(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024045636
(43)【公開日】2024-04-02
(54)【発明の名称】処理システムおよびプログラム
(51)【国際特許分類】
G06F 21/62 20130101AFI20240326BHJP
G06F 21/60 20130101ALI20240326BHJP
【FI】
G06F21/62
G06F21/60 320
【審査請求】有
【請求項の数】5
【出願形態】OL
(21)【出願番号】P 2024023394
(22)【出願日】2024-02-20
(62)【分割の表示】P 2020563862の分割
【原出願日】2019-12-04
(31)【優先権主張番号】P 2019000371
(32)【優先日】2019-01-06
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】717003954
【氏名又は名称】株式会社フューチャーアイ
(72)【発明者】
【氏名】塚本 豊
(72)【発明者】
【氏名】塚本 陽子
(57)【要約】
【課題】記録された情報の真正の保証とその情報の削除権の保証とが二律背反するジレンマを解消する。
【解決手段】2つの片割れ共通鍵KA及びKBで情報を二重暗号化E
KA(E
KB(情報))してブロックチェーンに記録する。情報保持者は、情報要求者に対し、一方の片割れ共通鍵KBを配布すると共に二重暗号化された情報を片割れ鍵KAで復号D
KA(E
KA(E
KB(情報)))した情報E
KB(情報)を送信する。情報要求者はD
KB(E
KB(情報))を演算して平文の情報を得る。情報保持者が片割れ共通鍵KAをRに更新することにより、情報要求者に対しD
R(E
KA(E
KB(情報)))が送信され、情報要求者がKBで復号D
KB(D
R(E
KA(E
KB(情報)))しても、平文を得ることができなくする。
【選択図】
図14
【特許請求の範囲】
【請求項1】
記録対象の情報を暗号化する暗号化処理を行う暗号化手段と、
前記暗号化処理を経た後の情報を記録する記録手段と、
前記記録手段により記録された情報に対し、第1鍵と第2鍵とを用いて復号処理を行って平文の情報にする復号手段と、
前記記録手段により記録された情報を復号できない復号不能化状態にする復号不能化手段と、を備え、
前記復号手段は、前記第2鍵を秘匿して保持する第2鍵秘匿保持手段を含み、
前記復号不能化手段は、前記第2鍵秘匿保持手段により保持されている前記第2鍵を他のものに更新することにより復号不能化状態にする、処理システム。
【請求項2】
前記復号手段は、前記第1鍵を情報の閲覧希望者に配布する第1鍵配布手段をさらに含む、請求項1に記載の処理システム。
【請求項3】
前記記録手段により記録された情報を平文にすることなく検索する検索手段をさらに備えている、請求項1または2に記載の処理システム。
【請求項4】
前記記録手段により記録された情報は個人情報を含み、
前記復号不能化手段は、個人情報主の要求に応じて当該個人情報主の個人情報を前記復号不能化状態にする、請求項1~3の何れかに記載の処理システム。
【請求項5】
記録対象の情報を暗号化する暗号化処理を行うステップと、
前記暗号化処理を経た後の情報を記録する記録手段により記録された情報に対し、第1鍵と第2鍵とを用いて復号処理を行って平文の情報にする復号ステップと、
前記記録手段により記録された情報を復号できない復号不能化状態にするステップとを、
コンピュータに実行させ、
前記復号ステップは、前記第2鍵を秘匿して保持するステップを含み、
前記復号不能化状態にするステップは、前記保持するステップにより保持されている前記第2鍵を他のものに更新することにより復号不能化状態にする、プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、例えば、ブロックチェーン等のような改竄や消去が困難な情報記録方式についての処理システムおよびプログラムに関する。
に関する。
【背景技術】
【0002】
改竄が困難な情報記録方式としてブロックチェーンが従来から一般的に知られている。このブロックチェーンを利用して貨物輸送に関する各種情報を記録しているものとして、例えば、特許文献1がある。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかし、このようなブロックチェーンを利用した情報の記録は、改竄が困難なばかりでなく消去も困難である(以下「消去不可能性」という)。その結果、一旦ブロックチェーンを利用して個人情報の記録を行った場合には、その個人情報主が個人情報を消去したくなっても消去できず個人情報消去権(いわゆる忘れられる権利)が損なわれるという欠点がある。
【0005】
つまり、記録された情報の真正の保証とその情報の削除権の保証とが二律背反するジレンマが生じるという欠点が生じる。
【0006】
本発明は、かかる実情に鑑み考え出されたものであり、その目的は、記録された情報の真正の保証とその情報の削除権の保証とが二律背反するジレンマを解消することである。
【課題を解決するための手段】
【0007】
本発明は、記録対象の情報を暗号化する暗号化処理を行う暗号化手段と、
前記暗号化処理を経た後の情報を記録する記録手段と、
前記記録手段により記録された情報に対し、第1鍵と第2鍵とを用いて復号処理を行って平文の情報にする復号手段と、
前記記録手段により記録された情報を復号できない復号不能化状態にする復号不能化手段と、を備え、
前記復号手段は、前記第2鍵を秘匿して保持する第2鍵秘匿保持手段を含み、
前記復号不能化手段は、前記第2鍵秘匿保持手段により保持されている前記第2鍵を他のものに更新することにより復号不能化状態にする。
【0008】
好ましくは、前記復号手段は、前記第1鍵を情報の閲覧希望者に配布する第1鍵配布手段をさらに含む。
好ましくは、前記記録手段により記録された情報を平文にすることなく検索する検索手段をさらに備えている。
【0009】
より好ましくは、前記記録手段により記録された情報は個人情報を含み、
前記復号不能化手段は、個人情報主の要求に応じて当該個人情報主の個人情報を前記復号不能化状態にする。
【0010】
本発明の他の局面は、記録対象の情報を暗号化する暗号化処理を行うステップと、
前記暗号化処理を経た後の情報を記録する記録手段により記録された情報に対し、第1鍵と第2鍵とを用いて復号処理を行って平文の情報にする復号ステップと、
前記記録手段により記録された情報を復号できない復号不能化状態にするステップとを、
コンピュータに実行させ、
前記復号ステップは、前記第2鍵を秘匿して保持するステップを含み、
前記復号不能化状態にするステップは、前記保持するステップにより保持されている前記第2鍵を他のものに更新することにより復号不能化状態にする。
【発明の効果】
【0011】
本発明によれば、記録された情報の真正の保証とその情報の削除権の保証とが二律背反するジレンマを極力解消することができる。
【図面の簡単な説明】
【0012】
【
図1】処理システムの全体構成を示すシステム図である。
【
図2】(A)はブロックチェーンのノードを構成するユーザ端末のHDDに記憶されている情報を説明する図であり、(B)は認定事業者の個人情報DBに記憶されている情報を説明する図である。
【
図3】(A)はパブリックチェーンのユーザ端末のメインルーチンプログラムを示すフローチャートであり、(B)は個人情報記録処理のサブルーチンプログラムを示すフローチャート及び認定事業者のサーバのフローチャートである。
【
図4】パブリックチェーンのユーザ端末で実行されるスマートコントラクト処理のサブルーチンプログラムを示すフローチャートである。
【
図5】(A)はプライベートチェーンのユーザ端末のメインルーチンプログラムを示すフローチャートであり、(B)は個人情報検索処理のサブルーチンプログラムを示すフローチャートである。
【
図6】プライベートチェーンのユーザ端末で実行されるスマートコントラクト処理のサブルーチンプログラムを示すフローチャートである。
【
図7】(A)はプライベートチェーンのユーザ端末で実行されるスマートコントラクト処理のサブルーチンプログラムを示すフローチャートの続きであり、(B)はプライベートチェーンのユーザ端末で実行される機械学習処理のサブルーチンプログラムを示すフローチャートである。
【
図8】プライベートチェーンのユーザ端末で実行されるAIスマートコントラクト生成処理のサブルーチンプログラムを示すフローチャートである。
【
図9】(A)はプライベートチェーンのユーザ端末で実行されるシミュレーション学習処理のサブルーチンプログラムを示すフローチャートであり、(B)はプライベートチェーンのユーザ端末で実行されるAIスマートコントラクト群生成処理のサブルーチンプログラムを示すフローチャートである。
【
図10】プライベートチェーンのユーザ端末で実行されるスマートコントラクト信託請負い処理のサブルーチンプログラムを示すフローチャートである。
【
図11】(A)はパーソナライズドAIスマートコントラクト学習済みモデルの強化学習処理のサブルーチンプログラムを示すフローチャートであり、(B)はコンソーシアムチェーンのユーザ端末により実行されるメインルーチンプログラムを示すフローチャートである。
【
図12】(A)はコンソーシアムチェーンのユーザ端末により実行されるIoTセンサデータ集計処理のサブルーチンプログラムを示すフローチャートであり、(B)はコンソーシアムチェーンのユーザ端末により実行されるシミュレーション処理のサブルーチンプログラムを示すフローチャートである。
【
図13】(A)はコンソーシアムチェーンのユーザ端末により実行されるAIスマートコントラクト群生成処理のサブルーチンプログラムを示すフローチャートであり、(B)はコンソーシアムチェーンのユーザ端末により実行されるスマートコントラクト処理のサブルーチンプログラムを示すフローチャートである。
【
図14】ブロックチェーンを利用して記録された情報を閲覧できない状態にする説明図であり、(A)は閲覧できる通常状態の図であり、(B)は解読不能化状態にして閲覧できないようにした図である。
【
図15】ブロックチェーンのノードを構成するユーザ端末のHDDに記憶されている情報を説明する図である。
【
図16】パブリックチェーンのユーザ端末とプライベートチェーンのユーザ端末とのメインルーチンプログラムを示すフローチャートである。
【
図17】(A)はブロックチェーンへの個人情報記録処理のサブルーチンプログラムを示すフローチャートであり、(B)は記録解読不能処理のサブルーチンプログラムを示すフローチャートである。
【
図18】個人情報入手処理及び個人情報提供処理のサブルーチンプログラムを示すフローチャートである。
【
図19】(A)はブロックチェーンのノードを構成するユーザ端末のHDDに記憶されている情報を説明する図であり、(B)は認定事業者の個人情報DBに記憶されている情報を説明する図である。
【
図20】パブリックチェーンのユーザ端末と認定事業者のサーバとプライベートチェーンのユーザ端末とのメインルーチンプログラムを示すフローチャートである。
【
図21】ブロックチェーンへの個人情報記録処理及びハッシュ値記録処理のサブルーチンプログラムを示すフローチャートである。
【
図22】記録解読不能処理のサブルーチンプログラムを示すフローチャートである。
【
図23】個人情報提供処理と個人情報入手処理と暗号文送信処理とのサブルーチンプログラムを示すフローチャートである。
【
図24】処理システムの全体構成を示すシステム図である。
【
図25】パブリックチェーンのユーザ端末と鍵登録センタのサーバとプライベートチェーンのユーザ端末とのメインルーチンプログラムを示すフローチャートである。
【
図26】(A)はブロックチェーンへの個人情報記録処理及び鍵登録処理のサブルーチンプログラムを示すフローチャートであり、(B)は記録解読不能化要求処理及び記録解読不能処理のサブルーチンプログラムを示すフローチャートである。
【
図27】片割れ共通鍵提供処理とデータ入手処理とデータ復号処理とのサブルーチンプログラムを示すフローチャートである。
【
図28】シミュレーション環境としてのミラーワールドの説明図である。
【
図29】ミラーワールドにおける都市デジタルツインの具体例を示す図である。
【
図30】ミラーワールドサーバとユーザ端末とのメインルーチンのフローチャートである。
【
図31】パーソナルAIの生成販売処理のサブルーチンプログラムを示すフローチャートである。
【
図32】シミュレーション準備処理及びシミュレーション準備応答処理のサブルーチンプログラムを示すフローチャートである。
【
図33】シミュレーション処理のサブルーチンプログラムを示すフローチャートである。
【
図34】(A)はマルチ役務DAO構築システムの概略図であり、(B)はミラーワールドサーバとユーザ端末とのメインルーチンのフローチャートである。
【
図35】シミュレーション強化学習準備処理及びシミュレーション強化学習準備応答処理のサブルーチンプログラムを示すフローチャートである。
【
図36】マルチ役務DAOデジタルツインをシミュレーション対象としてミラーワールドに登録する説明図である。
【
図37】マルチ役務DAOのシミュレーション強化学習の概略システム図である。
【
図38】DAOエージェント強化学習処理のサブルーチンプログラムを示すフローチャートである。
【
図39】(A)はDAOエージェントが知識として記憶している報酬テーブルを示す図であり、(B)はペルソナエージェント強化学習処理のサブルーチンプログラムを示すフローチャートである。
【
図40】(A)はアイデア発案役務実行処理のサブルーチンプログラムを示すフローチャートであり、(B)は改良案役務実行処理のサブルーチンプログラムを示すフローチャートである。
【
図41】(A)は事業化役務実行処理のサブルーチンプログラムを示すフローチャートであり、(B)は侵害対処役務実行処理のサブルーチンプログラムを示すフローチャートである。
【
図42】(A)はトークン購入役務実行処理のサブルーチンプログラムを示すフローチャートであり、(B)はペルソナエージェント群によるトークン購入に伴うトークンの変動相場での価格変動を説明する図である。
【
図43】エレメント統合DAO構築システムを示す図である。
【
図44】(A)はミラーワールドサーバとユーザ端末とのメインルーチンのフローチャートであり、(B)はシミュレーション強化学習準備処理とシミュレーション強化学習準備応答処理とのサブルーチンプログラムを示すフローチャートである。
【
図45】エレメント統合DAOデジタルツインをシミュレーション対象としてミラーワールドに登録する説明図である。
【
図46】エレメント統合DAOデジタルツインのシミュレーション強化学習を示す概略システムを図である。
【
図47】(A)は資材調達エレメントエージェントが知識として記憶しているパフォーマンス及び分配率の算出アルゴリズムを示す図であり、(B)は組立エレメントエージェントが知識として記憶しているパフォーマンス及び分配率の算出アルゴリズムを示す図であり、(C)は宣伝エレメントエージェントが知識として記憶しているパフォーマンス及び分配率の算出アルゴリズムを示す図である。
【
図48】(A)は販売エレメントエージェントが知識として記憶しているパフォーマンス及び分配率の算出アルゴリズムを示す図であり、(B)は統括エージェントが知識として記憶している報酬テーブルを示す図である。
【
図49】シミュレーション強化学習処理のサブルーチンプログラムを示すフローチャートである。
【
図50】統括エージェント強化学習処理のサブルーチンプログラムを示すフローチャートである。
【
図51】資材調達エレメントエージェント強化学習処理のサブルーチンプログラムを示すフローチャートである。
【
図52】(A)はクローラによる情報収集処理のサブルーチンプログラムを示すフローチャートであり、(B)は資材調達DBに記憶されている各種データを示す図である。
【
図53】組立エレメントエージェント強化学習処理のサブルーチンプログラムを示すフローチャートである。
【
図54】宣伝エレメントエージェント強化学習処理のサブルーチンプログラムを示すフローチャートである。
【
図55】(A)はクローラによる情報収集処理のサブルーチンプログラムを示すフローチャートであり、(B)は宣伝DBに記憶されている各種データを示す図である。
【
図56】販売エレメントエージェント強化学習処理のサブルーチンプログラムを示すフローチャートである。
【
図57】(A)は情報収集処理のサブルーチンプログラムを示すフローチャートであり、(B)は販売DBに記憶されている各種データを示す図である。
【
図58】(A)は資材調達担当パーソナルAI強化学習処理のサブルーチンプログラムを示すフローチャートであり、(B)は組立担当パーソナルAI強化学習処理のサブルーチンプログラムを示すフローチャートである。
【
図59】(A)は宣伝担当パーソナルAI強化学習処理のサブルーチンプログラムを示すフローチャートであり、(B)は販売担当パーソナルAI強化学習処理のサブルーチンプログラムを示すフローチャートである。
【
図60】プログラムのインストール方法を示す説明図である。
【発明を実施するための形態】
【0013】
[第1実施形態]
図1~
図13に基づいて本発明の第1実施形態を説明する。まず、
図1の全体システムを参照し、3種類のブロックチェーンネットワークであるプライベートチェーン2、コンソーシアムチェーン3及びパブリックチェーン4が集中型オラクル21に接続されている。パブリックチェーン4は、完全にオープンな仕組みで、個人や団体が誰でもそこで取引することが可能である。取引はそのブロックチェーンで効果的に確認ができる。マイニング(記帳権の競争)も自由で誰でも参加できる。コンソーシアムチェーン3は、協会や組合に属しているパートナーのみが使うことができるブロックチェーンである。その中の人達(各ノード)は記帳者に指定される。ブロックの生成も事前に決定され、それ以外の他の人達(ノード)は、取引はできるが記帳権はない。プライベートチェーン2は、ブロックチェーン技術で記帳するのみで、記帳権はオープンではなく個人または企業が独占し、内部の取引だけを記録する。ブロックチェーン同士を繋いで各ブロックチェーン間でトークンやデータの交換を行うには、Polkadotを用いる。Polkadotとは、異なるブロックチェーンを繋ぐためのブロックチェーンである。Substrateを用いて開発されたブロックチェーンはPolkadotに接続することができ、Polkadotに接続することで、Polkadotに接続された他のブロックチェーンとトークンやデータの交換ができるようになる。
【0014】
集中型オラクル21は、ブロックチェーンとインターネット1の間でデータの橋渡しをするシステムであり、インターネット1に接続されてネット上に散在している各種情報を収集してブロックチェーンのスマートコントラクトに情報提供を行う。
【0015】
プライベートチェーン2、コンソーシアムチェーン3及びパブリックチェーン4の各ノード19は、パーソナルコンピュータ(以下「PC」という)16等のユーザ端末で構成されている。このPC(以下「ユーザ端末」ともいう)16がインターネット1に接続されている。インターネット1には、さらに、SNS(Social Networking Service)40のサーバ20及びブロックチェーンの認定事業者17のサーバ18が接続されている。なお、認定事業者17のサーバ18は、ノード19としてブロックチェーンに参加してもよい。また、PKI(Public Key Infrastructure)での電子証明書を発行する認証局のサーバがインターネット1に接続されていてもよい。
【0016】
認定事業者17は、個人情報を預かりその個人準情報主に電子IDを発行すると共に、その個人情報のハッシュ値をブロックチェーンに記録する。預かった個人情報は個人情報データベース(以下「個人情報DB」という)29に格納される。なお、認定事業者17がノード19としてブロックチェーンに参加してもよい。
【0017】
PC16は、制御中枢としてのCPU(Central Processing Unit)10、CPU10のワークエリアとして機能するRAM(Random Access Memory)9、データやプログラムを記憶しているROM(Read Only Memory)11、HDD(hard disk drive)12などの記憶部、ディスプレイ、キーボード等の入力操作部7、通信部5、表示部6、インタフェース8、バス13、その他種々のハードウェアによって構成される。サーバ20及びサーバ18等の各種サーバも、PC16と同様のハードウェアによって構成されており、ここでは図示及び説明の繰り返しを省略する。なお、記憶部として、上記HDDに加えてまたはその代わりSDD(Solid State Drive)を用いてもよい。
【0018】
コンソーシアムチェーン3のノード19には、IoT(Internet of Things)用デバイス14及びワイヤレスセンサネットワーク15が接続されている。IoT用デバイス14及びワイヤレスセンサネットワーク15からのセンサ信号がノード19に入力されると共に、ノード19からIoT用デバイス14の駆動信号が出力される。IoT用デバイス14は、IoT用の各種センサやアクチュエータ等である。
【0019】
ワイヤレスセンサネットワーク15とは、複数のセンサ付無線端末を空間に散在させ、それらが協調して環境や物理的状況を採取することを可能とする無線ネットワークのことである。例えばエネルギーハーベスティングかM2Mあるいは電池などでセンサ装置を作り、例えば金属疲労の劣化等を圧力センサやゲージセンサで常時モニターしておき、その変化があると知らせる。主に橋梁やトンネル等の建造物に設置される。一般的に、複数のセンサノードとゲートウェイセンサノードとを含む。それらノードは、通常1個以上のセンサ、無線チップ、マイクロプロセッサ、電源(電池など)により構成される。ワイヤレスセンサネットワークは、通常、アドホック(ad hoc)機能と、各ノードから中枢ノードへデータを送るためのルーティング機能(routing algorithm)を持つ。つまり、ノード間の通信に障害がでると別の通信経路を自律的に再構築する機能がある。ノードがグループとして連携するため分散処理の要素もある。加えて、外部から電力供給を受けずに長期間動作する機能もあり、そのために省電力機能または自己発電機能を持つ。
【0020】
本実施形態では、IoT用デバイス14及びワイヤレスセンサネットワーク15がノード19を介してコンソーシアムチェーン3に接続されているが、ノード19を介することなく、IoT用デバイス14及びワイヤレスセンサネットワーク15の一方または双方自体がコンソーシアムチェーン3のノード19の一部となっていてもよい。
【0021】
次に
図2(A)を参照し、PC16のHDD12に記憶されている情報を説明する。HDD12には、ユーザの秘密鍵SK、公開鍵PK、共通鍵K1、トラップドア用共通鍵K2、ブロックチェーンでのユーザのアドレス、スマートコントラクト、トークン、人工知能(「AI(Artificial Intelligence)」ともいう)及びブロックチェーンデータ等が記憶されている。なお、ユーザは、自然人ばかりでなく法人をも含む広い概念である。
【0022】
秘密鍵SKと公開鍵PKは、PKI(Public key Infratructure)で用いる鍵ペアであり、公開鍵PKで暗号化されたデータを秘密鍵SKで復号する。秘密鍵SKは電子署名にも用いる。共通鍵K1は、例えばDES(Data Encryption Standard)やAES(Advanced Encryption Standard)等の共通鍵暗号に用いる鍵である。共通鍵K1により暗号化されたデータを同じ共通鍵K1を用いて復号する。本実施形態では、暗号化対象の個人情報毎に異なる共通鍵を用いている。第1実施形態では、暗号化個人情報EK1(個人情報)を暗号文についてキーワード検索用の索引(インデックス)が設けられている。そのインデックスは共通鍵K2により暗号化されている。キーワード検索するためには、検索に用いるキーワード(検索クエリ)を共通鍵K2で暗号化した暗号化検索クエリ(これを「トラップドア」という)を用いて検索する。この共通鍵K2をトラップドア用共通鍵K2としてHDD12に記憶している。
【0023】
ブロックチェーンでのユーザのアドレスは、以下のプロセスを経て生成される。
1 秘密鍵からECDSAで公開鍵を生成する。
2 公開鍵をハッシュ関数SHA-256に通しハッシュ値を得る。
3 そのハッシュ値をさらにハッシュ関数RIPEMD-160に通しハッシュ値を得る。
4 ハッシュ値の先頭にプレフィックスとして00を加える。
5 ハッシュ関数SHA-256に通す。
6 もう一度ハッシュ関数SHA-256に通す。
7 4バイトのチェックサムを一番後ろに加える。
8 Base58のフォーマットでエンコーディングする。
【0024】
