該被験者の治療に有効な量のPD-1シグナル阻害剤を含む薬剤を投与することを含む、疾病の診断及び治療方法。
(i) 血清及び/又は血漿における、Alanine、4-Cresol、Cysteine、Hippuric acid、Oleic acid、Indoxyl sulfate、Ribose、Indoleacetate、Uric acid、Trans-urocanic acid、Pipecolic acid、N-Acetylglucosamine、Indolelactic acid、Arabinose、Arabitol、Cystine、Indoxyle sulfate、Gluconic acid、Citrulline、Creatinine、N-Acetylaspartic acid、Pyroglutamic acid、Trimethyyllysine、Asy-Dimethylarginine、Sym-Dimethylarginine、Methylhistidine、アシルカルニチン、3-Aminoisobutyric acid、Acethykcarnosine、Arginine、N-acetylornitine、3-Hydroxyisovaleric acid、Pyruvic acid、α-ketoglutaric acid、GSSG、2-Hydrobutyric acid、1,5-Anhydro-D-sorbitol、Glutamine、Glycine、Lysine、Taurine、AMP、Acetylcarnosine、3-Hydroxybutyric acid、2-Hydroxyisovaleric acid、Acetoacetic acid、Tryptophan、2-Hydroxyglutaric acid、Malic acid、Quinolinic acid、Caproic acid、Isoleucine、GSH及び3-OH-Kynurenineからなる群より選択される少なくとも一つのメタボライト
(ii) 末梢血における、末梢血単核球(PBMC)中のCD4+ T細胞の頻度(% of CD4+ T cells among PBMC)、末梢血単核球(PBMC)中のCD8+ T細胞の頻度(% of CD8+ T cells among PBMC)、CD8+ T細胞中のナイーブT細胞の頻度(% of Tnaive among CD8+ T cells)、CD4+ T細胞中のセントラルメモリーT細胞の頻度(% of Tcm among CD4+ T cells)、CD8+ T細胞中のセントラルメモリーT細胞の頻度(% of Tcm among CD8+ T cells)、CD8+ T細胞中のエフェクターメモリーT細胞の頻度(% of Tem among CD8+ T cells)、CD4+ T細胞中の最終分化エフェクターメモリーT細胞の頻度(% of Temra among CD4+ T cells)、CD8+ T細胞中の最終分化エフェクターメモリーT細胞の頻度(% of Temra among CD8+ T cells)、CD4+T細胞のミトコンドリア活性化状態に対するCD8+T細胞のミトコンドリア活性化状態の比(例えば、CD4+T細胞のミトコンドリア活性酸素発現量に対するCD8+T細胞のミトコンドリア活性酸素発現量の比(Mito SOX CD8/CD4)、CD4+T細胞のミトコンドリアの体積(mass)に対するCD8+T細胞のミトコンドリアの体積の比(Mito mass CD8/CD4))、CD8+T細胞のPGC-1α及びPGC-1βの発現(PGC-1αβ(MFI) of CD8+ T cells)、PD-1を高発現するCD8+T細胞集団の頻度(% of PD-1high among CD8+ T cells)、CD4+ T細胞中でFoxP3を低発現するCD45RA+ T細胞集団の頻度(% of FoxP3low CD45RA+ among CD4+ T cells)、CD4+ T細胞中でT-betを高発現するT細胞集団の頻度(% of T-bethigh among CD4+ T cells)、CD4+ T細胞中でT-betを低発現するT細胞集団の頻度(% of T-betlow among CD4+ T cells)、CD8+ T細胞中でT-betを発現するT細胞集団の頻度(% of T-bet+ among CD8+ T cells)及びCD8+ T細胞中でT-bet及びEOMESを発現するT細胞集団の頻度(% of T-bet+ EOMES+ among CD8+ T cells)からなる群より選択される少なくとも一つの細胞マーカー
(14)下記の(i)及び/又は(ii)を指標として、被験者に対するPD-1シグナル阻害剤を含む薬剤による治療の有効性を予測及び/又は判定し、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定された場合には、該被験者の治療に有効な量のPD-1シグナル阻害剤を含む薬剤を投与することを含む、疾病の診断及び治療方法に使用するための、PD-1シグナル阻害剤を含む薬剤を有効成分として含む医薬組成物。
(i) 血清及び/又は血漿における、Alanine、4-Cresol、Cysteine、Hippuric acid、Oleic acid、Indoxyl sulfate、Ribose、Indoleacetate、Uric acid、Trans-urocanic acid、Pipecolic acid、N-Acetylglucosamine、Indolelactic acid、Arabinose、Arabitol、Cystine、Indoxyle sulfate、Gluconic acid、Citrulline、Creatinine、N-Acetylaspartic acid、Pyroglutamic acid、Trimethyyllysine、Asy-Dimethylarginine、Sym-Dimethylarginine、Methylhistidine、アシルカルニチン、3-Aminoisobutyric acid、Acethykcarnosine、Arginine、N-acetylornitine、3-Hydroxyisovaleric acid、Pyruvic acid、α-ketoglutaric acid、GSSG、2-Hydrobutyric acid、1,5-Anhydro-D-sorbitol、Glutamine、Glycine、Lysine、Taurine、AMP、Acetylcarnosine、3-Hydroxybutyric acid、2-Hydroxyisovaleric acid、Acetoacetic acid、Tryptophan、2-Hydroxyglutaric acid、Malic acid、Quinolinic acid、Caproic acid、Isoleucine、GSH及び3-OH-Kynurenineからなる群より選択される少なくとも一つのメタボライト
(ii) 末梢血における、末梢血単核球(PBMC)中のCD4+ T細胞の頻度(% of CD4+ T cells among PBMC)、末梢血単核球(PBMC)中のCD8+ T細胞の頻度(% of CD8+ T cells among PBMC)、CD8+ T細胞中のナイーブT細胞の頻度(% of Tnaive among CD8+ T cells)、CD4+ T細胞中のセントラルメモリーT細胞の頻度(% of Tcm among CD4+ T cells)、CD8+ T細胞中のセントラルメモリーT細胞の頻度(% of Tcm among CD8+ T cells)、CD8+ T細胞中のエフェクターメモリーT細胞の頻度(% of Tem among CD8+ T cells)、CD4+ T細胞中の最終分化エフェクターメモリーT細胞の頻度(% of Temra among CD4+ T cells)、CD8+ T細胞中の最終分化エフェクターメモリーT細胞の頻度(% of Temra among CD8+ T cells)、CD4+T細胞のミトコンドリア活性化状態に対するCD8+T細胞のミトコンドリア活性化状態の比(例えば、CD4+T細胞のミトコンドリア活性酸素発現量に対するCD8+T細胞のミトコンドリア活性酸素発現量の比(Mito SOX CD8/CD4)、CD4+T細胞のミトコンドリアの体積(mass)に対するCD8+T細胞のミトコンドリアの体積の比(Mito mass CD8/CD4))、CD8+T細胞のPGC-1α及びPGC-1βの発現(PGC-1αβ(MFI) of CD8+ T cells)、PD-1を高発現するCD8+T細胞集団の頻度(% of PD-1high among CD8+ T cells)、CD4+ T細胞中でFoxP3を低発現するCD45RA+ T細胞集団の頻度(% of FoxP3low CD45RA+ among CD4+ T cells)、CD4+ T細胞中でT-betを高発現するT細胞集団の頻度(% of T-bethigh among CD4+ T cells)、CD4+ T細胞中でT-betを低発現するT細胞集団の頻度(% of T-betlow among CD4+ T cells)、CD8+ T細胞中でT-betを発現するT細胞集団の頻度(% of T-bet+ among CD8+ T cells)及びCD8+ T細胞中でT-bet及びEOMESを発現するT細胞集団の頻度(% of T-bet+ EOMES+ among CD8+ T cells)からなる群より選択される少なくとも一つの細胞マーカー
【発明の効果】
【0012】
PD-1シグナル阻害剤を代表する抗PD-1抗体を用いる治療は非常に高価であるため、治療前または治療の早い段階で治療の有効性を判別できることは、治療費の削減につながる。
本明細書は、本願の優先権の基礎である日本国特許出願、特願2019‐000181の明細書および/または図面に記載される内容を包含する。
【図面の簡単な説明】
【0013】
【
図1】特定の血漿メタボライトは、ニボルマブ投与への治療応答性に関連している。a)本研究の模式図。b)各時点におけるnon-responderとresponderの間の247個のメタボライトの比較をボルケーノプロットで示した。log2 |倍率変化|>1.0 および -log10 (p値) >1.3であるメタボライトを有意と考えた。Responderと non-responderの間で有意差を示すメタボライトを表に示した。様式(modality)は、メタボライト測定に用いた分析プラットフォーム(GC-MSまたはLC-MS)を示す。応答性に関連する各メタボライトの単変量ロジスティック回帰分析から計算した曲線下面積(AUC)を表中右端の列に示す。c)non-responder(NR) およびresponder (R)における腸内細菌関連メタボライトのGC-MSまたはLC-MSによって測定したピーク面積を示す。d)酸化還元/エネルギー代謝関連メタボライトのピーク面積を示す。各点は1名の患者を表す。エラーバーは中央値および四分位範囲を示す。*p < 0.05, **p < 0.01(クラスカル・ウォリスの検定およびそれに続くダンの多重比較検定による)(cおよびd)。
【
図2】血漿メタボライトの組合せは、ニボルマブ投与への治療応答性を予測する。a)赤池情報量基準(AIC)を用いたステップワイズ回帰法をもちいて、第1サンプルのみ、第1および第2サンプル、更に第1、第2、および第3サンプルにおける予測性が最良のメタボライト組合せI、II、およびIIIを選択した。各メタボライトの詳細なデータを
図8に示す。b)線形判別分析(LDA)を用いて、予測バイオマーカーとしてのメタボライト組合せIの正確さを評価した。LDA-RとLDA-NRを決定するためのLDAの正準プロット(canonical plot)を示す。各点は1名の患者を表す。縦の点線はカットオフ値を示す。c)メタボライト組合せIによって判別されたLDA-Rおよび LDA-NRの無増悪生存期間(PFS) および全生存期間(OS)のカプラン・マイヤープロット。d)メタボライトの組合せIIに基づくLDAの正準プロット。e)メタボライト組合せIIによって決定されたLDA-Rおよび LDA-NRのPFS およびOSのカプラン・マイヤープロット。f)メタボライト組合せIIIに基づくLDAの正準プロット。g)メタボライト組合せIIIによって決定されたLDA-Rおよび LDA-NR患者のPFS およびOSのカプラン・マイヤープロット。*p < 0.05, **p < 0.01, ***p < 0.001(ゲーハン-ブレスロー-ウイルコクソン検定による)(c、e およびg)。h)メタボライト組合せI、IIおよびIIIの5分割交差検証のROC曲線。
【
図3】ミトコンドリアの状態を含む特定の細胞マーカーを選択して、組合せ予測マーカーを選択した。a)AICを用いたステップワイズ回帰法をもちいて、第1サンプルのみ、第1および第2サンプル、更に第1、第2、および第3サンプルにおける予測性が最良の細胞マーカー組合せI、II、およびIIIを選択した。b)CD8
+ PBMCにゲートをかけた後の代表的なNSCLCサンプル2例(non-responderおよびresponder)(左側パネル)。X軸がCCR7でY軸がPD-1を示す。第1サンプルにおけるnon-responderとresponderのPD-1
high CD8
+ T細胞の頻度(右側パネル)。c)ゲートをかけたCD4
+およびCD8
+T細胞のMito SOXの代表的ヒストグラム(左側パネル)。第1サンプルにおけるnon-responderとresponderのCD4
+およびCDD8+T細胞中のMito SOXレベルの比((Mito SOX CD8/CD4)(右側パネル)。d)CD8
+ PBMCの、第1、第2および第3サンプルのPGC-1αβ(左上パネル)。第1、第2および第3サンプルのPGC-1αβのMFIの変動(右上パネル)。実線と点線は、それぞれresponderとnon-responderを表す。non-responderと responder間の、第1サンプルと第2サンプルのPGC-1αβ発現の倍率変化(左下パネル)および第2サンプルと第3サンプルのPGC-1αβ発現の倍率変化(右下パネル)。e)第1および第2サンプルにおけるPBMC中のCD4
+ T細胞の頻度を示す(左パネル)。実線と点線は、それぞれresponderとnon-responderを表す。non-responderと responder間の、第1サンプルと第2サンプルのCD4
+ T細胞頻度の倍率変化(右パネル)。各点は1名の患者を表す。エラーバーは中央値および四分位範囲を示す。*p < 0.05, **p < 0.01, ****p < 0.0001(ウィルコクソン順位和検定による)。
【
図4】細胞マーカーの組合せは、生存期間をより正確に予測できた。a)LDAを用いて、細胞マーカー組合せIの正確さを評価した。LDA-Rと LDA-NRを決定するためのLDAの正準プロットを示す。各点は1名の患者を表す。縦の点線はカットオフ値を示す。b)細胞マーカー組合せIによって決定されたLDA-Rおよび LDA-NRのPFS およびOSのカプラン・マイヤープロット。c)細胞マーカー組合せIIに基づくLDAの正準プロット。d)細胞マーカー組合せIIによって決定されたLDA-Rおよび LDA-NRのPFS およびOSのカプラン・マイヤープロット。e)細胞マーカー組合せIIIに基づくLDAの正準プロット。f)細胞マーカー組合せIIIによって判別したLDA-Rおよび LDA-NRのPFS およびOSのカプラン・マイヤープロット。*p < 0.05, **p < 0.01, ***p < 0.001(ゲーハン-ブレスロー-ウイルコクソン検定による)(b,dおよびf)。g)細胞マーカー組合せI、IIおよびIIIの5分割交差検証のROC曲線。
【
図5】特定の細胞マーカーとメタボライトの間の強い相関は、メタボライトを組合せバイオマーカーの候補から排除する。a)細胞マーカー(X軸)とメタボライト(Y軸)の間の散布図。黒点はresponderを表し、白丸はnon-responderを表す。r: スピアマンの相関係数。b)上記a)において検出された全てのマーカー対に対する絶対相関係数のクラスター化ヒートマップ。(スピアマンの相関距離、および完全連結法を使用)。暗い部分は高い相関(|r|が1に近い) を表し、明るい部分は低い相関 (|r|が0に近い)を表す。各マーカーはクラスター化して3つのグループとなった。それぞれを代謝カテゴリー1、2および3と称する。c)スピアマンの相関分析の要約。代謝カテゴリー1(腸内細菌関連メタボライト)はCD8
+ T細胞のPGC-1αβと相関している;代謝カテゴリー2(FAO関連メタボライト)はPD-1
high CD8
+ T細胞の頻度と相関している;そして、代謝カテゴリー3(酸化還元関連メタボライト)はT細胞Mito SOXマーカーと相関している。
【
図6】グループ間で、異なる基準に基づいて生存曲線を比較している。a)PFS > 3ヶ月(実線)および PFS ≦ 3ヶ月(点線)によって分類した患者のPFSおよびOSのカプラン・マイヤープロット。b)PFS > 6ヶ月(実線)および PFS ≦ 6ヶ月(点線)によって分類した患者のPFSおよびOSのカプラン・マイヤープロット。**p < 0.01, ***p < 0.001, ****p < 0.0001(ゲーハン-ブレスロー-ウイルコクソン検定による)。c)腫瘍上のPD-L1発現頻度によって分類した患者のPFSおよびOSのカプラン・マイヤープロット。破線、実線および点線は、PD-L1高発現(> 50%)、PD-L1低発現(1-50%)、および稀なPD-L1発現(< 1%)を有する患者を示す。d)実線および点線は、PD-L1の陽性発現(> 1%)および陰性発現(< 1%)を有する患者を示す。
【
図7】腸内細菌由来メタボライトおよびアシルカルニチン種の変動。a)前もって抗生物質によって治療されていない患者(ATB(-))および抗生物質によって治療されている患者(ATB(+))における腸内細菌関連メタボライトのGC-MSまたはLC-MSにより測定したピーク面積を示す。これらのグラフは、第1、第2および第3サンプルのデータを示す。**p < 0.01, ****p < 0.0001 (ウィルコクソン順位和検定による)。b)non-responder (NR)およびresponder (R)における馬尿酸およびインドキシル硫酸のGC-MSによって測定したピーク面積を示す。各点は患者1名を表す。エラーバーは中央値および四分位範囲を示す。*p < 0.05, **p < 0.01, ***p < 0.001(クラスカル・ウォリスの検定およびそれに続くダンの多重比較検定による)。c)第1、第2および第3サンプルにおけるアシルカルニチン種のピーク面積の変動を示す。実線および点線は、それぞれresponderおよび non-responderを表す。*p < 0.05, **p < 0.01(ウィルコクソン順位和検定による)。
【
図8】ステップワイズ回帰法によって選択されたメタボライトの詳細データ。a-c)グラフは、ステップワイズ回帰法によって選択されたメタボライトのピーク面積のnon-responder とresponderの間の比較を示す。各点は患者1名を表す。エラーバーは中央値および四分位範囲を示す。*p < 0.05, **p < 0.01(ウィルコクソン順位和検定による)。
【
図9】CD8
+およびCD4
+ T細胞における細胞マーカー陽性サブセットの詳細データa)グラフは、第1サンプルにおけるnon-responderとresponderのCD8
+ T細胞におけるPD-1陽性頻度の比較を示す。b)FACSデータは、PBMC中のCD8
+ T細胞におけるPD-1と、Ki67、グランザイムB、IFN-γ、T-betおよびEOMESの発現レベルを示す。代表的なNSCLCサンプルを左側パネルに示す。右側パネルは、PD-1hi、 POD-1lowおよび PD-1(-) CD8
+T細胞におけるKi67+、グランザイムB+、IFN-γ+、T-bet+およびEOMES+ 細胞の頻度を示す。*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001(クラスカル・ウォリスの検定およびそれに続くダンの多重比較検定による)。c)CD45ROおよびCCR7の発現に従って、CD4
+ T細胞をnaive、Tcm、TemおよびTemraサブセットに分類した(左側パネル)。Non-responderおよび responderにおけるCD4
+ TcmおよびCD4
+ Temraの頻度を示す(右側パネル)。**p < 0.01(ウィルコクソン順位和検定による)。
【
図10】グルタチオンの生合成および代謝を示す模式図。L-グルタミン酸とシステインは結合してL-γ-グルタミルシステインを形成し、次にこれがグリシンと結合してGSHを生ずる。GSHは活性酸素種(ROS)と反応後、酸化形(GSSG)となる。
【
図11】PD-1
highの定義。A) 30人の年齢が合致した健常者のCD8
+T 細胞にゲートをかけPD-1染色データーをオバーラップした。X軸はPD-1発現レベル、Y軸は相対的な細胞数である。縦ラインはPD-1発現平均の50
th, 90
th, 97
th と 99
th percentileを示す。テーブルにはそれぞれのpercentileにおける患者のPD-1
high CD8
+T細胞の%とCD8
+T 細胞の疲弊マーカーの遺伝子発現(CTLA-4, Tim-3 and Lag-3) の相関係数(r)の値を示す、B)右のパネルには、それらの相関図を示す。97
th percentileにてどの疲弊マーカーの遺伝子発現とも相関が高かったので97
th percentileをPD-1
highのcut off値に決めた。
【
