IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 浜松ホトニクス株式会社の特許一覧

特開2024-45392ダマシン配線構造及びアクチュエータ装置
<>
  • 特開-ダマシン配線構造及びアクチュエータ装置 図1
  • 特開-ダマシン配線構造及びアクチュエータ装置 図2
  • 特開-ダマシン配線構造及びアクチュエータ装置 図3
  • 特開-ダマシン配線構造及びアクチュエータ装置 図4
  • 特開-ダマシン配線構造及びアクチュエータ装置 図5
  • 特開-ダマシン配線構造及びアクチュエータ装置 図6
  • 特開-ダマシン配線構造及びアクチュエータ装置 図7
  • 特開-ダマシン配線構造及びアクチュエータ装置 図8
  • 特開-ダマシン配線構造及びアクチュエータ装置 図9
  • 特開-ダマシン配線構造及びアクチュエータ装置 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024045392
(43)【公開日】2024-04-02
(54)【発明の名称】ダマシン配線構造及びアクチュエータ装置
(51)【国際特許分類】
   G02B 26/10 20060101AFI20240326BHJP
   G02B 26/08 20060101ALI20240326BHJP
   B81B 3/00 20060101ALI20240326BHJP
   B06B 1/04 20060101ALI20240326BHJP
【FI】
G02B26/10 104Z
G02B26/08 E
B81B3/00
B06B1/04
【審査請求】有
【請求項の数】17
【出願形態】OL
(21)【出願番号】P 2024014425
(22)【出願日】2024-02-01
(62)【分割の表示】P 2020554005の分割
【原出願日】2019-10-30
(31)【優先権主張番号】P 2018205351
(32)【優先日】2018-10-31
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000236436
【氏名又は名称】浜松ホトニクス株式会社
(74)【代理人】
【識別番号】100088155
【弁理士】
【氏名又は名称】長谷川 芳樹
(74)【代理人】
【識別番号】100113435
【弁理士】
【氏名又は名称】黒木 義樹
(74)【代理人】
【識別番号】100140442
【弁理士】
【氏名又は名称】柴山 健一
(74)【代理人】
【識別番号】100177910
【弁理士】
【氏名又は名称】木津 正晴
(72)【発明者】
【氏名】鈴木 大幾
(72)【発明者】
【氏名】井上 直
(72)【発明者】
【氏名】柴山 勝己
(57)【要約】
【課題】信頼性の高いダマシン配線構造及びアクチュエータ装置を提供する。
【解決手段】ダマシン配線構造は、溝部が設けられた主面を有するベースと、溝部の内面上に設けられた第1部分、及び、第1部分と一体的に形成され、主面上に設けられた第2部分を有する絶縁層と、絶縁層の第1部分上に設けられた金属層と、溝部内に埋め込まれ、金属層に接合された配線部と、絶縁層の第2部分、金属層の端部、及び配線部を覆うように設けられたキャップ層と、を備える。絶縁層における第1部分と第2部分との境界部分のベースとは反対側の表面は、配線部の延在方向から見た場合に、主面に垂直な方向に対して傾斜した傾斜面を含んでいる。
【選択図】図4

【特許請求の範囲】
【請求項1】
溝部が設けられた主面を有するベースと、
前記溝部の内面上に設けられた第1部分、及び、前記第1部分と一体的に形成され、前記主面上に設けられた第2部分を有する絶縁層と、
前記絶縁層の前記第1部分上に設けられた金属層と、
前記溝部内に埋め込まれ、前記金属層に接合された配線部と、
前記絶縁層の前記第2部分、前記金属層の端部、及び前記配線部を覆うように設けられたキャップ層と、を備え、
前記絶縁層における前記第1部分と前記第2部分との境界部分の前記ベースとは反対側の表面は、前記配線部の延在方向から見た場合に、前記主面に垂直な方向に対して傾斜した傾斜面を含んでいる、ダマシン配線構造。
【請求項2】
前記キャップ層の厚さは、前記絶縁層の厚さよりも厚い、請求項1に記載のダマシン配線構造。
【請求項3】
前記絶縁層は、酸化膜からなる第1層と、窒化膜からなり、前記第1層上に設けられた第2層と、を有している、請求項1又は2に記載のダマシン配線構造。
【請求項4】
前記ベースにおける前記主面と前記溝部との境界部分には、前記延在方向から見た場合に、前記主面に垂直な方向に対して傾斜した境界面が設けられている、請求項1~3のいずれか一項に記載のダマシン配線構造。
【請求項5】
前記傾斜面は、凸状に湾曲している、請求項1~4のいずれか一項に記載のダマシン配線構造。
【請求項6】
前記金属層の前記端部の前記主面に平行な方向における厚さは、前記金属層における前記端部以外の部分の厚さよりも厚い、請求項1~5のいずれか一項に記載のダマシン配線構造。
【請求項7】
前記金属層の前記端部の前記主面に平行な方向における厚さは、前記端部の先端に近づくにつれて漸増している、請求項1~6のいずれか一項に記載のダマシン配線構造。
【請求項8】
前記配線部における前記キャップ層と接触する第1接触面は、前記絶縁層における前記キャップ層と接触する第2接触面に対して、前記溝部の底部側に位置している、請求項1~7のいずれか一項に記載のダマシン配線構造。
【請求項9】
前記キャップ層の厚さは、前記主面に垂直な方向における前記第1接触面と前記第2接触面との間の距離よりも大きい、請求項8に記載のダマシン配線構造。
【請求項10】
前記キャップ層の厚さは、前記主面に垂直な方向における前記第1接触面と前記第2接触面との間の距離よりも小さい、請求項8に記載のダマシン配線構造。
【請求項11】
前記溝部は、前記主面に垂直な方向から見た場合に、渦巻き状に延在している、請求項1~10のいずれか一項に記載のダマシン配線構造。
【請求項12】
前記溝部における互いに隣り合う部分の間の間隔は、前記溝部の幅よりも小さい、請求項11に記載のダマシン配線構造。
【請求項13】
前記溝部の幅は、前記溝部の深さよりも小さい、請求項1~10のいずれか一項に記載のダマシン配線構造。
【請求項14】
前記ベースは、前記主面とは反対側の反対面を有し、