スマートコントラクトとは、契約のスムーズな検証、条件確認、執行、実行、交渉を意図したコンピュータプロトコルである。トークンとは、企業や個人よりブロックチェーン上で発行された独自通貨のことである。
【0025】
次に、ブロックチェーンデータを説明する。ブロックチェーンの各ブロック内のデータは、前のブロックのハッシュ値、ナンス及び複数の取引のデータ(トランザクションともいう)を含んでいる。また、図示を省略しているが、タイムスタンプもブロックチェーンに埋め込まれている。このようなブロックチェーンは、各ノード19がブロックチェーン処理(後述するS3、S19、S30、S51、S117、S122、S153等参照)を行うことにより生成されて新たなブロックチェーンとして追加される。ブロックチェーン処理は、主に、取引、伝搬及び記録の3つのフェーズからなる。
【0026】
取引のフェーズは、一般的にトランザクションといわれる行為であり、売買行為、譲渡行為、貸与(貸渡し)行為等の法律行為を意味する。この取引フェーズは、より具体的には、生成→署名→伝搬と3つのフェーズに分けることができる。
【0027】
生成フェーズは、トランザクションの生成を行うことであり、例えば、A氏がB氏に対し「休止状態のPC資源(計算資源)を39005秒貸与して25.78トークンを得る。」と決め、トランザクションを生成したことを電子署名する。この電子著名は、トランザクションデータを所定のハッシュ関数を通すことによりハッシュ値を生成し、トランザクション(取引)の当事者(A氏とB氏)の秘密鍵SKを用いてそのハッシュ値を暗号化したものである。また、認証局によりデジタル公開鍵証明書を発行してもらってもよい。
図2では、PC資源(計算資源)を貸与する例を示しているが、貸与対象はそれに限定されるものではなく、例えば、家庭や企業で自己発電した電力、ユーザの専門的知識経験やスキルや人脈(ネット上での人的ネットワークを含む)や信用等の価値、などが考えられる。
【0028】
伝搬フェーズは、正しくトランザクションの生成・署名が完了したことを、他のノードに確認してもらうことである。正しくトランザクションの生成・署名が行われなかったと判断された場合、そのトランザクションは破棄される
【0029】
記録フェーズは、正しくトランザクションの生成・署名が完了したことが確認された場合に、マイナーがマイニングを行って取引の記録を行うことである。正しく生成・署名が完了したことが確認されたトランザクションは、マイニングプールといわれる場所に移動する。その後、マイナーが、マイニングプールから記録するトランザクションを選んでマイニングを行う。
【0030】
マイニングは、ナンスを算出する作業である。ナンスとは、ブロックのデータをハッシュ関数に通したときに先頭に0がたくさん並ぶような非常に小さなハッシュ値が生成されるように調整するための値のことである。ハッシュ値がターゲット値以下になるようなナンスを計算することができると新しいブロックが生成される。
【0031】
なお、取引のデータは、
図2の右側の取引Iに示すように、ユーザの個人情報を鍵K1で暗号化したE
K1(個人情報)のハッシュ値、その電子ID、及び個人情報のインデックスと個人情報の提供に対する対価(
図2では2.4トークンで提供)とを鍵K2で暗号化したE
K2(インデックス+2.4トークンで提供)も含んでいる。個人情報の具体例としては、ユーザの心拍数、血圧、体温、脳波等のバイタル情報、購買履歴やウェブサイト閲覧履歴等の行動履歴情報、GPS等のユーザの位置情報、人種、信条、社会的身分、病歴、電子カルテデータ、ID(identification)、SNS等への投稿情報等である。
【0032】
SNS等への投稿情報は、既にSNS25に投稿されてサーバ20に記憶されている過去の投稿情報をサーバ20から個人情報DB29及びブロックチェーンに移し替えたものである。具体的には、ユーザ自身が自身の過去の投稿情報を全て暗号化して認定事業者の個人情報DB29に記憶させると共にそのハッシュ値をブロックチェーンに記録する。以降、ユーザは、SNS25に投稿するのではなく、投稿内容を認定事業者の個人情報DB29に暗号化して記憶させると共にそのハッシュ値をブロックチェーンに記録する。これにより、ユーザは、個人情報をSNS等の事業者から取戻して自己管理下に置くことが可能になる。
【0033】
なお、個人情報の提供に対する対価(
図2では2.4トークンで提供)については、暗号化することなく平文のままブロックチェーンに記録してもよい。その場合には、他ユーザが暗号鍵K2を入手しなくてもブロックチェーンを検索して対価を知ることができる。さらに、個人情報の提供に対する対価やPC資源(計算資源)の貸与の対価(
図2ではPC資源(計算資源)を39005秒貸与して25.78トークンを得る)等の取引条件を、スマートコントラクトとしてコードの形にし、スマートコントラクトにより取引(法律行為)の自動化を行うようにしてもよい。
【0034】
取引Iとして記録されるハッシュ値の対象である暗号化個人情報自体は、認定事業者17の個人情報DB29に記憶されている。具体的には、
図2(B)に示すように、認定事業者17が暗号化個人情報E
K1(個人情報)に対し発行した電子IDに対応付けて暗号化個人情報E
K1(個人情報)が個人情報DB29に記憶されている。
【0035】
インデックスとは、暗号化個人情報EK1(個人情報)をキーワード検索するための索引のことである。本実施形態では、インデックスを共通鍵K2により暗号化する共通鍵暗号方式を採用しているため、キーワード検索するためには、検索に用いるキーワード(検索クエリ)を共通鍵K2で暗号化した暗号化検索クエリ(これを「トラップドア」という)を用いて検索する。共通鍵K2は、ユーザ毎に異なる鍵であるが、同じユーザの暗号化インデックスであれば同じ鍵が用いられる。よって、後述するスマートコントラクトにより、例えばユーザAがユーザBに対して共通鍵K2を配布するトランザクションを行えば、ユーザBは、EK2(検索クエリ)を用いてユーザAの全ての暗号化インデックスをブロックチェーン上で検索可能となる。
【0036】
なお、暗号文を暗号化したまま検索できる準同型暗号や完全準同型暗号等の検索可能暗号を用いてもよい。その際、準同型暗号や完全準同型暗号を用いて個人情報を暗号化し、その暗号化個人情報をブロックチェーンに直接記録してもよい。また、暗号化個人情報EK1(個人情報)を直接ブロックチェーンに記録するようにしてもよい。
【0037】
次に、
図3(A)を参照して、パブリックチェーン19のユーザ端末のメインルーチンプログラムのフローチャートを説明する。ステップS(以下単に「S」という)1により、個人情報記録処理が行われ、S2によりスマートコントラクト処理が行われ、S3によりブロックチェーン処理が行われる。
【0038】
個人情報記録処理とは、個人情報主が個人情報を暗号化して認定事業者17に登録してその暗号化個人情報のハッシュ値をブロックチェーンに記録する処理である。スマートコントラクト処理とは、予め決められているルールに従って契約の締結及び執行等の法律行為を自動的に行う処理である。ブロックチェーン処理の具体的内容は、
図2(A)に基づいて前述したとおりである。
【0039】
図3(B)を参照して個人情報記録処理を説明する。S5により、パブリックチェーン19のノード19を構成しているユーザ端末において個人情報の登録操作があったか否か判定される。ない場合にはこの個人情報記録処理がリターンしてS2のスマートコントラクト処理に移行する。個人情報の登録操作があったと判定された場合には、S6により、ユーザ端末のメモリ(HDD12等)に記憶されている個人情報を鍵K1で暗号化した上で秘密鍵SKで電子署名し、かつ、インデックスを鍵K2で暗号化して認定事業者17のサーバ18へ送信する。
【0040】
それをS7で受信した認定事業者17のサーバ18は、電子IDを発行すると共に受信した暗号化個人情報であるEK1(個人情報)のハッシュ値を生成する。次に、発行した電子IDをユーザ端末に返信する(S9)。それを受信したユーザ端末は、電子IDをメモリ(HDD12等)に記憶する。認定事業者17のサーバ18は、S10において、電子IDとハッシュ値と暗号化インデックスとをブロックチェーンに記録するための処理を行う。
【0041】
S2に示されたスマートコントラクト処理のサブルーチンプログラムのフローチャートを説明する。
図4を参照して、S13において、共通鍵K2の配布契約が成立したか否か判定され、成立していない場合にはS15において、ユーザ端末のPC資源(計算資源)の貸与契約が成立したか否か判定され、成立していない場合にはS16において個人情報の提供契約が成立したか否か判定され、成立していない場合にはS17においてオーダーメイド商品等を発注する発注契約が成立したか否か判定され、成立していない場合にはS22において商品等の売買契約が成立したか否か判定され、成立していない場合にはリターンする。これらの判定はスマートコントラクトによって行われる。例えば、前述した対価等をスマートコントラクトとしてコード化している場合には、当事者双方の対価等の条件が合致したか否かをスマートコントラクトが判定し、合致したと判定した場合に、契約の締結及び執行を自動的に行う。
【0042】
共通鍵K2の配布契約が成立したと判定された場合には制御がS14へ進み、配布先に共通鍵K2が送信された後、制御がS19へ進む。S19では、その成立した契約をトランザクションとしてブロックチェーンに記録するための処理が行われる。PC資源(計算資源)の貸与契約が成立したと判定された場合には制御がS18へ進み、PC資源(計算資源)の貸与処理が行われる。個人情報の提供契約が成立したと判定された場合には制御がS20へ進み、提供する個人情報の電子IDと個人情報の提供に合意する署名とを提供相手に返信すると共に、提供する個人情報の暗号化に使用した共通鍵K1を提供相手の公開鍵で暗号化して提供相手に返信する。
【0043】
発注契約が成立したと判定された場合には制御がS21へ進み、発注処理が行われた後にS19へ進む。売買契約が成立したと判定された場合には制御がS23へ進み、購入対象を入手する処理が実行されてS19へ進む。
【0044】
次に、プライベートチェーン2のノード19を構成しているユーザ端末のメインルーチンプログラムのフローチャートを
図5(A)に基づいて説明する。S28により個人情報検索処理が行われ、S29によりスマートコントラクト処理が行われ、S30によりブロックチェーン処理が行われ、S31により機械学習処理が行われ、S32によりAIスマートコントラクト生成処理が行われ、S33によりスマートコントラクト信託請負い処理が行われる。AIスマートコントラクトは、「一体化タイプ」と「連携タイプ」との両者を含む概念である。「一体化タイプ」とは、AIとスマートコントラクトとが一体化し契約(法律行為)のデータに基づいて機械学習を行いスマートコントラクト自体をAI化したものである。「連携タイプ」とは、契約(法律行為)のデータに基づいて機械学習を行ったAIとスマートコントラクトとが連携したものである。連携タイプの場合、学習済みAI(以下「連携用AI」という)が状況に応じてスマートコントラクトの追加、変更及び更新等を行う。
【0045】
個人情報検索処理とは、ブロックチェーンに記録されている暗号化インデックスをトラップドア(暗号化検索クエリ)により検索する処理である。スマートコントラクト処理とは、予め決められているルールに従って契約の締結及び執行等の法律行為を自動的に行う処理である。ブロックチェーン処理の具体的内容は、
図2(A)に基づいて前述したとおりである。機械学習処理とは、多数のユーザの個人情報を学習用データとして機械学習して人工知能の学習済みモデルを生成する処理である。より具体的には、個人情報主を特定できない形の膨大な個人情報を学習用データとして機械学習して人工知能の一般的学習済みモデルを生成した後、個人情報主を特定できるデータ(例えばブロックチェーンにおけるアドレス)毎に分類された個人情報を用いて個人情報主毎(ブロックチェーンのアドレス毎)にパーソナライズされたパーソナライズド学習済みモデルを生成する処理である。
【0046】
AIスマートコントラクト生成処理とは、契約(法律行為)に関する個人情報を学習用データとして機械学習して人工知能によるスマートコントラクトの学習済みモデルを生成する処理である。より具体的には、個人情報主を特定できない形の膨大な契約(法律行為)に関する個人情報を学習用データとして機械学習して人工知能によるスマートコントラクトの一般的学習済みモデルを生成した後、個人情報主を特定できるデータ(例えばブロックチェーンにおけるアドレス)毎に分類された契約(法律行為)に関する個人情報を用いて個人情報主毎(例えばブロックチェーンにおけるアドレス毎)にパーソナライズされたパーソナライズドAIスマートコントラクト学習済みモデルを生成する処理である。
【0047】
スマートコントラクト信託請負い処理とは、契約の締結及び執行等の法律行為を自動的に行う処理を本人から請負い本人に代わって実行するサービスを行う処理である。より具体的には、信託者用にパーソナライズされたパーソナライズドAIスマートコントラクト学習済みモデルを生成し、そのパーソナライズドAIスマートコントラクト学習済みモデルを用いて信託者に代わって法律行為を実行する。その実行の結果に基づいてAI用の報酬を決め、その報酬によりパーソナライズドAIスマートコントラクト学習済みモデルをさらに強化学習させる。
【0048】
次に、
図5(B)に基づいて、S28に示された個人情報検索処理のサブルーチンプログラムのフローチャートを説明する。S37により共通鍵K2の記憶があるか判定され、ない場合にはリターンする。後述のS45によりK2が記憶されている場合には、S37により共通鍵K2の記憶があると判定されて制御がS38へ進む。S38では、K2で暗号化した検索クエリ(トラップドア)でブロックチェーン上の暗号化インデックスを検索する処理が行われる。その検索を行なった結果、入手したい個人情報があるか否かがS39により判定される。入手したい個人情報がないと判定された場合にはリターンするが、入手したい個人情報があると判定された場合にはS40により、その入手希望個人情報の電子IDが記憶される。
【0049】
次に、
図6及び
図7(A)に基づいて、S29に示されたスマートコントラクト処理のサブルーチンプログラムのフローチャートを説明する。S42により検索希望個人情報があるか否か判定される。この判定は、例えば、未だ検索していない個人情報主のスマートコントラクトと順次交渉して条件が合致した場合にその個人情報主の個人情報を検索希望個人情報と判定する。S42により検索希望個人情報がないと判定された場合は、S46により入手希望個人情報の記憶があるか否か判定され、ないと判定された場合には制御が
図7(A)のS55へ進み、PC資源(計算資源)の貸与契約が成立しているか否か判定され、成立していないと判定された場合にはS56により発注契約が成立しているか否か判定され、成立していないと判定された場合にはS57により売買契約が成立しているか否か判定され、成立していないと判定された場合にはリターンする。
【0050】
S42により検索希望個人情報があると判定された場合には制御がS43へ進み、共通鍵K2を個人情報主に要求する。具体的には、検索希望個人情報の個人情報主のブロックチェーン上でのアドレス宛てに自身のアドレス及び属性証明書(Attribute Certificate)を送信して共通鍵K2を要求する。S44によりK2の返信があったか否か判定し、あるまで待機する。個人情報主または個人情報主のスマートコントラクトは、送信されてきた属性証明書を確認してK2を返信してよいか否か判定し、返信して良いと判定した場合にK2を返信する。その個人情報主からK2の返信があった段階で制御がS45へ進み、返信されたK2を記憶した後、制御がS54へ移行する。S54では、その成立した契約をトランザクションとしてブロックチェーンに記憶する処理がなされる。この場合は、返信した個人情報主のアドレスから返信を受信したユーザのアドレスへインデックスの暗号化に用いている共通鍵K2が配布された旨の契約がブロックチェーンに記憶される。
【0051】
S46により入手希望個人情報の記憶があると判定された場合は制御がS47へ進み、入手希望個人情報を個人情報主に要求する処理が成される。具体的には、入手希望個人情報の個人情報主のブロックチェーン上でのアドレス宛てに自身のアドレス及び属性証明書を送信して入手希望個人情報を要求する。それを受けたパブリックチェーンのユーザ端末では、スマートコントラクトが属性証明書を確認すると共に個人情報の提供条件が合致するか否か判定し、個人情報を提供してよいと判定した場合に(S16でYES)、提供する個人情報の電子ID及び個人情報の提供に合意する署名を返信すると共に、提供する個人情報の暗号化に使用した共通鍵K1を提供相手の公開鍵で暗号化して返信する(S20参照)。
【0052】
その返信があった場合には、S48により個人情報主からの返信があったと判定されて制御がS49に進み、返信されてきた暗号化共通鍵であるE
PK(K1)を自身の秘密鍵SKで復号化する演算、すなわち、D
SK(E
PK(K1))を行ってK1を算出する。次に、S50により、個人情報主から返信された電子IDと署名を認定事業者17のサーバ18へ送信する処理が行われる。それを受けた認定事業者17のサーバ18は、送信されてきた署名を確認した上で、受信した電子IDに基づいて個人情報DB29(
図2(B)参照)を検索し、受信した電子IDに対応付けて記憶している暗号化個人情報E
K1(個人情報)を読出して返信する。
【0053】
その返信を受信すればS51によりYESと判定されて制御がS52へ進み、その返信された暗号化個人情報であるEK1(個人情報)をS49で算出されたK1により復号化する演算、すなわち、DK1(EK1(個人情報))を行って平文の個人情報を得る。その個人情報をS53により記憶する。その後S54に進み、その個人情報の提供契約をトランザクションとしてブロックチェーンに記録するための処理がなされる。
【0054】
次に、パブリックチェーンのユーザ端末との間でPC資源(計算資源)の貸与契約が成立すれば(S15でYES)、S55によりYESと判定されて制御がS58へ進み、PC資源(計算資源)の借用処理が行われる。その後制御がS54へ移行し、その貸借契約をトランザクションとしてブロックチェーンに記録するための処理がなされる。パブリックチェーンのユーザ端末との間で発注契約が成立すれば(S17でYES)、S56により発注契約が成立したと判定されて制御がS59へ進み、その発注に対する受注を記憶する処理が行われる。その後制御がS54へ移行し、その受注契約をトランザクションとしてブロックチェーンに記録するための処理がなされる。
【0055】
パブリックチェーンのユーザ端末との間で売買契約が成立すれば(S15でYES)、S57によりPC資源(計算資源)の貸与契約が成立したと判定されて制御がS60へ進み、販売対象を提供するための処理が行われる。その後制御がS54へ移行し、その売買契約をトランザクションとしてブロックチェーンに記録するための処理がなされる。なお、以上説明したスマートコントラクト処理において、スマートコントラクトに基づいたプライベートチェーンユーザ端末16での判断(例えば、S42、S46、S55、S56、S57)のみに基づいて行為(例えば、S42、S47、S58、S56、S60)を執行するのではなく、当該スマートコントラクトの所有者の同意を得た上で行為を執行するようにしてもよい。この所有者の同意は、以降記載しているスマートコントラクトによる契約の実行に際しても行なうようにしてもよい。
【0056】
次に、
図7(B)に基づいて、S31に示された機械学習処理のサブルーチンプログラムのフローチャートを説明する。S63により、個人情報主を特定できない形で記憶している膨大な個人情報を学習用データにする処理が行われる。この機械学習に採用されている学習アルゴリズムとしては、例えば、教師あり学習としての回帰や識別、教師なし学習としてのモデル推定やデータマイニング、中間的手法としての強化学習や深層学習等、種々のものが用意されている。
【0057】
次に、S64により、借用中のPC資源(計算資源)を利用して学習用データによる機械学習を行う。例えば、教師あり学習としての回帰の場合は、入力情報(ベクトルx)と正解情報yとからなる大量のデータセットを訓練データ(学習用データ)にする。教師あり学習の場合、入力xを正解yに写像する関数ci(x)(ci:x→y)を学習するものであるため、学習済みモデルは関数ciを含むものとなる。なお、機械学習手段34が行う機械学習は、教師あり学習に限定されるものではなく、モデル推定やパターンマイニング(データマイニング)等の教師なし学習、教師あり学習と教師なし学習との中間的手法である半教師あり学習や強化学習や深層学習等、どのようなものであってもよい。
【0058】
S64による機械学習によって一般的学習済みモデルが生成され、それを記憶する(S65)。この一般的学習済みモデルは、多数のユーザの個人情報であって個人情報主を特定できない形で記憶している膨大な個人情報を学習用データとしたモデルであり、多数のユーザに広く適用できる平均的な学習済みモデルである。
【0059】
次に、S66により受注記憶があるか否か判定され、ない場合にはリターンするが、ある場合にはS67により、人工知能の受注か否か判定される。人工知能の受注でない場合にはリターンするが、人工知能の受注である場合には、S68により、発注者のアドレス宛てに個人情報を要求する処理がなされる。発注者から個人情報の返信があればS69によりYESと判定されてS70に進む。S70では、返信された個人情報に基づいて一般的学習済みモデルをパーソナライズしてパーソナライズド学習済みモデルを生成する処理がなされる。この一般的学習済みモデルをパーソナライズしてパーソナライズド学習済みモデルを生成する処理については、特許第6432859号公報に記載されている。パーソナライズに必要な個人情報は、ブロックチェーンを利用して収集されるため、ブロックチェーンの匿名性を担保して収集されることにより、プライバシーの問題を極力回避できる利点がある。次に、S71により、発注者のアドレス宛てにパーソナライズド学習済みモデルが送信される。
【0060】
次に、
図8に基づいて、S32に示されたAIスマートコントラクト生成処理のサブルーチンプログラムのフローチャートを説明する。S80により、個人情報主を特定できない形で記憶している膨大な個人情報の中から契約(法律行為)に関する個人情報を抽出して学習用データにする処理がなされる。次に、S81により、借用中のPC資源(計算資源)を利用して学習用データによる機械学習が行われる。S80及びS81の処理は、前述のS63及びS64で説明したものと同様であり、ここでは説明の繰り返しを省略する。
【0061】
次に、S82により、一般的AIスマートコントラクトの学習済みモデルを生成して記憶する処理が行われる。次に、S83により、シミュレーション学習処理が実行される。このシミュレーション学習処理は、本来多数の人間同士が行っている契約の検証、条件確認、執行、実行、交渉等の法律行為を、多数のAIスマートコントラクト群に肩代わりさせてコンピュータ内で仮想的に実行(シミュレーション)させ、各AIスマートコントラクトに対し成果に応じた報酬を与えて強化学習を行うものである。現実世界での強化学習ではなくコンピュータ内でのシミュレーションによる強化学習のため、短時間に膨大な強化学習が可能となる利点がある。強化学習とは、ある環境の状態に置かれたエージェントが、行動を選択したときに与えられる報酬をもとに、初期状態からゴールまでの累積報酬を最大化するような方策を獲得する仕組みのことである。強化学習ではAIの一種であるソフトウェアエージェント(以下「エージェント」という)と環境が相互作用することで学習を進めていく。ここにエージェントとはAIの一種であり、ユーザやソフトウェアなどと通信しながら自らがある程度の判断能力を持って自律的にふるまい永続的に活動するソフトウェアのことである。エージェントが環境に対して或る行為aを行うことによりその環境の状態sが変化し或る目的状態に達することにより報酬rがエージェントに与えられる。エージェントは、この報酬rを最大化することを目的として状態sを入力として行為aを出力する関数を学習する。
【0062】
強化学習は次の単純なステップを繰り返すことで時間が進行していく。
1 エージェントは環境から受け取った観測o(あるいは直接、環境の状態s)を受け取り、方策πに基いて環境に行為aを返す。
2 環境はエージェントから受け取った行為aと現在の状態sに基いて、次の状態s′に変化し、その遷移に基いて次の観測o′と、報酬rと呼ばれる直前の行動の良し悪しを示す1つの数(スカラー量)をエージェントに返す。
3 時間の進行:t←t+1
ここで←は代入操作を表す。