図12】肺がん細胞にEGFR変異が入っている場合、PD-1抗体治療が効きにくいという既知の事実がある。我々のCellular marker combination IIがEGFR変異有りの不応答性も見分けることができるのかLDA解析を行った。その結果、error rate 0% であり、EGFR変異による不応答性も見分けることができることが明らかになった。
【
図13】Cellular marker combination IIが他のがん種においても有効性を判断できるか検討するため、11人の頭頸部腫瘍患者検体においても同様の染色を行い、LDA解析を行った。その結果、error rate が9.1 %の割合で有効性を判定できた。
【発明を実施するための形態】
【0014】
以下、本発明を詳細に説明する。
【0015】
本発明は、下記の(i)及び/又は(ii)を指標として、PD-1シグナル阻害剤を含む薬剤による治療の有効性を予測及び/又は判定することを含む、検査法を提供する。
(i) 血清及び/又は血漿における、Alanine、4-Cresol、Cysteine、Hippuric acid、Oleic acid、Indoxyl sulfate、Ribose、Indoleacetate、Uric acid、Trans-urocanic acid、Pipecolic acid、N-Acetylglucosamine、Indolelactic acid、Arabinose、Arabitol、Cystine、Indoxyle sulfate、Gluconic acid、Citrulline、Creatinine、N-Acetylaspartic acid、Pyroglutamic acid、Trimethyyllysine、Asy-Dimethylarginine、Sym-Dimethylarginine、Methylhistidine、アシルカルニチン、3-Aminoisobutyric acid、Acethykcarnosine、Arginine、N-acetylornitine、3-Hydroxyisovaleric acid、Pyruvic acid、α-ketoglutaric acid、GSSG、2-Hydrobutyric acid、1,5-Anhydro-D-sorbitol、Glutamine、Glycine、Lysine、Taurine、AMP、Acetylcarnosine、3-Hydroxybutyric acid、2-Hydroxyisovaleric acid、Acetoacetic acid、Tryptophan、2-Hydroxyglutaric acid、Malic acid、Quinolinic acid、Caproic acid、Isoleucine、GSH及び3-OH-Kynurenineからなる群より選択される少なくとも一つのメタボライト
(ii) 末梢血における、末梢血単核球(PBMC)中のCD4+ T細胞の頻度(% of CD4+ T cells among PBMC)、末梢血単核球(PBMC)中のCD8+ T細胞の頻度(% of CD8+ T cells among PBMC)、CD8+ T細胞中のナイーブT細胞の頻度(% of Tnaive among CD8+ T cells)、CD4+ T細胞中のセントラルメモリーT細胞の頻度(% of Tcm among CD4+ T cells)、CD8+ T細胞中のセントラルメモリーT細胞の頻度(% of Tcm among CD8+ T cells)、CD8+ T細胞中のエフェクターメモリーT細胞の頻度(% of Tem among CD8+ T cells)、CD4+ T細胞中の最終分化エフェクターメモリーT細胞の頻度(% of Temra among CD4+ T cells)、CD8+ T細胞中の最終分化エフェクターメモリーT細胞の頻度(% of Temra among CD8+ T cells)、CD4+T細胞のミトコンドリア活性化状態に対するCD8+T細胞のミトコンドリア活性化状態の比(例えば、CD4+T細胞のミトコンドリア活性酸素発現量に対するCD8+T細胞のミトコンドリア活性酸素発現量の比(Mito SOX CD8/CD4)、CD4+T細胞のミトコンドリアの体積(mass)に対するCD8+T細胞のミトコンドリアの体積の比(Mito mass CD8/CD4))、CD8+T細胞のPGC-1α及びPGC-1βの発現(PGC-1αβ(MFI) of CD8+ T cells)、PD-1を高発現するCD8+T細胞集団の頻度(% of PD-1high among CD8+ T cells)、CD4+ T細胞中でFoxP3を低発現するCD45RA+ T細胞集団の頻度(% of FoxP3low CD45RA+ among CD4+ T cells)、CD4+ T細胞中でT-betを高発現するT細胞集団の頻度(% of T-bethigh among CD4+ T cells)、CD4+ T細胞中でT-betを低発現するT細胞集団の頻度(% of T-betlow among CD4+ T cells)、CD8+ T細胞中でT-betを発現するT細胞集団の頻度(% of T-bet+ among CD8+ T cells)及びCD8+ T細胞中でT-bet及びEOMESを発現するT細胞集団の頻度(% of T-bet+ EOMES+ among CD8+ T cells)からなる群より選択される少なくとも一つの細胞マーカー
【0016】
本発明の一実施態様において、表4及び5(後述の実施例1)に示す、時点(Time point)又は2つの時点の比(Ratio of two time points)におけるメタボライト(Metabolite)及び/又は細胞マーカー(Cellular marker)の値が高い又は低い(Changes in R relative to NR)ことを基準として、被験者の測定値から、被験者に対するPD-1シグナル阻害剤を含む薬剤による治療の有効性を予測及び/又は判定するとよい。
その例を以下に記載する。これらの基準は、単独でも、組み合わせてもよい。
表4(血清及び/又は血漿中に検出されるメタボライト)
(治療(薬剤投与)前(Time point: 1st))
・Alanine(Metabolite: Alanine)の値が治療(薬剤投与)前(Time point: 1st)に高い(Changes in R relative to NR: higher)場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測する。
・4-Cresolの値が治療前に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測する。
・Cysteineの値が治療前に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測する。
・Hippuric acidの値が治療前に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測する。
・Oleic acidの値が治療前に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測する。
・Indoxyl sulfateの値が治療前に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測する。
・Riboseの値が治療前に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測する。
・Indoleacetateの値が治療前に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測する。
・Uric acidの値が治療前に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測する。
・Trans-urocanic acidの値が治療前に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測する。
・Pipecolic acidの値が治療前に低い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測する。
・N-Acetylglucosamineの値が治療前に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測する。
(薬剤1回目投与後(Time point: 2nd))
・・Uric acidの値が薬剤1回目投与後(Time point: 2nd)に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・Indolelactic acidの値が薬剤1回目投与後に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・Arabinoseの値が薬剤1回目投与後に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・Arabitolの値が薬剤1回目投与後に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・Hippuric acidの値が薬剤1回目投与後に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・Cystineの値が薬剤1回目投与後に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・Indoxyle sulfateの値が薬剤1回目投与後に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・Gluconic acidの値が薬剤1回目投与後に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・Citrullineの値が薬剤1回目投与後に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・Creatinineの値が薬剤1回目投与後に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・N-Acetylaspartic acidの値が薬剤1回目投与後に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・Pyroglutamic acidの値が薬剤1回目投与後に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・Trimethyyllysineの値が薬剤1回目投与後に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・Asy-Dimethylarginineの値が薬剤1回目投与後に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・Sym-Dimethylarginineの値が薬剤1回目投与後に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・Pipecolic acidの値が薬剤1回目投与後に低い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・Methylhistidineの値が薬剤1回目投与後に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・アシルカルニチン(例えば、Butyrylcarnitine(C4))の値が薬剤1回目投与後に低い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・3-Aminoisobutyric acidの値が薬剤1回目投与後に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・Acethykcarnosineの値が薬剤1回目投与後に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・Alanineの値が薬剤1回目投与後に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・Arginineの値が薬剤1回目投与後に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・N-acetylornitineの値が薬剤1回目投与後に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
(薬剤2回目投与後(Time point: 3rd))
・・・4-Cresolの値が薬剤2回目投与後(Time point: 3rd)に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・3-Hydroxyisovaleric acidの値が薬剤2回目投与後に低い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・Pyruvic acidの値が薬剤2回目投与後に低い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・α-ketoglutaric acidの値が薬剤2回目投与後に低い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・Hippuric acidの値が薬剤2回目投与後に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・Cystineの値が薬剤2回目投与後に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・Indoxyle sulfateの値が薬剤2回目投与後に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・GSSGの値が薬剤2回目投与後に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・Uric acidの値が薬剤2回目投与後に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・2-Hydrobutyric acidの値が薬剤2回目投与後に低い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・Pipecolic acidの値が薬剤2回目投与後に低い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・アシルカルニチン(例えば、Butyrylcarnitine(C4))の値が薬剤2回目投与後に低い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
(治療(薬剤投与)前の値に対する薬剤1回目投与後の値の比(Ratio of two time points :2nd/1st))
・・・・治療(薬剤投与)前のCreatinineの値に対する薬剤1回目投与後のCreatinineの値の比(Ratio of two time points)が低い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・・治療(薬剤投与)前の1,5-Anhydro-D-sorbitolの値に対する薬剤1回目投与後の1,5-Anhydro-D-sorbitolの値の比が高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・・治療(薬剤投与)前のCystineの値に対する薬剤1回目投与後のCystineの値の比が高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・・治療(薬剤投与)前のGlutamineの値に対する薬剤1回目投与後のGlutamineの値の比が高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・・治療(薬剤投与)前のGlycineの値に対する薬剤1回目投与後のGlycineの値の比が高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・・治療(薬剤投与)前のLysineの値に対する薬剤1回目投与後のLysineの値の比が高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・・治療(薬剤投与)前のPyroglutamic acidの値に対する薬剤1回目投与後のPyroglutamic acidの値の比が高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・・治療(薬剤投与)前のTaurineの値に対する薬剤1回目投与後のTaurineの値の比が低い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・・治療(薬剤投与)前のasy-Dimethylarginineの値に対する薬剤1回目投与後のasy-Dimethylarginineの値の比が高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・・治療(薬剤投与)前のAMPの値に対する薬剤1回目投与後のAMPの値の比が低い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・・治療(薬剤投与)前のアシルカルニチン(例えば、Isovalerylcarnitine(C5))の値に対する薬剤1回目投与後のアシルカルニチン(例えば、Isovalerylcarnitine(C5))の値の比が低い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・・治療(薬剤投与)前のアシルカルニチン(例えば、Hexanoycarnitine(C6))の値に対する薬剤1回目投与後のアシルカルニチン(例えば、Hexanoycarnitine (C6))の値の比が低い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・・治療(薬剤投与)前のAcetylcarnosineの値に対する薬剤1回目投与後のAcetylcarnosineの値の比が高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・・治療(薬剤投与)前のArginineの値に対する薬剤1回目投与後のArginineの値の比が高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・・治療(薬剤投与)前のCitrullineの値に対する薬剤1回目投与後のCitrullineの値の比が高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・・治療(薬剤投与)前のN-acetylornitineの値に対する薬剤1回目投与後のN-acetylornitineの値の比が高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
(治療(薬剤投与)前の値に対する薬剤2回目投与後の値の比(Ratio of two time points :3rd/1st))
・・・・・治療(薬剤投与)前の3-Hydroxybutyric acidの値に対する薬剤2回目投与後の3-Hydroxybutyric acidの値の比が低い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・・・治療(薬剤投与)前の2-Hydroxyisovaleric acidの値に対する薬剤2回目投与後の2-Hydroxyisovaleric acidの値の比が低い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・・・治療(薬剤投与)前のCreatinineの値に対する薬剤2回目投与後のCreatinineの値の比が低い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・・・治療(薬剤投与)前のHippuric acidの値に対する薬剤2回目投与後のHippuric acidの値の比が高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・・・治療(薬剤投与)前のOleic acidの値に対する薬剤2回目投与後のOleic acidの値の比が低い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・・・治療(薬剤投与)前のAcetoacetic acidの値に対する薬剤2回目投与後のAcetoacetic acidの値の比が低い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・・・治療(薬剤投与)前のRiboseの値に対する薬剤2回目投与後のRiboseの値の比が低い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・・・治療(薬剤投与)前のGSSGの値に対する薬剤2回目投与後のGSSGの値の比が高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・・・治療(薬剤投与)前のTryptophanの値に対する薬剤2回目投与後のTryptophanの値の比が高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・・・治療(薬剤投与)前の2-Hydroxyglutaric acidの値に対する薬剤2回目投与後の2-Hydroxyglutaric acidの値の比が低い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・・・治療(薬剤投与)前のMalic acidの値に対する薬剤2回目投与後のMalic acidの値の比が低い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・・・治療(薬剤投与)前のQuinolinic acidの値に対する薬剤2回目投与後のQuinolinic acidの値の比が低い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・・治療(薬剤投与)前のアシルカルニチン(例えば、Butyrylcarnitine (C4))の値に対する薬剤1回目投与後のアシルカルニチン(例えば、Butyrylcarnitine (C4))の値の比が低い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