前記主面に垂直な方向における前記溝部の底部と前記反対面との間の距離は、前記溝部の深さよりも大きい、請求項1~13のいずれか一項に記載のダマシン配線構造。
【請求項15】
前記金属層の前記端部は、前記絶縁層の前記傾斜面に沿う第1面と、前記第1面とは反対側の第2面と、を有し、
前記主面に垂直な方向に対する前記第2面の傾斜の度合いは、前記主面に垂直な方向に対する前記第1面の傾斜の度合いよりも緩やかである、請求項1~14のいずれか一項に記載のダマシン配線構造。
【請求項16】
前記主面に垂直な方向における前記金属層の先端部の厚さは、前記絶縁層の前記第2部分の厚さよりも小さい、請求項1~15のいずれか一項に記載のダマシン配線構造。
【請求項17】
請求項1~16のいずれか一項に記載のダマシン配線構造を備えるアクチュエータ装置であって、
支持部と、
前記支持部において揺動可能となるように支持された可動部と、
前記ダマシン配線構造を有し、前記支持部及び前記可動部の少なくとも一方に設けられたコイルと、
前記コイルに作用する磁界を発生させる磁界発生部と、を備える、アクチュエータ装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示の一側面は、ダマシン配線構造、アクチュエータ装置、及びダマシン配線構造の製造方法に関する。
【背景技術】
【0002】
従来、溝部内に金属材料を埋め込むことにより配線部が形成されたダマシン配線構造が知られている(例えば特許文献1参照)。このようなダマシン配線構造では、溝部の内面上に金属層が設けられており、配線部は当該金属層に接合している。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平6-84896号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
上述したようなダマシン配線構造では、配線部及び金属層に応力が作用する場合がある。例えば、磁界との相互作用によってコイルに作用するローレンツ力を利用したアクチュエータ装置のコイルにダマシン配線構造を適用した場合、配線部及び金属層には配線部の延在方向に垂直な方向の応力が作用する。一方、上述したようなダマシン配線構造では、配線部の表面及び金属層の端部を覆うようにキャップ層が設けられる場合がある。そのようなダマシン配線構造において配線部及び金属層に応力が作用した場合、キャップ層のうち配線部及び金属層と接触する部分に応力が集中し、当該部分に剥離や損傷が生じるおそれがある。
【0005】
そこで、本開示の一側面は、信頼性の高いダマシン配線構造及びアクチュエータ装置、並びにそのようなダマシン配線構造を得ることができるダマシン配線構造の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0006】
本開示の一側面に係るダマシン配線構造は、溝部が設けられた主面を有するベースと、溝部の内面上に設けられた第1部分、及び、第1部分と一体的に形成され、主面上に設けられた第2部分を有する絶縁層と、絶縁層の第1部分上に設けられた金属層と、溝部内に埋め込まれ、金属層に接合された配線部と、絶縁層の第2部分、金属層の端部、及び配線部を覆うように設けられたキャップ層と、を備え、絶縁層における第1部分と第2部分との境界部分のベースとは反対側の表面は、配線部の延在方向から見た場合に、主面に垂直な方向に対して傾斜した傾斜面を含んでおり、金属層の端部は、キャップ層と傾斜面との間に入り込んでおり、端部においては、キャップ層に沿った第1表面と傾斜面に沿った第2表面とが鋭角を成している。
【0007】
このダマシン配線構造では、絶縁層が、溝部の内面上に設けられた第1部分、及び、第1部分と一体的に形成され、主面上に設けられた第2部分を有しており、キャップ層が、絶縁層の第2部分、金属層の端部、及び配線部を覆うように設けられている。これにより、例えば絶縁層が第1部分のみを有している場合と比べて、応力が集中し易い箇所を少なくすることができる。更に、絶縁層における第1部分と第2部分との境界部分のベースとは反対側の表面が傾斜面を含んでおり、金属層の端部が、キャップ層と当該傾斜面との間に入り込んでいる。そして、当該端部においては、キャップ層に沿った第1表面と傾斜面に沿った第2表面とが鋭角を成している。これにより、キャップ層に応力が集中的に作用するのを抑制することができる。以上により、このダマシン配線構造では、信頼性が高められている。
【0008】
キャップ層の厚さは、絶縁層の厚さよりも厚くてもよい。この場合、キャップ層の強度を高めることができ、信頼性を一層高めることができる。
【0009】
キャップ層のうち金属層の端部の第1表面に接触する部分と、絶縁層のうち金属層の端部の第2表面に接触する部分とは、互いに同一の材料によって構成されていてもよい。この場合、キャップ層と金属層の端部との接触部分の近傍においてキャップ層と絶縁層との間の接合強度を高めることができ、信頼性をより一層高めることができる。
【0010】
絶縁層は、酸化膜からなる第1層と、窒化膜からなり、第1層上に設けられた第2層と、を有していてもよい。この場合、酸化膜からなる第1層に傾斜形状を容易に形成し得るため、傾斜面の形成を容易化することができる。
【0011】
ベースにおける主面と溝部との境界部分には、延在方向から見た場合に、主面に垂直な方向に対して傾斜した境界面が設けられていてもよい。この場合、傾斜面の形成を一層容易化することができる。
【0012】
傾斜面は、凸状に湾曲していてもよい。この場合、キャップ層に応力が集中的に作用するのをより確実に抑制することができる。
【0013】
金属層の端部における第2表面とは反対側の第3表面は、延在方向から見た場合に、主面に垂直な方向に対して傾斜しており、配線部の一部は、キャップ層と第3表面との間に入り込んでいてもよい。この場合、配線部により金属層の端部を抑えることができ、金属層からキャップ層に作用する応力を低減することができる。更に、配線部の当該一部の主面に垂直な方向における厚さが薄くなるため、配線部からキャップ層に作用する応力を低減することができる。
【0014】
金属層の端部の主面に平行な方向における厚さは、金属層における端部以外の部分の厚さよりも厚くてもよい。この場合、金属層の端部とキャップ層との接触面積を大きくすることができ、金属層からキャップ層に作用する応力をより好適に分散させることができる。
【0015】