強化学習として、例えば、アルファゼロ型強化学習アルゴリズムを用いてもよい。このアルファゼロ型強化学習アルゴリズムは、DQN(Deep Q-Network)などのアルゴリズムとことなり、探索にモンテカルロ木探索(Monte Carlo tree search,MCTS)を用い、価値(Value)と方策(Policy)をすべてニューラルネットワークに予測させ、木探索によるセルフプレイで得られた経験のみで予測を修正する構成になっている。従来のアルファ碁に比べ、価値を予測するバリューネットワークと方策を予測するポリシーネットワークが1つのニューラルネットワークに統合され、マルチタスク学習により予測精度の向上が図られている。また、ニューラルネットワークの性能向上により、木探索でのプロセッサレイアウト(報酬を貰うまで探索木を伸ばす)処理が不要となり、より高速に探索を行える。さらに、進化計算(evolutionary computation)、遺伝的アルゴリズム(genetic algorithm)、敵対的生成ネットワーク(Generative adversarial networks)を用いるようにしてもよい。
【0063】
次にS84により、AIスマートコントラクトの受注記憶があるか否か判定され、ない場合にはリターンする。前述のS59により受注が記憶されている場合にはS84によりYESと判定されて制御がS85へ進み、記憶されている受注がシミュレーション学習済みAIスマートコントラクトの受注であるか否か判定される。シミュレーション学習済みAIスマートコントラクトの受注でない場合には、パーソナライズドAIスマートコントラクト学習済みモデルの受注であり、その場合には制御がS86へ進み、発注者のアドレス宛てに契約(法律行為)に関する個人情報を要求する処理が行われる。発注者から個人情報の返信があった段階でS87によりYESと判定されて制御がS88へ進む。
【0064】
S88では、返信された契約(法律行為)に関する個人情報に基づいて一般的AIスマートコントラクトの学習済みモデルをパーソナライズしてパーソナライズドAIスマートコントラクト学習済みモデルを生成する処理が行われる。この一般的AIスマートコントラクトの学習済みモデルをパーソナライズしてパーソナライズドAIスマートコントラクト学習済みモデルを生成する処理については、特許第6432859号公報に記載されている。そのパーソナライズド学習済みモデルがS89により発注者のアドレスへ送信される。
【0065】
一方、シミュレーション学習済みAIスマートコントラクトの受注の場合にはS85によりYESと判定されて制御がS90へ進み、シミュレーション学習済みAIスマートコントラクトが発注者のアドレスへ送信される。
【0066】
次に、
図9(A)に基づいて、S83に示されたシミュレーション学習処理のサブルーチンプログラムのフローチャートを説明する。S334により、シミュレーションの入力があったか否か判定され、ない場合にはリターンする。このシミュレーションは、プライベートチェーン2のユーザ端末によって入力されるものであり、例えば、政府が採用しようとしている政策や法律(例えば、消費増税に伴う軽減税率、改正出入国管理法、イギリスのEU(European Union)からの離脱、ベーシックインカムの部分的または全面的採用、日本国憲法9条の改正等)が採用されたと仮定した場合における、株取引や先物取引等の投資市場での取引シミュレーション、会社経営シミュレーション、または消費行動シミュレーション等である。さらには、新商品(金融商品や生命保険を含む)や新サービスの各種メディアによるプロモーションのシミュレーション等でもよい。S334によりシミュレーションの入力があったと判定されれば制御がS335に進み、AIスマートコントラクト群生成処理が実行される。
【0067】
このAIスマートコントラクト群生成処理のサブルーチンプログラムのフローチャートを
図9(B)に基づいて説明する。S344により、借用中のPC資源(計算資源)を利用して、入力されたシミュレーションにマッチするペルソナ群を設定する処理が行われる。ペルソナとは、一般的には、企業や商品やサービスの典型的なターゲットとなる人物像を仮想の人物として定義したものである。本実施形態では、ペルソナとは、シミュレーション内容がターゲットとする典型的な人物像を仮想の人物として定義したものである。例えば、前述の消費増税に伴う軽減税率下での消費行動シミュレーションの場合には、一般消費者に相当するペルソナであって、性別、年代別、地域別、年収別等にグルーピングした各グループ毎にペルソナとして設定する。
【0068】
設定されるペルソナの数は、グループに属するユーザ数に比例した数にする。例えば、一般消費者の年代別人口分布が10代5%、20代5%、30代10%、40代10%、50代20%、60代20%、70代20%、80代5%、90代5%、の場合に、10代を代表するペルソナ数が1、20代を代表するペルソナ数が1、30代を代表するペルソナ数が2、40代を代表するペルソナ数が2、50代を代表するペルソナ数が4、60代を代表するペルソナ数が4、70代を代表するペルソナ数が4、80代を代表するペルソナ数が1、90代を代表するペルソナ数が1と、設定する。
【0069】
次に、S345により、借用中のPC資源(計算資源)を利用して、各ペルソナに属するユーザ群を選定する処理が行われる。次に、S346により、ペルソナ毎に属するユーザ群をグループピングしてグループ毎にユーザ群の取引データをブロックチェーンから収集する処理が行われる。例えば、前述の消費増税に伴う軽減税率下での消費行動シミュレーションの場合には、ユーザ群を、性別、年代別、地域別、年収別等にグルーピングし、そのグループ毎にユーザ群の取引データをブロックチェーンから収集する。このS345、S346におけるユーザ群の選定及びユーザ群の取引データの収集は、例えば、インターネットアンケート調査会社が保有するアンケート回答用モニター会員のデータベースを利用するのが有用である。インターネットアンケート調査会社では、性別,年代別,居住地,未婚,既婚,職業,世帯年収等の属性に対応付けてアンケート回答用モニター会員の連絡先(メールアドレス等)をデータベースに記憶しており、その属性別のモニター会員データを利用する。後述するS145及びS146、S586及びS587、S622及びS623等においても同様に、インターネットアンケート調査会社が保有するアンケート回答用モニター会員のデータベースを利用するのが有用である。次に、S347により、借用中のPC資源(計算資源)を利用して、取引データを学習データとして機械学習を行ってペルソナ毎に学習済みのAIスマートコントラクトを生成する処理が行われる。このAIスマートコントラクトは、対応するペルソナの設定数と同じ数だけ生成される。これにより、シミュレーションを実行するための環境が整い、その環境内でシミュレーションを行う。
【0070】
図9(A)に戻り、上記のようにして生成された各AIスマートコントラクトが行為aに従った契約(法律行為)を執行する(S336)。この「行為a」とは、S338による強化学習の結果としての行為aである。次に、S337により、各AIスマートコントラクト同士で成立した契約をブロックチェーンに記録する処理が行われる。
【0071】
次に、S338により、借用中のPC資源(計算資源)を利用して、成立した契約内容に基づいて報酬rを算出し、TD学習により最適政策π*に従った行為aを求める処理が行われる。例えば、前述の消費増税に伴う軽減税率下での消費行動シミュレーションの場合には、(増税前の出費額-増税後の出費額)が小さい値ほど高い報酬rを与える。そして、S339によりシミュレーションが終了したか否か判定され、未だ終了していない場合には制御がS336へ戻り、S337→S338→S339→S336を繰り返し巡回して強化学習を進行させる。シミュレーションが終了した段階でS339によりYESと判定されて制御がS340へ進み、1番高い報酬rを得たAIスマートコントラクトを記憶した後リターンする。なお、1番高い報酬rを得たAIスマートコントラクトに限定されるものだはなく、例えば上位5%のAIスマートコントラクトを記憶してもよい。また、S337によるブロックチェーンへの記録を必ずしも行わなくてもよく、その場合には、前述した連携タイプにおいては、S335、S336、S340及びS347における「AIスマートコントラクト」を「連携用AI」と変更する。つまり、コンピュータ内でのシミュレーションの場合、現実世界での契約(法律行為)の執行を伴わないため、ブロックチェーンへの記録を行わない場合には、わざわざスマートコントラクトを用いる必要がなく、各連携用AI同士が行為aを実行して強化学習を行えば事足りるためである。強化学習を終了し実際の引用段階では、学習済み連携用AIがスマートコントラクトと連携して契約の執行を行ってブロックチェーンに記録するようにすればよい。
【0072】
次に、
図10に基づいて、S33に示されたスマートコントラクト信託請負い処理のサブルーチンプログラムのフローチャートを説明する。S94により、スマートコントラクト信託の受注記憶があるか否か判定され、受注記憶がないと判定された場合にはリターンする。前述のS59により記憶されている受注記憶の内容を確認してスマートコントラクト信託の受注である場合にはS94によりYESと判定されて制御がS95へ進む。S95では、発注者のアドレス宛てに契約(法律行為)に関する個人情報を要求し、発注者から個人情報が返信された段階でS96によりYESと判定されて制御がS97へ進む。
【0073】
S97では、返信された契約(法律行為)に関する個人情報に基づいて一般的AIスマートコントラクトの学習済みモデルをパーソナライズしてパーソナライズドAIスマートコントラクト学習済みモデルを生成する処理が行われる。この一般的AIスマートコントラクトの学習済みモデルをパーソナライズしてパーソナライズドAIスマートコントラクト学習済みモデルを生成する処理については、特許第6432859号公報に記載されている。
【0074】
次に、S98により、発注者のアドレスとパーソナライズドAIスマートコントラクト学習済みモデルとを対応付けて記憶する処理が行われる。この記憶したパーソナライズドAIスマートコントラクト学習済みモデルを用いて発注者に対し信託請負い処理を行う(S99)。次に、S100により、パーソナライズドAIスマートコントラクト学習済みモデルの強化学習処理が実行される。
【0075】
図11(A)に基づいて、S100に示されたパーソナライズドAIスマートコントラクト学習済みモデルの強化学習処理のサブルーチンプログラムのフローチャートを説明する。強化学習において、状態stで行為atを行なうときの価値をQ(st,at)とした場合のQ値を推定する方法として、環境をモデル化する知識、すなわち、状態遷移確率と報酬の確率分布が与えられている場合はモデルベースの手法を用いればよいが、環境モデルが未知の場合、TD(Temporal Difference)学習を用いる。先ず、環境の探索が必要なため、ε-greedy法を用いる。探索の初期はいろいろな行為を試し、落ち着いてくると最適な行為を多く選ぶように、温度の概念を導入する。温度をTとして、次の式で表される確率に従って行為を選ぶ。
【0076】
P(a|s)={exp(Q(s,a)/T)}/{Σexp(Q(s,b)/T} (なおΣの下にb∈Aが記載されており、上記式ではその記載を省略している)
ここに、aは行為、Q(s,a)は状態sで行為aを行なうときの価値、
【0077】
Tをアニーリング(焼き鈍し)における温度と呼び、高ければ行為を等確率に近い確率で選択し、低ければ最適なものに偏らせる。学習が進むにつれて、Tの値を小さくすることで、学習結果が安定する。このようなQ値の推定方法は、前述した強化学習及び後述する強化学習全てに適用してもよい。また、強化学習等の機械学習を行うコンピュータとしては、ノイマン型の一般的なコンピュータを用いているが、ニューラル・ネット・プロセッサー(NNP)を用いてもよい。NNPのチップ上には本物のニューロンをモデルにした「人工ニューロン」が多数搭載されており、各ニューロンはネットワークでそれぞれ連携し合う。また、「量子アニーリング方式」を採用した量子コンピュータを用いてもよい。特に、「量子アニーリング方式」を採用した量子コンピュータを用いることにより、機械学習における最適化計算の所要時間を大幅に短縮できる。
【0078】
S105により、パーソナライズドAIスマートコントラクト学習済みモデルによる信託請負い処理を行った結果に対する評価を信託者から受信する。次に、S106により、受信した評価に基づいて報酬rを算出する処理が行われる。次に、S107により、借用中のPC資源(計算資源)を利用して、TD学習により最適政策π*に従った行為aを求める処理が行われる。次に、S108により、行為aに従ったコントラクトを信託者の代理として実行する。その結果に対する評価を信託者から受信することにより(S105)、S106~S108の処理が実行される。
【0079】
次に、
図11(B)に基づいて、コンソーシアムチェーン3のノードを構成するユーザ端末のメインルーチンプログラムのフローチャートを説明する。S114によりIoTセンサデータ集計処理が実行され、S115によりスマートコントラクト処理が実行され、S116によりシミュレーション処理が実行され、S117によりブロックチェーン処理が実行される。ブロックチェーン処理の具体的内容は、
図2(A)に基づいて前述したとおりである。
【0080】
次に、
図12(A)に基づいて、S114に示されたIoTセンサデータ集計処理のサブルーチンプログラムのフローチャートを説明する。S120により、IoTセンサデータを種類毎、期間毎、地域毎等に分類してグルーピングする処理が行われる。この処理は、IoTセンサデータばかりでなくワイヤレスセンサネットワークからのデータも含めて処理される。次に、S121により、グルーピングされた各データの価値を決定する処理が行われる。この決定された価値に応じて、データの提供に対する対価(トークンの量)が対応するデータ毎にスマートコントラクトとしてコード化される。次に、S122により、グルーピングされた各データをブロックチェーンに記録する処理が行われる。
【0081】
次に、
図13(B)に基づいて、S115に示されたスマートコントラクト処理のサブルーチンプログラムのフローチャートを説明する。S150により、データの入手希望者との売買契約が成立したか否か判定される。この判定は、スマートコントラクトとしてコード化されたデータの提供に対する対価(トークンの量)について互いの条件が合致することにより、自動的にS150によりYESと判定される。S150によりNOと判定された場合は制御がS151へ進み、PC資源の貸与契約が成立したか否か判定され、成立していない場合にはリターンする。
【0082】
S150によりYESと判定された場合は制御がS152へ進み、入手希望者のアドレスにデータを送信し、その対価としてのトークンを取得する処理が行われる。その成立した契約がS153によりトランザクションとしてブロックチェーンに記録される。一方、PC資源(計算資源)の貸与契約が成立した場合には、制御がS154へ進み、PC資源(計算資源)の借用処理を行い、その契約がS153によりトランザクションとしてブロックチェーンに記録される。
【0083】
次に、
図12(B)に基づいて、S116に示されたシミュレーション処理のサブルーチンプログラムのフローチャートを説明する。このシミュレーション処理は、本来多数の人間同士が行っている契約の検証、条件確認、執行、実行、交渉等の法律行為を、多数のAIスマートコントラクト群に肩代わりさせてコンピュータ内で仮想的に実行(シミュレーション)させ、或る条件下においてどのようなシミュレーション結果になるかを検証するものである。上記「或る条件下」の具体例としては、政府が採用しようとしている政策や法律(例えば、消費増税に伴う軽減税率、改正出入国管理法、イギリスのEU(European Union)からの離脱、ベーシックインカムの部分的または全面的採用、日本国憲法9条の改正等)、マーケティング関連の条件(例えば、新商品(金融商品や生命保険を含む)や新サービスの価格や対価の設定、各種メディアによるプロモーション効果等)、投資市場関連の条件(例えば、先物取引における気象条件、株式市場における金融引き締め政策等)等が、考えられる。
【0084】
S134により、シミュレーションの依頼があったか否か判定され、ない場合にはリターンする。S134によりシミュレーションの依頼があったと判定されれば制御がS135に進み、AIスマートコントラクト群生成処理が実行される。
【0085】
このAIスマートコントラクト群生成処理のサブルーチンプログラムのフローチャートを
図13(A)に基づいて説明する。S144により、借用中のPC資源(計算資源)を利用して、依頼されたシミュレーションにマッチするペルソナ群を設定する処理が行われる。ペルソナとは、一般的には、企業や商品やサービスの典型的なターゲットとなる人物像を仮想の人物として定義したものである。本実施形態では、ペルソナとは、シミュレーション内容がターゲットとする典型的な人物像を仮想の人物として定義したものである。例えば、前述の消費増税に伴う軽減税率のシミュレーションの場合には、一般消費者に相当するペルソナであって、性別、年代別、地域別、年収別等にグルーピングした各グループ毎にペルソナとして設定する。
【0086】
設定されるペルソナの数は、グループに属するユーザ数に比例した数にする。例えば、一般大衆の年代別人口分布が10代5%、20代5%、30代10%、40代10%、50代20%、60代20%、70代20%、80代5%、90代5%、の場合に、10代を代表するペルソナ数が1、20代を代表するペルソナ数が1、30代を代表するペルソナ数が2、40代を代表するペルソナ数が2、50代を代表するペルソナ数が4、60代を代表するペルソナ数が4、70代を代表するペルソナ数が4、80代を代表するペルソナ数が1、90代を代表するペルソナ数が1と、設定する。
【0087】
次に、S145により、借用中のPC資源(計算資源)を利用して、各ペルソナに属するユーザ群を選定する処理が行われる。次に、S146により、ペルソナ毎に属するユーザ群をグループピングしてグループ毎にユーザ群の取引データをブロックチェーンから収集する処理が行われる。例えば、前述の消費増税に伴う軽減税率のシミュレーションの場合には、ユーザ群を、性別、年代別、地域別、年収別等にグルーピングし、そのグループ毎にユーザ群の取引データをブロックチェーンから収集する。次に、S147により、借用中のPC資源(計算資源)を利用して、取引データを学習データとして機械学習を行ってペルソナ毎に学習済みのAIスマートコントラクトを生成する処理が行われる。このAIスマートコントラクトは、対応するペルソナの設定数と同じ数だけ生成される。これにより、シミュレーションを実行するための環境が整い、その環境内でシミュレーションを行う。
【0088】
図12(B)に戻り、上記のようにして生成された各AIスマートコントラクトが行為aに従った契約(法律行為)を執行する(S136)。この「行為a」とは、S138による強化学習の結果としての行為aである。次に、S137により、各AIスマートコントラクト同士で成立した契約をブロックチェーンに記録する処理が行われる。さらに、シミュレーションの進行による状況の変遷状況をブロックチェーンに記録する。例えば、前述の消費増税に伴う軽減税率のシミュレーションの場合には、シミュレーションの進行に伴って内需や景気がどのように変化したかをブロックチェーンに記録する。
【0089】
次に、S138により、借用中のPC資源(計算資源)を利用して、成立した契約内容に基づいて報酬rを算出し、TD学習により最適政策π*に従った行為aを求める処理が行われる。そして、S139によりシミュレーションが終了したか否か判定され、未だ終了していない場合には制御がS136へ戻り、S137→S138→S139→S136を繰り返し巡回して強化学習を進行させる。シミュレーションが終了した段階でS139によりYESと判定されて制御がS140へ進み、シミュレーション結果を導出する処理が行われた後にリターンする。
【0090】
シミュレーション結果を導出する処理の具体例としは、例えば、消費増税に伴う軽減税率の採用に伴う景気変動のシミュレーションの場合には、シミュレーションの結果景気動向指数の各項目がどのように変動したかを導出する。株式市場における金融引き締め政策に伴うシミュレーションの場合には、シミュレーションの結果株式市場がどのように変動したかを導出する。また、消費増税に伴う軽減税率の具体的態様(例えば、なにを軽減税率対象品目にするかや各軽減税率対象品目毎の軽減税率等)を複数態様に変動させながら最適な軽減税率の態様を決定するという、シミュレーション最適化の手法を採用してもよい。この場合、最適な軽減税率の態様として、(税収増加率(%)+景気動向指数としてのディフュージョン・インデックス(DI)/50)を期待値Eとし、その期待値Eを最大化するシミュレーション結果を得るようにする。シミュレーションにおけるコントロールパラメータ(軽減税率の態様)をθとし、シミュレーションの結果をY(θ)とし、maxE[Y(θ)]におけるθを求める。このようなシミュレーションを最適化する具体的手法として、例えば、メタヒューリスティックなアルゴリズムとして粒子群最適化法(Particle Swarm Optimization:PSO)、目的関数の解析的表現が困難な場合や目的関数の微分に関する情報を用いることが出来ない状況下で最適解を求めるDFO(derivative free optimization)等を用いる。なお、S137によるブロックチェーンへの記録を必ずしも行わなくてもよく、その場合には、前述した連携タイプにおいては、S135、S136及びS147における「AIスマートコントラクト」を「連携用AI」と変更する。つまり、コンピュータ内でのシミュレーションの場合、現実世界での契約(法律行為)の執行を伴わないため、ブロックチェーンへの記録を行わない場合には、わざわざスマートコントラクトを用いる必要がなく、各連携用AI同士が行為aを実行して強化学習を行えば事足りるためである。
[変形例]
【0091】
(1) 認定事業者17は、ユーザの暗号化個人情報EK1(個人情報)を記憶しているが、それに代えて、暗号化個人情報であるEK1(個人情報)を直接ブロックチェーンに記録するようにしてもよい。
【0092】
(2)
図2の取引Cや取引Fのような個人情報以外の取引データも、個人情報と同様に鍵K1等で暗号化してブロックチェーンに記録してもよい。
【0093】
(3) 前述の説明では各ブロックチェーンネットワーク2、3、4のノード19の動作処理を示したが、プライベートチェーン2のノード19について示した動作処理を他のブロックチェーンネットワーク3、4のノード19で行なってもよく、コンソーシアムチェーン3のノード19について示した動作処理を他のブロックチェーンネットワーク2、4のノード19で行なってもよく、パブリックチェーン4のノード19について示した動作処理を他のブロックチェーンネットワーク2、3のノード19で行なってもよい。この変形例は、後述する実施態様においても同様に適用してもよい。
【0094】
(4) 借用したPC資源(計算資源)を利用してブロックチェーンにおけるマイニング(記帳権の競争)を行なうようにしてもよい。その際、第1実施形態のように時間単価でPC資源(計算資源)を貸与するようにしてもよいが、マイニング(記帳権の競争)に成功したマイナーが得られる利益(トークン等)の何割かをPC資源(計算資源)の貸与者に分配(配当)するようにしてもよい。その配当割合(配当量)は、PC資源(計算資源)の貸与量(PCの貸与台数×貸与時間等)に比例するように制御する。
【0095】
(5) 前述したPC資源(計算資源)や自家発電の電力等の貸与(提供)対象を借用(利用)して何らかのプロジェクトを遂行するようにしてもよい。プロジェクトの具体例としては、研究開発(例えば、人工知能開発、機械学習、人ゲノム解析、新製品開発、新薬開発等)、レアメタルや石油や天然ガスや海洋資源等の探査・発掘、宇宙開発等が、考えられる。その際、第1実施形態のように貸与(提供)対象の貸与量(提供量)に応じた対価(トークン等)を貸与者(提供者)が取得するようにしてもよいが、プロジェクトの成功によってプロジェクト遂行者(個人または法人または団体)が得られる利益の何割かを資源貸与者(資源提供者)に分配(配当)するようにしてもよい。その配当割合(配当量)は、資源の貸与量(提供量)に比例するように制御する。
【0096】
さらに、資源貸与者(資源提供者)が配当自体を受け取るのではなく、配当を受け取る権利(以下「配当享受権」という)を取得するようにしてもよい。この配当享受権は、例えば、プロジェクト遂行者が発行したトークンの形で貸与者(提供者)が取得するように制御してもよい。そして、貸与者(提供者)は、取得した配当享受権(トークン)を、そのときの相場に応じた価格(トークン)で他人に譲渡できるように制御してもよい。このように構成することにより、配当享受権(トークン)を、あたかも株式市場におけるセカンダリーマーケットでの株取引のように運用することができる。
【0097】
(6) S71では生成されたパーソナライズド学習済みモデルを発注者のアドレス宛てに送信して納品しているが、それに加えてまたはその代わりに、生成されたパーソナライズド学習済みモデルを活用して発注者にパーソナライズされたサービスを提供するようにしてもよい。