(薬剤1回目投与後の値に対する薬剤2回目投与後の値の比(Ratio of two time points :3rd/2nd))
・・・・・薬剤1回目投与後のCaproic acidの値に対する薬剤2回目投与後のCaproic acidの値の比が高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・・・薬剤1回目投与後の4-Cresolの値に対する薬剤2回目投与後の4-Cresolの値の比が高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・・・薬剤1回目投与後のIsoleucineの値に対する薬剤2回目投与後のIsoleucineの値の比が高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・・・薬剤1回目投与後のArabinoseの値に対する薬剤2回目投与後のArabinoseの値の比が低い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・・・薬剤1回目投与後のRiboseの値に対する薬剤2回目投与後のRiboseの値の比が低い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・・・薬剤1回目投与後のGSHの値に対する薬剤2回目投与後のGSHの値の比が高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・・・薬剤1回目投与後のGSSGの値に対する薬剤2回目投与後のGSSGの値の比が高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・・・薬剤1回目投与後の3-OH-Kynurenineの値に対する薬剤2回目投与後の3-OH-Kynurenineの値の比が低い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・・・薬剤1回目投与後のHippuric acidの値に対する薬剤2回目投与後のHippuric acidの値の比が高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・・・・・薬剤1回目投与後のアシルカルニチン(例えば、Isobutyrylcarnitine(C4))の値に対する薬剤2回目投与後のアシルカルニチン(例えば、Isobutyrylcarnitine(C4))の値の比が高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
表5(末梢血における、細胞マーカー)
・末梢血単核球(PBMC)中のCD4+ T細胞の頻度(% of CD4+ T cells among PBMC)が薬剤1回目投与後に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・治療(薬剤投与)前の末梢血単核球(PBMC)中のCD4+ T細胞の頻度(% of CD4+ T cells among PBMC)に対する薬剤1回目投与後の末梢血単核球(PBMC)中のCD4+ T細胞の頻度(% of CD4+ T cells among PBMC)の比が高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・末梢血単核球(PBMC)中のCD8+ T細胞の頻度(% of CD8+ T cells among PBMC)が薬剤1回目投与後に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・治療(薬剤投与)前の末梢血単核球(PBMC)中のCD8+ T細胞の頻度(% of CD8+ T cells among PBMC)に対する薬剤1回目投与後の末梢血単核球(PBMC)中のCD8+ T細胞の頻度(% of CD8+ T cells among PBMC)の比が高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・治療(薬剤投与)前のCD8+ T細胞中のナイーブT細胞の頻度(% of Tnaive among CD8+ T cells)に対する薬剤1回目投与後のCD8+ T細胞中のナイーブT細胞の頻度(% of Tnaive among CD8+ T cells)の比が高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・治療(薬剤投与)前のCD4+ T細胞中のセントラルメモリーT細胞の頻度(% of Tcm among CD4+ T cells)に対する薬剤1回目投与後のCD4+ T細胞中のセントラルメモリーT細胞の頻度(% of Tcm among CD4+ T cells)の比が高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・治療(薬剤投与)前のCD8+ T細胞中のセントラルメモリーT細胞の頻度(% of Tcm among CD8+ T cells)に対する薬剤1回目投与後のCD8+ T細胞中のセントラルメモリーT細胞の頻度(% of Tcm among CD8+ T cells)の比が高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・治療(薬剤投与)前のCD8+ T細胞中のエフェクターメモリーT細胞の頻度(% of Tem among CD8+ T cells)に対する薬剤2回目投与後のCD8+ T細胞中のエフェクターメモリーT細胞の頻度(% of Tem among CD8+ T cells)の比が高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・治療(薬剤投与)前のCD4+ T細胞中の最終分化エフェクターメモリーT細胞の頻度(% of Temra among CD4+ T cells)に対する薬剤1回目投与後のCD4+ T細胞中の最終分化エフェクターメモリーT細胞の頻度(% of Temra among CD4+ T cells)の比が低い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・薬剤1回目投与後のCD4+ T細胞中の最終分化エフェクターメモリーT細胞の頻度(% of Temra among CD4+ T cells)に対する薬剤2回目投与後のCD4+ T細胞中の最終分化エフェクターメモリーT細胞の頻度(% of Temra among CD4+ T cells)の比が高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・治療(薬剤投与)前のCD8+ T細胞中の最終分化エフェクターメモリーT細胞の頻度(% of Temra among CD8+ T cells)に対する薬剤1回目投与後のCD8+ T細胞中の最終分化エフェクターメモリーT細胞の頻度(% of Temra among CD8+ T cells)の比が低い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・CD4+T細胞のミトコンドリア活性酸素発現量に対するCD8+T細胞のミトコンドリア活性酸素発現量の比(Mito SOX CD8/CD4)が治療(薬剤投与)前に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測する。
・CD4+T細胞のミトコンドリア活性酸素発現量に対するCD8+T細胞のミトコンドリア活性酸素発現量の比(Mito SOX CD8/CD4)が薬剤1回目投与後に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・CD4+T細胞のミトコンドリア活性酸素発現量に対するCD8+T細胞のミトコンドリア活性酸素発現量の比(Mito SOX CD8/CD4)が薬剤2回目投与後に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・治療(薬剤投与)前のCD4+T細胞のミトコンドリア活性酸素発現量に対するCD8+T細胞のミトコンドリア活性酸素発現量の比(Mito SOX CD8/CD4)に対する薬剤2回目投与後のCD4+T細胞のミトコンドリア活性酸素発現量に対するCD8+T細胞のミトコンドリア活性酸素発現量の比(Mito SOX CD8/CD4)が低い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・CD4+T細胞のミトコンドリアの体積(mass)に対するCD8+T細胞のミトコンドリアの体積の比(Mito mass CD8/CD4)が治療(薬剤投与)前に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測する。
・CD4+T細胞のミトコンドリアの体積(mass)に対するCD8+T細胞のミトコンドリアの体積の比(Mito mass CD8/CD4)が薬剤2回目投与後に高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・CD8+T細胞のPGC-1α及びPGC-1βの発現(PGC-1αβ(MFI) of CD8+ T cells)が薬剤1回目投与後に低い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・治療(薬剤投与)前のCD8+T細胞のPGC-1α及びPGC-1βの発現(PGC-1αβ(MFI) of CD8+ T cells)に対する薬剤1回目投与後のCD8+T細胞のPGC-1α及びPGC-1βの発現(PGC-1αβ(MFI) of CD8+ T cells)が低い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・薬剤1回目投与後のCD8+T細胞のPGC-1α及びPGC-1βの発現(PGC-1αβ(MFI) of CD8+ T cells)に対する薬剤2回目投与後のCD8+T細胞のPGC-1α及びPGC-1βの発現(PGC-1αβ(MFI) of CD8+ T cells)が高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・PD-1を高発現するCD8+T細胞集団の頻度(% of PD-1high among CD8+ T cells)が治療(薬剤投与)前に低い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測する。
・CD4+ T細胞中でFoxP3を低発現するCD45RA+ T細胞集団の頻度(% of FoxP3low CD45RA+ among CD4+ T cells)が治療(薬剤投与)前に低い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測する。
・治療(薬剤投与)前のCD4+ T細胞中でT-betを高発現するT細胞集団の頻度(% of T-bethigh among CD4+ T cells)に対する薬剤2回目投与後のCD4+ T細胞中でT-betを高発現するT細胞集団の頻度(% of T-bethigh among CD4+ T cells)が高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・治療(薬剤投与)前のCD4+ T細胞中でT-betを低発現するT細胞集団の頻度(% of T-betlow among CD4+ T cells)に対する薬剤2回目投与後のCD4+ T細胞中でT-betを低発現するT細胞集団の頻度(% of T-betlow among CD4+ T cells)が高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・薬剤1回目投与後のCD8+ T細胞中でT-betを発現するT細胞集団の頻度(% of T-bet+ among CD8+ T cells)に対する薬剤2回目投与後のCD8+ T細胞中でT-betを発現するT細胞集団の頻度(% of T-bet+ among CD8+ T cells)が高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
・薬剤1回目投与後のCD8+ T細胞中でT-bet及びEOMESを発現するT細胞集団の頻度(% of T-bet+ EOMES+ among CD8+ T cells)に対する薬剤2回目投与後のCD8+ T細胞中でT-bet及びEOMESを発現するT細胞集団の頻度(% of T-bet+ EOMES+ among CD8+ T cells)が高い場合は、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定する。
【0017】
本発明の好ましい一実施態様において、(i)のメタボライトが、馬尿酸、アラビノース及びアシルカルニチンからなる群より選択される少なくとも一つのメタボライトであり、(ii) の細胞マーカーが、PD-1を高発現するCD8+T細胞集団の頻度、CD4+T細胞のミトコンドリア活性酸素発現量に対するCD8+T細胞のミトコンドリア活性酸素発現量の比、並びにCD8+T細胞のPGC-1α及びPGC-1βの発現からなる群より選択される少なくとも一つの細胞マーカーであるとよい。
【0018】
本明細書において、「PD-1シグナル」とは、PD-1が担う情報伝達機構をいい、その一つとして、PD-1がそのリガンドであるPD-L1、PD-L2と共同して、T細胞の活性化を抑制する情報伝達機構を例示することができる。PD-1(Programmed cell death-1)は、活性化したT細胞やB細胞に発現する膜タンパク質であり、そのリガンドであるPD-L1とPD-L2は、単球や樹状細胞などの抗原提示細胞、がん等様々な細胞に発現する。PD-1、PD-L1及びPD-L2は、T細胞の活性化を抑制する抑制因子として働く。ある種の癌細胞やウイルス感染細胞は、PD-1のリガンドを発現することにより、T細胞の活性化を抑制し、宿主の免疫監視から逃避している。
【0019】
PD-1シグナル阻害剤は、PD-1シグナルを遮断する薬剤であり、PD-1シグナルを遮断することでT細胞の活性化抑制が解除されて免疫監視機構を高め、癌やウイルス感染に対する治療効果を発揮する(PD-1遮断療法)。PD-1シグナル阻害剤としては、PD-1、PD-L1又はPD-L2に特異的に結合する物質が挙げられ、そのような物質としては、タンパク質、ポリペプチド、オリゴペプチド、核酸(天然型核酸、人工核酸を含む)、低分子有機化合物、無機化合物、細胞抽出物、動植物や土壌などからの抽出物などがありうる。物質は、天然物であっても、合成物であってもよい。好ましいPD-1シグナル阻害剤は、抗体であり、より好ましくは、抗PD-1抗体、抗PD-L1抗体、抗PD-L2抗体などの抗体である。抗体は、PD-1シグナルを阻害できるものであればよく、ポリクローナル抗体、モノクローナル抗体、キメラ抗体、一本鎖抗体、ヒト化抗体、ヒト型抗体のいずれであってもよい。それらの抗体の製造方法は公知である。抗体は、ヒト、マウス、ラット、ウサギ、ヤギ、モルモットなど、いずれの生物に由来するものであってもよい。また、本明細書において、抗体とは、Fab、F(ab)’2、ScFv、Diabody、VH、VL、Sc(Fv)2、Bispecific sc(Fv)2、Minibody、scFv-Fc monomer、scFv-Fc dimerなどの低分子化されたものも含む概念である。
【0020】
本発明において、PD-1シグナル阻害剤を含む薬剤は、他の薬効成分を含まないPD-1シグナル阻害剤の単剤であってもよいし、PD-1シグナル阻害剤を他の薬効成分と併用する併用薬であってもよい。
【0021】
他の薬効成分は、PD-1シグナル阻害剤の薬効を増強、補強するものであってもよいし、PD-1シグナル阻害剤の副作用を軽減するものであってもよく、その薬効は限定されるものではない。現在認可されている併用剤としては、イピリマブ、シスプラチン、カルボプラチン、パクリタキセル、ペメトレキセド等がある。開発中の併用薬剤は現在標準治療として使用されているものの他、エネルギー代謝関連等の免疫制御に関連する薬剤や血管新生阻害剤等、数多くあげることができる(1-3)。
【0022】
PD-1シグナル阻害剤を含む薬剤は、抗がん剤、感染症治療剤又はそれらの組み合わせにおける有効成分として使用することができる。
【0023】
検査の対象となる被験者は、既に他の薬剤(抗がん剤など)の投与を受けていても、いなくてもよいが、既に他の薬剤の投与を受けている方が好ましい。
【0024】
本発明において、PD-1シグナル阻害剤を含む薬剤による治療の有効性を予測及び/又は判定することは、治療の開始前、開始後、複数回の薬剤投与の間など、どの段階で行ってもよい。
【0025】
本発明の好ましい一実施態様において、被験者の血清及び/又は血漿における、馬尿酸、アラビノース及びアシルカルニチンからなる群より選択される少なくとも一つを測定するとよい。
【0026】
馬尿酸は、マイクロバイオータ由来メタボライトの1つであり、クロストリジウムによって優先的に産生されることが知られている(4, 5)。
【0027】
アラビノースは、ペントースリン酸回路の中間体であるキシルロース-5-リン酸に変換され、NADPHや核酸の合成の代謝経路に入る。特に腸内細菌ではこの変換酵素を高発現しており、マイクロバイオータの菌叢にも影響を与えている可能性がある(6)。
【0028】
アシルカルニチンは、カルニチン依存性酵素であるカルニチンアセチルトランスフェラーゼおよびカルニチンパルミトイルトランスフェラーゼI(CPT1)(これらはミトコンドリア基質に局在する)によって、短鎖アシルCoAおよびカルニチンから変換される。アシルカルニチンは、炭素数4~6のアシルカルニチンであるとよく、具体的には、ブチリルカルニチン、イソバレルカルニチン、ヘキサノイルカルニチンであるとよい。炭素数4のアシルカルニチンであるブチリルカルニチンは、ミトコンドリアへの脂肪酸輸送体として働き、ATPを生成する。様々な炭素数を有するアシルカルニチン種は、脂肪酸酸化(FAO)機能が一旦弱まると、細胞から放出される {。
【0029】
本発明において、血清及び/又は血漿における、システイン、シスチン、アルギニン及びグルタチオンジスルフィドからなる群より選択される少なくとも一つを(i)の指標としてもよい。
【0030】
システインは、グルタチオン(GSH)の生合成および代謝において、L-グルタミン酸と結合してL-γ-グルタミルシステインを形成する。次にこれがグリシンと結合してGSHを生ずる。GSHは活性酸素種(ROS)と反応した後、酸化されて酸化形(グルタチオンジスルフィド(GSSG))となる(
図10)。
【0031】
【0032】
アルギニンは、細胞骨格の構成やエネルギー源として重要である。腫瘍局所環境下では、マクロファージがアルギナーゼを高産生し、アルギニン枯渇による免疫抑制が起こっていると考えられている。
【0033】
Alanine、4-Cresol、Cysteine、Hippuric acid、Oleic acid、Indoxyl sulfate、Ribose、Indoleacetate、Uric acid、Trans-urocanic acid、Pipecolic acid、N-Acetylglucosamine、Indolelactic acid、Arabinose、Arabitol、Cystine、Indoxyle sulfate、Gluconic acid、Citrulline、Creatinine、N-Acetylaspartic acid、Pyroglutamic acid、Trimethyyllysine、Asy-Dimethylarginine、Sym-Dimethylarginine、Methylhistidine、アシルカルニチン、3-Aminoisobutyric acid、Acethykcarnosine、Arginine、N-acetylornitine、3-Hydroxyisovaleric acid、Pyruvic acid、α-ketoglutaric acid、GSSG、2-Hydrobutyric acid、1,5-Anhydro-D-sorbitol、Glutamine、Glycine、Lysine、Taurine、AMP、Acetylcarnosine、3-Hydroxybutyric acid、2-Hydroxyisovaleric acid、Acetoacetic acid、Tryptophan、2-Hydroxyglutaric acid、Malic acid、Quinolinic acid、Caproic acid、Isoleucine、GSH及び3-OH-Kynurenineは、質量分析法(例えば、GC-MS、LC-MS)により、測定することができる。