金属層の端部の主面に平行な方向における厚さは、端部の先端に近づくにつれて漸増していてもよい。この場合、金属層の端部とキャップ層との接触面積を一層大きくすることができ、金属層からキャップ層に作用する応力をより一層好適に分散させることができる。
【0016】
配線部におけるキャップ層と接触する第1接触面は、絶縁層におけるキャップ層と接触する第2接触面に対して、溝部の底部側に位置していてもよい。この場合、応力が集中し易い箇所を一層少なくすることができる。更に、金属層の端部とキャップ層との接触面積をより一層大きくすることができ、金属層からキャップ層に作用する応力をより一層好適に分散させることができる。
【0017】
キャップ層の厚さは、主面に垂直な方向における第1接触面と第2接触面との間の距離よりも大きくてもよい。この場合、キャップ層の強度を一層高めることができる。
【0018】
キャップ層の厚さは、主面に垂直な方向における第1接触面と第2接触面との間の距離よりも小さくてもよい。この場合、配線部からキャップ層に作用する応力を一層低減することができる。
【0019】
溝部は、主面に垂直な方向から見た場合に、渦巻き状に延在していてもよい。このような場合でも、高い信頼性を得ることができる。
【0020】
溝部における互いに隣り合う部分の間の間隔は、溝部の幅よりも小さくてもよい。この場合、配線のピッチ(間隔)を狭くすることができ、省スペース化を図ることができる。
【0021】
溝部の幅は、溝部の深さよりも小さくてもよい。この場合、省スペース化、及び配線の低抵抗化を図ることができる。
【0022】
ベースは、主面とは反対側の反対面を有し、主面に垂直な方向における溝部の底部と反対面との間の距離は、溝部の深さよりも大きくてもよい。この場合、ベースの強度を高めることができ、信頼性をより一層高めることができる。
【0023】
本開示の一側面に係るアクチュエータ装置は、上記ダマシン配線構造を備えるアクチュエータ装置であって、支持部と、支持部において揺動可能となるように支持された可動部と、ダマシン配線構造を有し、支持部及び可動部の少なくとも一方に設けられたコイルと、コイルに作用する磁界を発生させる磁界発生部と、を備える。このアクチュエータ装置では、配線部の延在方向に垂直な方向の応力が配線部及び金属層に作用するが、上述した理由により、信頼性を高めることができる。
【0024】
本開示の一側面に係るダマシン配線構造の製造方法は、溝部が設けられた主面を有するベース上に、溝部の内面上に設けられた第1部分、及び、第1部分と一体的に形成され、主面上に設けられた第2部分を有する絶縁層を形成する第1ステップと、第1ステップの後に、絶縁層の第1部分及び第2部分上に金属層を形成する第2ステップと、第2ステップの後に、溝部内に埋め込まれると共に金属層に接合されるように、金属層上に配線部を形成する第3ステップと、第3ステップの後に、絶縁層の第2部分が露出するように、化学機械研磨により、第2部分上の金属層及び配線部を除去して平坦化する第4ステップと、第4ステップの後に、絶縁層の第2部分、金属層の端部、及び配線部を覆うようにキャップ層を形成する第5ステップと、を備え、第1ステップでは、絶縁層における第1部分と第2部分との境界部分のベースとは反対側の表面が、配線部の延在方向から見た場合に、主面に垂直な方向に対して傾斜した傾斜面を含む絶縁層を形成する。このダマシン配線構造の製造方法によれば、上述したような信頼性の高いダマシン配線構造を得ることができる。
【0025】
第2ステップでは、スパッタリングにより金属層を形成してもよい。この場合、主面に平行な方向における金属層の端部の厚さを端部の先端に向かうにつれて漸増させることができ、金属層の端部とキャップ層との接触面積を大きくすることができる。
【発明の効果】
【0026】
本開示の一側面によれば、信頼性の高いダマシン配線構造及びアクチュエータ装置、並びにそのようなダマシン配線構造を得ることができるダマシン配線構造の製造方法を提供できる。
【図面の簡単な説明】
【0027】
図1】実施形態に係るアクチュエータ装置の平面図である。
図2図1のII-II線断面図である。
図3図2の拡大図である。
図4図3の拡大図である。
図5】(a)及び(b)は、ダマシン配線構造の製造方法を説明するための断面図である。
図6】(a)及び(b)は、ダマシン配線構造の製造方法を説明するための断面図である。
図7】(a)及び(b)は、ダマシン配線構造の製造方法を説明するための断面図である。
図8】第1変形例に係るダマシン配線構造の断面図である。
図9】第2変形例に係るダマシン配線構造の断面図である。
図10】(a)は、第3変形例に係るダマシン配線構造の断面図であり、(b)は、第4変形例に係るダマシン配線構造の断面図である。
【発明を実施するための形態】
【0028】
以下、本開示の一実施形態について、図面を参照しつつ詳細に説明する。なお、以下の説明において、同一又は相当要素には同一符号を用い、重複する説明を省略する。
[ミラー装置の構成]
【0029】
図1に示されるように、ミラー装置(アクチュエータ装置)1は、支持部2と、第1可動部3と、第2可動部(支持部)4と、一対の第1連結部5,6と、一対の第2連結部7,8と、磁界発生部9と、を備えている。支持部2、第1可動部3、第2可動部4、第1連結部5,6及び第2連結部7,8は、例えば、SOI(Silicon on Insulator)基板等の半導体基板によって一体的に形成されている。つまり、ミラー装置1は、MEMS(Micro Electro Mechanical Systems)デバイスとして構成されている。
【0030】
ミラー装置1では、互いに直交する第1軸線X1及び第2軸線X2の周りに、ミラー面(光学面)10を有する第1可動部3が揺動させられる。ミラー装置1は、例えば、光通信用光スイッチ、光スキャナ等に用いられ得る。磁界発生部9は、例えば、ハルバッハ配列がとられた永久磁石等によって構成されている。磁界発生部9は、後述するコイル21,22に作用する磁界を発生させる。
【0031】
支持部2は、例えば、平面視において四角形状の外形を有し、枠状に形成されている。支持部2は、磁界発生部9に対してミラー面10に垂直な方向における一方側に配置されている。第1可動部3は、磁界発生部9から離間した状態で、支持部2の内側に配置されている。なお、「平面視」とは、ミラー面10に垂直な方向から見た場合を意味し、換言すれば、後述する基板30の主面31に垂直な方向から見た場合を意味する。