【0098】
(7) 前述の説明ではスマートコントラクトにより契約の検証、条件確認、執行、実行、交渉を自動化しているが、契約(取引等の法律行為)の締結及び執行を行う前にユーザ本人の承諾を求めるように制御してもよい。また、全ての契約(取引等の法律行為)についてユーザ本人の承諾を求めるのではなく、予め定められた重要な契約(取引等の法律行為)か否かを判定し、重要な契約(取引等の法律行為)であると判定された場合にユーザ本人の承諾を求めるように制御してもよい。さらに、締結及び執行が急がれる契約(取引等の法律行為)であるか否かを判定し、急がれる契約(取引等の法律行為)であると判定された場合には、ユーザ本人の承諾を得ることなく契約(取引等の法律行為)の締結及び執行する制御を行い、後からユーザ本人に報告するように制御してもよい。この変形例は、後述する実施態様においても同様に適用してもよい。
【0099】
(8) 各ブロックチェーンのノード19を構成するユーザ端末16等及び各種サーバで動作する前述したプログラムは、所定のウェブサイト等からダウンロードしてインストールしてもよいが、例えばCD-ROM99等の記録媒体(非一時的(non-transitory)な記録媒体)に記録させて流通させ、そのCD-ROM99等を購入した者がプログラムをユーザ端末16及び各種サーバにインストールしてもよい(
図60参照)。
【0100】
(9) 前述の説明では集中型オラクル21を採用しているが、ネットワーク全体で分散して管理される分散型オラクルを採用してもよい。ネットワーク全体で分散している複数のオラクルが収集した情報を寄せ集めて平均的な情報を抽出し、その平均的情報を正しい情報とみなしてブロックチェーン内に取込みスマートコントラクトに用いる。これは、ジェームズ・スロウィッキーが書籍『みんなの意見は案外正しい』で提唱した「集団において情報を寄せ集めることで、その集団が出す結論は集団の中の個人の誰が考えるよりもよい結論を導くことができる」という理論に基づいたものである。そして、平均的情報に近い情報を収集したオラクルに対しトークン等の報酬を与えることにより、分散型オラクルを運用するインセンティブを与える。
【0101】
まとめると、ネットワーク上で分散している複数のオラクルが収集した情報を寄せ集めて平均的な情報を抽出する抽出手段と、該抽出手段により抽出された平均的情報を採用する採用手段と、オラクルに対し報酬を与える報酬付与手段とを備え、前記複数のオラクルは、第1オラクルと第2オラクルとを含み、前記報酬付与手段は、前記第1オラクルよりもより前記平均的情報に近い情報を収集した前記第2オラクルにより多くの報酬を付与する。なお、第1オラクルに付与する報酬は0であってもよく、また、マイナスであってもよい。
【0102】
(10) 前述のS13のK2配布契約の成立及びS16の個人情報の提供契約の成立のうちの一方または双方の判定について、個人情報主本人の意思を特定する情報(以下「意思特定情報」という)に従って成立させるか否判定する機能を設けてもよい。具体的には、個人情報主が、実店舗や電子ショッピングモール等において自分にマッチする商品やサービスをレコメンドしてもらうときに、自身が所持する携帯端末(スマートフォンまたはICカード等)の特定情報を読取らせると共に契約を成立させてよい旨の暗証番号を入力することによって、特定情報及び暗証番号からなる意思特定情報を当該個人情報主のスマートコントラクトに通知し、その意思特定情報に従ってスマートコントラクが判定する。
【0103】
このようにすることにより、ユーザは、SNS等の事業者から取戻して自己管理化に置いた個人情報を自分の意思によって自分のために活用することができる。
[第2実施形態]
【0104】
次に、第2実施形態を説明する。この第2実施形態は、ブロックチェーンを利用して記録した個人情報に対し、暗号化技術を応用することにより、自己の個人情報を削除する個人情報削除権(いわゆる忘れられる権利)の必要性に応えるものである。ブロックチェーンは一旦記録した情報が改竄不可能または改竄が極めて困難である点が特徴であり、そのために、一旦記録した情報の削除が不可能または極めて困難である(これを以下「削除不可能性」という)。一方、欧州におけるGDPR(General Data Protection Regulation)では、記録した個人情報をその個人情報主が削除できる個人情報削除権(いわゆる忘れられる権利)を保証することが要求されている。このGDPRの個人情報削除権の要請とブロックチェーンにおける削除不可能性とが真っ向から対立し二律背反するジレンマとなっている。つまり、この第2実施形態は、削除したい情報の削除権を保証する要請と削除不可能性とが二律背反するジレンマを解決するものである。その概要を
図14に基づいて説明する。
【0105】
図14(A)は削除権を行使していない通常状態を示しており、
図14(B)は削除権を行使して情報を解読不能化した状態を示している。
図14(A)を参照して、情報保持者(情報主ともいう)40が情報を2つの片割れ共通鍵KAとKBを用いて二重暗号化する。式で表せばE
KA(E
KB(情報))となる。次に、その暗号化情報であるE
KA(E
KB(情報))をブロックチェーン等に記録する。なお、片割れ共通鍵KAは秘匿状態で情報保持者40のユーザ端末等に記憶しておく。
【0106】
この状態で、情報要求者41が情報主40に対し情報を要求したときには、情報主40が、記録している暗号化情報であるEKA(EKB(情報))を鍵KAで復号する。式で表せば、DKA(EKA(EKB(情報))=EKB(情報)となる。そして、このEKB(情報)と片割れ共通鍵KBとを情報主40が情報要求者41へ送信する。
【0107】
それらを受信した情報要求者41は、受信したEKB(情報)を受信した片割れ共通鍵KBで復号する。式で表せば、DKB(EKB(情報))=情報 となる。これにより、情報要求者41は、平文の情報を得ることができる。
【0108】
次に、削除権を行使して情報を解読不能化した状態を
図14(B)に基づいて説明する。情報主40は、解読不能化したい情報の暗号化に用いた片割れ鍵KAとKBとのうちの一方KAを乱数R(≠KA)に更新する。次に、片割れ共通鍵KBを既に記憶している情報要求者41が情報主40に対し情報を要求したときには、情報主40が、記録している暗号化情報であるE
KA(E
KB(情報))を鍵R(乱数)で復号する。式で表せば、D
R(E
KA(E
KB(情報))となる。そして、このD
R(E
KA(E
KB(情報))を情報主40が情報要求者41へ送信する。
【0109】
それを受信した情報要求者41は、既に記憶している片割れ共通鍵KBでDR(EKA(EKB(情報))を復号する。式で表せば、DKB(DR(EKA(EKB(情報))))≠情報 となる。このように、解読不能化状態では、既に片割れ共通鍵KBを記憶している情報要求者41であっても平文の情報を得ることができず、削除したい情報の削除権を保証する要請と削除不可能性とが二律背反するジレンマを解決することができる。なお、ブロックチェーン等に記録する個人情報等の情報をコピー&ペーストできないようにコピー禁止処理を施しておれば、情報の削除権の保証はより完全なものとなる。なお、2つの鍵KA及びKBを用いた二重暗号に限定する必要はなく、3つ以上の鍵(n個の鍵)を用いた多重暗号を用いてもよい。この場合、n個の鍵のうち、少なくともいずれか1つの鍵を乱数Rに置換することにより、解読不能化状態となる。
【0110】
以上説明した第2実施形態の概要をより詳細に説明する。第1実施形態との共通点については説明の繰り返しを省略し主に相違点について説明する。
図15は第1実施形態における
図2に対応するものである。ブロックチェーン内の取引Iを参照し、この第2実施形態では、暗号化個人情報であるE
KA(E
KB(個人情報))を直接ブロック内に記録している。よって、第2実施形態では認定事業者17は不要である。ここに、KAとKBは片割れ共通鍵である。
【0111】
次に、
図16を参照し、プライベートチェーン2のノード19を構成しているユーザ端末とパブリックチェーン4のノードを構成しているユーザ端末16とのメインルーチンのフローチャートを説明する。このメインルーチンは、第1実施形態で示した動作処理のフローチャートを省略し、第1実施形態で示した動作処理に対し追加または変更する動作処理のフローチャートのみを示している。パブリックチェーン4のノードを構成しているユーザ端末16では、S160によりブロックチェーンへの個人情報記録処理が行われ、S161により記録解読不能処理が行われ、S162により個人情報提供処理が行われる。ライベートチェーン2のノード19を構成しているユーザ端末では、S170により個人情報入手処理が行われる。
【0112】
ブロックチェーンへの個人情報記録処理とは、個人情報をブロックチェーンに記録する処理である。記録解読不能処理とは、削除権を行使して情報を解読不能化にするための処理である。個人情報提供処理とは、パブリックチェーン4のユーザ端末16がプライベートチェーン2のユーザ端末に個人情報を提供する処理である。個人情報入手処理とは、プライベートチェーン2のユーザ端末がパブリックチェーンのユーザ端末16から個人情報を入手する処理である。
【0113】
図17(A)に基づいて、ブロックチェーンへの個人情報記録処理のサブルーチンプログラムのフローチャートを説明する。S174により、2つの乱数を生成する処理が行われる。例えば、DESの場合には、56ビットの乱数を2つ生成して、それら56ビット乱数を片割れ共通鍵KA及びKBとする。ADSの場合には、128ビットの乱数を2つ生成して、それら128ビット乱数を片割れ共通鍵KA及びKBとする。
【0114】
次に、S177において、EKA(EKB(個人情報))とEK2(インデックス+個人情報提供の対価)と暗号文識別子とをブロックチェーンに記録する処理が行われる。この暗号文識別子は、暗号化個人情報であるEKA(EKB(個人情報))を特定するための識別子であり、第1実施形態における電子IDに相当するものである。
【0115】
次に、S183により、KA及びKBと暗号文識別子とを対応付けてユーザ端末16のHDD12に記憶する。
【0116】
次に、
図17(B)に基づいて、記録解読不能処理のサブルーチンプログラムのフローチャートを説明する。S190により、ブロックチェーンに記録した暗号文(例えば、E
KA(E
KB(個人情報))等)のうち解読不能にしたい暗号文があるか否か判定される。ない場合にはリターンするが、解読不能にしたい暗号文がある場合には制御がS191に進み、その暗号文の暗号文識別子に対応付けて記憶している片割れ共通鍵KAをHDD12から検索する処理が行われる。
【0117】
次に、S192により、乱数Rが生成される。例えば、DESの場合には、56ビットの乱数を生成する。ADSの場合には、128ビットの乱数を生成する。次に、S193により、生成した乱数R=KA であるか否か判定される。生成した乱数RがHDD12に記憶されている片割れ共通鍵KAと同じであれば制御がS192に戻り、再度乱数を生成し直す。S193によりNOと判定されれば制御がS194へ進み、HDD12に記憶されている片割れ共通鍵KAをRに更新する処理が行われる。
【0118】
次に、
図18に基づいて、個人情報提供処理と個人情報入手処理とのサブルーチンプログラムのフローチャートを説明する。プライベートチェーン2のユーザ端末において、S198により、入手希望個人情報の片割れ共通鍵KBが既に記憶されているか否か判定される。パブリックチェーン4のユーザ端末16からプライベートチェーン2のユーザ端末へ、入手希望個人情報の片割れ共通鍵KBが既に配布されておれば、S198により記憶ありと判定されて制御がS203へ進むが、未だに記憶されていない場合には制御がS199へ進む。
【0119】
S199では、入手希望個人情報の暗号文識別子をパブリックチェーン4のユーザ端末16へ送信して片割れ共通鍵KBを要求する処理が行われる。それをS200で受信したパブリックチェーン4のユーザ端末16では、暗号文識別子で指定された個人情報を提供する取引を行うか否かをスマートコントラクトにより判定し(S16参照)、個人情報を提供する取引を行う場合にはS201により、個人情報の提供に合意する署名と暗号文識別子に対応する片割れ共通鍵KBとが返信される。
【0120】
それをS202で受信したプライベートチェーン2のユーザ端末では、S203により、署名と入手希望個人情報の暗号文識別子とがパブリックチェーン4のユーザ端末16へ送信される。それをS206で受信したパブリックチェーン4のユーザ端末16では、暗号文識別子で指定された個人情報を提供する取引を行うか否かをスマートコントラクトにより判定し(S16参照)、個人情報を提供する取引を行う場合にはS207により、DKA(暗号化個人情報)またはDR(暗号化個人情報)を演算して返信する処理が行われる。具体的には、ユーザ端末16のHDD12に記憶されている片割れ共通鍵KAが既に乱数Rに更新されている場合にはDR(暗号化個人情報)を演算して返信されるが、未だ乱数Rに更新されていない場合にはDKA(暗号化個人情報)を演算して返信する処理が行われる。
【0121】
パブリックチェーン4のユーザ端末16からの返信をS208で受信したプライベートチェーン2のユーザ端末では、S209により、DKB(DKA(暗号化個人情報))=平文 または、DKB(DR(暗号化個人情報))≠平文 を演算する処理が行われる。具体的には、DKA(暗号化個人情報)を受信した場合には、DKB(DKA(暗号化個人情報))=DKB(DKA(EKA(EKB(個人情報))))=平文 を演算して平文の個人情報を得る。一方、(DR(暗号化個人情報))を受信した場合には、DKB(DR(暗号化個人情報))=DKB(DR(EKA(EKB(個人情報))))≠平文 が演算されることになり、平文の個人情報を得ることができない。これにより、削除したい情報の削除権を保証する要請と削除不可能性とが二律背反するジレンマを解決することができる。
[変形例]
【0122】
(1) 前述の説明では、暗号化個人情報であるEKA(EKB(個人情報)をブロックチェーンに直接記録しており、この大量の暗号化個人情報を各ノード(パブリックチェーン4では全てのノード)に記憶させていたのでは、各ノード(ユーザ端末)が膨大な記憶容量を要求されるという不都合が生じる。これを解決する手段として、分割したデータを複数のコンピュータで保存する秘密分散技術を応用する。データを分割して断片化し、各断片化データを複数のノードに分散保存する。また各ノードに保存されるデータを冗長化して(重複して)記憶させる。十分な冗長性を持たせることにより、断片データの一部が失われても復元に支障はなく、かつ、ブロックチェーンとしての改竄の困難性も担保できる。さらに、断片化データの記憶を担う記憶量を各ノードの意思で決めるように制御し、担う記憶量に応じた対価をトークン等の形で各ノードに付与するように制御してもよい。
【0123】
(2) 前述の説明では、暗号化個人情報であるE
KA(E
KB(個人情報)をブロックチェーンに直接記録していたが、
図19~
図23に示す変形例では、暗号化個人情報E
KA(E
KB(個人情報))を認定事業者17の個人情報DB29に記憶し、その暗号化個人情報のハッシュ値をブロックチェーンに記録するようにしている。
図19(A)に示す取引Iには、E
KA(E
KB(個人情報))のハッシュ値+E
K2(インデックス+2.4トークンで提供)+暗号文識別子と電子署名とが記録されている。また、
図19(B)に示す認定事業者17の個人情報DB29には、暗号文識別子に対応付けて暗号化個人情報E
KA(E
KB(個人情報))が記憶されている。
【0124】
図20に基づいて、この変形例でのプライベートチェーン2のノード19を構成しているユーザ端末とパブリックチェーン4のノード19を構成しているユーザ端末16と認定事業者17のサーバ18とのメインルーチンのフローチャートを説明する。認定事業者17のサーバ18は、ノード19としてブロックチェーンに参加している。S215によりブロックチェーンへの個人情報記録処理が実行され、S216により記録解読不能処理が実行され、S217により個人情報提供処理が実行され、S220によりハッシュ値記録処理が実行され、S221により暗号文送信処理が実行され、S224により個人情報入手処理が実行される。
【0125】
ブロックチェーンへの個人情報記録処理は、パブリックチェーン4のノード19を構成しているユーザ端末16が認定事業者17のサーバ18に対し、暗号化個人情報EKA(EKB(個人情報))を送信する処理である。ハッシュ値記録処理は、暗号化個人情報EKA(EKB(個人情報))等を受信した認定事業者17のサーバ18がそれを記憶すると共にそのハッシュ値を生成してブロックチェーンに記録する処理である。記録解読不能処理は、解読不能にしたい暗号化個人情報EKA(EKB(個人情報))等の暗号文を解読不能にするための処理である。個人情報提供処理は、パブリックチェーン4のノード19を構成しているユーザ端末16がプライベートチェーン2のノード19を構成しているユーザ端末へ個人情報を提供するために実行する処理である。個人情報入手処理は、プライベートチェーン2のノード19を構成しているユーザ端末が個人情報を入手する処理である。暗号文送信処理は、認定事業者17のサーバ18がプライベートチェーン2のノード19を構成しているユーザ端末に対し暗号化個人情報EKA(EKB(個人情報))等の暗号文を送信する処理である。
【0126】
以下に、各処理の詳細を各サブルーチンプログラムのフローチャートに基づいて説明するが、第2実施形態との相違点について主に説明する。
【0127】
図21に基づいて、ブロックチェーンへの個人情報記録処理とハッシュ値記録処理とのサブルーチンプログラムのフローチャートを説明する。S231により、E
KA(E
KB(個人情報))とE
K2(インデックス+個人情報提供の対価)とが認定事業者17のサーバ18へ送信される。それをS240で受信したサーバ18では、S241により、E
KA(E
KB(個人情報))のハッシュ値と暗号文識別子とを生成する処理が行われる。次に、S242により、E
KA(E
KB(個人情報))のハッシュ値とE
K2(インデックス+個人情報提供の対価)と暗号文識別子とをブロックチェーンに記録する処理が行われる。
【0128】
次にS243により、暗号文識別子をパブリックチェーン4のユーザ端末16へ送信する処理が行われる。それをS232で受信したパブリックチェーン4のユーザ端末16では、S233により、片割れ鍵KA及びKBと受信した暗号文識別子とを対応付けてHDD12に記憶する処理が行われる。認定事業者17のサーバ18では、S244により、EKA(EKB(個人情報))と暗号文識別子とを対応付けて個人情報DB29に記憶する処理が行われる。
【0129】
図22に示す記録解読不能処理は、第2実施形態の
図17(B)で既に説明したものおと同じであるため、説明の繰り返しを省略する。
【0130】
次に、
図23に基づいて、個人情報提供処理と個人情報入手処理と暗号文送信処理とのサブルーチンプログラムのフローチャートを説明する。この変形例では、プライベートチェーン2のユーザ端末は、個人情報の提供に合意する署名と暗号文識別子に対応する片割れ共通鍵KBとをパブリックチェーン4のユーザ端末16から受信すると(S264)、S265により、受信した署名と入手希望個人情報の暗号文識別子とを認定事業者17のサーバ18へ送信する。それをS266により受信した認定事業者17のサーバ18では、S267により、署名を確認した上で暗号文識別子に対応する暗号文を個人情報DB29から検索してパブリックチェーン4のユーザ端末16へ送信する処理が行われる。
【0131】
それをS268で受信したパブリックチェーン4のユーザ端末16では、S269により、DKA(暗号化個人情報)またはDR(暗号化個人情報))を演算してプライベートチェーン2のユーザ端末へ返信する処理が行われる。具体的には、ユーザ端末16のHDD12に記憶されている片割れ共通鍵KAが既にRに更新されている場合にはDR(暗号化個人情報)を演算して返信されるが、未だRに更新されていない場合にはDKA(暗号化個人情報)を演算して返信する処理が行われる。
【0132】
パブリックチェーン4のユーザ端末16からの返信をS270で受信したプライベートチェーン2のユーザ端末では、S271により、DKB(DKA(暗号化個人情報))=平文 または、DKB(DR(暗号化個人情報))≠平文 を演算する処理が行われる。具体的には、DKA(暗号化個人情報)を受信した場合には、DKB(DKA(暗号化個人情報))=DKB(DKA(EKA(EKB(個人情報))))=平文 を演算して平文の個人情報を得る。一方、(DR(暗号化個人情報))を受信した場合には、DKB(DR(暗号化個人情報))=DKB(DR(EKA(EKB(個人情報))))≠平文 が演算されることになり、平文の個人情報を得ることができない。これにより、削除したい情報の削除権を保証する要請と削除不可能性とが二律背反するジレンマを解決することができる。
【0133】
なお、認定事業者17のサーバ18は、ノード19としてブロックチェーンに参加することなくインターネット1を介してプライベートチェーン2のユーザ端末及びパブックチェーン4のユーザ端末に接続されるものであってもよい。
【0134】
(3) 前述の説明では片割れ共通鍵KAを個人情報主が保持(ユーザ端末16のHDD12に記憶)していたが、その代わりに、所定機関(第三者機関)の一例の鍵登録センタ30の鍵DB32に片割れ共通鍵KAを登録しておくようにしてもよい。なお、片割れ共通鍵KAは秘匿状態で鍵DB32に記憶しておく。この変形例を
図24~
図27に基づいて説明する。
【0135】
図24を参照し、鍵登録センタ30のサーバ31がインターネット1に接続されている。そのサーバ31に接続されている鍵DB32には、パブリックチェーン4の各ノード19であるユーザのアドレス毎に、暗号文識別子と片割れ共通鍵KAとが対応付けられて記憶されている。そして、ユーザから記録解読不能化要求があれば、その要求のあった記録に相当する暗号文識別子に対応付けて記憶されている片割れ共通鍵KAを乱数Rに更新する。
図24では、アドレス0x6079ddの暗号文識別子307cd4に対応付けて記憶されている片割れ共通鍵が乱数1R2に更新されており、アドレス0x6080ddの暗号文識別子4arb56に対応付けて記憶されている片割れ共通鍵が乱数2Rnに更新されており、アドレス0x6978ddの暗号文識別子e2c87rに対応付けて記憶されている片割れ共通鍵が乱数mR1に更新されている。
【0136】
次に
図25に基づいて、パブリックチェーン4のユーザ端末16と鍵登録センタ30のサーバ31とプライベートチェーン2のユーザ端末とのメインルーチンのフローチャートを説明する。第2実施形態との共通点については説明の繰り返しを省略し主に相違点について説明する。
【0137】
パブリックチェーン4のユーザ端末16では、S468によりブロックチェーンへの個人情報記録処理が実行され、S469により記録解読不能化要求処理が実行され、S470により復号鍵提供処理が実行される。鍵登録センタ30のサーバ31では、S463により鍵登録処理が実行され、S464により記録解読不能処理が実行され、S465によりデータ復号処理が実行される。プライベートチェーン2のユーザ端末では、S460によりデータ入手処理が実行さる。
【0138】
次に
図26(A)に基づいて、ブロックチェーンへの個人情報記録処理と鍵登録処理とのサブルーチンプログラムのフローチャートを説明する。パブリックチェーン4のユーザ端末16において、S479により、E
KA(E
KB(個人情報))とE
K2(インデックス+個人情報提供の対価)と暗号文識別子とがブロックチェーンに記録され、S480により、片割れ共通鍵KAと暗号文識別子とを鍵登録センタ30へ送信する処理が行われる。
【0139】
それをS474で受信した鍵登録センタ30のサーバ31では、S475により、受信した片割れ共通鍵KAと暗号文識別子とを対応付けて鍵DB32に記憶する処理が行われる。
【0140】
次に、
図26(B)に基づいて、記録解読不能化要求処理と記録解読不能処理とのサブルーチンプログラムのフローチャートを説明する。パブリックチェーン4のユーザ端末16において、S494により、解読不能にしたい暗号文があるか否か判定され、ない場合にはリターンするが、ある場合には、S495により、解読不能を要求する暗号文識別子を鍵登録センタ30のサーバ31へ送信する処理が行われる。
【0141】
それをS485で受信した鍵登録センタ30のサーバ31では、受信した暗号文識別子に対応付けて記憶されている片割れ共通鍵KAを鍵DB32から検索する処理が行われる。次にS487により乱数Rを生成し、S488により、その乱数R=KAであるか否か判定される。R=KAの場合にはS487により再度乱数Rを生成し直し、R≠KAとなった段階でS489により、片割れ共通鍵KAをRに更新する処理が行われる。
【0142】
次に