【0034】
本発明において、血清及び/又は血漿における、Alanine、4-Cresol、Cysteine、Hippuric acid、Oleic acid、Indoxyl sulfate、Ribose、Indoleacetate、Uric acid、Trans-urocanic acid、Pipecolic acid、N-Acetylglucosamine、Indolelactic acid、Arabinose、Arabitol、Cystine、Indoxyle sulfate、Gluconic acid、Citrulline、Creatinine、N-Acetylaspartic acid、Pyroglutamic acid、Trimethyyllysine、Asy-Dimethylarginine、Sym-Dimethylarginine、Methylhistidine、アシルカルニチン、3-Aminoisobutyric acid、Acethykcarnosine、Arginine、N-acetylornitine、3-Hydroxyisovaleric acid、Pyruvic acid、α-ketoglutaric acid、GSSG、2-Hydrobutyric acid、1,5-Anhydro-D-sorbitol、Glutamine、Glycine、Lysine、Taurine、AMP、Acetylcarnosine、3-Hydroxybutyric acid、2-Hydroxyisovaleric acid、Acetoacetic acid、Tryptophan、2-Hydroxyglutaric acid、Malic acid、Quinolinic acid、Caproic acid、Isoleucine、GSH及び3-OH-Kynurenineは、PD-1シグナル阻害剤を含む薬剤による治療の有効性を予測及び/又は判定するためのバイオマーカーとして用いることができる。
【0035】
本発明の一実施態様において、PD-1シグナル阻害剤を含む薬剤投与前の血清及び/又は血漿におけるシステインの値が高く、かつPD-1シグナル阻害剤を含む薬剤投与前の血清及び/又は血漿における馬尿酸の値が高い場合に、前記薬剤による治療が有効であると予測することができる。
【0036】
本発明の別の実施態様において、PD-1シグナル阻害剤を含む薬剤1回目投与後の血清及び/又は血漿におけるアラビノースの値が高く、PD-1シグナル阻害剤を含む薬剤1回目投与後の血清及び/又は血漿におけるアルギニンの値が高く、かつPD-1シグナル阻害剤を含む薬剤1回目投与後の血清及び/又は血漿におけるブチリルカルニチンの値が低い場合に、PD-1シグナル阻害剤を含む薬剤による治療が有効であると判定することができる。
【0037】
本発明のさらに別の実施態様において、PD-1シグナル阻害剤を含む薬剤投与前の血清及び/又は血漿における馬尿酸の値が高く、PD-1シグナル阻害剤を含む薬剤1回目投与後の血清及び/又は血漿におけるシスチンの値が高く、PD-1シグナル阻害剤を含む薬剤2回目投与後の血清及び/又は血漿におけるグルタチオンジスルフィドの値が高く、かつPD-1シグナル阻害剤を含む薬剤2回目投与後の血清及び/又は血漿におけるブチリルカルニチンの値が低い場合に、PD-1シグナル阻害剤を含む薬剤による治療が有効であると判定することができる。
【0038】
また、本発明の好ましい一実施態様において、被験者の末梢血における、PD-1を高発現するCD8+T細胞集団の頻度、CD4+T細胞のミトコンドリア活性化状態に対するCD8+T細胞のミトコンドリア活性化状態の比、並びにCD8+T細胞のPGC-1α及びPGC-1βの発現からなる群より選択される少なくとも一つを測定してもよい。
【0039】
PD-1を高発現するCD8+T細胞集団は、疲弊した細胞と呼ばれており、多数回分裂したのちに不応答に陥る。本細胞群の頻度が多いということは、疲弊した不応答生の細胞の割合が多いということであり、がんに対する免疫反応が弱くなると考えられる。
【0040】
本明細書において、「PD-1を高発現する」とは、PD-1発現をフローサイトメトリーで検出した時、蛍光の強さが103より高いことをいう。ただし、この値は変更しうる。基準値は、isotype controlにて染色した患者検体、high positiveがいない(少ない)患者検体、high positiveが多い患者検体を用いて決定することができる。
【0041】
CD4+T細胞のミトコンドリア活性化状態に対するCD8+T細胞のミトコンドリア活性化状態の比は、免疫が腫瘍を傷害する強さを反映する可能性が高い。CD8+T細胞(キラーT細胞)のミトコンドリア活性は細胞内エネルギー代謝状態と深く関与しており、がん細胞を傷害するキラーT細胞の傷害活性を反映し得る。このミトコンドリア活性はCD8+T細胞が疲弊し不応答になると低くなる(10)。
【0042】
PGC-1は、ミトコンドリア新生およびミトコンドリア代謝経路(酸化的リン酸化(OXPHOS)および脂肪酸酸化(FAO)、等)の主要な制御因子である(10, 11)。PGC-1α、PGC-1βは、転写共役因子と言われており、複数の転写因子と結合し、ミトコンドリアの生合成、ミトコンドリアを中心としたエネルギー代謝、ミトコンドリア活性に関連する転写を促進する(11)。
【0043】
CD8+T細胞のPGC-1α及びPGC-1βの発現は、CD8+T細胞のミトコンドリア活性を反映しており、疲弊や不応答の状態に陥るとPGC-1の発現が低下する。逆にPGC-1を高発現させるとCD8+T細胞の不応答を回復することができる(10)。
【0044】
末梢血CD8+T細胞は、以下のようにして、採取することができる。患者より採取した血液をファイコールにのせ、2000rpmにて遠心分離を行う。赤血球相と血漿相の間のバフィコートを回収し、細胞培養液にて洗浄する。このリンパ球から磁気細胞分離機(Miltenyi Biotec社)システムを用いてCD8+T細胞を単離する。
【0045】
末梢血CD4+T細胞も、末梢血CD8+T細胞と同様の方法で、磁気細胞分離機システムを用いてCD4+T細胞を単離することにより、採取することができる。
【0046】
PD-1を高発現するCD8+T細胞集団の頻度は、患者末梢血の白血球をPD-1とCD8に対する蛍光標識抗体にて染色し、イメージング、フローサイトメトリー、またはマイクロプレート解析により、測定することができる。(詳細は実施例の方法を参照)。
【0047】
CD4+T細胞やCD8+T細胞のミトコンドリア活性化状態は、ROS(活性酸素種)、OCR(酸素消費量)、膜電位、ミトコンドリア体積などを指標とすることができる。
【0048】
ROSは、CD4+T細胞やCD8+T細胞をMito SOXという色素で染色し、イメージング、フローサイトメトリー、またはマイクロプレート解析によって検出することができる。
【0049】
OCRは、XF96 Extracellular Flux analyzer (Seahorse Biosciences)で測定することができる。単離したCD8+T細胞を専用細胞培養プレートにまき、センサーカートリッジをプレートにかぶせる。センサーカートリッジのインジェクションポートにOligomycin, FCCP, AntimycineA, Rotenoneを注入し、XF96 Extracellular Flux analyzerにセットする。細胞とセンサー間の半閉鎖的微小環境の酸素濃度と水素イオン濃度が測定される。
【0050】
膜電位は、CD4+T細胞やCD8+T細胞をMitoTracker Deep Red という色素で染色し、イメージング、フローサイトメトリー、またはマイクロプレート解析によって検出することができる。
【0051】
ミトコンドリア体積は、CD4+T細胞やCD8+T細胞をMitoTracker Greenという色素で染色し、イメージング、フローサイトメトリー、またはマイクロプレート解析によって検出することができる。
【0052】
CD4+T細胞のミトコンドリア活性化状態に対するCD8+T細胞のミトコンドリア活性化状態の比は、CD8+T細胞のミトコンドリア活性化状態の指標となる測定値をCD4+T細胞のミトコンドリア活性化状態の指標となる測定値で割ることにより算出することができる。CD4+T細胞のミトコンドリア活性化状態に対するCD8+T細胞のミトコンドリア活性化状態の比としては、CD8+ およびCD4+ T細胞におけるミトコンドリア活性酸素発現量(Mito SOXレベル)の比(Mito SOX CD8/CD4)、CD4+T細胞のミトコンドリアの体積(mass)に対するCD8+T細胞のミトコンドリアの体積の比(Mito mass CD8/CD4)などを例示することができる。
【0053】
PGC-1α及びPGC-1βの発現は、PGC-1αおよびPGC-1βの両方(以後「PGC-1αβ」と記すこともある)を認識するモノクローナル抗体を用いて調べることができる。
【0054】
本発明において、末梢血単核球(PBMC)中のCD4+T細胞の頻度を(ii)の指標としてもよい。
【0055】
末梢血単核球(PBMC)中のCD4+T細胞の頻度は、患者末梢血の白血球をCD4に対する蛍光標識抗体にて染色し、イメージング、フローサイトメトリー、またはマイクロプレート解析により、測定することができる。(詳細は実施例の方法を参照)。
【0056】
末梢血単核球(PBMC)中のCD4+ T細胞の頻度(% of CD4+ T cells among PBMC)、末梢血単核球(PBMC)中のCD8+ T細胞の頻度(% of CD8+ T cells among PBMC)、CD8+ T細胞中のナイーブT細胞の頻度(% of Tnaive among CD8+ T cells)、CD4+ T細胞中のセントラルメモリーT細胞の頻度(% of Tcm among CD4+ T cells)、CD8+ T細胞中のセントラルメモリーT細胞の頻度(% of Tcm among CD8+ T cells)、CD8+ T細胞中のエフェクターメモリーT細胞の頻度(% of Tem among CD8+ T cells)、CD4+ T細胞中の最終分化エフェクターメモリーT細胞の頻度(% of Temra among CD4+ T cells)、CD8+ T細胞中の最終分化エフェクターメモリーT細胞の頻度(% of Temra among CD8+ T cells)、CD4+T細胞のミトコンドリアの体積(mass)に対するCD8+T細胞のミトコンドリアの体積の比(Mito mass CD8/CD4)、CD4+ T細胞中でFoxP3を低発現するCD45RA+ T細胞集団の頻度(% of FoxP3low CD45RA+ among CD4+ T cells)、CD4+ T細胞中でT-betを高発現するT細胞集団の頻度(% of T-bethigh among CD4+ T cells)、CD4+ T細胞中でT-betを低発現するT細胞集団の頻度(% of T-betlow among CD4+ T cells)、CD8+ T細胞中でT-betを発現するT細胞集団の頻度(% of T-bet+ among CD8+ T cells)及びCD8+ T細胞中でT-bet及びEOMESを発現するT細胞集団の頻度(% of T-bet+ EOMES+ among CD8+ T cells)は、公知の方法で測定することができる。
末梢血単核球(PBMC)中のCD4+ T細胞の頻度(% of CD4+ T cells among PBMC)は、ヘルパーT細胞の頻度を意味する。ヘルパーT細胞はCD8+ キラーT細胞の活性化をヘルプするサイトカインを多く産生する。
末梢血単核球(PBMC)中のCD8+ T細胞の頻度(% of CD8+ T cells among PBMC)は、がん細胞を殺傷するキラーT細胞の割合を意味する。
CD8+ T細胞中のナイーブT細胞の頻度(% of Tnaive among CD8+ T cells)は、がん細胞殺傷能力が高いエフェクターCD8+ T細胞を生み出す大元細胞の頻度を示す。これが多いことはエフェクターCD8+ T細胞の数が増える可能性が多いことを意味する。
CD4+ T細胞中のセントラルメモリーT細胞の頻度(% of Tcm among CD4+ T cells)は、サイトカイン産生能力が高いエフェクターCD4+ T細胞を生み出す大元細胞の割合を示す。これが多いことはエフェクターCD4+ T細胞の数が増える可能性を意味する。
CD8+ T細胞中のセントラルメモリーT細胞の頻度(% of Tcm among CD8+ T cells)は、がん細胞殺傷能力が高いエフェクターCD8+ T細胞を生み出す大元細胞の割合を示す。これが多いことはエフェクターCD8+ T細胞の数が増える可能性を意味する。
CD8+ T細胞中のエフェクターメモリーT細胞の頻度(% of Tem among CD8+ T cells)は、がん細胞殺傷能力が高いCD8+ T細胞を多く含む細胞集団の頻度を意味する。
CD4+ T細胞中の最終分化エフェクターメモリーT細胞の頻度(% of Temra among CD4+ T cells)は、すでに分化が最終段階に達した状態であり、サイトカイン産生能力が低い疲弊細胞を含む集団の頻度を示す。
CD4+T細胞のミトコンドリアの体積(mass)に対するCD8+T細胞のミトコンドリアの体積の比(Mito mass CD8/CD4)は、CD8+ T細胞のミトコンドリアが活性化していることを示唆しており、細胞内エネルギーメタボリズムが活性化していることを示す。
CD4+ T細胞中でFoxP3を低発現するCD45RA+ T細胞集団の頻度(% of FoxP3low CD45RA+ among CD4+ T cells)は、抗原感作前の活性化しているCD4+T細胞の頻度を示す。
CD4+ T細胞中でT-betを高発現するT細胞集団の頻度(% of T-bethigh among CD4+ T cells)は、CD8+ キラーT細胞を効率良くヘルプするTh1型ヘルパーT細胞の頻度を表す。
CD4+ T細胞中でT-betを低発現するT細胞集団の頻度(% of T-betlow among CD4+ T cells)は、Th1型のヘルパー能力が弱いヘルパーT細胞の頻度を表す。
CD8+ T細胞中でT-betを発現するT細胞集団の頻度(% of T-bet+ among CD8+ T cells)は、がん殺傷能力が高いCD8+ キラーT細胞の頻度のことを示す。
CD8+ T細胞中でT-bet及びEOMESを発現するT細胞集団の頻度(% of T-bet+ EOMES+ among CD8+ T cells)は、メモリーもしくは疲弊したCD8+ T細胞の頻度を示す。
【0057】
本発明において、末梢血における、末梢血単核球(PBMC)中のCD4+ T細胞の頻度(% of CD4+ T cells among PBMC)、末梢血単核球(PBMC)中のCD8+ T細胞の頻度(% of CD8+ T cells among PBMC)、CD8+ T細胞中のナイーブT細胞の頻度(% of Tnaive among CD8+ T cells)、CD4+ T細胞中のセントラルメモリーT細胞の頻度(% of Tcm among CD4+ T cells)、CD8+ T細胞中のセントラルメモリーT細胞の頻度(% of Tcm among CD8+ T cells)、CD8+ T細胞中のエフェクターメモリーT細胞の頻度(% of Tem among CD8+ T cells)、CD4+ T細胞中の最終分化エフェクターメモリーT細胞の頻度(% of Temra among CD4+ T cells)、CD8+ T細胞中の最終分化エフェクターメモリーT細胞の頻度(% of Temra among CD8+ T cells)、CD4+T細胞のミトコンドリア活性化状態に対するCD8+T細胞のミトコンドリア活性化状態の比(例えば、CD4+T細胞のミトコンドリア活性酸素発現量に対するCD8+T細胞のミトコンドリア活性酸素発現量の比(Mito SOX CD8/CD4)、CD4+T細胞のミトコンドリアの体積(mass)に対するCD8+T細胞のミトコンドリアの体積の比(Mito mass CD8/CD4))、CD8+T細胞のPGC-1α及びPGC-1βの発現(PGC-1αβ(MFI) of CD8+ T cells)、PD-1を高発現するCD8+T細胞集団の頻度(% of PD-1high among CD8+ T cells)、CD4+ T細胞中でFoxP3を低発現するCD45RA+ T細胞集団の頻度(% of FoxP3low CD45RA+ among CD4+ T cells)、CD4+ T細胞中でT-betを高発現するT細胞集団の頻度(% of T-bethigh among CD4+ T cells)、CD4+ T細胞中でT-betを低発現するT細胞集団の頻度(% of T-betlow among CD4+ T cells)、CD8+ T細胞中でT-betを発現するT細胞集団の頻度(% of T-bet+ among CD8+ T cells)及びCD8+ T細胞中でT-bet及びEOMESを発現するT細胞集団の頻度(% of T-bet+ EOMES+ among CD8+ T cells)は、PD-1シグナル阻害剤を含む薬剤による治療の有効性を予測及び/又は判定するための細胞マーカーとして用いることができる。
【0058】
本発明の一実施態様において、PD-1シグナル阻害剤を含む薬剤投与前の末梢血におけるPD-1を高発現するCD8+T細胞集団の頻度が低く、かつPD-1シグナル阻害剤を含む薬剤投与前の末梢血におけるCD4+T細胞のミトコンドリア活性化状態に対するCD8+T細胞のミトコンドリア活性化状態の比(例えば、Mito SOX CD8/CD4)が高い場合に、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測することができる。
【0059】
本発明の別の実施態様において、PD-1シグナル阻害剤を含む薬剤投与前の末梢血におけるPD-1を高発現するCD8+T細胞集団の頻度が低く、PD-1シグナル阻害剤を含む薬剤投与前の末梢血におけるCD4+T細胞のミトコンドリア活性化状態に対するCD8+T細胞のミトコンドリア活性化状態の比(例えば、Mito SOX CD8/CD4)が高く、末梢血におけるCD8+T細胞のPGC-1α及びPGC-1βの発現の薬剤投与前に対する薬剤1回目投与後の比が低く、かつ末梢血単核球(PBMC)中のCD4+T細胞の頻度の薬剤投与前に対する薬剤1回目投与後の比が高い場合に、PD-1シグナル阻害剤を含む薬剤による治療が有効であると判定することができる。
【0060】
本発明のさらに別の実施態様において、PD-1シグナル阻害剤を含む薬剤投与前の末梢血におけるPD-1を高発現するCD8+T細胞集団の頻度が低く、PD-1シグナル阻害剤を含む薬剤投与前の末梢血におけるCD4+T細胞のミトコンドリア活性化状態に対するCD8+T細胞のミトコンドリア活性化状態の比(例えば、Mito SOX CD8/CD4)が高く、末梢血におけるCD8+T細胞のPGC-1α及びPGC-1βの発現の薬剤1回目投与後に対する薬剤2回目投与後の比が高く、かつ末梢血単核球(PBMC)中のCD4+T細胞の頻度の薬剤投与前に対する薬剤1回目投与後の比が高い場合に、PD-1シグナル阻害剤を含む薬剤による治療が有効であると判定することができる。
【0061】
本明細書において、バイオマーカー及び細胞マーカーの値が「高い」及び「低い」とは、それぞれ、Responderの値がnon-responderの値より「高い」及び「低い」ことをいう。「高い」及び「低い」の判定の基準となる値としては、例えば、Responder又はnon-responderの定量値の95%信頼区間を基準値としたり、ROC曲線、LDA解析等の統計解析からカットオフ値を設定することにより得られる。これらの値の求め方は公知である。
【0062】
後述の実施例で、ニボルマブ(抗PD-1抗体)を投与する前および後の非小細胞肺がん患者60名の血液中における血漿メタボライトおよび細胞マーカーの濃度を調査した結果、LDA解析により、下記の計算式が導かれた。これらの式は、解析の対象となる集団が変われば、変化しうるものである。式1~6の*は乗算を意味する。
・細胞マーカーの組み合わせ(Cellular combination) I (Cut-off value 0)
-0.3023987485021*[PD-1 high 1st]+2.94519844381265*[Mito SOX CD8/CD4 1st] -1.87379126258675(式1)
・細胞マーカーの組み合わせ(Cellular combination) II (Cut-off value 0)
-0.2522084377427*[PD-1 high 1st]+3.58270233554892*[Mito SOX CD8/CD4 1st]+1.92950430842982*[CD4(%) 2nd / 1st]-1.2170886788589*[PGC1ab of CD8 2nd / 1st] -3.29839771768711(式2)
・細胞マーカーの組み合わせ(Cellular combination) III (Cut-off value 0)
-0.2808914943715*[PD-1 high 1st]+3.29512762046372*[Mito SOX CD8/CD4 1st]+1.55202212350758*[CD4(%) 2nd / 1st]+2.00254807664124*[PGC1ab of CD8 3rd / 2nd] -5.97495334069991(式3)