【0032】
第1可動部3は、配置部3aと、配置部3aを囲む枠部3bと、配置部3aと枠部3bとを互いに連結する複数(この例では4つ)の連結部3cと、を有している。配置部3aは、例えば、平面視において円形状に形成されている。配置部3aにおける磁界発生部9とは反対側の表面には、例えば、円形状のミラー面10が設けられている。ミラー面10は、例えば、アルミニウム、アルミニウム系合金、銀、銀系合金、金、誘電体多層膜等からなる反射膜によって構成されている。
【0033】
枠部3bは、例えば、平面視において四角形状の外形を有し、枠状に形成されている。複数の連結部3cは、第1軸線X1上における配置部3aの両側、及び第2軸線X2上における配置部3aの両側に配置され、第1軸線X1上又は第2軸線X2上において配置部3aと枠部3bとを互いに連結している。
【0034】
第2可動部4は、例えば、平面視において四角形状の外形を有し、枠状に形成されている。第2可動部4は、磁界発生部9から離間した状態で、第1可動部3を囲むように支持部2の内側に配置されている。
【0035】
第1連結部5,6は、第1軸線X1上における第1可動部3の両側に配置されている。各第1連結部5,6は、第1可動部3が第1軸線X1周りに揺動可能となるように、第1軸線X1上において第1可動部3と第2可動部4とを互いに連結している。各第1連結部5,6は、例えば、第1軸線X1に沿って直線状に延在している。
【0036】
第2連結部7,8は、第1軸線X1上における第2可動部4の両側に配置されている。各第2連結部7,8は、第2可動部4が第2軸線X2周りに揺動可能となるように、第2軸線X2上において第2可動部4と支持部2とを互いに連結している。各第2連結部7,8は、例えば、第2軸線X2に沿って直線状に延在している。
【0037】
ミラー装置1は、コイル21,22と、複数の配線12,13,14,15と、複数の電極パッド25,26,27,28と、を更に備えている。コイル21は、例えば、第1可動部3の枠部3bに埋め込まれており、平面視において渦巻き状に延在している。コイル22は、例えば、第2可動部4に埋め込まれており、平面視において渦巻き状に延在している。各コイル21,22は、例えば銅等の金属材料によって構成されている。
【0038】
複数の電極パッド25,26,27,28は、支持部2に設けられている。配線12は、コイル21の一端と電極パッド25とを電気的に接続している。配線12は、コイル21の一端から第1連結部5、第2可動部4及び第2連結部7を介して電極パッド25に延在している。配線13は、コイル21の他端と電極パッド26とを電気的に接続している。配線13は、コイル21の他端から第1連結部6、第2可動部4及び第2連結部8を介して電極パッド26に延在している。
【0039】
配線14は、コイル22の一端と電極パッド27とを電気的に接続している。配線14は、コイル22の一端から第2連結部8を介して電極パッド27に延在している。配線15は、コイル22の他端と電極パッド28とを電気的に接続している。配線15は、コイル22の他端から第2連結部7を介して電極パッド28に延在している。
【0040】
以上のように構成されたミラー装置1では、電極パッド27,28及び配線14,15を介してコイル22にリニア動作用の駆動信号が入力されると、磁界発生部9が発生する磁界との相互作用によってコイル22にローレンツ力が作用する。当該ローレンツ力と第2連結部7,8の弾性力とのつり合いを利用することで、第2軸線X2周りにミラー面10(第1可動部3)を第2可動部4と共にリニア動作させることができる。
【0041】
一方、電極パッド25,26及び配線12,13を介してコイル21に共振動作用の駆動信号が入力されると、磁界発生部9が発生する磁界との相互作用によってコイル21にローレンツ力が作用する。当該ローレンツ力に加え、共振周波数での第1可動部3の共振を利用することで、第1軸線X1周りにミラー面10(第1可動部3)を共振動作させることができる。
[ダマシン配線構造]
【0042】
図2図3及び図4を参照しつつ、コイル21,22が有するダマシン配線構造100について説明する。コイル21,22の構成は互いに同一であるので、以下ではコイル22について説明し、コイル21についての説明を省略する。
【0043】
上述したように、コイル22は、第2可動部4に設けられている。第2可動部4は、例えば、基板(ベース)30の第1シリコン層81によって構成されている。基板30は、例えば、第1シリコン層81及び第2シリコン層82と、第1シリコン層81及び第2シリコン層82の間に配置された絶縁層83と、を有している(図5図7)。支持部2は、第1シリコン層81、第2シリコン層82及び絶縁層83によって構成されており、第1可動部3、第2可動部4、第1連結部5,6及び第2連結部7,8は、第1シリコン層81によって構成されている。基板30は、主面31を有している。この例では、主面31は、第1シリコン層81における絶縁層83とは反対側の表面である。
【0044】
主面31には、溝部33が設けられている。溝部33は、コイル21に対応した形状を有しており、この例では、平面視において渦巻き状に延在している。溝部33の延在方向に垂直な断面において、溝部33は、例えば矩形状を呈している。この例では、溝部33の内面34は、側面34a及び底面(底部)34bを有している。なお、図2図4では一の断面のみが示されているが、例えば、ダマシン配線構造100は溝部33の延在方向に関して一様に構成されており、溝部33の延在方向に垂直ないずれの断面においても同様に構成されている。ただし、ダマシン配線構造100は必ずしも溝部33の延在方向に関して一様に構成されていなくてもよい。例えば、ダマシン配線構造100は、溝部33の延在方向の一部においては本実施形態の形状を有し、溝部33の延在方向の他の一部においては後述する変形例の形状を有していてもよい。
【0045】
ダマシン配線構造100は、ベースとしての基板30に加えて、絶縁層40と、金属層50と、配線部60と、キャップ層70と、を備えている。絶縁層40は、主面31及び溝部33の内面34上にわたって設けられている。より具体的には、絶縁層40は、内面34上に設けられた第1部分41と、第1部分41と一体的に形成され、主面31上に設けられた第2部分42と、を有している。絶縁層40における第1部分41と第2部分42との境界部分43は、基板30における主面31と溝部33との境界部分上に位置している。