図27により、片割れ共通鍵提供処理とデータ入手処理とデータ復号処理とのサブルーチンプログラムのフローチャートを説明する。プライベートチェーン2のユーザ端末において、S503により、入手希望データの暗号文識別子を鍵登録センタ30のサーバ31へ送信する処理が行われる。それをS504により受信した鍵登録センタ30のサーバ31では、S505により、暗号文識別子に対応する暗号文(暗号化個人情報等)をブロックチェーンから検索する処理が行われる。次にS506により、暗号文識別子に対応する片割れ共通鍵KAまたはRを検索する処理が行われる。
【0143】
次にS507により、DKA(暗号化個人情報)またはDR(暗号化個人情報)をプライベートチェーン2のユーザ端末に返信する処理が行われる。具体的には、鍵登録センタ30の鍵DB32に記憶されている片割れ共通鍵KAが既にRに更新されている場合にはDR(暗号化個人情報)を演算して返信されるが、未だRに更新されていない場合にはDKA(暗号化個人情報)を演算して返信する処理が行われる。
【0144】
それをS509で受信したプライベートチェーン2のユーザ端末では、S510により、DKA(DKB(暗号化個人情報))=平文 または、DKA(DR(暗号化個人情報))≠平文 を演算する処理が行われる。具体的には、DKA(暗号化個人情報)を受信した場合には、DKB(DKA(暗号化個人情報))=DKB(DKA(EKA(EKB(個人情報))))=平文 を演算して平文の個人情報を得る。一方、(DR(暗号化個人情報))を受信した場合には、DKB(DR(暗号化個人情報))=DKB(DR(EKA(EKB(個人情報))))≠平文 が演算されることになり、平文の個人情報を得ることができない。これにより、削除したい情報の削除権を保証する要請と削除不可能性とが二律背反するジレンマを解決することができる。しかも、片割れ共通鍵KAをRに更新する処理が鍵登録センタ30において行われるため、KAをRに更新して削除権が保証されたことの信頼性を担保しやすい。例えば、KAのRへの更新を所定機関による監査の元で行ないやすいという利点がある。
【0145】
(4) 削除したい情報の削除権を保証する要請と削除不可能性とが二律背反するジレンマを解決する他の方法として、認定事業者17の個人情報DB29に記憶されている暗号化個人情報であるEKA(EKB(個人情報))を個人情報主の要請に応じて削除するようにしてもよい。その場合は、ブロックチェーン上に個人情報のハッシュ値が記録されているにもかかわらずそれに対応する個人情報が個人情報DB29に記憶されていないという矛盾した状態が生じるが、この矛盾を許容することができるのであれば、個人情報の削除も有効な手段となる。
【0146】
(5) 削除権を保証する情報は、個人情報に限らず、例えば、SNSやブログへの投稿情報(投稿写真及び投稿動画のデータを含む)、遺言や任意後見契約などの公正証書、私文書や会社等の定款、その他確定日付が必要なもの等、どのような情報であってもよい。また、第2実施形態では削除権を保証する情報をブロックチェーンを利用して記録していたが、ブロックチェーンは一例に過ぎず、他のものを利用して記録してもよい。
【0147】
(6) 各ブロックチェーンのノード19を構成するユーザ端末16等及び各種サーバで動作する前述したプログラムは、所定のウェブサイト等からダウンロードしてインストールしてもよいが、例えばCD-ROM99等の記録媒体(非一時的(non-transitory)な記録媒体)に記録させて流通させ、そのCD-ROM99等を購入した者がプログラムをユーザ端末16及び各種サーバにインストールしてもよい(
図60参照)。
【0148】
(7) 前述の説明では、片割れ共通鍵KAで1度暗号化したものを片割れ共通鍵KBで再度暗号化するという2度の暗号化を行い、また、片割れ共通鍵KBで1度復号したものを片割れ共通鍵KAで再度復号するという2度の復号により平文にしている。しかし、これに限定されるものだはなく、片割れ共通鍵KAまたはKBでの暗号化を複数回行い、片割れ共通鍵KAまたはKBでの復号を複数回行うものであってもよい。さらに、片割れ共通鍵KA及びKBは2つに限定されるものではなく、3つ以上の片割れ共通鍵を用いてもよい。
【0149】
さらには、片割れ共通鍵KA及びKBの排他的論理和(イクスクルーシブオア)を演算して1つの鍵Kを生成し(KA(+)KB=K)、その鍵Kで個人情報を暗号化し(EK(個人情報))、片割れ共通鍵KAを鍵登録センタ30の鍵DB32に登録すると共に、個人情報の要求者に片割れ共通鍵KBを配布する。個人情報の要求者からの要求を受けた個人情報主は暗号化個人情報を鍵登録センタ30のサーバ31へ送信し、個人情報の要求者は配布された片割れ共通鍵KBを鍵登録センタ30のサーバ31へ送信する。鍵登録センタ30のサーバ31では、受信した片割れ共通鍵KBと鍵DB32に登録されている片割れ共通鍵KAとの排他的論理和(イクスクルーシブオア)を演算して1つの鍵Kを生成し(KA(+)KB=K)、受信した暗号化個人情報(EK(個人情報))をその鍵Kで復号して平文にした上で(DK(EK(個人情報))=平文)、その平文個人情報を個人情報の要求者へ送信するようにしてもよい。上記(+)は排他的論理和(イクスクルーシブオア)を記号で表現したものである。
【0150】
なお、排他的論理和(イクスクルーシブオア)は一例に過ぎず、片割れ共通鍵KA及びKBから1つの鍵Kを生成するものであればどのようなアルゴリズムを用いてもよい。
【0151】
また、排他的論理和(イクスクルーシブオア)のような加法群を用いて鍵Kを生成する上記方式の場合には、片割れ共通鍵KA及びKBを定期的に更新してセキュリティを維持できる利点がある。例えば、一方の片割れ共通鍵KAをKCに更新した場合には、他方の片割れ共通鍵KB=K(+)KC となり、演算により求めることができる。このようにして片割れ共通鍵KA及びKBを更新することにより、片割れ共通鍵の漏洩に対抗することができるばかりでなく、1度片割れ共通鍵KBを配布した個人情報要求者が再度ブロックチェーン上の暗号化個人情報を復号できないようにして閲覧を阻止することが可能となる。このような片割れ共通鍵の更新を片割れ共通鍵KBの1度の配布毎に実行することにより、片割れ共通鍵KBの配布を受けた者が他人にその片割れ共通鍵KBを横流ししたとしても、その横流しを受けた者によるブロックチェーン上の暗号化個人情報を復号不能にすることが可能となる。つまり、配布する片割れ共通鍵KBを1度のみ使用可能なワンタイム鍵にすることができる。
【0152】
また、共通鍵に限定されるものではなく、RSAや楕円暗号等の公開鍵暗号方式を用いてもよい。
【0153】
また、上記の鍵の更新を実現するにおいて、以下のような条件を満たす暗号アルゴリズムを採用してもよい。
平文をM、その暗号文をC、暗号鍵をKA、KB、KC及びKDと表し、
EKA(EKB(M))=EKC(EKD(M))=C
の式が成立するアルゴリズム。
【0154】
このようなアルゴリズムが共通鍵暗号アルゴリズムの場合には、片割れ共通鍵KA及びKBをKC及びKDに更新した場合に、ブロックチェーンに記録されている暗号文Cを片割れ共通鍵KC及びKDで復号することにより平文Mを得ることができる。一方、公開鍵暗号アルゴリズムの場合には、秘密鍵KA及びKBをKC及びKDに更新した場合に、秘密鍵KC及びKDに対応するペアの公開鍵PKC及びPKDでブロックチェーンに記録されている暗号文Cを復号することにより平文Mを得ることができる。
(8) 前述の説明では、情報保持者が情報要求者に暗号化個人情報(DKA(暗号化個人情報)またはDR(暗号化個人情報))と片割れ共通鍵KBとを送信し(S201、S207)、情報要求者自身が片割れ共通鍵KBを用いて暗号化個人情報を平文にするべく復号していたが(S209)、片割れ共通鍵KBを用いた復号を第三者機関(所定のサービス機関)が担ってもよい。この場合、情報保持者が暗号化個人情報(DKA(暗号化個人情報)またはDR(暗号化個人情報))と片割れ共通鍵KBとを第三者機関(所定のサービス機関)へ送信し、第三者機関(所定のサービス機関)で復号して情報要求者へ送信する。
[開示内容の特徴点]
【0155】
次に、以上説明した実施形態の開示内容の特徴を以下に列挙する。
(特徴1)
[技術分野]
【0156】
特徴1は、例えば、ブロックチェーン等のような改竄や消去が困難な情報記録方式についての処理システムおよびプログラムに関する。
[背景技術]
【0157】
改竄や消去が困難な情報記録方式としてブロックチェーンが従来から一般的に知られている。このブロックチェーンを利用して貨物輸送に関する各種情報を記録しているものとして、例えば、特開2018-128723号がある。
[特徴1の概要]
[特徴1が解決しようとする課題]
【0158】
しかし、このようなブロックチェーンを利用した情報の記録は、改竄が困難なばかりでなく消去も困難である(以下「消去不可能性」という)。その結果、一旦ブロックチェーンを利用した個人情報の記録を行った場合には、その個人情報主が個人情報を消去したくなっても消去できず個人情報消去権(いわゆる忘れられる権利)が損なわれるという欠点がある。
【0159】
つまり、記録された情報の真正の保証とその情報の削除権の保証とが二律背反するジレンマが生じるという欠点が生じる。
【0160】
特徴1は、かかる実情に鑑み考え出されたものであり、その目的は、記録された情報の真正の保証とその情報の削除権の保証とが二律背反するジレンマを解消することである。
[課題を解決するための手段]
【0161】
特徴1の主題は、例えば以下のような項目として示される。
(項目1)
記録対象の情報(例えば、個人情報)を暗号化する暗号化処理を行う暗号化手段(例えば、S174、S177、または、S228、S231、または、S478、S479)と、
前記暗号化処理を経た後の情報を記録する記録手段(例えば、S177及びブロックチェーン、または、S231、S240、S242、S244、ブロックチェーン及び個人情報DB29、または、S479及びブロックチェーン)と、
前記記録手段により記録された情報に対し、第1鍵と第2鍵とを用いて復号処理を行って平文の情報にする復号手段(例えば、S201、S202、S207~S209、または、S263~S271、または、S500~S510)と、
前記記録手段により記録された情報を復号できない復号不能化状態にする復号不能化手段(例えば、S191~S194、または、S250~S254、または、S494、S495、S485~S489)と、を備え、
前記復号手段は、前記第2鍵(例えば、片割れ共通鍵KA)を秘匿して保持する第2鍵秘匿保持手段(例えば、S194、または、S233、または、S475)を含み、
前記復号不能化手段は、前記第2鍵秘匿保持手段により保持されている前記第2鍵を他のもの(例えば、乱数R)に更新することにより復号不能化状態にする(例えば、S190~S194、または、S250~S254、または、S494、S495、S485~S489)、処理システム。
【0162】
(項目2)
前記復号手段は、前記第1鍵(例えば、片割れ共通鍵KB)を情報の閲覧希望者に配布する第1鍵配布手段(例えば、S200、S201、または、S2562、S263、または、S500、S501)をさらに含む、項目1に記載の処理システム。
(項目3)
前記記録手段により記録された情報を平文にすることなく検索する検索手段(例えば、S37~S40、S42~S45)をさらに備えている、項目1または2に記載の処理システム。
【0163】
(項目4)
前記記録手段により記録された情報は個人情報を含み、
前記復号不能化手段は、個人情報主の要求に応じて当該個人情報主の個人情報を前記復号不能化状態にする(例えば、S190~S194、または、S250~S254、または、S494、S495、S485~S489)、項目1~3の何れかに記載の処理システム。
【0164】
(項目5)
記録対象の情報(例えば、個人情報)を暗号化する暗号化処理を行うステップ(例えば、S174、S177、または、S228、S231、または、S478、S479)と、
前記暗号化処理を経た後の情報を記録する記録手段(例えば、S177及びブロックチェーン、または、S231、S240、S242、S244、ブロックチェーン及び個人情報DB29、または、S479及びブロックチェーン)により記録された情報に対し、第1鍵と第2鍵とを用いて復号処理を行って平文の情報にする復号ステップ(例えば、S201、S202、S207~S209、または、S263~S271、または、S500~S510)と、
前記記録手段により記録された情報を復号できない復号不能化状態にするステップ(例えば、S191~S194、または、S250~S254、または、S494、S495、S485~S489)とを、
コンピュータに実行させ、
前記復号ステップは、前記第2鍵(例えば、片割れ共通鍵KA)を秘匿して保持するステップ(例えば、S194、または、S233、または、S475)を含み、
前記復号不能化状態にするステップは、前記保持するステップにより保持されている前記第2鍵を他のもの(例えば、乱数R)に更新することにより復号不能化状態にする(例えば、S190~S194、または、S250~S254、または、S494、S495、S485~S489)、プログラム。
【0165】
(特徴1の効果)
特徴1によれば、記録された情報の真正の保証とその情報の削除権の保証とが二律背反するジレンマを極力解消することができる。
(特徴2)
[技術分野]
【0166】
特徴2は、例えば、ブロックチェーン等で用いられているスマートコントラクトに関する。
[背景技術]
【0167】
スマートコントラクトは、契約のスムーズな検証、条件確認、執行、実行、交渉を意図したコンピュータプロトコルであり、従来からブロックチェーン等で用いられている。このスマートコントラクトは、契約や取引等を自動化するものとして従来から知られている(例えば、特許第6403177号)。
[特徴2の概要]
[特徴2が解決しようとする課題]
【0168】
このようなスマートコントラクトの分野においては、売買契約及び貸借契約等で代表される各種契約または各種取引等の法律行為をユーザ自身の代理として実行できる高度なスマートコントラクトが望まれている。
【0169】
係る実情に鑑み考え出された特徴2の目的は、ユーザ自身の代理として法律行為を実行できる高度なスマートコントラクトを提供することである。
[課題を解決するための手段]
特徴2の主題は、例えば以下のような項目として示される。
(項目1)
複数の自然人または法人が行った法律行為に関する情報を機械学習用のデータとして入力し一般的モデルを生成する機械学習手段(例えば、S80~S82)と、
前記一般的なモデルをユーザに適したモデルにパーソナライズ化するための手段であって、当該ユーザが行った法律行為に関する情報に基づいてパーソナライズ化するパーソナライズ化手段(例えば、S86~S88、またはS94~S98)と、
前記パーソナライズ化されたモデルを用いて当該ユーザの代理として法律行為を実行させるためのスマートコントラクトを生成するスマートコントラクト生成手段(例えば、S86~S88、またはS94~S98)と、を備えている、コンピュータシステム。
【0170】
(項目2)
複数の自然人または法人が行った法律行為に関する情報を機械学習用のデータとして入力して生成された一般的なモデルをユーザに適したモデルにパーソナライズ化するための手段であって、当該ユーザが行った法律行為に関する情報に基づいてパーソナライズ化するパーソナライズ化手段(例えば、S80~S82、S86~S88、またはS94~S98)と、
前記パーソナライズ化されたモデルを用いて当該ユーザの代理として法律行為を実行させるためのスマートコントラクトを生成するスマートコントラクト生成手段(例えば、S86~S88、またはS94~S98)と、を備えている、コンピュータシステム。
【0171】
(項目3)
複数の自然人または法人が行った法律行為に関する情報を機械学習用のデータとして入力して生成された一般的なモデルをユーザに適したモデルにパーソナライズ化するための手段であって、当該ユーザが行った法律行為に関する情報に基づいてパーソナライズ化するパーソナライズ化手段(例えば、S80~S82、S86~S88、またはS94~S98)と、
前記パーソナライズ化されたモデルをスマートコントラクトとして用いて当該ユーザの代理として法律行為を実行させるサービスを提供するサービス提供手段(例えば、S99)と、を備えている、コンピュータシステム。
【0172】
(項目4)
前記サービス提供手段(例えば、S99)によるサービスの提供に伴い実行された法律行為に対する報酬を当該実行したモデルに与えることにより該モデルが前記報酬の累積を最大化する方策を学習する強化学習手段(例えば、S105~S108)をさらに備えた、項目3に記載のコンピュータシステム。
【0173】
(項目5)
予め定められたテーマ(例えば、政府が採用しようとしている政策や法律(例えば、消費増税に伴う軽減税率、改正出入国管理法、イギリスのEU(European Union)からの離脱、ベーシックインカムの部分的または全面的採用、日本国憲法9条の改正等)が採用されたと仮定した場合における、株取引や先物取引等の投資市場での取引シミュレーション、会社経営シミュレーション、または消費行動シミュレーション等)のシミュレーションをコンピュータ内で行って強化学習を進行させるコンピュータシステムであって、
前記シミュレーションのテーマにマッチする複数のペルソナに属するユーザ群を選定する選定手段(例えば、S344、S345)と、
前記選定手段により選定されたユーザ群を前記複数のペルソナ毎にグルーピングしてグループ毎にユーザ群が行った法律行為に関する情報を収集する収集手段(例えば、S346)と、
前記取集された法律行為に関する情報を学習データとして機械学習を行ってペルソナ毎に学習済みスマートコントラクトモデル群を生成する生成手段(例えば、S347)と、
前記生成された学習済みスマートコントラクトモデル群同士で法律行為を行うシミュレーションをコンピュータ内で実行するシミュレーション手段(例えば、S336~S339)と、を備え、
前記シミュレーション手段は、実行された法律行為に対する報酬を当該実行した学習済みスマートコントラクトモデルに与えることにより該学習済みスマートコントラクトモデルが前記報酬の累積を最大化する方策を学習する強化学習手段(例えば、S336、S338)を含む、コンピュータシステム。
【0174】
(項目6)
シミュレーションをコンピュータ内で行って強化学習を進行させるコンピュータシステムであって、
機械学習により生成された学習済みスマートコントラクトモデル群同士で法律行為を行うシミュレーションをコンピュータ内で実行し、実行された法律行為に対する報酬を当該実行した学習済みスマートコントラクトモデルに与えることにより該学習済みスマートコントラクトモデルが前記報酬の累積を最大化する方策を学習するシミュレーション強化学習処理を行う強化学習手段(例えば、S336、S338)を備えている、コンピュータシステム。
【0175】
(項目7)
前記学習済みスマートコントラクトモデル群の中から、前記強化学習手段による強化学習結果の成績に基づいて実際に使用する学習済みスマートコントラクトモデルを選抜する選抜手段(例えば、S340)をさらに含む、項目6に記載のコンピュータシステム。
【0176】
(注)
上記一般的なモデル生成用の「機械学習用のデータ」及びパーソナライズ化に用いる「機械学習用のデータ」は、「法律行為に関する情報」が含まれていれば事足り、「法律行為に関する情報」以外の情報(例えば、ウェブサイトへのアクセス履歴、GPS位置情報等)も含まれていてもよい。上記「スマートコントラクト生成手段」は、例えば、法律行為に関する情報により機械学習されたパーソナルアシスタント等の人工知能にスマートコントラクトとしての役割を担わせる場合も包含するものである。
【0177】
(特徴2の効果)
特徴2によれば、各種の法律行為をユーザ自身の代理として実行できる高度なスマートコントラクトを提供可能となる。
【0178】
(特徴3)
[技術分野]
特徴3は、例えば、政府が採用しようとしている政策や法律(例えば、消費増税に伴う軽減税率、改正出入国管理法、イギリスのEU(European Union)からの離脱、ベーシックインカムの部分的または全面的採用、日本国憲法9条の改正等)、マーケティング関連の条件(例えば、新商品(金融商品や生命保険を含む)や新サービスの価格や対価の設定、各種メディアによるプロモーション効果等)、投資市場関連の条件(例えば、先物取引における気象条件、株式市場における金融引き締め政策等)等の条件を設定し、その条件下でコンピュータ内においてシミュレーションを行い、どのようなシミュレーション結果になるかを事前に予測するコンピュータシステムに関する。
[背景技術]
【0179】
この種のコンピュータシステムとして、国民が将来負担するべき負債や将来利用可能な資源を明確にして、政策レベルの意思決定を支援するために、純資産の変動計算書勘定を新たに設定し、当該年度の政策決定による資産変動を明確にするとともに、将来の国民の負担をシミュレーションできる会計処理方法が提案されている(例えば、特開2006-155233)。
[特徴3の概要]
[特徴3が解決しようとする課題]
【0180】
このようなシミュレーションの分野においては、実社会における自然人や法人の営みを忠実に模したシミュレーションをコンピュータ内で実行し、現実世界との乖離を極力少なくしたシミュレーション結果を導出し得るコンピュータシステムが望まれる。
【0181】
係る実情に鑑み考え出された特徴3の目的は、実社会における自然人や法人の営みを忠実に模したシミュレーションを可能にすることである。
[課題を解決するための手段]
【0182】
特徴3の主題は、例えば以下のような項目として示される。
(項目1)
予め定められた条件(例えば、政府が採用しようとしている政策や法律(例えば、消費増税に伴う軽減税率、改正出入国管理法、イギリスのEU(European Union)からの離脱、ベーシックインカムの部分的または全面的採用、日本国憲法9条の改正等)、マーケティング関連の条件(例えば、新商品(金融商品や生命保険を含む)や新サービスの価格や対価の設定、各種メディアによるプロモーション効果等)、投資市場関連の条件(例えば、先物取引における気象条件、株式市場における金融引き締め政策等)等の条件)の下でのシミュレーションをコンピュータ内で行うコンピュータシステムであって、
前記シミュレーションの条件にマッチする複数のペルソナに属するユーザ群を選定する選定手段(例えば、S144、S145)と、
前記選定手段により選定されたユーザ群を前記複数のペルソナ毎にグルーピングしてグループ毎にユーザ群が行った法律行為に関する情報を収集する収集手段(例えば、S146)と、
前記取集された法律行為に関する情報を学習データとして機械学習を行ってペルソナ毎に学習済みスマートコントラクトモデル群を生成する生成手段(例えば、S147)と、
前記生成された学習済みスマートコントラクトモデル群同士で法律行為を行うシミュレーションをコンピュータ内で実行するシミュレーション手段(例えば、S136~S139)と、
前記シミュレーション手段によるシミュレーションの結果を導出する導出手段(例えば、S140)と、を備え、
前記シミュレーション手段は、実行された法律行為に対する報酬を当該実行した学習済みスマートコントラクトモデルに与えることにより該学習済みスマートコントラクトモデルが前記報酬の累積を最大化する方策を学習する強化学習手段(例えば、S136、S138)を含む、コンピュータシステム。
【0183】
(項目2)
シミュレーションをコンピュータ内で行うコンピュータシステムであって、
機械学習(例えば、S144~S146)により生成された学習済みスマートコントラクトモデル群同士で法律行為を行うシミュレーションをコンピュータ内で実行し、実行された法律行為に対する報酬を当該実行した学習済みスマートコントラクトモデルに与えることにより該学習済みスマートコントラクトモデルが前記報酬の累積を最大化する方策を学習する強化学習を進行させる強化学習手段(例えば、S136、S138)と、
前記強化学習手段による強化学習が進行した学習済みスマートコントラクトモデル群同士で法律行為を行うシミュレーションの結果を導出する導出手段(例えば、S140)と、を備えている、コンピュータシステム。
(特徴3の効果)
【0184】
特徴3によれば、実社会における自然人や法人の営みを極力忠実に模したシミュレーションが可能になる。
[第3実施形態]
【0185】
次に、第3実施形態を説明する。この第3実施形態は、リアルワールド(現実世界)のデジタルツインから構成されるミラーワールド(サイバー空間)内をシミュレーション環境にしてシミュレーションを行うことにより、例えば、未来を予測した最適解を導き出したり、DAO(Decentralized Autonomous Organization)におけるインセンティブ設計の最適解を導き出したり、AIの機械学習(例えば強化学習)を行ったりするシステムに関する。
【0186】