・メタボライトの組み合わせ(Metabolite combination) I (Cut-off value 0)
9.92415868963082*[Cysteine 1st]+0.00000054083199*[Hippuric acid (LC-MS) 1st]-44.661430966258*[Unk8 1st] -1.46007680395094(式4)
・メタボライトの組み合わせ(Metabolite combination) II (Cut-off value 0)
207.062010223744*[Arabinose 2nd]+0.00000031741819*[Arginine 2nd]-0.0000003768213*[Butyrylcarnitine 2nd] -1.95925442024969(式5)
・メタボライトの組み合わせ(Metabolite combination) III (Cut-off value 0)
0.00000044275294*[Hippuric acid (LC-MS) 1st]+12.0744069146569*[Cystine 2nd]+0.00003552481124*[GSSG 3rd]-0.00000008812702408*[Butyrylcarnitine 3rd] -2.67048929974173(式6)
PD-1 high 1st:PD-1シグナル阻害剤を含む薬剤投与前の末梢血におけるPD-1を高発現するCD8+T細胞集団の頻度
Mito SOX CD8/CD4 1st:PD-1シグナル阻害剤を含む薬剤投与前の末梢血におけるCD4+T細胞のミトコンドリア活性酸素発現量に対するCD8+T細胞のミトコンドリア活性酸素発現量の比
CD4(%) 2nd / 1st:PD-1シグナル阻害剤を含む薬剤投与前の末梢血単核球(PBMC)中のCD4+T細胞の頻度に対する、PD-1シグナル阻害剤を含む薬剤1回目投与後の末梢血単核球(PBMC)中のCD4+T細胞の頻度の比(1よりも大きければ、末梢血単核球(PBMC)中のCD4+T細胞の頻度がPD-1シグナル阻害剤を含む薬剤投与前よりもPD-1シグナル阻害剤を含む薬剤1回目投与後で高くなっていると言える。)
PGC1ab of CD8 2nd / 1st:PD-1シグナル阻害剤を含む薬剤投与前の末梢血におけるCD8+T細胞のPGC-1α及びPGC-1βの発現量に対する、PD-1シグナル阻害剤を含む薬剤1回目投与後の末梢血におけるCD8+T細胞のPGC-1α及びPGC-1βの発現量の比(1よりも小さければ、末梢血におけるCD8+T細胞のPGC-1α及びPGC-1βの発現がPD-1シグナル阻害剤を含む薬剤投与前よりもPD-1シグナル阻害剤を含む薬剤1回目投与後で低くなっていると言える。)
PGC1ab of CD8 3rd / 2nd:PD-1シグナル阻害剤を含む薬剤1回目投与後の末梢血におけるCD8+T細胞のPGC-1α及びPGC-1βの発現量に対する、PD-1シグナル阻害剤を含む薬剤2回目投与後の末梢血におけるCD8+T細胞のPGC-1α及びPGC-1βの発現量の比(1よりも大きければ、末梢血におけるCD8+T細胞のPGC-1α及びPGC-1βの発現がPD-1シグナル阻害剤を含む薬剤1回目投与後よりもPD-1シグナル阻害剤を含む薬剤2回目投与後で高くなっていると言える。)
Cysteine 1st:PD-1シグナル阻害剤を含む薬剤投与前の血漿システインの値(GC-MSでの測定値)
Hippuric acid (LC-MS) 1st:PD-1シグナル阻害剤を含む薬剤投与前の血漿馬尿酸の値(LC-MSでの測定値)
Unk8 1st:PD-1シグナル阻害剤を含む薬剤投与前の血漿Unk8(物質が未同定)の値(GC-MSでの測定値)
Arabinose 2nd:PD-1シグナル阻害剤を含む薬剤1回目投与後の血漿アラビノースの値(GC-MSでの測定値)
Arginine 2nd:PD-1シグナル阻害剤を含む薬剤1回目投与後の血漿アルギニンの値(GC-MSでの測定値)
Butyrylcarnitine 2nd:PD-1シグナル阻害剤を含む薬剤1回目投与後の血漿ブチリルカルニチンの値(GC-MSでの測定値)
Cystine 2nd:PD-1シグナル阻害剤を含む薬剤1回目投与後の血漿シスチンの値(GC-MSでの測定値)
GSSG 3rd:PD-1シグナル阻害剤を含む薬剤2回目投与後の血漿グルタチオンジスルフィドの値(GC-MSでの測定値)
Butyrylcarnitine 3rd:PD-1シグナル阻害剤を含む薬剤2回目投与後の血漿ブチリルカルニチンの値(GC-MSでの測定値)
【0063】
本発明の方法により、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測された場合には、PD-1シグナル阻害剤を含む薬剤による治療を開始するとよい。
【0064】
本発明の方法により、PD-1シグナル阻害剤を含む薬剤による治療が有効であると判定された場合には、PD-1シグナル阻害剤を含む薬剤による治療を継続するとよい。
【0065】
本発明は、下記の(i)及び/又は(ii)を指標として、被験者に対するPD-1シグナル阻害剤を含む薬剤による治療の有効性を予測及び/又は判定し、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定された場合には、該被験者の治療に有効な量のPD-1シグナル阻害剤を含む薬剤を投与することを含む、疾病の診断及び治療方法を提供する。
(i) 血清及び/又は血漿における、Alanine、4-Cresol、Cysteine、Hippuric acid、Oleic acid、Indoxyl sulfate、Ribose、Indoleacetate、Uric acid、Trans-urocanic acid、Pipecolic acid、N-Acetylglucosamine、Indolelactic acid、Arabinose、Arabitol、Cystine、Indoxyle sulfate、Gluconic acid、Citrulline、Creatinine、N-Acetylaspartic acid、Pyroglutamic acid、Trimethyyllysine、Asy-Dimethylarginine、Sym-Dimethylarginine、Methylhistidine、アシルカルニチン、3-Aminoisobutyric acid、Acethykcarnosine、Arginine、N-acetylornitine、3-Hydroxyisovaleric acid、Pyruvic acid、α-ketoglutaric acid、GSSG、2-Hydrobutyric acid、1,5-Anhydro-D-sorbitol、Glutamine、Glycine、Lysine、Taurine、AMP、Acetylcarnosine、3-Hydroxybutyric acid、2-Hydroxyisovaleric acid、Acetoacetic acid、Tryptophan、2-Hydroxyglutaric acid、Malic acid、Quinolinic acid、Caproic acid、Isoleucine、GSH及び3-OH-Kynurenineからなる群より選択される少なくとも一つのメタボライト
(ii) 末梢血における、末梢血単核球(PBMC)中のCD4+ T細胞の頻度(% of CD4+ T cells among PBMC)、末梢血単核球(PBMC)中のCD8+ T細胞の頻度(% of CD8+ T cells among PBMC)、CD8+ T細胞中のナイーブT細胞の頻度(% of Tnaive among CD8+ T cells)、CD4+ T細胞中のセントラルメモリーT細胞の頻度(% of Tcm among CD4+ T cells)、CD8+ T細胞中のセントラルメモリーT細胞の頻度(% of Tcm among CD8+ T cells)、CD8+ T細胞中のエフェクターメモリーT細胞の頻度(% of Tem among CD8+ T cells)、CD4+ T細胞中の最終分化エフェクターメモリーT細胞の頻度(% of Temra among CD4+ T cells)、CD8+ T細胞中の最終分化エフェクターメモリーT細胞の頻度(% of Temra among CD8+ T cells)、CD4+T細胞のミトコンドリア活性化状態に対するCD8+T細胞のミトコンドリア活性化状態の比(例えば、CD4+T細胞のミトコンドリア活性酸素発現量に対するCD8+T細胞のミトコンドリア活性酸素発現量の比(Mito SOX CD8/CD4)、CD4+T細胞のミトコンドリアの体積(mass)に対するCD8+T細胞のミトコンドリアの体積の比(Mito mass CD8/CD4))、CD8+T細胞のPGC-1α及びPGC-1βの発現(PGC-1αβ(MFI) of CD8+ T cells)、PD-1を高発現するCD8+T細胞集団の頻度(% of PD-1high among CD8+ T cells)、CD4+ T細胞中でFoxP3を低発現するCD45RA+ T細胞集団の頻度(% of FoxP3low CD45RA+ among CD4+ T cells)、CD4+ T細胞中でT-betを高発現するT細胞集団の頻度(% of T-bethigh among CD4+ T cells)、CD4+ T細胞中でT-betを低発現するT細胞集団の頻度(% of T-betlow among CD4+ T cells)、CD8+ T細胞中でT-betを発現するT細胞集団の頻度(% of T-bet+ among CD8+ T cells)及びCD8+ T細胞中でT-bet及びEOMESを発現するT細胞集団の頻度(% of T-bet+ EOMES+ among CD8+ T cells)からなる群より選択される少なくとも一つの細胞マーカー
【0066】
また、本発明は、下記の(i)及び/又は(ii)を指標として、被験者に対するPD-1シグナル阻害剤を含む薬剤による治療の有効性を予測及び/又は判定し、PD-1シグナル阻害剤を含む薬剤による治療が有効であると予測及び/又は判定された場合には、該被験者の治療に有効な量のPD-1シグナル阻害剤を含む薬剤を投与することを含む、疾病の診断及び治療方法に使用するための、PD-1シグナル阻害剤を含む薬剤を有効成分として含む医薬組成物を提供する。
(i) 血清及び/又は血漿における、Alanine、4-Cresol、Cysteine、Hippuric acid、Oleic acid、Indoxyl sulfate、Ribose、Indoleacetate、Uric acid、Trans-urocanic acid、Pipecolic acid、N-Acetylglucosamine、Indolelactic acid、Arabinose、Arabitol、Cystine、Indoxyle sulfate、Gluconic acid、Citrulline、Creatinine、N-Acetylaspartic acid、Pyroglutamic acid、Trimethyyllysine、Asy-Dimethylarginine、Sym-Dimethylarginine、Methylhistidine、アシルカルニチン、3-Aminoisobutyric acid、Acethykcarnosine、Arginine、N-acetylornitine、3-Hydroxyisovaleric acid、Pyruvic acid、α-ketoglutaric acid、GSSG、2-Hydrobutyric acid、1,5-Anhydro-D-sorbitol、Glutamine、Glycine、Lysine、Taurine、AMP、Acetylcarnosine、3-Hydroxybutyric acid、2-Hydroxyisovaleric acid、Acetoacetic acid、Tryptophan、2-Hydroxyglutaric acid、Malic acid、Quinolinic acid、Caproic acid、Isoleucine、GSH及び3-OH-Kynurenineからなる群より選択される少なくとも一つのメタボライト
(ii) 末梢血における、末梢血単核球(PBMC)中のCD4+ T細胞の頻度(% of CD4+ T cells among PBMC)、末梢血単核球(PBMC)中のCD8+ T細胞の頻度(% of CD8+ T cells among PBMC)、CD8+ T細胞中のナイーブT細胞の頻度(% of Tnaive among CD8+ T cells)、CD4+ T細胞中のセントラルメモリーT細胞の頻度(% of Tcm among CD4+ T cells)、CD8+ T細胞中のセントラルメモリーT細胞の頻度(% of Tcm among CD8+ T cells)、CD8+ T細胞中のエフェクターメモリーT細胞の頻度(% of Tem among CD8+ T cells)、CD4+ T細胞中の最終分化エフェクターメモリーT細胞の頻度(% of Temra among CD4+ T cells)、CD8+ T細胞中の最終分化エフェクターメモリーT細胞の頻度(% of Temra among CD8+ T cells)、CD4+T細胞のミトコンドリア活性化状態に対するCD8+T細胞のミトコンドリア活性化状態の比(例えば、CD4+T細胞のミトコンドリア活性酸素発現量に対するCD8+T細胞のミトコンドリア活性酸素発現量の比(Mito SOX CD8/CD4)、CD4+T細胞のミトコンドリアの体積(mass)に対するCD8+T細胞のミトコンドリアの体積の比(Mito mass CD8/CD4))、CD8+T細胞のPGC-1α及びPGC-1βの発現(PGC-1αβ(MFI) of CD8+ T cells)、PD-1を高発現するCD8+T細胞集団の頻度(% of PD-1high among CD8+ T cells)、CD4+ T細胞中でFoxP3を低発現するCD45RA+ T細胞集団の頻度(% of FoxP3low CD45RA+ among CD4+ T cells)、CD4+ T細胞中でT-betを高発現するT細胞集団の頻度(% of T-bethigh among CD4+ T cells)、CD4+ T細胞中でT-betを低発現するT細胞集団の頻度(% of T-betlow among CD4+ T cells)、CD8+ T細胞中でT-betを発現するT細胞集団の頻度(% of T-bet+ among CD8+ T cells)及びCD8+ T細胞中でT-bet及びEOMESを発現するT細胞集団の頻度(% of T-bet+ EOMES+ among CD8+ T cells)からなる群より選択される少なくとも一つの細胞マーカー
【0067】
本発明の医薬組成物は、抗がん剤、感染症治療剤又はそれらの組み合わせとして使用することができる。
【0068】
本発明の医薬組成物を抗がん剤として投与する場合、対象となる癌又は腫瘍としては、白血病、リンパ腫(ホジキン病、非ホジキンリンパ腫など)、多発性骨髄腫、脳腫瘍、乳がん、子宮体がん、子宮頚がん、卵巣がん、食道癌、胃癌、虫垂癌、大腸癌、肝癌、胆嚢癌、胆管癌、膵臓がん、副腎癌、消化管間質腫瘍、中皮腫、頭頚部癌(喉頭癌など)、口腔癌(口腔底癌など)、歯肉癌、舌癌、頬粘膜癌、唾液腺癌、副鼻腔癌(上顎洞癌、前頭洞癌、篩骨洞癌、蝶型骨洞癌など)、甲状腺癌、腎臓がん、肺癌、骨肉腫、前立腺癌、精巣腫瘍(睾丸がん)、腎細胞癌、膀胱癌、横紋筋肉腫、皮膚癌(基底細胞がん、有棘細胞がん、悪性黒色腫(メラノーマ)、日光角化症、ボーエン病、パージェット病など)、肛門癌などが例示されるが、これらに限定されるわけではない。
【0069】
本発明の医薬組成物を感染症治療剤として投与する場合、対象となる感染症としては、細菌感染症(レンサ球菌(A群β溶連菌、肺炎球菌など)、黄色ブドウ球菌(MSSA、MRSA)、表皮ブドウ球菌、腸球菌、リステリア、髄膜炎球菌、淋菌、病原性大腸菌(0157:H7など)、クレブシエラ(肺炎桿菌)、プロテウス菌、百日咳菌、緑膿菌、セラチア菌、シトロバクター、アシネトバクター、エンテロバクター、マイコプラズマ、クロストリジウムなどによる各種感染症、結核、コレラ、ペスト、ジフテリア、赤痢、猩紅熱、炭疽、梅毒 、破傷風、ハンセン病、レジオネラ肺炎(在郷軍人病)、レプトスピラ症、ライム病、野兎病、Q熱など)、リケッチア感染症(発疹チフス、ツツガムシ病、日本紅斑熱など)、クラミジア感染症(トラコーマ、性器クラミジア感染症、オウム病など)、真菌感染症(アスペルギルス症、カンジダ症、クリプトコッカス症、白癬菌症、ヒストプラズマ症、ニューモシスチス肺炎など)、寄生性原虫感染症(アメーバ赤痢、マラリア、トキソプラズマ症、リーシュマニア症、クリプトスポリジウムなど)、寄生性蠕虫感染症(エキノコックス症、日本住血吸虫症、フィラリア症、回虫症、広節裂頭条虫症など)、ウイルス感染症(インフルエンザ、ウイルス性肝炎、ウイルス性髄膜炎、後天性免疫不全症候群 (AIDS)、成人T細胞性白血病、エボラ出血熱、黄熱、風邪症候群、狂犬病、サイトメガロウイルス感染症、重症急性呼吸器症候群 (SARS)、進行性多巣性白質脳症、水痘、帯状疱疹、手足口病、デング熱、伝染性紅斑、伝染性単核球症、天然痘、風疹、急性灰白髄炎(ポリオ)、麻疹 、咽頭結膜熱(プール熱)、マールブルグ出血熱、ハンタウイルス腎出血熱、ラッサ熱、流行性耳下腺炎、ウエストナイル熱、ヘルパンギーナ、チクングニア熱など)などが例示されるが、これらに限定されるわけではない。
【0070】
本発明の医薬組成物は、全身又は局所的に、経口又は非経口で被験者又は被験動物に投与される。
【0071】
PD-1シグナル阻害剤(例えば、抗PD-1抗体、抗PD-L1抗体、抗PD-L2抗体)は、PBSなどの緩衝液、生理食塩水、滅菌水などに溶解し、必要に応じてフィルターなどで濾過滅菌した後、注射又は点滴により被験者又は被験動物に投与するとよい。また、この溶液には、添加剤(例えば、着色剤、乳化剤、懸濁剤、界面活性剤、溶解補助剤、安定化剤、保存剤、酸化防止剤、緩衝剤、等張化剤など)などを添加してもよい。投与経路としては、静脈、筋肉、腹腔、皮下、皮内投与などが可能である。
【0072】
PD-1シグナル阻害剤(例えば、抗PD-1抗体、抗PD-L1抗体、抗PD-L2抗体)の製剤中における含量は、製剤の種類により異なるが、通常1~100 重量%、好ましくは50~100 重量%である。製剤は、単位投与製剤に製剤化するとよい。
【0073】
PD-1シグナル阻害剤(例えば、抗PD-1抗体、抗PD-L1抗体、抗PD-L2抗体)の投与量、投与の回数及び頻度は、被験者又は被験動物の症状、年齢、体重、投与方法、投与形態などにより異なるが、例えば、通常、成人一人当たり、有効成分の量に換算して、0.1~100 mg/kg体重、好ましくは、1~10mg/kg体重を、少なくとも1回、所望の効果が確認できる頻度で投与するとよい。上述のバイオマーカー及び/又は細胞マーカーを用いた検査結果に基づき、PD-1シグナル阻害剤の投与の開始、継続、中止などを決定することができる。
【0074】
本発明は、また、PD-1シグナル阻害剤を含む薬剤の投与を決定するための診断製品の製造における、下記の(i)及び/又は(ii)のバイオマーカーを測定するための試薬の使用を提供する。
(i) 血清及び/又は血漿における、Alanine、4-Cresol、Cysteine、Hippuric acid、Oleic acid、Indoxyl sulfate、Ribose、Indoleacetate、Uric acid、Trans-urocanic acid、Pipecolic acid、N-Acetylglucosamine、Indolelactic acid、Arabinose、Arabitol、Cystine、Indoxyle sulfate、Gluconic acid、Citrulline、Creatinine、N-Acetylaspartic acid、Pyroglutamic acid、Trimethyyllysine、Asy-Dimethylarginine、Sym-Dimethylarginine、Methylhistidine、アシルカルニチン、3-Aminoisobutyric acid、Acethykcarnosine、Arginine、N-acetylornitine、3-Hydroxyisovaleric acid、Pyruvic acid、α-ketoglutaric acid、GSSG、2-Hydrobutyric acid、1,5-Anhydro-D-sorbitol、Glutamine、Glycine、Lysine、Taurine、AMP、Acetylcarnosine、3-Hydroxybutyric acid、2-Hydroxyisovaleric acid、Acetoacetic acid、Tryptophan、2-Hydroxyglutaric acid、Malic acid、Quinolinic acid、Caproic acid、Isoleucine、GSH及び3-OH-Kynurenineからなる群より選択される少なくとも一つのメタボライト