【0046】
絶縁層40は、第1層44及び第2層45によって構成されている。第1層44は、酸化膜からなり、主面31及び溝部33の内面34上に設けられている。第1層44を構成する酸化膜は、例えば、シリコンを熱酸化することにより形成されたシリコン酸化膜(SiO)である。第2層45は、窒化膜からなり、第1層44上に設けられている。第2層45を構成する窒化膜は、例えば、シリコン窒化膜(SiN)等である。第1部分41及び境界部分43は、第1層44及び第2層45によって構成されており、第2部分42は、第1層44によって構成されている。
【0047】
金属層50は、絶縁層40の第1部分41上にわたって設けられている。すなわち、金属層50は、第1部分41を介して溝部33の内面34上に設けられている。金属層50は、例えば、チタン(Ti)等の金属材料によって構成されている。金属層50は、例えば、配線部60を半導体基板上に安定的に形成するためのシード層、及び、配線部60に含まれる金属元素の第1シリコン層81への拡散を防止するためのバリア層として機能し得る。
【0048】
配線部60は、溝部33内に埋め込まれ、金属層50に接合されている。すなわち、配線部60は、絶縁層40の第1部分41及び金属層50を介して溝部33内に設けられている。配線部60は、例えば、銅(Cu)等の金属材料によって構成されている。配線部60の延在方向(換言すれば、溝部33の延在方向)に垂直な断面における金属層50の形状は、溝部33の断面形状に対応しており、この例では、略矩形状を呈している。なお、本実施形態のように、配線部60が平面視において渦巻き状に延在しており、配線部60が、第1軸線X1に平行な方向に延在する第1部分、及び第2軸線X2に平行な方向に延在する第2部分を有している場合、配線部60の延在方向は、第1部分においては第1軸線X1に平行な方向であり、第2部分においては第2軸線X2に平行な方向である。或いは、配線部60が曲線状に又は湾曲して延在している場合には、配線部60の或る部分の延在方向とは、当該部分の接線方向であってもよい。
【0049】
キャップ層70は、絶縁層40の第2部分42、金属層50の端部51、及び配線部60を覆うように設けられている。この例では、キャップ層70は、主面31に平行に平面状に延在している。キャップ層70の厚さT1は、絶縁層40の厚さT2よりも厚い。キャップ層70は、例えば、シリコン窒化膜によって構成されており、絶縁性を有している。つまり、キャップ層70は、絶縁層40の第2層45と同一の材料によって構成されている。
【0050】
図4に示されるように、絶縁層40の第1部分41における基板30とは反対側の表面41aは、例えば、主面31に垂直な平坦面となっている。絶縁層40の第2部分42における基板30とは反対側の表面42aは、例えば、主面31に平行な平坦面となっている。表面42aは、キャップ層70に接触している。境界部分43における基板30とは反対側の表面43aは、配線部60の延在方向から見た場合に、主面31に垂直な方向A1に対して傾斜した傾斜面43bを含んでいる。より具体的には、傾斜面43bは、第1部分41の表面41aに対して外側に(溝部33の底面34bから離れるほど溝部33の中心から遠ざかるように)傾斜している。この例では、傾斜面43bは、基板30とは反対側に向かって凸状に湾曲している。
【0051】
金属層50の端部51は、キャップ層70と傾斜面43bとの間に入り込んでいる。より具体的には、端部51は、主面31に垂直な方向A1においてキャップ層70と傾斜面43bとの間に形成された空間に配置された部分を有している。
【0052】
端部51は、第1表面51aと、第1表面51aに連続する第2表面51bと、第2表面51bとは反対側において第1表面51aに連続する第3表面51cと、を有している。第1表面51aは、キャップ層70に沿っており、キャップ層70に接合されている。この例では、第1表面51aは、平坦面であり、絶縁層40の第2部分42の表面42a、及び後述する配線部60の表面60aと同一平面上に位置している。
【0053】
第2表面51bは、傾斜面43bに沿っており、傾斜面43bに接合されている。第2表面51bは、傾斜面43bと同様に、主面31に垂直な方向A1に対して外側に傾斜している。第2表面51bは、基板30とは反対側に向かって凹状に湾曲している。第2表面51bは、絶縁層40の境界部分43を構成する第2層45に接触している。すなわち、絶縁層40のうち第2表面51bに接触する部分(この例では、境界部分43を構成する第2層45)は、キャップ層70のうち第1表面51aに接触する部分と同一の材料(シリコン窒化膜)によって構成されている。上述したとおり、この例では、キャップ層70の全体がシリコン窒化膜によって構成されている。これにより、絶縁層40とキャップ層70との間の接合強度を高めることができる。
【0054】
第3表面51cは、端部51における第2表面51bとは反対側の表面である。第3表面51cは、配線部60の延在方向から見た場合に、方向A1に対して外側に傾斜している。第3表面51cの方向A1に対する傾斜の度合いは、第2表面51bの方向A1に対する傾斜の度合いよりも緩やかになっている。これにより、主面31に平行な方向A2における端部51の厚さは、端部51の先端に近づくにつれて漸増している。配線部60のうち金属層50及びキャップ層70との境界部分に位置する一部61は、キャップ層70と第3表面51cとの間に入り込んでいる。より具体的には、配線部60の一部61は、方向A1においてキャップ層70と第3表面51cとの間に形成された空間に配置されている。
【0055】
端部51においては、第1表面51aと第2表面51bとが鋭角を成している。換言すれば、第1表面51a及び第2表面51bにより形成される角度θが、90度よりも小さくなっている。すなわち、主面31に垂直な方向A1における端部51の厚さは、端部51の先端(例えば、第1表面51a及び第2表面51bにより形成される頂点)に近づくにつれて漸減している。角度θは、例えば、15度~88度であってもよい。金属層50の端部51は、絶縁層40の第2部分42上には設けられていない。
【0056】