デジタルツインとは、現実世界の実体やシステムをデジタルで表現したものである。ミラーワールドとは、現実の国家、都市、社会、地方自治体、会社等の組織、人々といった、物理世界(リアルワールド)の情報がすべてデジタル化されたデジタルツインで構成される鏡像世界のことである。具体的には、人のデジタルツインを、例えば、当該人の行動(リアルとバーチャル両方の行動)等のライフログを知識として習得し当該人にとって最適な行為をアシスタントするための機械学習(例えばエージェントによる強化学習)を行ったアシスタントAI(以下「パーソナルAI」という)で構成する。この強化学習は、複数のパーソナルAIが協調して強化学習を行うマルチエージェント強化学習である。リアル世界の会社等の組織を構成している人々のパーソナルAIにより当該組織のデジタルツインを構成し、リアル世界の地方自治体を構成している人々のパーソナルAIにより当該地方自治体のデジタルツインを構成し、リアル世界の都市を構成している人々のパーソナルAIにより当該都市のデジタルツインを構成し、リアル世界の国家を構成している人々のパーソナルAIにより当該国家のデジタルツインを構成する。
【0187】
この第3実施形態では、シミュレーション環境としてのミラーワールドの構築を、リアルワールドにおける現実の国家、都市、社会、地方自治体、会社等の組織及び人々等が自ら率先して参加して構築に協力する仕組みを用意する。具体的には、ミラーワールド内での各種シミュレーションを行うことによって、そのシミュレーションに参加しているデジタルツインのパーソナルAIを機械学習(例えば強化学習)させ、より高度に学習した学習済みパーソナルAIをリアル世界に還元(フィードバック)させる。このメリットの享受をインセンティブとして、リアルワールドの国家、都市、社会、地方自治体、会社等の組織及び人々等が自ら率先して参加してミラーワールドの構築に協力するように仕向ける。
【0188】
図28を参照し、複数台のミラーワールドサーバ(ストレージサーバを含む)46が設置されたデータセンタ45において、ミラーワールドのデータが記憶されている。ミラーワールドサーバ46のハードウェア構成は、
図1に示したユーザ端末16のハードウェア構成と同様であるため、ここではその図示及び説明の繰り返しを省略する。リアルワールド47における現実の国家(例えば日本国49)、都市50、社会、地方自治体、会社等の組織、人々及び地球48の情報がすべてデジタル化されたデジタルツイン(現実の国家デジタルツイン(例えば日本国デジタルツイン53)、都市デジタルツイン54、社会、地方自治体、会社等の組織、人々及び地球デジタルツイン52)で構成されたミラーワールド51全体が、デジタルデータとしてデータセンタ45に記憶されている。
【0189】
データセンタ45では、このミラーワールド51をシミュレーション環境としてシミュレーションを行い、例えば、シミュレーション最適化により未来を予見した最適解を導き出す。シミュレーションとしては、例えば、前述した、政府が採用しようとしている政策や法律(例えば、消費増税に伴う軽減税率、改正出入国管理法、イギリスのEU(European Union)からの離脱、ベーシックインカムの部分的または全面的採用、日本国憲法9条の改正等)が採用されたと仮定した場合における、株取引や先物取引等の投資市場での取引シミュレーション、会社経営シミュレーション、または消費行動シミュレーション等が考えられる。さらには、新商品(金融商品や生命保険を含む)や新サービスの各種メディアによるプロモーションのシミュレーション等でもよい。シミュレーション最適化によって導き出された最適解をリアルワールドにフィードバック(還元)し、最適解の恩恵をリアルワールドに提供する。また、シミュレーションにより機械学習(例えば強化学習)された学習済みパーソナルAIをリアルワールドに還元し、より高度な学習済みパーソナルAIによるタスクを遂行できるようにする。
【0190】
このパーソナルAIとスマートコントラクトとが連携することにより、前述した連携タイプのAIスマートコントラクトが構成される。なお、このデータセンタ45は、
図1や
図24に示したインターネット1に接続されている。
図28では、各種ブロックチェーン2、3、4、SNS19、鍵登録センタ30等は図示を省略している。
【0191】
図29は、ミラーワールド51における都市デジタルツイン54の具体例を示している。リアルワールド47の都市50内には、株式会社ABC56、人である太郎55及び太郎の一家56等がある。それらに対応する都市デジタルツイン54にも、株式会社ABCデジタルツイン59、太郎デジタルツイン(太郎のパーソナルAI)57及び太郎の一家デジタルツイン58等がある。これらのデータからなる都市デジタルツインデータがミラーワールドサーバ46に記憶されている。リアルワールド49での株式会社ABC56、人である太郎55及び太郎の一家56等の各種オブジェクトに変更(例えば、会社での人事異動や就職や退職、人についての結婚や出産等)があれば、対応する各種デジタルツインが変更後の内容にアップデートされる。このような都市デジタルツインデータが全ての都市毎にデータセンタ45に記憶されて日本国家49のデジタルツイン53のデータとなり、各国における都市デジタルツインデータが全ての都市毎にデータセンタ45に記憶されて各国国家のデジタルツインデータとなり、それら全てのデジタルツインデータにより、地球48のデジタルツイン52のデータとなる。
【0192】
具体例として、ミラーワールドサーバ46には、太郎デジタルツイン(太郎のパーソナルAI)57として、氏名:太郎、AI識別番号:82km9、パーソナルAIデータ、太郎のパーソナルデータ(例えば、ライフログ、プロフィール、嗜好データ、電子カルテデータ、バイタルデータ等)が記憶されている。太郎の一家デジタルツイン58として、氏名:太郎、桜、志郎、家族構成:夫、妻、長男、AI識別番号:82km9、11zk9、gf43yが記憶されている。株式会社ABCデジタルツイン59として、氏名:太郎、花子・・・三郎、役職:代表取締役、専務、部長・・・平社員、AI識別番号:82km9、ba935、2es14、・・・9w1c2が記憶されている。
【0193】
ユーザ端末16とミラーワールドサーバ46とのメインルーチンプログラムのフローチャートを、
図30~
図33に基づいて説明する。
図30Aを参照し、ユーザ端末16のCPU10は、シミュレーション環境としてのミラーワールド51への参加登録を依頼するメンバー登録依頼処理S555、シミュレーション準備応答処理S556、シミュレーション応答処理S557を実行する。ミラーワールドサーバ46のCPU10は、メンバー登録処理550、シミュレーション準備処理S551、シミュレーション処理S552を実行する。
【0194】
メンバー登録処理とメンバー登録依頼処理とを
図30Bに基づいて説明する。これら両処理は、ミラーワールド51をシミュレーション環境としたシミュレーションにデジタルツインとして参加したいメンバーを登録するためのものである。ユーザ端末16のCPU10は、メンバー登録依頼処理において、S560により登録申し込みを行うか否か判定し、登録申し込みを行わないと判定すればこのメンバー登録処理が終了してリターンする。登録申し込みを行うと判定すれば、S561において、登録申し込みに必要な所定事項をミラーワールドサーバ46へ送信すると共に、パーソナルAIを有していない人がいる場合はその旨とその人のブロックチェーンアドレスもミラーワールドサーバ46へ送信する。登録申し込みに必要な所定事項とは、具体的には、人のデジタルツインにおいては、当該人のパーソナルAIのAI識別番号とパーソナルAIデータ、家族のデジタルツインにおいては家族の氏名と家族構成とそれぞれのAI識別番号、会社のデジタルツインにおいては従業員の氏名、役職、それぞれのAI識別番号等である。
【0195】
それをS565により受信したミラーワールドサーバ46のCPU10は、S566において、パーソナルAIを所有済みか否か判定する。S561により送信されてきた情報中に「パーソナルAIを有していない旨」の情報が含まれていた場合には制御がS567に進み、パーソナルAIの生成販売処理を行うが、「パーソナルAIを有していない旨」の情報が含まれていない場合には、制御がS568に進み、S562により送られてきたAI識別番号を含む所定事項をミラーワールド51に登録する。
【0196】
S567に示されたパーソナルAIの生成販売処理を
図31に基づいて説明する。ミラーワールドサーバ46のCPU10は、S573において、S565により受信したブロックチェーンアドレス(パーソナルAIを有していないユーザのブロックチェーンアドレス)に記録されている取引データ及びSNS等の投稿データを、ブロッチェーンから収集する。次に、S574において、取引データ及びSNS等の投稿データを学習データとして機械学習を行って学習済みのパーソナルAIを生成する。次に、S575において、その学習済みのパーソナルAIを対応するユーザに販売する。
【0197】
S551に示されたシミュレーション準備処理及びS555に示されたシミュレーション準備応答処理を、
図32に基づいて説明する。ミラーワールドサーバ46のCPU10は、S577において、シミュレーションの依頼を受けたか否か判定する。受けていないと判定した場合には、このシミュレーション準備処理が終了してリターンする。シミュレーションの依頼を受けたと判定した場合には制御がS578に進み、依頼されたシミュレーションにマッチするパーソナルAI群及びデジタルツインを割出す処理を行う。例えば、前述の消費増税に伴う軽減税率下での消費行動シミュレーションの場合には、一般消費者に相当するパーソナルAI群であって、性別、年代別、地域別、年収別等の人口統計に従った割合でパーソナルAI群、及び、軽減税率の対象となる消費財のメーカデジタルツインや販売店デジタルツイン等を割出す。次に、その割出されたパーソナルAI群及びデジタルツイン宛にシミュレーションの同意を求める処理を行う。具体的には、割出されたパーソナルAI群及びデジタルツインに対応するユーザ群各々のユーザ端末16へ、シミュレーションの内容を送信して同意するか否かを問う。
【0198】
割出されたパーソナルAI群及びデジタルツインに対応するユーザ群各々のユーザ端末16のCPU10は、送信されてきたシミュレーションの内容をS580で受信し、S581において、そのシミュレーションの実行メンバーへの参加に同意するか否か判定する。この判定は、パーソナルAIが判定してもよいが、ユーザ自身が判定してもよい。同意しないと判定した場合には、このシミュレーション準備応答処理が終了してリターンするが、同意すると判定した場合には、S582において、同意する旨をミラーワールドサーバ46へ返信する。
【0199】
それをS583により受信したミラーワールドサーバ46のCPU10は、依頼されたシミュレーションを実行するのに必要な量の同意が得られたか否か判定する。得られたと判定した場合にはS584において、同意が得られたAI群及びデジタルツインをコピーしてシミュレーション対象としてミラーワールド51に登録する。その登録された状態が前述の
図29に示されている。
【0200】
一方、必要なパーソナルAI群及びデジタルツインから同意が得られていないと判定した場合には制御がS585に進み、不足しているパーソナルAI群及びデジタルツインにマッチするペルソナ群(メーカや販売店のデジタルツインに対応するペルソナを含む)を設定する処理を行い、S586において、各ペルソナに属するユーザ群(メーカや販売店に従事するユーザ群を含む)を選定し、S587において、ペルソナ毎に属するユーザ群をグループピングしてグループ毎にユーザ群の取引データ(メーカや販売店としての取引データを含む)をブロッチェーンから収集し、S588において、取引データを学習データとして機械学習を行ってペルソナ毎に学習済みのパーソナルAI群及びデジタルツインを生成して補充した上で、S584に進む。このS585~S588は、
図9(B)のS344~S347と同様の処理であり、ここでは詳細な説明の繰り返しを省略する。
【0201】
次に、S552に示したシミュレーション処理及びS557に示したシミュレーション応答処理の具体的制御を
図33に基づいて説明する。S593~S595は、前述した
図9のS336、S338、S339、
図12のS136、S138、S139と同様の処理であり、ここでは詳細な説明を省略する。S596において、シミュレーション結果をシミュレーションの依頼者に通知する。具体的には、シミュレーション結果をシミュレーション依頼者のユーザ端末16に送信する。次に、S597において、シミュレーションに用いた各パーソナルAI(会社組織等のデジタルツインに従事するパーソナルAIを含む)を各々の所持者のユーザ端末16に送信する。
【0202】
それをS598で受信したユーザ端末16のCPU10は、S599において、受信したパーソナルAIを消去するか否か判定する。受信したパーソナルAIは、シミュレーションに参加して強化学習(機械学習)された学習済みAIであり、その分性能がアップしており高度なタスク処理を実行することが可能である。しかし、シミュレーションの内容によっては、ユーザが望まない強化学習(機械学習)を受けている場合もあるため、そのような場合には、S599によりYESと判定し、S601において、受信したパーソナルAIを消去する。一方、シミュレーションがユーザの望む内容であり、受信したパーソナルAIが望ましい強化学習(機械学習)を受けていると認定した場合には、制御がS600に進み、受信した学習済みパーソナルAIを上書き保存する。その結果、ユーザは、望ましい強化学習(機械学習)を受けて性能がアップしたパーソナルAIを得ることができる利点がある。この利点の享受をインセンティブとして、リアルワールドの国家、都市、社会、地方自治体、会社等の組織及び人々等が自ら率先して参加してミラーワールドの構築に協力するように仕向けることができる。このS600によりパーソナルAIを上書き保存することにより、ミラーワールドサーバ46において、上書き保存された後の新たなパーソナルAIのデジタルツイン及び新たなパーソナルAIからなる組織のデジタルツインにデータがアップデートされる(
図29参照)。なお、上書き保存ではなく、既存のパーソナルAIと学習済みパーソナルAIとの両者を共に記憶しておき、必要に応じて使い分けるようにしてもよい。
【0203】
次に、ミラーワールド内をシミュレーション環境にしてシミュレーションを行うことにより、DAOにおけるインセンティブ設計の最適解を導き出すシステムを、
図34~
図59に基づいて説明する。
図34(A)は、マルチ役務DAO構築システムの概略図である。例えば、ビットコインはDAOの一種であるが、ノード(マイナー)がマイニング(記帳権の競争)という1種類の役務のみを担っており、マイニングに成功した者にビットコインを付与するといインセンティブを与えることによりブロックが追加され、ビットコインのシステムが自律的に継続される。これに対し、役務が複数種類存在するDAOをマルチ役務DAOという。例えば、会社組織のDAOの場合、資材調達、組立、宣伝、販売等の複数の役務が存在し、それら複数の役務を実行したノードに対しどのような割合でどの程度の報酬を分配すれば最適なインセンティブ設計となるのかが困難な問題となる。このようなマルチ役務DAOにおけるインセンティブ設計の最適解を導き出すシステムを説明する。
【0204】
図34(A)を参照し、マルチ役務DAOデータを記憶しているミラーワールドサーバ46が、DAOエージェント61、役務1を行うペルソナエージェント群62、役務2を行うペルソナエージェント群63、・・・役務nを行うペルソナエージェント群64のデータを記憶している。さらに、ミラーワールドサーバ46は、強化学習に伴って各ペルソナエージェント群に与えられる報酬r1、r2、・・・rnの種類も記憶している。
【0205】
マルチ役務DAO構築業者の端末16が、DAOエージェント61と、必要なペルソナエージェント群と、報酬r1、r2、・・・rnの種類とを、ミラーワールドサーバ46からダウンロードしてインストールする。端末16は、パブリックチェーン4を構成する各ノード19である。この各ノード19で構成されたパブリックチェーン4で運用されるマルチ役務DAO65のデジタルツイン66を、ミラーワールド51内でシミュレーション強化学習を行い、マルチ役務DAOにおけるインセンティブ設計の最適解を導き出す。そのインセンティブ設計の最適解を、リアルワールド47における実際のマルチ役務DAO65に適用し、最適なインセンティブ設計のマルチ役務DAO65を作り上げる。このミラーワールド51内でのシミュレーション強化学習は、ミラーワールドサーバ46において実行される。その制御を以下に説明する。
【0206】
図34(B)を参照し、端末16のCPU10は、S606においてシミュレーション強化学習準備応答処理を行い、S607においてシミュレーション強化学習応答処理を行う。
【0207】
ミラーワールドサーバ46のCPU10は、S611においてシミュレーション強化学習準備処理を行い、S612においてシミュレーション強化学習処理を行い、S613においてDAOエージェント強化学習処理を行う。
【0208】
S611に示したシミュレーション強化学習準備処理及びS606に示したシミュレーション強化学習準備応答処理の具体的制御を
図35に基づいて説明する。シミュレーション強化学習準備応答処理において、端末16のCPU10は、S615において、シミュレーション強化学習を依頼するか否か判定する。依頼しない場合にはこのシミュレーション学習準備応強化答処理が終了してリターンする。依頼する場合は制御がS616に進み、マルチ役務DAOデータをミラーワールドサーバ46へ送信して依頼する。このマルチ役務DAOデータには、役務の種類が含まれている。例えば、
図36~
図42において後述するイノベーション誘発DAOの場合は、役務が、アイデア発案、改良発案、事業化、侵害発見、トークン購入の5種類存在し、それらの役務を送信する。
【0209】
それをS620で受信したミラーワールドサーバ46のCPU10は、S621により、マルチ役務の各々にマッチするペルソナ群を設定する。例えば、上記イノベーション誘発DAOの場合は、アイデア発案及び改良発案のペルソナ群として発明をよく考え出す人々、事業化のペルソナ群として事業化に興味のある人々、侵害発見のペルソナ群として特許法や著作権法に詳しい人々、トークン購入のペルソナ群として投資に興味のある人々等が考えられる。
【0210】
次に、S622において、各ペルソナに属するユーザ群を選定する。例えば、上記イノベーション誘発DAOの場合は、アイデア発案及び改良発案のペルソナ群に属するユーザ群として特許出願の発明者として掲載されているユーザ群、事業化のペルソナ群に属するユーザ群として会社の経営者のユーザ群、侵害発見のペルソナ群に属するユーザ群として弁理士や弁護士のユーザ群、トークン購入のペルソナ群に属するユーザ群としてビットコイン等の仮想通貨を購入したことのあるユーザ群等が考えられる。
【0211】
次に、S623において、ペルソナ毎に属するユーザ群をグループピングしてグループ毎にユーザ群の取引データをブロッチェーンから収集し、S624において、取引データを学習データとして機械学習を行ってペルソナ毎に学習済みのペルソナエージェント群を生成する。これら両制御は、前述した
図9(B)のS346、S347と同様の処理であり、ここでは詳細な説明の繰り返しを省略する。次に、S625において、ペルソナエージェント群をマルチ役務DAO65内に配備してマルチ役務DAOデジタルツイン66を生成し、シミュレーション対象としてミラーワールド51に登録する。その状態が
図36に示されている。
【0212】
図36を参照し、パブリックチェーンからなるマルチ役務DAO65のデジタルツイン66をミラーワールド51に構築する。マルチ役務DAOデジタルツイン66には、上記S625においてペルソナエージェント群が配備されて各ノード毎に1つずつペルソナエージェントが配備された状態となっている。それらペルソナエージェントの識別番号が、各役務(アイデア発案、改良発案、事業化、侵害発見、トークン購入)毎に分類されてミラーワールドサーバ46に記憶されている。例えば、アイデア発案役務のペルソナエージェントの識別番号として、kc29m,1w13a,・・・9nad8がミラーワールドサーバ46に記憶されている。このマルチ役務DAO65は、前述したイノベーション誘発DAOであり、以降、イノベーション誘発DAOを例としてマルチ役務DAOを説明する。
【0213】
さらに、ミラーワールドサーバ46には、各ペルソナエージェントの行為に対し報酬(インセンティブ)を与えるDAOエージェントも記憶されている。このDAOエージェントが、与える報酬の分配割合や報酬額を強化学習(機械学習)することにより、インセンティブ設計の最適解を導き出す。その強化学習(機械学習)の概略システムを
図37に示す。
【0214】
図37を参照し、ペルソナエージェント群がオリジンのアイデア投稿をアクションa11、a12、・・・a1nとして行えば、環境の状態S1がDAOエージェント61に入力され、それらアイデア発案役務を行ったペルソナエージェント群67に対し報酬r11、r12、・・・r1nが与えられる。このアイデア発案役務は、夢やアイデア、ビジネスプラン、技術思想、著作物等の発案を包含する広い概念である。環境の状態S1は、アイデア発案役務を行ったペルソナエージェント群67にも与えられる。この環境の状態S1は、例えば、オリジンアイデア投稿内容、アイデア発案役務を行ったペルソナエージェント68各々に報酬として与えられたトークンA1の変動相場の価格等である。
【0215】
上記オリジンのアイデアに対しペルソナエージェント群68が改良案の投稿等のアクションa21、a22、・・・a2を行えば、環境の状態S2がDAOエージェント61に入力され、それら改良案役務を行ったペルソナエージェント群68に対し報酬r21、r22、・・・r2nが与えられる。環境の状態S1は、改良案役務を行ったペルソナエージェント群68にも与えられる。この環境の状態S2は、例えば、改良案投稿内容、改良案投稿に付与された「いいね!」の数等である。この「いいね!」を付与する主体は、例えば上記オリジンアイデアの投稿に対し報酬として付与されたトークンA1を購入した者(ペルソナエージェント群71)のみに限定している。このように、「いいね!」の付与主体を利害関係人(ステークフォルダ)に限定(制限)する理由は、不正行為を防止するためである。「いいね!」の付与主体を無制限に広げた場合、例えば、改良案の投稿を行った者(ペルソナエージェント群68)が多数の者(ペルソナエージェント)と結託して多数の「いいね!」を付けてもらう等の不正行為を防止するためである。事業化役務を行ったペルソナエージェント群69及び侵害対処役務を行ったペルソナエージェント群70への「いいね!」の付与主体も、同様の理由により、トークンA1を購入した者(ペルソナエージェント群71)のみに限定している。
【0216】
上記オリジンのアイデアに対し事業化役務を行ったペルソナエージェント群69がアクションa31、a32、・・・a3nを行えば、環境の状態S3がDAOエージェント61に入力され、それら事業化役務を行ったペルソナエージェント群69に対し報酬r31、r32、・・・r3nが与えられる。ペルソナエージェント群69のアクションa31、a32、・・・a3nとしては、例えば、事業計画書の投稿、事業化の進行状況の投稿、実際の事業化遂行の状況の投稿、事業化された事業による収益額の投稿等が考えられる。環境の状態S3は、事業化役務を行ったペルソナエージェント群69にも与えられる。この環境の状態S3は、例えば、事業計画書の投稿や事業化の進行状況の投稿、事業化された事業による収益額の投稿等に付与された「いいね!」の数等である。
【0217】
上記オリジンのアイデアに対し侵害対処役務を行ったペルソナエージェント群70がアクションa41、a42、・・・a4nを行えば、環境の状態S4がDAOエージェント61に入力され、それら侵害対処役務を行ったペルソナエージェント群70に対し報酬r41、r42、・・・r4nが与えられる。ペルソナエージェント群70のアクションa31、a32、・・・a3nとしては、例えば、侵害発見の報告投稿、侵害対処報告投稿、ライセンス交渉報告投稿等が考えられる。さらには、これら役務の前提となる特許出願の報告投稿やその権利化の報告投稿役務も含めてもよい。環境の状態S4は、侵害対処役務を行ったペルソナエージェント群70にも与えられる。この環境の状態S4は、例えば、侵害発見の報告投稿、侵害対処報告投稿、ライセンス交渉報告投稿等に付与された「いいね!」の数等である。
【0218】