(ii) 末梢血における、末梢血単核球(PBMC)中のCD4+ T細胞の頻度(% of CD4+ T cells among PBMC)、末梢血単核球(PBMC)中のCD8+ T細胞の頻度(% of CD8+ T cells among PBMC)、CD8+ T細胞中のナイーブT細胞の頻度(% of Tnaive among CD8+ T cells)、CD4+ T細胞中のセントラルメモリーT細胞の頻度(% of Tcm among CD4+ T cells)、CD8+ T細胞中のセントラルメモリーT細胞の頻度(% of Tcm among CD8+ T cells)、CD8+ T細胞中のエフェクターメモリーT細胞の頻度(% of Tem among CD8+ T cells)、CD4+ T細胞中の最終分化エフェクターメモリーT細胞の頻度(% of Temra among CD4+ T cells)、CD8+ T細胞中の最終分化エフェクターメモリーT細胞の頻度(% of Temra among CD8+ T cells)、CD4+T細胞のミトコンドリア活性化状態に対するCD8+T細胞のミトコンドリア活性化状態の比(例えば、CD4+T細胞のミトコンドリア活性酸素発現量に対するCD8+T細胞のミトコンドリア活性酸素発現量の比(Mito SOX CD8/CD4)、CD4+T細胞のミトコンドリアの体積(mass)に対するCD8+T細胞のミトコンドリアの体積の比(Mito mass CD8/CD4))、CD8+T細胞のPGC-1α及びPGC-1βの発現(PGC-1αβ(MFI) of CD8+ T cells)、PD-1を高発現するCD8+T細胞集団の頻度(% of PD-1high among CD8+ T cells)、CD4+ T細胞中でFoxP3を低発現するCD45RA+ T細胞集団の頻度(% of FoxP3low CD45RA+ among CD4+ T cells)、CD4+ T細胞中でT-betを高発現するT細胞集団の頻度(% of T-bethigh among CD4+ T cells)、CD4+ T細胞中でT-betを低発現するT細胞集団の頻度(% of T-betlow among CD4+ T cells)、CD8+ T細胞中でT-betを発現するT細胞集団の頻度(% of T-bet+ among CD8+ T cells)及びCD8+ T細胞中でT-bet及びEOMESを発現するT細胞集団の頻度(% of T-bet+ EOMES+ among CD8+ T cells)からなる群より選択される少なくとも一つの細胞マーカー
診断製品とは、キット、装置(質量分析装置、イメージングシステム、フローサイトメトリー、マイクロプレート、その他の分析装置)などを包含する概念である。診断製品は、解析用プログラム、取扱説明書なども含むとよい。
バイオマーカーを測定するための試薬としては、バイオマーカーがメタボライトである場合、内部標準、誘導体化するための試薬(例えば、GC/MS用誘導体化試薬)、抽出用有機溶媒、それらの組み合わせなどを例示することができ、バイオマーカーが細胞マーカーである場合、細胞単離のための試薬(細胞マーカー(CD4、CD8、CD45RA)タンパク質に対する抗体をコートしたビーズなど)、検出対象のタンパク質(PGC-1α、PGC-1β、FoxP3、T-bet、EOMES)に対する抗体、検出対象のタンパク質を検出するための抗体(酵素などで標識するとよい)、標識として用いた酵素の基質(酵素と反応して、発色、蛍光、発光などを生じるもの)、標準試料、それらの組み合わせなどを例示することができる。
【実施例0075】
以下、実施例により本発明を更に詳細に説明する。
〔実施例1〕非小細胞肺がん患者におけるPD-1遮断療法への治療応答性の組合せバイオマーカー
(要約)
宿主免疫側の有用なバイオマーカーを同定するため、我々は、ニボルマブを投与する前および後の非小細胞肺がん患者の血液中における血漿メタボライトおよび免疫細胞の細胞マーカーを調査した。統計学的に選択された組合せバイオマーカーに対するマシンラーニングを用いた検証試験は、腸内細菌、脂肪酸酸化および酸化還元に由来する4つのメタボライトの組合せが高い予測値(AUC=0.91)をもたらすことを示した。ミトコンドリア活性化関連ならびにCD8+ PD-1highおよびCD4+ T細胞の頻度を含む4つのT細胞マーカーの組合せは、より高い予測値(AUC=0.96)を示した。全マーカーのプールから、最も予測値の高い組合せを統計学的に選択したところ、前述の4つのT細胞マーカーが選ばれ、メタボライトは含まれなかった。これは、メタボライトとT細胞マーカーの間に強い相関があるためだと考えられた。これらの所見は、宿主免疫活性を反映するバイオマーカーの組合せが、responderの予測に非常に有益であることを示している。
【0076】
(序論)
PD-1およびCTLA-4は、腫瘍増殖に対する免疫抑制において最も重要な役割を果たす(12-15)。マウスおよびヒトにおいて、これらの分子を個別または一緒に遮断すると、免疫監視機構が活性化され、強い抗腫瘍活性を誘導することができる(12-14, 16, 17)。これらの免疫チェックポイント遮断モノクローナル抗体を用いた臨床試験における良好な結果に基づいて、FDAは種々のヒトがんの治療にCTLA-4、PD-1 またはそのリガンドであるPD-L1に対する抗体を承認した(3, 15)。しかしPD-1遮断免疫療法の素晴らしい臨床効果にもかかわらず、ある一定の割合のがん患者がこの療法に対して不応答である(3, 15-17)。したがって、それらの患者の費用と時間を節約する意味でも、responderとnon-responderを判別する治療効果予測バイオマーカーが必要である。
【0077】
免疫染色法による腫瘍組織でのPD-L1高発現は、非小細胞肺がん(NSCLC)の治療効果予測バイオマーカーとして用いられてきた(18, 19)。また最近、FDAはマイクロサテライト不安定性が高いこと(MSI-H)またはDNAミスマッチ修復欠損(dMMR)を、種々の固形がんにおける共通の治療効果予測バイオマーカーとして承認した(20, 21)。しかし、これらのバイオマーカーマーカーは応答性患者全てをカバーすることはできない。なぜなら、腫瘍反応性キラーT細胞の応答は、腫瘍の特性ばかりでなく宿主免疫活性によっても影響されるからである。いくつかのグループが、腫瘍部位または末梢血における細胞成分の分析により治療効果予測バイオマーカーの候補を同定した。候補とされているバイオマーカーは、CD8+ T細胞、CD4+ T細胞、好酸球、好中球、抑制性マクロファージのサブセット、およびT細胞のサブセットの頻度などである(22)。また特定のサイトカインまたはケモカイン等の免疫制御因子もバイオマーカーの候補としてリストアップされている(22)。しかし、これらの単一マーカー個々の予測値は、臨床応用に十分なほど高くはない。
【0078】
我々がIgA欠損またはPD-1欠損マウスモデルを用いて示したように、相腸内細菌と免疫活性は互に影響しあっていることが知られている(23, 24)。腫瘍免疫に関しては、腸内細菌およびそのメタボライトが免疫チェックポイント阻害剤の効果と関連していることが近年報告されている(22, 25, 26)。特に、特定の腸内細菌であるアッカーマンシア・ムシニフィラ(Akkermansia muciniphila)や腸内細菌叢の多様性は、PD-1遮断療法の応答性と相関していることが報告されている(26)。機序の詳細は殆どわかっていないが、これらの腸内細菌叢が自然免疫を活性化し、末梢において抗腫瘍免疫のベースラインをアップレギュレートすると考えられている(26-28)。しかし、上記の腸内細菌またはそれに関連する因子が、PD-1遮断療法の治療効果予測バイオマーカーになりうるかどうかはわかっていない。
【0079】
最近、T細胞エネルギー代謝と免疫活性の密接な関係が明らかになって来た(29, 30)。我々は、T細胞のエネルギー代謝がいかにして抗腫瘍免疫を制御するのかを調べた(31, 32)。ミトコンドリア活性の指標になりうる酸素消費速度の測定結果と、ミトコンドリアの体積(mass)、活性酸素種(ROS)および膜電位の染色結果より、PD-1遮断療法の間に腫瘍反応性T細胞のミトコンドリアが活性化されることを見出した。さらに、我々は、ミトコンドリア由来ROSの増加がPD-1遮断療法の効果を増強することを示し、これはペルオキシソーム増殖因子活性化レセプターγ共役因子1α(PGC-1α)の活性化によって媒介される事を報告した(31)。ROSシグナルのレベルはT細胞活性化やサイトカイン産生と密接に関連していることは以前より知られている(33)。そこで、我々は、これらのミトコンドリア関連因子が宿主免疫活性の予測バイオマーカーとなりうるかどうかを検討した。
【0080】
NSCLC患者60名の血液サンプルを用いた本研究において、我々は、数個の血漿メタボライトの組合せが、良好なバイオマーカーになりうることを示した(AUC=0.91:マシンラーニングを用いた検証試験による)。これらのメタボライトは、腸内細菌(馬尿酸)、脂肪酸酸化(ブチリルカルニチン)、および酸化還元(シスチンおよびグルタチオンジスルフィド)に関連するメタボライトであった。更に数個のT細胞マーカーの組合せが、より良好なバイオマーカーとして役立ちうることを示した(AUC=0.96:マシンラーニングを用いた検証試験による)。T細胞マーカーは、CD8+ キラーT細胞における抑制機能(PD-1high集団の頻度)およびミトコンドリア活性(PGC-1αおよびROSの発現)に関連するマーカーであった。これらのT細胞マーカーは、上記のメタボライトと強く関連していた。これらの結果は、腸内細菌とT細胞エネルギー代謝の組合せが、PD-1遮断療法の高度な治療効果予測バイオマーカーとなりうることを示している。
【0081】
(結果)
腸内細菌およびエネルギー代謝に関連するメタボライトは、PD-1遮断がん免疫療法への治療応答性と相関している。
これまでの報告により、免疫応答と腸内細菌の間に大きな関連があることがわかっている(30)。しかし、特定のメタボライトが、ヒトにおけるPD-1遮断療法の治療効果予測バイオマーカーになりうるかどうかはわかっていない。メタボライトがどのようにして抗腫瘍免疫と関連するのか調べるため、我々は、ニボルマブ投与前および後のNSCLC患者60名の血漿およびPBMCにおける、それぞれのメタボライトおよびT細胞機能マーカーを分析した(
図1aおよび表1-3)。0、2および4週目のニボルマブ注射の直前に血液サンプルを採取し、それぞれ第1、第2および第3サンプルと称した(
図1a)。我々は、NSCLC患者の第III相臨床試験の無増悪生存期間(PFS)データに従って、PFS>3ヶ月またはPFS≦3ヶ月を基準として、応答性患者と非応答性患者を規定した(
図6)(34, 35)。これまでの報告ではResponder基準としてPFS>6ヶ月が頻繁に用いられてきたが、本研究の解析の結果では、両方の基準(PFS>3ヶ月およびPFS>6ヶ月)とも類似した全生存曲線を示した(
図6aおよびb)。さらに、腫瘍部位におけるPD-L1発現レベルでは、治療効果を明確に判別することは出来なかった(
図6cおよびd)。我々は、患者60名の247個のメタボライトを測定した。これらの患者のうち6名は脱落し、さらに7名が重篤な副作用のため治療を中止したため、我々は残る47名分のデータを分析した。これらのメタボライトのボルケーノプロット(volcano plot)分析では、non-responderと比較してresponderにおいて、第1サンプル中の馬尿酸ならびに第3サンプル中の馬尿酸、インドキシル硫酸、4-クレゾールおよびグルタチオンジスルフィド(GSSG)が有意に増加していた(
図1b)。一方で、第3サンプル中のα-ケトグルタル酸およびブチリルカルニチンのレベルはresponderにおいて優位に低かった。第2サンプルにおいては、どの項目についても有意差は見られなかった(
図1b)。馬尿酸、インドキシル硫酸および4-クレゾールは、哺乳類においてはほぼ独占的に腸内細菌によって産生されることが報告されており(36)、このことは、ニボルマブ投与の前3ヶ月以内に抗生物質で治療された患者は、これら3つのメタボライトのレベルがより低いという本研究の結果と矛盾しない(
図7a)。Responderにおいてnon-responderよりも腸内細菌由来メタボライトが高いということは、腸内細菌由来メタボライトが末梢の抗腫瘍免疫と胃関連していることを示唆している(
図1cおよび
図7b)。GSSGレベル、特に第3サンプル中のそれは、responderにおいてnon-responderよりも有意に高かった(
図1bおよび
図1d左パネル)。GSSGはグルタチオン(GSH)の酸化形で、これは細胞内で活性酸素種(ROS)のレベルを適切にコントロールする(37)。ブチリルカルニチンのレベルは、non-responderにおいてresponderよりも高かった(
図1bおよび
図1d)。炭素数4のアシルカルニチンであるブチリルカルニチンは、ミトコンドリアへの脂肪酸輸送体として働き、ATPを生成する。様々な炭素数を有するアシルカルニチン種は、脂肪酸酸化(FAO)機能が弱まると、細胞から放出される(7-9)。ブチリルカルニチンおよび他のアシルカルニチン種(イソバレリルカルニチンおよびヘキサノイルカルニチン)は、non-responderにおいて治療後に増大する傾向を示した(
図7c)。α-ケトグルタル酸は、non-responderにおいてresponderよりも高い傾向があった(
図1bおよび
図1d)。α-ケトグルタル酸は、ミトコンドリアにおけるATP産生のためのトリカルボン酸(TCA)回路の中心的メタボライトであり、血中では活性化T細胞によって消費されることにより減少する(31, 38)。したがって、これらのデータは、PD-1遮断療養による抗腫瘍免疫応答が腸内細菌およびエネルギー代謝と深く関連していることを示している。
【0082】
血漿メタボライトの組合せは、治療効果予測バイオマーカーとなりうる。
我々は、
図1bにリストアップした予測バイオマーカー候補の各々についての確率を、直線回帰を用いた受信者動作特性曲線(ROC)分析によって検討したが、それぞれの曲線下面積(AUC)は臨床応用には十分ではなかった(
図1b、表の右の列)。そこで、我々は次に、メタボライトの組合せに基づくより優れたバイオマーカーを解明するため、ステップワイズ回帰法を用いることにした。最初に、合計1482項目(247項目x3つの時点+247項目x3つの比)の中から、それぞれの時点の値または異なる時点の比(倍率変化)においてresponderとnon-responderの間で有意差があるものを選択した(表4)。表4にリストアップしたマーカーに対して赤池情報量基準(AIC)を用いたステップワイズ回帰法で解析し、それぞれ第1サンプル、第1+第2サンプルおよび第1+第2+第3サンプルについておける最も良い組合せをメタボライト組合せI、II およびIIIと称した(
図2aおよび
図8a-c)。線形判別分析(LDA)は、メタボライト組合せIが、23%の誤り率でresponderとnon-responderを判別したことを示した(
図2b)。メタボライト組合せIの信頼性を試験するため、我々はLDAカットオフ値に基づいて、47個のサンプルを「responder (LDA-R)」と「non-responder (LDA-NR)」に分けた(
図2b)。
図2cに示すように、メタボライト組合せIによるLDA-RとLDA-NRはPFSで有意差を示した。次に、メタボライト組合せIIは22%の誤り率でresponderとnon-responderをより良く判別した(
図2d)。さらに、メタボライト組合せIIによるLDA-RとLDA-NRはPFSとOSの両方において有意差を示した (
図2e)。最後に、メタボライト組合せIIIが、responderとnon-responderを最も良く判別した(誤り率19.6%)(
図2fおよび2g)。我々は、同一コホートを用いて検証試験を行うためマシンラーニングを用い、ロジスティック回帰分析による5分割交差検証を実施した。5分割交差検証においては、我々はコホートを5つのグループに分割し、1グループの最初の20% (first 20% fold)を試験データとし、残りの80%を用いて予測モデルを訓練して試験を予測した。我々は各グループに対してこの手順を5回繰り返し、AUCの平均値を用いてモデル性能を評価した。この交差検証アッセイの結果、平均AUC値はメタボライト組合せI、IIおよびIIIについてそれぞれ0.77、0.83および0.91であった(
図2h)。
【0083】
NSCLCに対する現行の臨床プロトコールでは、患者は2週間毎にニボルマブ投与を受けることを考慮すると、メタボライト組合せIおよびIIは治療効果予測マーカーとして有用であるが、最も高い信頼性を示したメタボライトの組合せIIIは、臨床ではさほど有用ではないかもしれない。
【0084】
CD8
+
T細胞のミトコンドリア活性を含む細胞マーカーの組合せは、responderと non-responderを判別できる。
以前、我々は、T細胞におけるミトコンドリア活性化およびエネルギー代謝が、PD-1遮断療法への応答と強く関連していることを示した(31, 32)。そこで我々は、患者のPBMC中のT細胞におけるエフェクター機能、エネルギー代謝、ミトコンドリアの状態、および免疫活性化の細胞マーカーを調べた。表3に示す合計52個のマーカーおよび各時点間におけるそれらの比(倍率変化)の中から、我々はresponder とnon-responder間で有意差のある26項目を抽出した(表5)。さらに、この26項目から、我々はメタボライトの項で記述したのと同じステップワイズ回帰法を用いて、治療効果予測バイオマーカーの最良の組合せを選択した。
図3aに示すように、第1サンプル、第1+第2サンプルおよび第1+第2+第3サンプルにおいてresponderを予測する最良の組合せを、それぞれ細胞マーカー組合せI、IIおよびIIIと称した。これらは、それぞれ2個、4個および4個のマーカーの組合せとなった。我々は第1サンプルのCD8
+ T細胞中のPD-1
high集団の頻度はresponderにおいて有意に低いこと、またこのマーカーが細胞マーカーの組合せI、IIおよびIIIの全てに含まれることを見出した(
図3aおよび3b)。尚、全PD-1+ CD8
+ T細胞の頻度は、responderとnon-responderの間で有意差がなかった(
図9a)。PD-1
high CD8
+ T細胞の機能解析では、Ki67頻度が他の2群(PD-1lowまたはPD-1-)に比べて PD-1
high で高く高い増殖力を示したが、PD-1
highのグランザイムBおよびIFN-γ産生は他の2群より少なかった(
図9b)。さらに、PD-1
highのT-bet発現は他の2群より低かったが、EOMES発現は他の2群より高かった(
図9b)。これらのデータは、PD-1
high CD8
+ T細胞は幾度もの分裂の結果、「疲弊」しているかもしれないことを示唆している。言い換えるなら、強固な抗腫瘍応答およびエフェクター機能の保持のためには、疲弊度のより低いCD8
+ T細胞が重要となる。ミトコンドリアROS(Mito SOXという色素によって測定される)は、ミトコンドリア活性化指標の1つである(31)。我々は、第1サンプルのCD8
+ およびCD4
+ T細胞におけるMito SOXレベルの比(Mito SOX CD8/CD4)がresponderにおいて有意に高いこと、またこのマーカーはPD-1
high CD8
+ T細胞マーカーと同様に、全マーカー組合せに含まれていることを見出した(
図3aおよび3c)。この結果は、ミトコンドリア活性化状態が、治療前の時点でCD4
+ T細胞よりもCD8
+ T細胞において高いことが、PD-1抗体の治療応答にとって重要であることを示している(
図3c)。PGC-1は、ミトコンドリア新生およびミトコンドリア代謝経路(酸化的リン酸化(OXPHOS)および脂肪酸酸化(FAO)、等)の主要な制御因子である(10, 11)。我々はPGC-1αおよびPGC-1βの両方(以後「PGC-1αβ」と記載)を認識する抗体を用いてPGC-1発現を検討した。CD8
+ T細胞におけるPGC-1αβ発現は、responderにおいて第1サンプルと第2サンプルの間で低下したが、第2サンプルと第3サンプルの間で増加した(
図3aおよび3d上段)。つまり、第1サンプルと第2サンプルにおけるPGC-1αβ発現の倍率変化はresponderにおいて有意に低かったが、第2サンプルと第3サンプルの倍率変化は有意に高かった(
図3aおよび3d下段)。Responderの第2サンプルにおけるPGC-1αβ発現の一時的低下は、Aktシグナル伝達およびOXPHOSの一時的抑制による解糖の促進が原因であるかもしれないが(10, 31, 32, 39)、この主要なミトコンドリア制御因子は少なくとも第3時点までに回復することがわかった。Mito SOX およびPGC-1αβマーカーと治療応答性との強い相関は、以前のマウスモデルにおいて示したように(31, 32)、CD8
+ T細胞におけるミトコンドリア活性化がPD-1遮断による抗腫瘍免疫応答にとって重要であることを示唆した。また他の研究者グループがすでに報告しているように、responderにおいて治療後にCD4
+ T細胞の頻度が増大したことを我々も見出した(
図3aおよび3e)(40, 41)。さらなる分析の結果、ニボルマブ投与がresponderにおいてCD4
+ CD45RO+ CCR7+ (中央メモリー: Tcm)集団を増加させ、そしてCD4
+ CD45RO- CCR7- (終末分化したエフェクターメモリーCD45RA+ T 細胞: Temra)集団を減少させたことが明らかとなった(
図9c)。
【0085】
T細胞マーカーの組合せは、高い予測値を示した。
我々は、前述の方法により細胞マーカー組合せI、IIおよびIIIの誤り率を評価した。LDAの結果、細胞マーカー組合せIは誤り率19.1%であった(
図4a)。メタボライトと同様に、LDA基準に基づいてresponderとnon-responderを規定したところ、細胞マーカー組合せIによるLDA-RとLDA-NRはPFSとOSの両方において有意差を示した(
図4b)。またLDAの結果、細胞マーカー組合せIIおよびIIIは、両方とも誤り率が4.3%であり、LDA-RとLDA-NRはPFSおよびOSの両方においてp < 0.01の有意差を示した(