主面31に平行な方向A2における端部51の厚さ(最小厚さ)は、金属層50のうち端部51以外の部分(例えば、金属層50のうち主面31に垂直な方向A1における中間に位置する部分、或いは、金属層50のうち絶縁層40の第1部分41上に位置する部分)の厚さよりも大きい。方向A1における金属層50の先端部の厚さ(最大厚さ)は、絶縁層40の厚さT2よりも小さい。ここで、「金属層50の先端部」とは、金属層50のうち、主面31に平行な方向A2における厚さが主面31に垂直な方向A1における厚さよりも大きい部分を意味する。
【0057】
この例では、配線部60におけるキャップ層70と接触する表面(第1接触面)60aは、絶縁層40の第2部分42の表面42aと同一平面上に位置している。表面42aは、絶縁層40におけるキャップ層70と接触する表面(第2接触面)である。キャップ層70の基板30側の表面70aは、平坦面となっている。
【0058】
上述したように、溝部33は、平面視において渦巻き状に延在している。これにより、図2に示されるように、溝部33は、互いに隣り合う複数の部分33aを有している。部分33a同士の間の間隔Bは、溝部33の幅Wよりも小さい。溝部33の幅Wは、溝部33の深さDよりも小さい。溝部33の深さDとは、例えば、主面31に垂直な方向A1における主面31と底面34bとの間の距離である。主面31に垂直な方向A1における溝部33の底面34bと基板30における主面31とは反対側の反対面との間の距離Lは、溝部33の深さDよりも大きい。この例では、当該反対面は、第1シリコン層81における絶縁層83側(主面31とは反対側)の表面81aである。
[作用効果]
【0059】
ダマシン配線構造100では、絶縁層40が、溝部33の内面34上に設けられた第1部分41、及び、第1部分41と一体的に形成され、主面31上に設けられた第2部分42を有しており、キャップ層70が、絶縁層40の第2部分42、金属層50の端部51、及び配線部60を覆うように設けられている。これにより、例えば絶縁層40が第1部分41のみを有している場合と比べて、応力が集中し易い箇所を少なくすることができる。すなわち、絶縁層40が第1部分41のみを有している場合、絶縁層40の端部が主面31と溝部33との境界部分の近傍に位置し、主面31とキャップ層70とが接触する。この場合、基板30、絶縁層40の当該端部、金属層50の端部51、配線部60及びキャップ層70が、互いに近い箇所において接触することとなる。このような箇所には応力が集中し易い。これに対し、ダマシン配線構造100では、主面31と溝部33との境界部分の近傍に絶縁層40の端部が存在しないため、応力が集中する箇所を少なくすることができる。更に、金属層50の端部51がキャップ層70に接触するように延在している。仮に、端部51がキャップ層70に到達しておらず、配線部60の表面60aよりも低い位置に留まっていると、配線部60のうち金属層50から露出した部分にボイドが発生するおそれがある。これに対し、ダマシン配線構造100では、そのようなボイドの発生を抑制することができ、ボイドに起因するキャップ層70の剥離等を抑制することができる。更に、絶縁層40における第1部分41と第2部分42との境界部分43の基板30とは反対側の表面43aが傾斜面43bを含んでおり、金属層50の端部51が、キャップ層70と傾斜面43bとの間に入り込んでいる。そして、端部51においては、キャップ層70に沿った第1表面51aと傾斜面43bに沿った第2表面51bとが鋭角を成している。これにより、キャップ層70に応力が集中的に作用するのを抑制することができる。以上により、ダマシン配線構造100では、信頼性が高められている。
【0060】
ダマシン配線構造100では、キャップ層70の厚さT1が、絶縁層40の厚さT2よりも厚い。これにより、キャップ層70の強度を高めることができ、信頼性を一層高めることができる。
【0061】
ダマシン配線構造100では、キャップ層70のうち端部51の第1表面51aに接触する部分と、絶縁層40のうち端部51の第2表面51bに接触する部分(境界部分43を構成する第2層45)とが、互いに同一の材料によって構成されている。これにより、キャップ層70と金属層50の端部51との接触部分の近傍においてキャップ層70と絶縁層40との間の接合強度を高めることができ、信頼性をより一層高めることができる。
【0062】
ダマシン配線構造100では、絶縁層40が、酸化膜からなる第1層44と、窒化膜からなり、第1層44上に設けられた第2層45と、を有している。これにより、酸化膜からなる第1層44に傾斜形状を容易に形成し得るため、傾斜面43bの形成を容易化することができる。
【0063】
ダマシン配線構造100では、傾斜面43bが凸状に湾曲している。これにより、キャップ層70に応力が集中的に作用するのをより確実に抑制することができる。
【0064】
ダマシン配線構造100では、金属層50の端部51における第2表面51bとは反対側の第3表面51cが傾斜しており、配線部60の一部61が、キャップ層70と第3表面51cとの間に入り込んでいる。これにより、配線部60により金属層50の端部51を抑えることができ、金属層50からキャップ層70に作用する応力を低減することができる。更に、配線部60の一部61の主面31に垂直な方向A1における厚さが薄くなるため、配線部60からキャップ層70に作用する応力を低減することができる。
【0065】
ダマシン配線構造100では、金属層50の端部51の主面31に平行な方向A2における厚さが、金属層50における端部51以外の部分の厚さよりも厚い。これにより、金属層50の端部51とキャップ層70との接触面積を大きくすることができ、金属層50からキャップ層70に作用する応力をより好適に分散させることができる。
【0066】
ダマシン配線構造100では、金属層50の端部51の主面31に平行な方向A2における厚さが、端部51の先端に近づくにつれて漸増している。これにより、金属層50の端部51とキャップ層70との接触面積を一層大きくすることができ、金属層50からキャップ層70に作用する応力をより一層好適に分散させることができる。
【0067】
ダマシン配線構造100では、溝部33が渦巻き状に延在している。このように溝部33が渦巻き状に延在している場合でも、高い信頼性を得ることができる。
【0068】
ダマシン配線構造100では、溝部33における互いに隣り合う部分33aの間の間隔Bは、溝部33の幅Wよりも小さくてもよい。これにより、配線のピッチ(間隔)を狭くすることができ、省スペース化を図ることができる。