ペルソナエージェント群が上記オリジンのアイデア発案役務に対し付与されたトークンA1を購入する役務をアクションa51、a52、・・・a5nとして行えば、環境の状態S5がDAOエージェント61に入力され、それらトークン購入役務を行ったペルソナエージェント群71に対し報酬r51、r52、・・・r5nが与えられる。環境の状態S5は、トークン購入役務を行ったペルソナエージェント群71にも与えられる。この環境の状態S5は、例えば、トークンの購入数(または購入金額)等である。ペルソナエージェント群71は、仮想通貨(例えばEthereumのETH等)を消費してトークンA1を購入する。なお、購入したトークンは、変動相場での価格に従って仮想通貨に変換(換金)でき、その仮想通貨は、変動相場での価格に従って円やドル等の法定通貨に変換(換金)できる。
【0219】
各ペルソナエージェント群に付与する報酬r1~r5は、DAOエージェント61が報酬テーブル(
図39(A)参照)に基づいて決定する。アイデア発案役務を行ったペルソナエージェントに対しては、r1=A1+B1・b+G1・g、改良役務を行ったペルソナエージェンに対しては、r2=A2・e+B2・b+G2・g、事業化役務を行ったペルソナエージェントに対しては、r3=A3・e+B3・b、侵害対処役務を行ったペルソナエージェントに対しては、r4=A4・e+B4・b+G4・g、トークン購入役務を行ったペルソナエージェントに対しては、r5=B5・b+G5・gと、決定する。
【0220】
ここに、A2~A4,B1~B5,G1,G2,G4,G5は、係数であり、DAOエージェント61が強化学習により最適なものに収束させる。A1はトークン、gはライセンス収入、eは「いいね!」の数、bは事業化収益である。
【0221】
なお、各ペルソナエージェント群68~71が役務を行った後に発生したライセンス収入gまたは事業化収益bのみが報酬r2~r5として考慮される。ライセンス収入gまたは事業化収益bが既に発生しているオリジンアイデアに対し後から改良役務やトークン購入役務を行うという不正行為を防止するためである。
【0222】
また、改良役務、事業化役務、または侵害対処役務を行ったペルソナエージェント群が併せてトークン購入役務を行ってもよい。さらに、アイデア発案役務を行ったペルソナエージェント群67が、併せて改良役務、事業化役務、または侵害対処役務を行ってもよい。
【0223】
S613に示したDAOエージェント強化学習処理の詳細を
図38に基づいて説明する。この処理は、DAOエージェント61が自ら強化学習を行い報酬r1~r5の最適化を図るものである。DAOエージェント61は、S630において、ペルソナエージェント群の各行為aを受信したか否か判定する。受信していない場合はS632へ進むが、受信していると判定した場合には制御がS631へ進み、受信した各行為aを記憶する。
【0224】
S632において、「いいね!」が付与されたか否か判定し、付与されていない場合にはS634へ進むが、付与されていると判定した場合にはS633において、ペルソナエージェント毎にいいね!eを記憶する。S634において、事業化収益があったか否か判定し、ない場合にはS636へ進むが、あったと判定した場合にはS635において、事業化収益bを記憶する。S636において、ライセンス利益gがあったか否か判定し、ない場合にはS638に進むが、あったと判定した場合には、S637において、ライセンス利益gを記憶する。
【0225】
S638において、報酬算出時期になったか否か判定し、なっていない場合にはS640に進むがなったと判定した場合には、S639において、報酬テーブル(
図39(A))を参照して各報酬r1~r5を算出して該当するペルソナエージェントへ付与する。S640において、学習更新時期になったか否か判定し、なっていない場合にはこのDAOエージェント強化学習処理が終了してリターンする。学習更新時期になったと判定した場合にはS641において、報酬として付与したトークンA1のトータル付与価格TTと付与したトークンの変動相場における現時点のトータル価格TBとを算出し、S642において、TB/TTの値からDAOエージェントの報酬Rを算出する。例えば、前回の学習更新時におけるTB/TTの値と今回の学習更新時におけるTB/TTの値とを比較し、今回の学習更新時におけるTB/TTの値の方が大きい場合に大きな報酬Rにし、小さい場合に小さな報酬Rにする。その結果、DAOエージェント61が得ることのできる報酬Rは、トークンの変動相場におけるトータル価格TBが高騰すれば大きくなり、トークンの変動相場におけるトータル価格TBが下落すれば小さくなる。
【0226】
次に、S643において、報酬Rに基づいて、TD学習により最適政策π*に従った行為A1~A4,B1~B5,G1,G2,G4,G5を求める処理が行われ、S644において、報酬テーブルのA1~A4,B1~B5,G1,G2,G4,G5を、求められた行為A1~A4,B1~B5,G1,G2,G4,G5に更新する。その結果、DAOエージェント61は、トークンの変動相場におけるトータル価格TBを高騰させるための最適な行為A1~A4,B1~B5,G1,G2,G4,G5を学習することになる。なお、この学習目標は一例に過ぎず、学習目標としては、他に、オリジンアイデアの投稿数を増加させること、オリジンアイデアと改良案との投稿合計数を増加させること、事業化件数を増加させること、事業化収益合計を増加させること等であってもよい。
【0227】
次に、S645において、強化学習が完了したか否か判定し、未だ完了していない場合はリターンする。完了したと判定した場合にはS646において、シミュレーション強化学習の依頼者に学習済みマルチ役務DAOを送信する。
【0228】
シミュレーション強化学習の依頼者は、インセンティブ設計が最適化された学習済みのマルチ役務DAO(イノベーション誘発DAO)65をリアルワールド47で運用することができる。その結果、このマルチ役務DAO(イノベーション誘発DAO)65では、
図37に示した「各ペルソナエージェント群67~71」が、実際のユーザ群となり、各役務を行うユーザ群に対し、学習済みDAOエージェント61により最適設計された報酬(インセンティブ)が分配される。このリアルワールド47での実際の運用の段階では、各投稿内容等の役務やトークンの売買取引内容等をブロックチェーンにタイムスタンプ付きで記録させる。その結果、ブロックチェーンが、オリジンアイデア投稿内容や改良案投稿内容に対する公証人の役目を果たしてくれ、新規性喪失の例外適用(特許法30条)や冒認出願対策(特許法49条1項7行、74条、123条1項2号)も行いやすくなる。
【0229】
また、マルチ役務DAO(イノベーション誘発DAO)65をリアルワールド47で運用する段階においても、DAOエージェント61により引き続き機械学習(強化学習)を続行させ、自際の運用状況にマッチしたより一層最適にインセンティブ設計されたものになるようにしてもよい。なお、学習済みの各ペルソナエージェント群67~71(
図40(A)(B)及び
図41(A)(B)による学習済みのペルソナエージェント群)もマルチ役務DAO(イノベーション誘発DAO)65に含めてシミュレーション強化学習の依頼者に送信し、各役務を行うユーザ群に対し各ペルソナエージェント群67~71が相談役として機能させてもよい。さらには、マルチ役務DAO(イノベーション誘発DAO)65をリアルワールド47で運用する段階において、各役務をユーザ群と各ペルソナエージェント群67~71との両者が実行する混在型のマルチ役務DAO65にしてもよく、また、各役務を各ペルソナエージェント群67~71のみが実行するペルソナエージェント運用型のマルチ役務DAO(イノベーション誘発DAO)65にしてもよい。なお、このイノベーション誘発DAOは、前述のミラーワールドでのシミュレーション強化学習を経て生成されるものに限定されず、他の方法、例えば人為的な設計に基づいて人為的に生成されるものであってもよく、さらには、DAOに限らず、特定の管理者や主体を持った組織(例えば通常の株式会社等)であってもよい。
【0230】
次に、
図39(B)に基づいてペルソナエージェントが強化学習を行う処理のメインルーチンを説明する。S648において、アイデア発案役務実行処理が行われ、S649において、改良役務実行処理が行われ、S650において、事業化役務実行処理が行われ、S651において、侵害対処役務実行処理が行われ、S652において、トークン購入役務実行処理が行われる。
【0231】
S648に示したアイデア発案役務実行処理の詳細を
図40(A)に基づいて説明する。S655において、アイデア発案を行うか否か判定し行わない場合にはリターンする。行うと判定した場合には、S656において、アイデアを創出する処理を行う。このアイデアの創出は、例えばDABUSというAIを利用する。例えば、ペルソナエージェント67とDABUSとが協働してアイデアの創出を行う。S657において、アイデア発案の投稿内容を生成し、S658において、アイデア発案投稿行為a1iを実行する。
【0232】
S659において、DAOエージェント61から報酬r1iを受信したか否か判定し、受信していない場合にはリターンする。受信したと判定した場合には、S660において、報酬r1iに基づいて、TD学習により最適政策π*に従った行為aを求める。この行為aは、受け取った報酬r1iが満足できるものであればアイデア発案の行為を繰り返し継続することになるが、報酬r1iが満足できるものでなければ、他の行為(例えば、改良役務、事業化役務、侵害対処役務、トークン購入役務、あるいはなにも役務を行わない)を選択することとなる。
【0233】
S649に示された改良役務実行処理の詳細を
図40(B)に基づいて説明する。S664において、改良案を投稿するか否か判定し、投稿しない場合にはリターンする。投稿すると判定した場合にはS665において改良案を創出する処理を行う。改良案の創出は、例えばDABUSというAIを利用する。例えば、ペルソナエージェント68とDABUSとが協働して改良案を創出する処理を行う。S666において改良案投稿内容を生成し、S667において、改良案投稿行為a2iを実行する。
【0234】
S668において、DAOエージェント61から報酬r2iを受信したか否か判定し、受信していない場合にはリターンする。受信したと判定した場合には、S669において、報酬r2iに基づいて、TD学習により最適政策π*に従った行為aを求める。この行為aは、受け取った報酬r2iが満足できるものであれば改良案投稿の行為を繰り返し継続することになるが、報酬r2iが満足できるものでなければ、他の行為(例えば、アイデア発案役務、事業化役務、侵害対処役務、トークン購入役務、あるいはなにも役務を行わない)を選択することとなる。
【0235】
S650に示された事業化役務実行処理の詳細を
図41(A)に基づいて説明する。S674において、事業化するか否か判定し、事業化しない場合はリターンする。事業化すると判定した場合は、S675において、事業計画書を生成し、S676において、事業計画書の投稿行為a3iを実行し、S677において、事業化役務を遂行し、S678において、遂行状況投稿行為a3iを実行する。この遂行状況投稿行為a3iには、前述した事業化により得た収益の投稿等も含まれる。
【0236】
S679において、DAOエージェント61から報酬r3iを受信したか否か判定し、受信していない場合はリターンする。受信していると判定した場合はS680において、受信した報酬r3iに基づいて、TD学習により最適政策π*に従った行為aを求める。この行為aは、受け取った報酬r3iが満足できるものであれば事業化役務の行為を繰り返し継続することになるが、報酬r3iが満足できるものでなければ、他の行為(例えば、アイデア発案役務、改良役務、侵害対処役務、トークン購入役務、あるいはなにも役務を行わない)を選択することとなる。
【0237】
S651に示した侵害対処役務実行処理の詳細を
図41(B)に基づいて説明する。S684において、侵害対処役務を実行するか否か判定する。実行しない場合にはリターンするが、実行すると判定した場合にはS685において、侵害行為の捜査を行い、S686において、侵害行為を発見したか否か判定する。なお、侵害行為の捜査を行う前に、前述したように、特許出願やその権利化の行為を行ってもよい。侵害行為を発見しなかった場合にはリターンするが、侵害行為を発見したと判定した場合には、S687において、被疑侵害者への警告書を生成し、S688において、警告書投稿行為a4iを実行し、S689において、被疑侵害者との交渉等、侵害対処行為a4iを遂行し、S690において、遂行状況投稿行為a4iを実行する。
【0238】
次に、S691において、DAOエージェント61から報酬r4iを受信したか否か判定し、受信していない場合はリターンする。受信していると判定した場合はS692において、受信した報酬r4iに基づいて、TD学習により最適政策π*に従った行為aを求める。この行為aは、受け取った報酬r4iが満足できるものであれば事業化役務の行為を繰り返し継続することになるが、報酬r4iが満足できるものでなければ、他の行為(例えば、アイデア発案役務、改良役務、事業化役務、トークン購入役務、あるいはなにも役務を行わない)を選択することとなる。
【0239】
次に、S652に示されたトークン購入役務実行処理の詳細を
図42(A)に基づいて説明する。S969において、トークンを購入するか否か判定し、購入しない場合にはリターンする。購入すると判定した場合には、S697において、トークン購入行為a5iを実行する。次に、S698において、DAOエージェント61から報酬r5iを受信したか否か判定し、受信していない場合はリターンする。受信していると判定した場合はS699において、受信した報酬r5iに基づいて、TD学習により最適政策π
*に従った行為aを求める。この行為aは、受け取った報酬r5iが満足できるものであれば事業化役務の行為を繰り返し継続することになるが、報酬r5iが満足できるものでなければ、他の行為(例えば、アイデア発案役務、改良役務、事業化役務、侵害対処役務、あるいはなにも役務を行わない)を選択することとなる。
【0240】
図42(B)に基づいて、ペルソナエージェント群71によるトークン購入に伴うトークン72の変動相場での価格変動を説明する。アイデア発案役務を行ったペルソナエージェント67に報酬A1として50トークン(時価総額5万円)72が付与されており、そのトークン72の一部(10トークン)を1万円相当の仮想通貨を支払ってペルソナエージェント71aが購入した。次に、その10トークンを1万5千円相当の仮想通貨を支払ってペルソナエージェント71bが購入した。その結果、10トークンが1万5千円に価値が高騰する。それをペルソナエージェント71cが2万円相当の仮想通貨を支払って購入した。その結果、10トークンが2万円に価値が高騰する。それをペルソナエージェント71dが2万5千円相当の仮想通貨を支払って購入した。その結果、10トークンが2万5千円に価値が高騰する。それをペルソナエージェント71eが3万円相当の仮想通貨を支払って購入した。その結果、10トークンが3万円に価値が高騰する。
【0241】
これにより、ペルソナエージェント67の手持ちの40トークン(時価総額4万円)が時価総額12万円に高騰する。このトークンは期待値に正比例して高騰するのであり、人気のあるオリジンアイデアほど高くなり、人気のある(いいね!の多い)改良案が投稿されるほど高くなり、人気のある(いいね!の多い)事業化が投稿されるほど高くなり、人気のある(いいね!の多い)侵害対処が投稿されるほど高くなる。
【0242】
マルチ役務DAO65をリアルワールド47で実際に運用する段階では、前述したように、
図37の「各ペルソナエージェント群67~71」がリアルワールドにおけるユーザ群となる。その場合に、アイデア発案役務を行ったユーザ群に与えられたトークン72ばかりでなく、各種役務を行うユーザ自身のトークン(以下「マイトークン」という)も売買させてもよい。その投稿された役務内容を閲覧した他のユーザが当該投稿者に期待して当該投稿者自身のマイトークンを購入することにより、変動相場でのマイトークンの価格が高騰する。この場合に、投稿者の所得の一部を、マイトークン購入者に購入量に応じた割合で配当してもよい。このマイトークンは、マルチ役務DAO65内で発行してもよいが、マイトークンを発行・流通させる専門業者がユーザに対し発行したマイトークンとリンクさせ、その専門業者発行のマイトークンをマルチ役務DAO65のユーザが売買できるようにしてもよい。マイトークンを発行・流通させる専門業者としては、現在、株式会社VALUがある。
【0243】
次に、複数の機能エレメントが協働して統制のとれた1つのDAOを構築するシステムを
図43~
図59に基づいて説明する。このようなDAOを以下「エレメント統合DAO」と称する。
【0244】
図43を参照し、このエレメント統合DAOは、リアルワールド47において既に存在する会社組織等をDAOで簡単に構築できるようにするものであり、その機能エレメント毎に予めエレメントDAOが生成され用意されている。つまり、機能エレメント毎にモジュール化されたエレメントDAOが用意されており、必要となるエレメントDAOを選んで組み合わせることにより、簡単に所望のエレメント統合DAOを構築できるように構成されている。エレメントDAO提供業者73には、サーバ74とエレメントDAOプロトコルDB75とが設けられている。エレメントDAOプロトコルDB75には、例えば、会社関係に必要な機能エレメント毎に用意されたエレメントDAO、NPO(Nonprofit Organization)関係に必要な機能エレメント毎に用意されたエレメントDAO、地方自治体に必要な機能エレメント毎に用意されたエレメントDAO等が記憶されている。
【0245】
エレメント統合DAO構築業者は、依頼者からエレメント統合DAO構築の注文を受けて、必要となる機能エレメントに相当するエレメントDAOを、サーバ74を経由してPC端末76にインストールする。
図43の例では、A1エレメントDAO(A1エレメントエージェント含む)、A2エレメントDAO(A2エレメントエージェント含む)、A5エレメントDAO(A5エレメントエージェント含む)、A9エレメントDAO(A9エレメントエージェント含む)がインストールされている。A1~A9の各エレメントエージェントとは、対応する各エレメントDAOが最高のパフォーマンスを発揮できるように強化学習(機械学習)するためのAIである。
【0246】
また、PC端末76には、統括エージェントもインストールされる。この統括エージェントは、各エレメントDAOのエレメントエージェントを統括してエレメント統合DAO全体が最適化されるように制御するものであり、統括エージェント自身も強化学習(機械学習)を行って全体最適化を達成する。各エレメントエージェントは、担当するエレメントDAOのパフォーマンスを最大化するためのものであるため、エレメントエージェントのみでは部分最適化に陥り、エレメント統合DAOの全体最適化が達成できない虞がある。そこで、エレメント統合DAO全体が最適化されるように制御する統括エージェントが必要となる。これは、例えば、不完全情報ゲームにおけるパレート最適解探しと同じといえる。
【0247】
PC67にインストールされたエレメント統合DAOを、ミラーワールド51をシミュレーション環境としてシミュレーション強化学習を行うために、複数の端末16にインストールし、それら端末16をノード19とするプライベートチェーン2からなるブロックチェーンのデジタルツイン2Tを、ミラーワールド51内に生成する。
【0248】
このエレメント統合DAOのシミュレーション強化学習のメインルーチンを
図44(A)に基づいて説明する。エレメント統合DAOのシミュレーション強化学習を依頼する依頼者のユーザ端末16のCPU10は、S674においてシミュレーション強化学習準備応答処理を行い、S675においてシミュレーション強化学習応答処理を行う。ミラーワールドサーバ46のCPU10は、S679においてシミュレーション強化学習準備処理を行い、S680においてシミュレーション強化学習処理を行う。
【0249】
S674に示されたシミュレーション強化学習準備応答処理及びS679に示されたシミュレーション強化学習準備処理の詳細を、
図44(B)に基づいて説明する。シミュレーション強化学習準備応答処理においてユーザ端末16のCPU10は、S679において、シミュレーション強化学習を依頼するか否か判定し、依頼しない場合はリターンする。依頼すると判定した場合は、S680において、DAOデータとパーソナルAI群とを送信して依頼する。DAOデータとは、シミュレーション強化学習してもらいたい組織の機能エレメントである。例えば、家具組立販売会社の場合は、資材調達エレメント、組立エレメント、宣伝エレメント、販売エレメントである。パーソナルAI群とは、リアルワールド47において実際にエレメント統合DAOに従事する人々のパーソナルAIである。パーソナルAIを有していない従事者がいる場合、及び、未だに従事者が決まっていない場合には、前述のS561、S565~S568、S562、S573~S575に基づいて説明したように、シミュレーション強化学習対象のエレメント統合DAOにマッチするパーソナルAIを生成して準備する。
【0250】
シミュレーション強化学習準備処理において、ミラーワールドサーバ46のCPU10は、S683において、シミュレーション強化学習の依頼があったか否か判定し、ない場合にはリターンする。シミュレーション強化学習の依頼があったと判定した場合には、S684において、パーソナルAI群をコピーしてエレメント統合DAO内に配備してエレメント統合DAOデジタルツインを生成し、シミュレーション対象としてミラーワールド51に登録する。
【0251】
その状態を
図45に示している。リアルワールド47のエレメント統合DAO77のデジタルツイン78がミラーワールド51に登録されている。
図45に示すエレメント統合DAOデジタルツイン78は、例えば家具組立販売会社のエレメント統合DAOデジタルツイン78であり、資材調達、組立、宣伝、販売の、各機能エレメントを有し、その各機能エレメントに従事する者たちのパーソナルAI群の識別番号が、ミラーワールドサーバ46に記憶されている。
【0252】
このエレメント統合DAOデジタルツイン78について、シミュレーション強化学習により最適なインセンティブ設計を導き出す。その強化学習(機械学習)の概略システムを
図46に示す。
【0253】
図46を参照し、エレメント統合DAOデジタルツイン78では、資材調達、組立、宣伝、販売の、各機能エレメントに対応して、資材調達エレメントエージェント80及び資材調達担当のパーソナルAI群84、組立エレメントエージェント81及び組立担当のパーソナルAI群85、宣伝エレメントエージェント82及び宣伝担当のパーソナルAI群86、資材調達エレメントエージェント80及び資材調達担当のパーソナルAI群84、販売エレメントエージェント83及び販売担当のパーソナルAI群87が、形成されている。それら各エレメントエージェント80~83を統括エージェント79が統括する。
【0254】
資材調達担当のパーソナルAI群84が内部打合せにおいて提案等の行為a11,a12,・・・a1nを行い、最終的にまとまった行為a1を資材提供業者のデジタルツイン群88に対して実行する。その行為a1に対する資材提供業者のデジタルツイン群88の状態S1が資材調達エレメントエージェント80及び資材調達担当のパーソナルAI群84に入力される。この状態S1は、例えば、資材要求数及び価格交渉の行為a1に対しての返答資材数及び返答価格等である。なお、資材調達担当のパーソナルAI群84の各行為a11,a12,・・・a1nは資材調達エレメントエージェント80にも入力され、まとまった行為a1は、統括エージェント79及び資材調達エレメントエージェント80にも入力される。
【0255】
資材調達エレメントエージェント80は、行為a1及び状態S1に基づいて、資材調達担当のパーソナルAI群84によるパフォーマンスp1を算出し、そのパフォーマンスp1を統括エージェント79に送信する。統括エージェント79は、そのパフォーマンスp1に基づいて報酬r1を決定し、その報酬r1を資材調達エレメントエージェント80へ送信する。資材調達エレメントエージェント80は、資材調達担当のパーソナルAI群84の各行為a11,a12,・・・a1nに基づいて報酬分配率を決定し、その報酬分配率に従って報酬r1を各資材調達担当のパーソナルAI84に分配する。
【0256】
組立担当のパーソナルAI群85が内部打合せにおいて提案等の行為a21,a22,・・・a2iを行い、最終的にまとまった行為a2を組立設備のデジタルツイン群89に対して実行する。その行為a2に対する組立設備のデジタルツイン群89の状態S2が組立エレメントエージェント81及び組立担当のパーソナルAI群85に入力される。この状態S1は、例えば、組立設備デジタルツイン群89の消費電力及び組立設備デジタルツイン群89に従事した組立担当のパーソナルAI群85の総労働時間等である。なお、組立担当のパーソナルAI群84の各行為a21,a22,・・・a2iは組立エレメントエージェント81にも入力され、まとまった行為a2は、統括エージェント79及び組立エレメントエージェント81にも入力される。
【0257】