図4c-f)。同一コホート内でロジスティック回帰分析による5分割交差検証を用いた検証試験の結果は、細胞マーカー組合せI、IIおよびIIIに対する平均AUCがそれぞれ0.85、0.96および0.93であった(
図4g)。これらのデータは、2回目の治療までに得られた細胞バイオマーカーの組合せで、治療効果を判定するのに十分であることを示している。
【0086】
メタボライトと細胞マーカーには相関がある。
次に、我々は、responderとnon-responderの間で有意差を示す全てのメタボライトおよび細胞マーカーの中から最良の組合せを選択するために、ステップワイズ回帰法を行った(表4および表5)。意外にも、選択されたマーカーは全て細胞マーカーであり、
図3および
図4に示すものとまったく同じ組合せになった。そこで、我々は、メタボライトと細胞マーカーの間に強い相関があり、これが全組合せからのメタボライトの排除をもたらすのではないかと考えた。上述のように細胞マーカー組合せIIが優れた判別能を示し、臨床において実用的であるため、我々は細胞マーカー組合せIIに焦点を当て、メタボライトとの相関を調べた。細胞マーカーとメタボライトの相関を評価するため、スピアマンの相関係数(r)を用いた。一般に、|r|>0.4が比較的強い相関を有すると考えられている。我々は、CD8
+ T細胞におけるPGC-1αβ発現が腸内細菌関連メタボライトと相関していること、PD-1
high CD8
+ T細胞の頻度はFAO関連メタボライトと相関していること、そしてT細胞Mito SOXマーカーは酸化還元関連メタボライトと相関していることを見出した(
図5a)。尚、シスチンおよびピログルタミン酸は、
図10に示すように、グルタチオンの成分である。
【0087】
クラスター分析の結果、細胞マーカーとメタボライトは大きく3つのグループに分かれた(
図5b)。3つグループは1)腸内細菌関連メタボライト、2) FAO関連メタボライトおよび3)酸化還元関連メタボライトに分類できた。細胞マーカーと代謝マーカーの間の相関の詳細を、
図5cに要約して示した。結論として、全てのマーカーにおけるステップワイズ回帰法がメタボライトを1つも選択しなかったのは、治療予測バイオマーカーになりうるメタボライトが、それらよりも僅かに大きい予測能を有する細胞マーカーと密接に相関しているからと考えられた。これらのデータは、腸内細菌とT細胞エネルギー代謝の間の強い関連を示し、この両者は、抗腫瘍免疫およびPD-1遮断免疫療法への治療応答性に寄与する。
【0088】
(考察)
抗腫瘍免疫は、腫瘍と免疫活性の両者によって制御される。我々が本研究で示したように、キラーT細胞の機能活性は、腸内細菌やエネルギー代謝のように異なる高次機能系のネットワークに関連している。したがって、単一のバイオマーカーでは不十分であり、よりよい予測精度を得るには複数マーカーの組合せが求められる。現在の臨床バイオマーカーは、NSCLCや子宮頸癌、食道癌などにおいてはPD-L1の高発現が、また種々の固形がんに対してMSI-H および/またはdMMRがFDAより認可されている。しかし、PD-L1の発現が低いNSCLC患者においてもかなりの割合でが治療応答性の患者がおり、またMSI-H および/またはdMMRを有する患者数は非常に稀である(NSCLC患者の約1%)(35, 42)。本研究でも腫瘍のPD-L1の発現は、responderとnon-responderを有意に判定できなかったことを踏まえても、腫瘍側の因子にのみ基づく現在のバイオマーカーは、PD-1遮断療法の治療効果予測バイオマーカーとしては不完全といえる。また腫瘍側の因子の探索には最低でも生検標本が必要となり患者に大きな負担をかけるが、免疫細胞特性やメタボライトは採血で調べることができ、はるかに簡便で、かつ患者への負担が少ない。宿主免疫に関連するいくつかのマーカー(例えば、PBMC中の好酸球、好中球、腫瘍関連マクロファージ、CD4+ T細胞の頻度、および腫瘍部位における浸潤したCD8+ T細胞またはPD-1+ CD8+ T細胞の頻度)が治療応答性と関連していることも報告されているが、これら単一の免疫関連マーカーの予測精度は十分ではない(22, 43)。本研究で我々は、T細胞のミトコンドリアの活性状態を含むT細胞活性化に対する複数の細胞マーカーの組合せがresponderとnon-responderを高い精度で予測できることを示し良いバイオマーカーになる可能性が見出された。相関解析の結果は、腸内細菌、エネルギー代謝および酸化還元に関連するメタボライトが、末梢のキラーT細胞の抗腫瘍活性化状態を反映していることを示唆していた。
【0089】
これまで宿主の免疫活性と腸内細菌は相互に影響しあっていることは知られていた(23)。更に、腸内細菌は種々の疾患と関連していることがわかっており、腸内細菌由来の血中メタボライトと疾患の原因の関係も研究されてきた(5, 44, 45)。本研究において腸内細菌由来のメタボライトが、末梢CD8+T細胞中のミトコンドリア制御の主要分子であるPGC-1αβの変動と相関していることは特筆すべき結果である(10, 11)。腸内細菌由来メタボライトの1つである馬尿酸は、腸内細菌の多様性の指標であることや、クロストリジウム目(Clostridiales)の細菌によって多く産生されることが報告されている (4, 5)。最近、腸内細菌の多様性や腸内細菌中のクロストリジウム目細菌の多さがは、PD-1遮断療法の治療応答性と相関することが報告されている(25)。本研究では、治療応答性の患者において馬尿酸をはじめとする腸内細菌由来のメタボライトが高値を示した。これは免疫を活性化する役割を持つ特定の腸内細菌種の増加や腸内細菌の多様性を反映しているかもしれない。腸内細菌が抗腫瘍免疫を制御するメカニズムは殆ど解かっていないものの(26)、本研究結果は、腸内細菌及び腸内細菌由来のメタボライトが、末梢CD8+ T細胞のミトコンドリア活性化状態と深い相関があることを示唆している。
【0090】
アシルカルニチンの変動は、PD-1high CD8+ T細胞の頻度と相関を示した。アシルカルニチンは、ミトコンドリアの基質に位置するカルニチン依存性酵素であるカルニチンアセチルトランスフェラーゼやカルニチンパルミトイルトランスフェラーゼI(CPT1)によって、短鎖アシルCoAとカルニチンから変換される。つまり、カルニチンはアシルCoAを細胞質からミトコンドリア内部へ輸送する働きをもつ(7-9)。FAOが促進されると、アシルカルニチンの多くがミトコンドリア基質中に入り、血漿アシルカルニチンレベルが低下する(7-9, 46, 47)。よって、アシルカルニチン種の血漿レベルは、ミトコンドリア活性や炎症反応下でのFAOの指標になりうるとされている(48-50)。本研究において、アシルカルニチン種(ブチリルカルニチン、イソバレリルカルニチンおよびヘキサノイルカルニチン)はPD-1抗体治療後の非応答性患者において上昇しており、キラーT細胞におけるFAOの低下を示唆していた(47)。非応答性患者ではアシルカルニチンレベルの上昇とPD-1high CD8+ T細胞の増加が認められ、これら2つのマーカーは相関関係にあった。これは、非応答性患者にはFAOが低下した大量の疲弊キラーT細胞が存在することを示している。これらの結果は、PD-1遮断による強力な抗腫瘍活性のためには、エフェクターキラーT細胞におけるFAO経路が重要であるという過去の報告に矛盾しない(32)。
【0091】
ミトコンドリアのROSの増加は、T細胞の活性化およびサイトカイン産生にとって不可欠とされている(31, 51)。しかし、極めて高濃度のROSは細胞にとって毒性であるため、細胞はGSH/GSSG 系を用いてROSレベルを適切にコントロールしている(37)。酸化GSH(GSSG)は、細胞外に放出され、複雑な排出系を経て血漿に入る(52, 53)。そのため、血漿中のGSSG レベルは細胞の酸化状態や種々の免疫関連疾患の指標となることが知られている(52, 53)。本研究では、応答性患者において治療前のキラーT細胞のミトコンドリアのROSが増加しており、治療後の血漿中のGSSGと、GSHの成分(シスチンとピログルタミン酸)が高値を示した。これらのマーカーも相関関係にあったことは、ROSとGSH/GSSG系の機序を踏まえると説明がつく(37))。
【0092】
これまで、PBMC中のPD-1high CD8+ T細胞はKi-67頻度が極めて高く、腫瘍特異的T細胞を含むと考えられていた(54, 55)。我々の結果では、PD-1high CD8+ T細胞はグランザイムBおよびIFN-γの産生が低下していた。これは幾度もの分裂の結果、この細胞群が疲弊していることを示唆している。現にPD-1high CD8+ T細胞はT-betの発現は低下していたが、疲弊マーカーとされるEOMESの発現は高かった。PD-1high CD8+ T細胞が応答性の患者の腫瘍組織内で多いことが報告されているが(56)、我々結果では、応答性の患者の末梢血においてPD-1high CD8+ T細胞は少なかった。この矛盾は、次の2つの理由が考えられる。1)応答性の患者においては腫瘍反応性をもつPD-1high CD8+T細胞は優先的に腫瘍部位に遊走するため、末梢の数は少なくなる。2)PD-1high CD8+ T細胞の機能や疲弊の程度が、腫瘍部位と末梢血の間で異なる。ただし、この矛盾を解明するには、さらなる詳細なる分析が必要である。
【0093】
本研究の結果では、検査した全てのメタボライトおよび細胞マーカーの中で、数個の細胞マーカーの組合せが最も高い治療効果予測精度を示した。また、これは治療効果予測のあるメタボライトは細胞マーカーと強く相関していることが関係していた。しかし、メタボライトを測定する簡便性に比べて、細胞マーカーは異なる施設間で安定して測定することが困難であるため、複数のメタボライトの組合せの方が臨床応用に適しているかもしれない。本研究により、がん免疫治療に対する組合せバイオマーカーの実用性が示唆された。このようなバイオマーカーの確立によって、抗PD-1抗体単剤治療に対して非応答性である患者に対しては違う治療オプションを選択することができ、治療効果を高めることが期待される。
【0094】
方法 (Methods)
研究デザインおよび参加者
本研究では、京都大学病院でニボルマブ(抗PD-1抗体)の投与を受けるNSCLC患者のうち、治療中に血液サンプルを採取および保存することに同意し、また過去の医療歴、がん腫瘍タイプ、毒性評価、臨床応答、生存時間および検査値についての彼らのカルテの利用を許可した患者を対象とした。本研究は、京都大学倫理委員会によって承認された。我々は、60名のNSCLC患者を登録した。すべての患者は以前に他の化学療法を受けていた。患者は、疾患が悪化するまで、または許容できない副作用が現れるまで、2週間ごとにニボルマブ(3 mg/kg)の投与を受けた。ニボルマブの第1、第2および第3回目の投与の直前に患者より血液サンプルを採取した。登録した60名の患者のうち、6名は脱落し、さらに7名が重篤な副作用のため治療の中断が必要になったため、我々は残る47名分のデータを分析した。腫瘍サイズをCTで測定し、「固形がんにおける応答評価基準1.1」(RECIST 1.1)を用いて応答について評価した。
【0095】
PD-1high CD8+ T細胞集団の機能分析については、我々は、ニボルマブまたはペンブロリズマブの投与を受ける上記とは別の12名のNSCLC患者を登録した。
【0096】
血漿メタボローム測定のためのサンプル調製
末梢血サンプルを7ml のEDTA入り採血管(Venoject II, VP-NA070K, Terumo, 東京, 日本)に集め、直ちにCubeCooler (Forte Grow Medical Co. Ltd., 栃木,日本) に保管し、遠心分離(4℃、3000 rpm、15分)に掛けるまで4℃に保った。次に、採取した全ての血漿サンプルを、分析に使用するまで-80℃で保管した。GCMS分析のため、50μlの血漿を256μlの溶媒混合物(メタノール:クロロフォルム:水=2.5:1:1、2.34 μg/ml の2-イソプロピルリンゴ酸(Sigma-Aldrich)を含む)と混合し、これを内部標準として用いた。得られた混合物を1200 rpmで30分間37℃で攪拌した(Maximizer MBR-022UP, Taitec)。16000 × g で5分間25℃で遠心した後、150 μlの上清を回収し、140μlの精製水と混合し、次に5秒間ボルテックス混合を行なった。16000 × g で5分間25℃で遠心した後、180 μlの上清を遠心エバポレーター(CVE-3100, 東京理化器械株式会社)で乾燥させた。乾燥させたサンプルを80μlのメトキシアミン溶液(ピリジン中20 mg/ml)に溶解し、1200 rpmで30分間37℃で攪拌した。40μlのN-メチル-N-トリメチルシリルトリフルオロアセトアミド溶液(GL science)を加えてトリメチルシリル化し、1200 rpmで30分間37℃で攪拌した。遠心後、50μlの上清をガラス製バイアルに移し、GCMS測定に使用した。LCMS分析のためには、メタボライト抽出プロトコールを少し改変した。50μlの血漿を256μlのメタノールと混合し、1200 rpmで10分間37℃で攪拌した。16000 × g で30分間25℃で遠心した後、150 μlの上清を90μlの1%酢酸水溶液および120μlのクロロホルムと混合し、次に15秒間ボルテックス混合を行なった。2000 × g で10分間25℃で遠心した後、150 μlの上層を乾燥させ、50μlの0.1%ギ酸水溶液に溶解し、LCMS分析に使用した。
【0097】
血漿メタボライト分析
GCMS分析は、GCMS-QP2010 Ultra(島津製作所)を用いて実施した。誘導体化メタボライトは、DB-5 カラム (30 m × 0.25 mm 内径, フィルム厚さ 1.0 μm, Agilent Technologies)を用いて分離した。ヘリウムキャリアーガスを流速39 cm/秒にセットした。インジェクションポートの温度は280℃で、カラム温度は最初2分間80℃に保ち、次に15℃/分の割合で330℃に達するまで上昇させ、6分間保持した。
【0098】
スキャンモードでGC-MS測定を実施した。メタボライトのピークは、スペクトルライブラリー一致により同定し、内部標準を用いて半定量化した。1μlのサンプルをスプリットモード(スプリット比1:3)でGCMSに注入した。以下の条件下で質量スペクトルを得た。エレクトロンイオン化(イオン化電圧70 eV)、イオン源温度200℃、m/z 85-500の範囲でフルスキャンモード、スキャン速度0.3秒/スキャン。クロマトグラフィーピークの同定は、NISTライブラリーまたは島津 GC/MSデータベースを用いて実施し、さらに信頼のおける市販の標準品を用いて確認した。半定量分析については、各メタボライトピークの面積を計算し、内部標準ピークの面積で割り算した。LC分離は、Nexera UHPLC システム (島津製作所)でShim-pack GIST C18-AQ カラム (3 μm, 150 mm × 2.1 mm 内径, 島津ジーエルシー) を用いて実施した。移動相は0.1%ギ酸水溶液(A)および0.1%ギ酸のアセトニトリル溶液(B)から成っていた。勾配プログラムは以下の通りであった:0-3 分, 0% B;3-15 分, 直線勾配から60% B;15-17.5 分, 95% B;17.5-20 分, 直線勾配から0% B; 4分間保持; 流速 0.2 ml/分。カラムオーブン温度は40℃に維持した。LCシステムをトリプル四重極質量分析器LCMS-8060 (島津製作所)と連結した。 LCMS-8060は、エレクトロスプレーイオン化および多重反応モニタリングモードで操作した。全てのイオントランジションおよびコリジョンエネルギーは、各メタボライトの信頼できる標準品を用いて、実験的に最適化した。3μlのサンプルをLCMS系に注入した。品質管理(QC、プールされた血漿)サンプルを同一の調製プロトコールに付し、10個ごとおよび5個ごとのサンプルをそれぞれGCMS系およびLCMS系に注入した。各メタボライトのシグナルを、平滑化スプラインアルゴリズムを用いたQCに基づく補正法により標準化した(57-59)。測定した全てのメタボライトに関する情報(保持時間、m/zおよびイオントランジションを含む)を補足表1および2に要約した。
【0099】
フローサイトメトリー
血液からFicoll密度勾配遠心法によりPBMC を単離した。以下の抗体を用いてPMBCを直ちに染色した:抗-CD8a (RPA-T8), -CD8 (SK1), -CD4 (RPA-T4, SK3), -CD45RA (HI100), -CD45RO (UCHL1), -CCR7 (3D12), -PD-1 (EH12.2H7), -Tim3 (F38-2E2), -KLRG1 (13F12F2), -CD25 (BC96), -CXCR3 (G025H7), -CCR6 (G034E3), -T-bet (4B10), -EOMES (WD1928), -Ki-67 (SolA15), -CTLA-4 (BNI3), -p-mTOR (MRRBY), -p-Akt1 (Ser473) (SDRNR), -グランザイムB (GB11), -IFN-γ (4S.B3)および -FOXP3 (236A/E7)抗体。PGC-1αおよびPGC-1βの両方を認識する抗PGC-1αβ(ウサギポリクローナル、Abcum, ab72230)を用いてPGC-1発現を検出し、次にヤギ抗ウサギIgG (Santa Cruz Biotech, sc-3739)を用いて二次染色を行なった。死細胞判別は、7-AAD染色溶液(TONBO, 13-6993)を用いて実施した。細胞内染色は、FOXP3 Fixation Kit (eBioscience)を用いて実施した。細胞内リン酸化タンパク質の染色に際しては、染色前に0.5% Triton-Xを用いて細胞を透過性とし、1.5%パラホルムアルデヒドで固定した。サンプルは、BD Canto IIフローサイトメーター(BD Bioscience)を用いて測定し、データは、BD FACS Diva Software version 6.1.3を用いて取得した。更にFlowJo 10.4 (Tree Star Inc.)を用いて分析した。データ解析に際して、生細胞(7AAD陰性)および単細胞にゲートをかけた。ミトコンドリア体積、膜電位、ミトコンドリアスーパーオキシドおよび細胞ROSの測定は、MitoTracker Green, MitoTracker Deep Red, MitoSOX Red, および CellROX Green試薬をそれぞれ用いて実施した(すべての試薬はLife Technologies製)。これらの色素を細胞に添加し、5% CO2加湿インキュベーター中で37℃で30分間インキュベートし、次いで表面染色を行った。ニボルマブ投与後のサンプルに対しては、抗PD-1(EH12.2H7, APC-結合)抗体を細胞に加え、5% CO2加湿インキュベーター中で37℃で60分間インキュベートし、次いで他の表面染色を行った。
【0100】
統計分析
データは、中央値および四分位範囲で示す。2群間の比較は、ウィルコクソン(Wilcoxon)順位和検定を実施した。多重間の比較は、クラスカル・ウォリス (Kruskal-Wallis)の検定、引き続き多重比較のためのダン(Dunn)の多重比較検定を実施した。AICを用いたステップワイズ回帰法により、最良のマーカー組合せを選択した。次に、推定されるバイオマーカーの組合せを用いてLDAを実施して、信頼性を予測した。5分割交差検証を用いて予測モデルを評価した。カプラン・マイヤー(Kaplan-Meier)の検定を用いて、患者の異なる群の生存率を計算し、生存曲線としてグラフで提示した。2つの群の間の生存曲線の比較を、ゲーハン-ブレスロー-ウイルコクソン(Gehan-Breslow-Wilcoxon)検定により解析した。細胞マーカーと代謝マーカーの間の関連を計算するため、スピアマン(Spearman)の相関係数を用いた。データマネジメントおよび統計分析には、JMP software (Version 12.0.0; SAS Institute Inc.; Cary, NC, USA), R software (Version 3.4.4), DataRobot (Version 4.3.0) および Prism software (Version 6.0h; GraphPad Software)を使用した。すべての検定について、有意レベルは0.05に設定した。
【0101】
【0102】
【0103】
【0104】
【0105】
【0106】
引用文献(References)
1. Tang J, et al. (2018) Trial watch: The clinical trial landscape for PD1/PDL1 immune checkpoint inhibitors. Nature reviews. Drug discovery 17(12):854-855.
2. Schmidt EV (2018) Developing combination strategies using PD-1 checkpoint inhibitors to treat cancer. Seminars in immunopathology.
3. Chowdhury PS, Chamoto K, & Honjo T (2018) Combination therapy strategies for improving PD-1 blockade efficacy: a new era in cancer immunotherapy. J Intern Med 283(2):110-120.
4. Pallister T, et al. (2017) Hippurate as a metabolomic marker of gut microbiome diversity: Modulation by diet and relationship to metabolic syndrome. Sci Rep 7(1):13670.