【0069】
ダマシン配線構造100では、溝部33の幅Wが溝部33の深さDよりも小さい。これにより、省スペース化、及び配線の低抵抗化を図ることができる。
【0070】
ダマシン配線構造100では、主面31に垂直な方向A1における溝部33の底面34bと基板30における主面31とは反対側の反対面(第1シリコン層81の表面81a)との間の距離Lが、溝部33の深さDよりも大きい。これにより、基板30の強度を高めることができ、信頼性をより一層高めることができる。
[ダマシン配線構造の製造方法]
【0071】
続いて、図5図6及び図7を参照しつつ、ダマシン配線構造100の製造方法について説明する。なお、図5図7では、各部が模式的に示されているが、実際には、例えば図4に示されるような形状に形成されている。
【0072】
まず、図5(a)に示されるように、第1シリコン層81、第2シリコン層82及び絶縁層83を有する基板30を用意し、基板30の主面31に溝部33を形成する。溝部33は、例えば、ボッシュプロセスを用いた反応性イオンエッチング(DRIE)により形成される。第1シリコン層81の厚さは、例えば30~150μm程度であり、第2シリコン層82の厚さは、例えば625μm程度である。溝部33の深さは、例えば5~30μm程度である。
【0073】
続いて、図5(b)に示されるように、基板30の主面31上に、内面34上に設けられた第1部分41と、第1部分41と一体的に形成され、主面31上に設けられた第2部分42と、を有する絶縁層40を形成する(第1ステップ)。より具体的には、シリコン酸化膜(熱酸化膜)からなる第1層44を主面31及び溝部33の内面34上にわたって形成した後に、シリコン窒化膜(LP-SiN)からなる第2層45を第1層44上に形成する。第1層44及び第2層45の厚さは、例えば100~1000nm程度である。
【0074】
より具体的には、第1ステップでは、絶縁層40における第1部分41と第2部分42との境界部分43の基板30とは反対側の表面43aが、配線部60の延在方向から見た場合に、主面31に垂直な方向A1に対して傾斜した傾斜面43bを含む絶縁層40が形成される(図4参照)。例えば、シリコン酸化膜からなる第1層44、及びシリコン窒化膜からなる第2層45を主面31及び溝部33の内面34上に形成することにより、境界部分43の表面43aに傾斜面43bが形成される。これは、シリコン酸化膜からなる第1層44には傾斜形状が容易に形成されるためである。
【0075】
続いて、図6(a)に示されるように、絶縁層40の第1部分41及び第2部分42上に金属層50を形成する(第2ステップ)。第2ステップでは、金属層50上に金属層55が形成される。金属層55は、例えば、銅等の金属材料によって構成されている。金属層55は、金属層50と共にシード層として機能する。金属層50及び金属層55は、例えば、スパッタリングにより形成されるが、原子層堆積法(ALD)、化学成長法(CVD)、イオンプレーティング又は無電解メッキにより形成されてもよい。金属層50及び金属層55の総厚は、例えば10nm~3000nm程度である。
【0076】
続いて、図6(b)に示されるように、溝部33内に埋め込まれると共に金属層50に接合されるように、配線部60を形成する(第3ステップ)。配線部60は、例えば、メッキにより形成される。配線部60は、例えば、主面31上における配線部60の厚さの平均が1μm以上となるように形成される。なお、この例では金属層55が配線部60と同一の材料により構成されているため、配線部60の形成時に配線部60と金属層55とが一体化され、配線部60と金属層55の間の界面が無くなる場合がある。この場合、金属層55は配線部60を構成するとみなすことができる。
【0077】
続いて、図7(a)に示されるように、絶縁層40の第2部分42が露出するように、化学機械研磨(CMP)により、第2部分42上の金属層50、金属層55及び配線部60を除去して平坦化する(第4ステップ)。第4ステップでは、絶縁層40、金属層50、金属層55及び配線部60に対して、基板30とは反対側から化学機械研磨が実施される。絶縁層40、金属層50、金属層55及び配線部60の各々について、主面31に垂直な方向A1における主面31又は底面34bとは反対側の一部が除去されることにより、絶縁層40、金属層50、金属層55及び配線部60が平坦化される。このとき、この例では、絶縁層40の第2層45のうち第2部分42を構成する部分が除去される。
【0078】
続いて、図7(b)に示されるように、絶縁層40の第2部分42、金属層50の端部51、及び配線部60を覆うように、キャップ層70を形成する(第5ステップ)。キャップ層70は、例えばシリコン窒化膜(PE-SiN)からなり、200~3000nm程度の厚さに形成される。続いて、第2シリコン層82及び絶縁層83をエッチング等により除去する。以上の工程により、上述したダマシン配線構造100が得られる。
[変形例]
【0079】
本開示は、上記実施形態に限られない。ダマシン配線構造100は、図8に示される第1変形例のように構成されてもよい。第1変形例では、基板30における主面31と溝部33との境界部分には、配線部60の延在方向から見た場合に、主面31に垂直な方向A1に対して外側に傾斜した境界面35が設けられている。境界面35は、例えば平坦面である。絶縁層40の境界部分43は、境界面35上に設けられているため、境界面35に沿って延在し、主面31に垂直な方向A1に対して外側に傾斜している。境界部分43の傾斜面43b、及び金属層50の端部51の第2表面51bは、境界面35に平行な平坦面となっている。端部51の第3表面51cも、方向A1に対して外側に傾斜した平坦面となっている。第3表面51cの方向A1に対する傾斜角度は、第2表面51bの方向A1に対する傾斜角度よりも緩やかになっている。これにより、主面31に平行な方向A2における端部51の厚さは、端部51の先端に近づくにつれて漸増している。
【0080】
第1変形例のダマシン配線構造100の製造に際しては、例えば、ノンボッシュプロセス及びボッシュプロセスを用いた反応性イオンエッチングにより溝部33が形成される。これにより、溝部33の形成時に、基板30における主面31と溝部33との境界部分に境界面35が形成される。ノンボッシュプロセス及びボッシュプロセスを組み合わせることにより、信頼性の向上を図ることができる。
【0081】
第1変形例によっても、上記実施形態と同様に、信頼性を高めることができる。更に、基板30における主面31と溝部33との境界部分に境界面35が設けられているため、傾斜面43bの形成を容易化することができる。第1変形例においても、溝部33が有する複数の部分33a同士の間の間隔Bは、溝部33の幅Wよりも小さくてもよい。第1変形例の場合、間隔Bは、複数の部分33aにおける境界面35以外の内面34間の距離(換言すれば、内面34のうち主面31に垂直な方向A1に沿って延在する部分の間の距離)である。
【0082】
ダマシン配線構造100は、図9に示される第2変形例のように構成されてもよい。第2変形例では、配線部60の表面60aが、絶縁層40の第2部分42の表面42aに対して、溝部33の底面34b側に位置している。金属層50の端部51の第3表面51cが、キャップ層70における表面60a上の部分と表面42a上の部分との境界部分71によって覆われている。境界部分71は、第3表面51cに沿って延在しており、主面31に垂直な方向A1に対して外側に傾斜している。第2変形例のダマシン配線構造100の製造に際しては、例えば、第4ステップの化学機械研磨におけるスラリーを調整することにより配線部60のディッシング量(配線部60が除去される量)を増加させる。これにより、図9に示されるような形状の配線部60を形成することができる。
【0083】
第2変形例によっても、上記実施形態と同様に、信頼性を高めることができる。更に、表面60aが表面42aに対して溝部33の底面34b側に位置している。これにより、応力が集中し易い箇所を一層少なくすることができる。更に、境界部分71によって端部51の第3表面51cが覆われるため、金属層50の端部51とキャップ層70との接触面積を一層大きくすることができ、金属層50からキャップ層70に作用する応力を一層好適に分散させることができる。
【0084】
ダマシン配線構造100は、図10(a)に示される第3変形例のように構成されてもよい。第3変形例では、第2変形例と同様に、配線部60の表面60aが、絶縁層40の第2部分42の表面42aに対して、溝部33の底面34b側に位置している。また、金属層50の端部51の第3表面51cが、キャップ層70の境界部分71によって覆われている。第3変形例では、キャップ層70の厚さT1が、主面31に垂直な方向A1における表面60aと表面42aとの間の距離Hよりも大きい。第3変形例によっても、上記実施形態と同様に、信頼性を高めることができる。更に、キャップ層70の厚さT1が、主面31に垂直な方向A1における表面60aと表面42aとの間の距離Hよりも大きいため、キャップ層70の強度を一層高めることができる。
【0085】
ダマシン配線構造100は、図10(b)に示される第4変形例のように構成されてもよい。第4変形例では、第2変形例と同様に、配線部60の表面60aが、絶縁層40の第2部分42の表面42aに対して、溝部33の底面34b側に位置している。また、金属層50の端部51の第3表面51cが、キャップ層70の境界部分71によって覆われている。第4変形例では、キャップ層70の厚さT1が、主面31に垂直な方向A1における表面60aと表面42aとの間の距離Hよりも小さい。第4変形例によっても、上記実施形態と同様に、信頼性を高めることができる。更に、キャップ層70の厚さT1が、主面31に垂直な方向A1における表面60aと表面42aとの間の距離Hよりも小さいため、方向A1における配線部60の厚さを薄くすることができ、その結果、配線部60からキャップ層に作用する応力を一層低減することができる。
【0086】
コイル21,22の形状及び配置は、上述した例に限られない。例えば、上記実施形態では、コイル22が、第1軸線X1に平行な方向に延在する部分、及び第2軸線X2に平行な方向に延在する部分のみを有していたが、コイル22は、平面視において第1軸線X1及び第2軸線X2と交差する方向に延在する部分を有していてもよい。コイル22は、平面視において第1軸線X1に対して45度傾斜して延在する部分を有していてもよい。これらの点はコイル21についても同様である。上記実施形態において、コイル21,22のいずれか一方が省略されてもよい。上記実施形態においては、第2可動部4を、第1可動部3を揺動可能に支持する支持部とみなすこともできる。第2可動部4及び第2連結部7,8が省略されてもよい。この場合、第1可動部3は、第1軸線X1の周りのみに揺動させられる。
【0087】
各構成の材料及び形状は、上述した例に限られない。金属層50の端部51の第3表面51cは、第2表面51bに沿って延在していてもよい。例えば、第3表面51cの傾斜の度合い(傾斜角度)が第2表面51bの傾斜の度合い(傾斜角度)と同一であってもよい。第3表面51cと第2表面51bとが互いに平行に延在していてもよい。第2部分42は、第1層44及び第2層45によって構成されていてもよい。この場合、応力が集中し易い箇所を一層少なくすることができる。キャップ層70が絶縁層40の第2層45と同一の材料によって構成されている場合、同一の材料同士が接合されている部分の面積が大きくなるため、密着性を高めることができる。絶縁層40は、単一の層によって構成されていてもよい。絶縁層40は、例えば、酸化膜からなる単一の層によって構成されてもよい。この場合、キャップ層70は、酸化膜によって構成されてもよい。配線部60の延在方向から見た場合に、第1表面51aと第2表面51bとは、互いの曲率が連続するように接続されていてもよい。ダマシン配線構造100は、アクチュエータ装置以外の構成に適用されてもよい。
【符号の説明】
【0088】
1…ミラー装置(アクチュエータ装置)、2…支持部、3…第1可動部、4…第2可動部(支持部)、9…磁界発生部、21,22…コイル、30…基板、31…主面、33…溝部、34…内面、34b…底面(底部)、35…境界面、40…絶縁層、41…第1部分、42…第2部分、42a…表面(第2接触面)、43…境界部分、43a…表面、43b…傾斜面、44…第1層、45…第2層、50…金属層、51…端部、51a…第1表面、51b…第2表面、51c…第3表面、60…配線部、60a…表面(第1接触面)、61…配線部の一部、70…キャップ層、81a…表面(反対面)、100…ダマシン配線構造。

図1
図2
図3
図4
図5
図6
図7
図8
図9
図10