5. Li M, et al. (2008) Symbiotic gut microbes modulate human metabolic phenotypes. Proceedings of the National Academy of Sciences of the United States of America 105(6):2117-2122.
6. Schleif R (2010) AraC protein, regulation of the l-arabinose operon in Escherichia coli, and the light switch mechanism of AraC action. FEMS microbiology reviews 34(5):779-796.
7. Jones LL, McDonald DA, & Borum PR (2010) Acylcarnitines: role in brain. Progress in lipid research 49(1):61-75.
8. Schooneman MG, Vaz FM, Houten SM, & Soeters MR (2013) Acylcarnitines: reflecting or inflicting insulin resistance? Diabetes 62(1):1-8.
9. Rinaldo P, Cowan TM, & Matern D (2008) Acylcarnitine profile analysis. Genetics in medicine : official journal of the American College of Medical Genetics 10(2):151-156.
10. Scharping NE, et al. (2016) The Tumor Microenvironment Represses T Cell Mitochondrial Biogenesis to Drive Intratumoral T Cell Metabolic Insufficiency and Dysfunction. Immunity 45(3):701-703.
11. Ventura-Clapier R, Garnier A, & Veksler V (2008) Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha. Cardiovascular research 79(2):208-217.
12. Dunn GP, Old LJ, & Schreiber RD (2004) The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21(2):137-148.
13. Leach DR, Krummel MF, & Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271(5256):1734-1736.
14. Iwai Y, et al. (2002) Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proceedings of the National Academy of Sciences of the United States of America 99(19):12293-12297.
15. Iwai Y, Hamanishi J, Chamoto K, & Honjo T (2017) Cancer immunotherapies targeting the PD-1 signaling pathway. Journal of biomedical science 24(1):26.
16. Hodi FS, et al. (2010) Improved survival with ipilimumab in patients with metastatic melanoma. The New England journal of medicine 363(8):711-723.
17. Topalian SL, et al. (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. The New England journal of medicine 366(26):2443-2454.
18. Topalian SL, Drake CG, & Pardoll DM (2015) Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer cell 27(4):450-461.
19. Zou W, Wolchok JD, & Chen L (2016) PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Science translational medicine 8(328):328rv324.
20. Le DT, et al. (2015) PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. The New England journal of medicine 372(26):2509-2520.
21. Le DT, et al. (2017) Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357(6349):409-413.
22. Mitsuhashi A & Okuma Y (2018) Perspective on immune oncology with liquid biopsy, peripheral blood mononuclear cells, and microbiome with non-invasive biomarkers in cancer patients. Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico 20(8):966-974.
23. Fagarasan S, et al. (2002) Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science 298(5597):1424-1427.
24. Kawamoto S, et al. (2012) The inhibitory receptor PD-1 regulates IgA selection and bacterial composition in the gut. Science 336(6080):485-489.
25. Gopalakrishnan V, et al. (2018) Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359(6371):97-103.
26. Routy B, et al. (2018) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359(6371):91-97.
27. Zitvogel L, Ayyoub M, Routy B, & Kroemer G (2016) Microbiome and Anticancer Immunosurveillance. Cell 165(2):276-287.
28. Johnson CH, Spilker ME, Goetz L, Peterson SN, & Siuzdak G (2016) Metabolite and Microbiome Interplay in Cancer Immunotherapy. Cancer research 76(21):6146-6152.
29. Pearce EL, et al. (2009) Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460(7251):103-107.
30. Geltink RIK, Kyle RL, & Pearce EL (2018) Unraveling the Complex Interplay Between T Cell Metabolism and Function. Annu Rev Immunol 36:461-488.
31. Chamoto K, et al. (2017) Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity. Proceedings of the National Academy of Sciences of the United States of America 114(5):E761-E770.
32. Chowdhury PS, Chamoto K, Kumar A, & Honjo T (2018) PPAR-induced fatty acid oxidation in T cells increases the number of tumor-reactive CD8+ T cells and facilitates anti-PD-1 therapy. Cancer immunology research.
33. Murphy MP & Siegel RM (2013) Mitochondrial ROS fire up T cell activation. Immunity 38(2):201-202.
34. Brahmer J, et al. (2015) Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer. The New England journal of medicine 373(2):123-135.
35. Borghaei H, et al. (2015) Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. The New England journal of medicine 373(17):1627-1639.
36. Wikoff WR, et al. (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proceedings of the National Academy of Sciences of the United States of America 106(10):3698-3703.
37. Franchina DG, He F, & Brenner D (2018) Survival of the fittest: Cancer challenges T cell metabolism. Cancer letters 412:216-223.
38. Miyajima M, et al. (2017) Metabolic shift induced by systemic activation of T cells in PD-1-deficient mice perturbs brain monoamines and emotional behavior. Nature immunology 18(12):1342-1352.
39. Fernandez-Marcos PJ & Auwerx J (2011) Regulation of PGC-1alpha, a nodal regulator of mitochondrial biogenesis. The American journal of clinical nutrition 93(4):884S-890.
40. Takeuchi Y, et al. (2018) Clinical response to PD-1 blockade correlates with a sub-fraction of peripheral central memory CD4+ T cells in patients with malignant melanoma. Int Immunol 30(1):13-22.
41. Manjarrez-Orduno N, et al. (2018) Circulating T Cell Subpopulations Correlate With Immune Responses at the Tumor Site and Clinical Response to PD1 Inhibition in Non-Small Cell Lung Cancer. Front Immunol 9:1613.
42. Vanderwalde A, Spetzler D, Xiao N, Gatalica Z, & Marshall J (2018) Microsatellite instability status determined by next-generation sequencing and compared with PD-L1 and tumor mutational burden in 11,348 patients. Cancer Med 7(3):746-756.
43. Galluzzi L, Chan TA, Kroemer G, Wolchok JD, & Lopez-Soto A (2018) The hallmarks of successful anticancer immunotherapy. Science translational medicine 10(459).
44. Calvani R, et al. (2010) Gut microbiome-derived metabolites characterize a peculiar obese urinary metabotype. International journal of obesity 34(6):1095-1098.
45. Clayton TA, Baker D, Lindon JC, Everett JR, & Nicholson JK (2009) Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proceedings of the National Academy of Sciences of the United States of America 106(34):14728-14733.
46. Koves TR, et al. (2008) Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell metabolism 7(1):45-56.
47. Gatza E, et al. (2011) Manipulating the bioenergetics of alloreactive T cells causes their selective apoptosis and arrests graft-versus-host disease. Science translational medicine 3(67):67ra68.
48. Mihalik SJ, et al. (2010) Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity. Obesity 18(9):1695-1700.
49. Sun L, et al. (2016) Early Prediction of Developing Type 2 Diabetes by Plasma Acylcarnitines: A Population-Based Study. Diabetes care 39(9):1563-1570.
50. Ruiz M, et al. (2017) Circulating acylcarnitine profile in human heart failure: a surrogate of fatty acid metabolic dysregulation in mitochondria and beyond. American journal of physiology. Heart and circulatory physiology 313(4):H768-H781.
51. Sena LA, et al. (2013) Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38(2):225-236.
52. Ballatori N, et al. (2009) Glutathione dysregulation and the etiology and progression of human diseases. Biological chemistry 390(3):191-214.
53. Franco R & Cidlowski JA (2012) Glutathione efflux and cell death. Antioxidants & redox signaling 17(12):1694-1713.
54. Huang AC, et al. (2017) T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 545(7652):60-65.
55. Kamphorst AO, et al. (2017) Proliferation of PD-1+ CD8 T cells in peripheral blood after PD-1-targeted therapy in lung cancer patients. Proceedings of the National Academy of Sciences of the United States of America 114(19):4993-4998.
56. Thommen DS, et al. (2018) A transcriptionally and functionally distinct PD-1(+) CD8(+) T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat Med 24(7):994-1004.
57. Dunn WB, et al. (2011) Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc 6(7):1060-1083.
58. Kirwan JA, Broadhurst DI, Davidson RL, & Viant MR (2013) Characterising and correcting batch variation in an automated direct infusion mass spectrometry (DIMS) metabolomics workflow. Anal Bioanal Chem 405(15):5147-5157.
59. Rusilowicz M, Dickinson M, Charlton A, O'Keefe S, & Wilson J (2016) A batch correction method for liquid chromatography-mass spectrometry data that does not depend on quality control samples. Metabolomics 12:56.
【0107】
〔実施例2〕PD-1
highの定義
30人の年齢が合致した健常者のCD8
+T 細胞にゲートをかけPD-1染色データーをオバーラップした(
図11A上)。X軸はPD-1発現レベル、Y軸は相対的な細胞数である。縦ラインはPD-1発現平均の50
th, 90
th, 97
th と 99
th percentileを示す。テーブル(
図11A下)にはそれぞれのpercentileにおける患者(実施例1の患者)のPD-1
high CD8
+T細胞の% とCD8
+T 細胞の疲弊マーカーの遺伝子発現(CTLA-4, Tim-3 and Lag-3) の相関係数(r)の値を、右のパネル(
図11B)には、それらの相関図を示す。97
th percentileにてどの疲弊マーカーの遺伝子発現とも相関が高かったので97
th percentileをPD-1
highのcut off値に決めた。
【0108】
〔実施例3〕
肺がん細胞にEGFR変異が入っている場合、PD-1抗体治療が効きにくいという既知の事実がある。我々のCellular marker combination II(細胞マーカー組合せII)がEGFR変異有りの不応答性も見分けることができるのかLDA解析を行った(実施例1の患者の中でEGFR変異が入っている8名)。その結果、error rate 0% であり、EGFR変異による不応答性も見分けることができることが明らかになった(
図12)。
【0109】
〔実施例4〕
Cellular marker combination II(細胞マーカー組合せII)が他のがん種においても有効性を判断できるか検討するため、11人の頭頸部腫瘍患者(京都大学病院で肺がんと同様に2次治療以降で、ニボルマブを投与した(する前の)患者)検体においても同様の染色を行い、LDA解析を行った。その結果、error rate が9.1 %の割合で有効性を判定できた(
図13)。
本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。
本発明のバイオマーカー及び/又は細胞マーカーを用いることにより、PD-1シグナル阻害剤を含む薬剤による疾患治療の前や早い段階で治療の有効性を予測及び/又は判定することができるので、治療の効率を上げ、治療費を削減することができる。