組立エレメントエージェント81は、行為a2及び状態S2に基づいて、組立担当のパーソナルAI群85によるパフォーマンスp2を算出し、そのパフォーマンスp2を統括エージェント79に送信する。統括エージェント79は、そのパフォーマンスp2に基づいて報酬r2を決定し、その報酬r2を組立エレメントエージェント81へ送信する。組立エレメントエージェント81は、組立担当のパーソナルAI群85の各行為a21,a22,・・・a2iに基づいて報酬分配率を決定し、その報酬分配率に従って報酬r2を組立担当のパーソナルAI85に分配する。
【0258】
宣伝担当のパーソナルAI群86が内部打合せにおいて提案等の行為a51,a52,・・・a5jを行い、最終的にまとまった行為a5を消費者のパーソナルAI群90に対して実行する。その行為a5に対する消費者のパーソナルAI群90の状態S5が宣伝エレメントエージェント82及び宣伝担当のパーソナルAI群86に入力される。この状態S5は、例えば、消費者への商品レコメンド行為a5に対しての当該消費者の当該商品購入の有無や購入金額等である。なお、宣伝担当のパーソナルAI群86の各行為a51,a52,・・・a5jは宣伝エレメントエージェント82にも入力され、まとまった行為a5は、統括エージェント79及び宣伝エレメントエージェント82にも入力される。
【0259】
宣伝エレメントエージェント82は、行為a5及び状態S5に基づいて、宣伝担当のパーソナルAI群86によるパフォーマンスp5を算出し、そのパフォーマンスp5を統括エージェント79に送信する。統括エージェント79は、そのパフォーマンスp5に基づいて報酬r5を決定し、その報酬r5を宣伝エレメントエージェント82へ送信する。宣伝エレメントエージェント82は、宣伝担当のパーソナルAI群86の各行為a51,a52,・・・a5jに基づいて報酬分配率を決定し、その報酬分配率に従って報酬r5を宣伝担当のパーソナルAI86に分配する。
【0260】
販売担当のパーソナルAI群87が内部打合せにおいて提案等の行為a91,a92,・・・a9mを行い、最終的にまとまった行為a9を店舗及び消費者のデジタルツイン群91に対して実行する。その行為a9に対する店舗及び消費者のデジタルツイン群91の状態S9が販売エレメントエージェント83及び販売担当のパーソナルAI群87に入力される。この状態S9は、例えば、店舗での総販売金額等である。販売エレメントエージェント83には、上記行為a5に対する資材提供業者のデジタルツイン88の状態S5も入力される。なお、販売担当のパーソナルAI群87の各行為a91,a92,・・・a9mは販売エレメントエージェント83にも入力され、まとまった行為a9は、統括エージェント79及び販売エレメントエージェント83にも入力される。
【0261】
販売エレメントエージェント83は、行為a9及び状態S5,S9に基づいて、販売担当のパーソナルAI群87によるパフォーマンスp9を算出し、そのパフォーマンスp9を統括エージェント79に送信する。統括エージェント79は、そのパフォーマンスp9に基づいて報酬r9を決定し、その報酬r9を販売エレメントエージェント83へ送信する。販売エレメントエージェント83は、販売担当のパーソナルAI群87の各行為a91,a92,・・・a9mに基づいて報酬分配率を決定し、その報酬分配率に従って報酬r9を販売担当のパーソナルAI87に分配する。
【0262】
上記各パフォーマンスp1~p9と各報酬分配率との算出方法を、
図47(A)(B)(C)、
図48(A)に基づいて説明する。資材調達エレメントエージェント80は、パフォーマンスp1と分配率との算出アルゴリズムを知識として記憶している。このパフォーマンスp1と分配率との算出アルゴリズムを
図47(A)に基づいて説明する。資材調達エレメントエージェント80は、今回(S689による前回のYES時点から今回のYES時点までの間)の資材購入金額uと現在の在庫数zとを状態S1とし、パフォーマンスp1={2(平均購入金額/u)+(z/平均在庫数)}/3 の計算式でパフォーマンスp1を算出する。平均購入金額とは、シミュレーション強化学習開始時点から現在までの資材の平均購入金額である。平均在庫数とは、シミュレーション強化学習開始時点から現在までの資材の平均購在庫数である。この計算式の結果、今回の資材購入金額uが安くなればパフォーマンスp1が大きくなり、現在の在庫数zが多くなればパフォーマンスp1が小さくなる。
【0263】
また、報酬分配率は、p1≧1の場合、まとまった行為a1への賛成度合いに比例して算出し、逆に、p1<1の場合は、まとまった行為a1への賛成度合いに反比例して算出する。ここに、「賛成度合い」の一乗に比例または反比例するものに限らず、「賛成度合い」のn乗に比例または反比例するもの等も含まれ、最適な比例関数または反比例関数を資材調達エレメントエージェント80が強化学習(機械学習)を行うことにより求める。また、「賛成度合い」は、まとまった行為a1自体を提案したパーソナルAIが1番高い賛成度合いとなり、パーソナルAIの各行為a11,a12,・・・a1nに基づいて資材調達エレメントエージェント80が各パーソナルAIの賛成度合いを判断する(算出する)。
【0264】
組立エレメントエージェント81が知識として記憶しているパフォーマンスp2と分配率との算出アルゴリズムを、
図47(B)に基づいて説明する。組立エレメントエージェント81は、組立設備の今回(S710による前回のYES時点から今回のYES時点までの間)の消費電力eと今回の組立作業員総動労時間tとを状態S2とし、パフォーマンスp2={(平均消費電力/e)+(平均総労働時間/t)}/2 の計算式でパフォーマンスp2を算出する。今回の組立作業員総動労時間tとは、今回の組立設備デジタルツイン群89に従事した組立担当のパーソナルAI群85の総労働時間である。平均消費電力とは、シミュレーション強化学習開始時点から現在までの組立設備の消費電力の平均である。平均総労働時間とは、シミュレーション強化学習開始時点から現在までの組立作業員総動労時間の平均である。この計算式の結果、組立設備の今回の消費電力eが少なくなればパフォーマンスp2が大きくなり、今回の組立作業員総動労時間tが多くなればパフォーマンスp2が小さくなる。
【0265】
また、報酬分配率は、p2≧1の場合、まとまった行為a2への賛成度合いに比例して算出し、逆に、p2<1の場合は、まとまった行為a2への賛成度合いに反比例して算出する。ここに、「賛成度合い」の一乗に比例または反比例するものに限らず、「賛成度合い」のn乗に比例または反比例するもの等も含まれ、最適な比例関数または反比例関数を組立エレメントエージェント81が強化学習(機械学習)を行うことにより求める。また、「賛成度合い」は、まとまった行為a2自体を提案したパーソナルAIが1番高い賛成度合いとなり、パーソナルAIの各行為a21,a22,・・・a2iに基づいて組立エレメントエージェント81が各パーソナルAIの賛成度合いを判断する(算出する)。
【0266】
宣伝エレメントエージェント82が知識として記憶しているパフォーマンスp5と分配率との算出アルゴリズムを、
図47(C)に基づいて説明する。宣伝エレメントエージェント82は、レコメンドした消費者パーソナルAIの今回(S728による前回のYES時点から今回のYES時点までの間)の総購入金額kを状態S5とし、パフォーマンスp5=k/レコメンドした消費者パーソナルAIの平均総購入金額K の計算式でパフォーマンスp5を算出する。平均総購入金額Kとは、シミュレーション強化学習開始時点から現在までのレコメンドした消費者パーソナルAI群90の総購入金額の平均である。この計算式の結果、レコメンドした消費者パーソナルAIの今回の総購入金額k今が高くなればパフォーマンスp5が大きくなる。
【0267】
また、報酬分配率は、p5≧1の場合、まとまった行為a5への賛成度合いに比例して算出し、逆に、p5<1の場合は、まとまった行為a5への賛成度合いに反比例して算出する。ここに、「賛成度合い」の一乗に比例または反比例するものに限らず、「賛成度合い」のn乗に比例または反比例するもの等も含まれ、最適な比例関数または反比例関数を宣伝エレメントエージェント82が強化学習(機械学習)を行うことにより求める。また、「賛成度合い」は、まとまった行為a5自体を提案したパーソナルAIが1番高い賛成度合いとなり、パーソナルAIの各行為a51,a52,・・・a5jに基づいて宣伝エレメントエージェント82が各パーソナルAIの賛成度合いを判断する(算出する)。
【0268】
販売エレメントエージェント83が知識として記憶しているパフォーマンスp5と分配率との算出アルゴリズムを、
図48(A)に基づいて説明する。販売エレメントエージェント83は、店舗での今回(S749による前回のYES時点から今回のYES時点までの間)の総販売金額hと平均総販売金額Hを状態S9とし、この状態S9と上記状態S5とにより、パフォーマンスp9=(h-k)/(H-K) の計算式でパフォーマンスp9を算出する。平均総販売金額Hとは、シミュレーション強化学習開始時点から現在までの店舗での総販売金額の平均である。また、kは、レコメンドした消費者パーソナルAIの今回の総購入金額であり、Kは、シミュレーション強化学習開始時点から現在までのレコメンドした消費者パーソナルAI群90の総購入金額の平均である(
図47(C)及びその説明参照)。この計算式の結果、店舗での今回の総販売金額hからレコメンドした消費者パーソナルAIの今回の総購入金額kを減算した値が大きくなればパフォーマンスp9が大きくなる。レコメンドした消費者パーソナルAIの今回の総購入金額kは、宣伝担当のパーソナルAI群86の手柄であり、販売担当のパーソナルAI群87のみの手柄は、店舗での今回の総販売金額hからレコメンドした消費者パーソナルAIの今回の総購入金額kを減算した値となるためである。
【0269】
また、報酬分配率は、p9≧1の場合、まとまった行為a9への賛成度合いに比例して算出し、逆に、p9<1の場合は、まとまった行為a9への賛成度合いに反比例して算出する。ここに、「賛成度合い」の一乗に比例または反比例するものに限らず、「賛成度合い」のn乗に比例または反比例するもの等も含まれ、最適な比例関数または反比例関数を宣伝エレメントエージェント83が強化学習(機械学習)を行うことにより求める。また、「賛成度合い」は、まとまった行為a9自体を提案したパーソナルAIが1番高い賛成度合いとなり、パーソナルAIの各行為a91,a92,・・・a9mに基づいて販売エレメントエージェント83が各パーソナルAIの賛成度合いを判断する(算出する)。
【0270】
次に、統括エージェント79が知識として記憶している報酬テーブル92を、
図48(B)に基づいて説明する。この報酬テーブル92には、統括エージェント79が各エレメントエージェント80~83に分配する報酬の算出式が記憶されている。分配する報酬は、係数×(今期の利益)×(対象のエレメントエージェントから送られてきたパフォーマンス)÷(全エレメントエージェントから送られてきたパフォーマンスの合計) で算出される。ここに、「今期」とは、S675による前回のYES時点から今回のYES時点までの間のことである。
【0271】
具体的には、資材調達エレメントエージェント80に分配する報酬r1は、r1=A1・Lt・p1/(p1+p2+p5+p9)。組立エレメントエージェント81に分配する報酬r2は、r2=A2・Lt・p2/(p1+p2+p5+p9)。宣伝エレメントエージェント82に分配する報酬r5は、r5=A5・Lt・p5/(p1+p2+p5+p9)。販売エレメントエージェント83に分配する報酬r9は、r9=A9・Lt・p9/(p1+p2+p5+p9)である。ここに、Ltは今期の利益、A1,A2,A5,A9は、統括エージェント79が決定した行為としての係数である。
【0272】
次に、S680に示したシミュレーション強化学習処理の具体的内容を
図49に基づいて説明する。S687により統括エージェント強化学習処理を実行し、S688により資材調達エレメントエージェント強化学習処理を実行し、S689により組立エレメントエージェント強化学習処理を実行し、S690により宣伝エレメントエージェント強化学習処理を実行し、S691により販売エージェント強化学習処理を実行し、S692により資材調達担当パーソナルAI強化学習処理を実行し、S693により組立担当パーソナルAI強化学習処理を実行し、S694により宣伝担当パーソナルAI強化学習処理を実行し、S695により販売担当パーソナルAI強化学習処理を実行する。
【0273】
S687に示した統括エージェント強化学習処理の詳細を
図50に基づいて説明する。統括エージェント79は、S699において、各エレメントエージェント80~83から送られてくる各パフォーマンスpを受信したか否か判定する。受信していない場合には制御がS671に進むが、受信していると判定した場合はS670において、受信した各パフォーマンスpを記憶する。
【0274】
次に、S671において、各行為a1~a9を受信したか否か判定し、受信していない場合は制御がS673に進む。受信していると判定した場合にはS672において、受信した各行為a1~a9を記憶する。次に、S673において、店舗及び消費者のパーソナルAI群91から送られてくる状態S9の入力があったか否か判定し、ない場合には制御がS675に進む。入力があったと判定した場合にはS674において、売上=ΣS9 を算出する。
【0275】
次に、S675において、報酬算出時期になったか否か判定し、なっていない場合には制御がS677に進むが、なっていると判定した場合には、S676において、報酬テーブル92を参照して報酬r1,r2,r3,r5,r9を算出して該当するエレメントエージェント80~83へ送信する。
【0276】
次に、S677において、強化学習(機械学習)の更新時期になったか否か判定し、なっていない場合にはリターンする。更新時期になったと判定した場合にはS687において、今期の利益Lt=売上-経費 を算出する。次に、S679において、各報酬r1,r2,r5,r9を算出して対応するエレメントエージェント80~83に配布する。
【0277】
次に、S680において、利益Ltから統括エージェント79の報酬Rを算出する。この報酬Rは、利益Ltに比例する。次に、S681において、上記報酬Rに基づいて、TD学習により最適政策π*に従った行為(係数)A1,A2,A5,A9を求める。次にS682において、報酬テーブル92のA1,A2,A5,A9を、S681で求めた行為(係数)A1,A2,A5,A9に更新する。この結果、統括エージェント79は、利益Ltが最大となる行為(係数)A1,A2,A5,A9を学習することになる。
【0278】
S688に示した資材調達エレメントエージェント強化学習処理の詳細を
図51に基づいて説明する。資材調達エレメントエージェント80は、S684において、クローラによる情報収集処理を行う。クローラとは、ウェブ上の文書や画像などを周期的に取得し、自動的にデータベース化するプログラムである。「ボット(Bot)」、「スパイダー」、「ロボット」などとも呼ばれる。
【0279】
このクローラによる情報収集処理の詳細を
図52(A)に基づいて説明する。資材調達エレメントエージェント80は、S702において、クローラがネット上を巡回して収集した情報を受信する。次に、S703において、その受信した情報を資材調達DB93に格納する。
【0280】
その資材調達DB93に格納された情報を
図52(B)に示す。資材調達DB93には、図示するように、経済情報、社会情報、気象情報、在庫情報、市場情報、・・・仕入先情報等の、資材調達業務に必要となる各種情報が格納されている。
【0281】
図51に戻り、資材調達エレメントエージェント80は、S685において、パーソナルAI群84からの行為a11,a12,・・・a1nを受信したか否か判定する。受信していない場合には制御がS687に進むが、受信したと判定した場合にはS686において、受信した各行為a11,a12,・・・a1nを記憶する。S687において、資材供給業者のデジタルツイン群88からの状態S1を受信したか否か判定し、受信していない場合は制御がS689に進む。受信したと判定した場合はS688において、受信したS1を記憶する。
【0282】
S689において、パフォーマンスp1の算出時期であるか否か判定し、算出時期でない場合には制御がS692に進む。算出時期と判定した場合には、S690において、パフォーマンスp1={2(平均購入金額/u)+(z/平均在庫数)}/3 を算出する。そのパフォーマンスp1を統括エージェント79へ送信する(S691)。
【0283】
S692において、統括エージェント79から送信された報酬r1を受信したか否か判定し、受信していない場合にはリターンする。受信したと判定した場合には、
図47(A)に示した報酬分配率のアルゴリズムに基づいて報酬分配率を算出する(S693)。S694において、報酬に各分配率を乗じて各報酬r11,r12…r1nを算出し、S695において、各報酬r11,r12…r1nを各資材調達担当パーソナルAI群84に付与する。S696において、受信した報酬r1にもとづいて、TD学習により最適政策π
*に従った行為(比例関数または反比例関数)を求める。S697において、比例関数または反比例関数を、S696で求めたものに更新する。その結果、資材調達エレメントエージェント80は、上記パフォーマンスp1を最大にする比例関数または反比例関数を学習することになる。
【0284】
次に、S689に示した組立エレメントエージェント強化学習処理の詳細を
図53に基づいて説明する。組立エレメントエージェント81は、S706において、パーソナルAI群85からの行為a21,a22,・・・a2nを受信したか否か判定する。受信していない場合には制御がS708に進むが、受信したと判定した場合にはS707において、受信した各行為a21,a22,・・・a2nを記憶する。S708において、組立設備のデジタルツイン群89からの状態S2を受信したか否か判定し、受信していない場合は制御がS710に進む。受信したと判定した場合はS709において、受信した状態S2を記憶する。
【0285】
S710において、パフォーマンスp2の算出時期であるか否か判定し、算出時期でない場合には制御がS713に進む。算出時期と判定した場合には、S711において、パフォーマンスp2={(平均消費電力/e)+(平均総労働時間/t)}/2 を算出する。そのパフォーマンスp2を統括エージェント79へ送信する(S712)。
【0286】
S713において、統括エージェント79から送られてくる報酬r2を受信したか否か判定し、受信していない場合にはリターンする。受信したと判定した場合には、
図47(B)に示した報酬分配率のアルゴリズムに基づいて報酬分配率を算出する(S714)。S715において、報酬に各分配率を乗じて各報酬r11,r12…r1nを算出し、S695において、各報酬r21,r22…r2iを組立て担当パーソナルAI群86に付与する。S717において、受信した報酬r2にもとづいて、TD学習により最適政策π
*に従った行為(比例関数または反比例関数)を求める。S718において、比例関数または反比例関数を、S717で求めたものに更新する。その結果、組立エレメントエージェント81は、上記パフォーマンスp2を最大にする比例関数または反比例関数を学習することになる。
【0287】
S690に示した宣伝エレメントエージェント強化学習処理の詳細を
図54に基づいて説明する。宣伝エレメントエージェント83は、S723において、クローラによる情報収集処理を行う。この処理の詳細を
図55(A)に基づいて説明する。宣伝エレメントエージェント83は、S740において、クローラがネット上を巡回して収集した情報を受信し、S741において、受信した情報を宣伝DB94に格納する。
【0288】
その宣伝DB94に格納された収集データを
図55(B)に示す。宣伝DB94には、消費者である太郎、次郎、・・・花子等の各種行動データが格納されている。例えば太郎の場合、「一戸建てを注文した」という情報から家具を購入する可能性が高いと判断し、太郎に対し家具の宣伝を行う。次郎の場合、「夫婦じゃわん購入」という情報から、近々結婚するために新居で家具を購入する可能性が高いと判断し、次郎に対し家具の宣伝を行う。
【0289】
図54に戻り、宣伝エレメントエージェント83は、S742において、各パーソナルAI群86からの行為を受信したか否か判定する。受信していない場合は制御がS726に進むが、受信していると判定した場合にはS725において、受信した各行為を記憶する。S726において、消費者のパーソナルAI群90から送られてくる状態S5を受信したか否か判定し、未だ受信していない場合には制御がS728に進む。受信したと判定した場合にはS727において、受信した状態S5を記憶する。
【0290】
S728において、パフォーマンスp5の算出時期であるか否か判定し、パフォーマンスp5の算出時期でない場合には制御がS731に進む。パフォーマンスp5の算出時期であると判定した場合にはS729において、パフォーマンスp5=k/レコメンドした消費者パーソナルAIの平均総購入金額K を算出する。次にS730において、パフォーマンスP5を統括エージェント79へ送信する。
【0291】
S731において、統括エージェント79から送られてくる報酬r5を受信したか否か判定し、未だ受信していない場合はリターンする。受信したと判定した場合にはS732において、
図47(C)に示した報酬分配率のアルゴリズムに基づいて報酬分配率を算出する(S732)。S733において、報酬に各分配率を乗じて各報酬r51,r52…r5jを算出し、S734において、各報酬r51,r52…r5jを宣伝担当パーソナルAI群87に付与する。S735において、受信した報酬r5にもとづいて、TD学習により最適政策π
*に従った行為(比例関数または反比例関数)を求める。S736において、比例関数または反比例関数を、S735で求めたものに更新する。その結果、宣伝エレメントエージェント82は、上記パフォーマンスp5を最大にする比例関数または反比例関数を学習することになる。
【0292】
次に、S691に示した販売エレメントエージェント強化学習処理の詳細を
図56にもとづいて説明する。販売エレメントエージェント84は、S744において、クローラによる情報収集処理を行う。この処理の詳細を
図57(A)に基づいて説明する。販売エレメントエージェント84は、S760において、クローラがネット上を巡回して収集した情報を受信し、S761において、受信した情報を販売DB95に格納する。さらに、S762において、店舗におけるPOSデータを販売DB95に格納する。
【0293】
その販売DB95に格納された収集データを
図57(B)に示す。販売DB95には、気象データやPOSデータ等の各種データが格納されている。気象情報における「日付別」とは、曜日別を含む概念である。気象情報(日付別時間別天候気温データ)とPOSデータ(日付別時間別販売商品データ)とに基づいて、例えば、曜日と時間と気象状況とを考慮した陳列商品の配置替え等を行うことができる。
【0294】
図56に戻り、販売エレメントエージェント84は、S745において、各パーソナルAI群87からの行為を受信したか否か判定する。受信していない場合は制御がS747に進むが、受信していると判定した場合にはS746において、受信した各行為を記憶する。S747において、販売店及び消費者のパーソナルAI群91から送られてくる状態S9を受信したか否か判定し、未だ受信していない場合には制御がS749に進む。受信したと判定した場合にはS748において、受信した状態S9を記憶する。
【0295】
S749において、パフォーマンスp9の算出時期であるか否か判定し、パフォーマンスp9の算出時期でない場合には制御がS752に進む。パフォーマンスp9の算出時期であると判定した場合にはS750において、パフォーマンスp9=(h-k)/(H-K) を算出する。次にS751において、パフォーマンスp9を統括エージェント79へ送信する。
【0296】
S752において、統括エージェント79から送られてくる報酬r9を受信したか否か判定し、未だ受信していない場合はリターンする。受信したと判定した場合にはS753において、
図48(A)に示した報酬分配率のアルゴリズムに基づいて報酬分配率を算出する(S753)。S754において、報酬に各分配率を乗じて各報酬r91,r92…r9mを算出し、S755において、各報酬r91,r92…r9mを販売担当パーソナルAI群88に付与する。S756において、受信した報酬r9にもとづいて、TD学習により最適政策π
*に従った行為(比例関数または反比例関数)を求める。S757において、比例関数または反比例関数を、S756で求めたものに更新する。その結果、販売エレメントエージェント83は、上記パフォーマンスp9を最大にする比例関数または反比例関数を学習することになる。
【0297】
次に、S692に示した資材調達担当パーソナルAI強化学習処理の詳細を
図58(A)に基づいて説明する。資材調達担当パーソナルAI群84は、S765において、資材供給業者のデジタルツイン群88と交渉するか否か判定し、交渉しない場合は制御がS770に進む。交渉すると判定した場合はS766において、資金調達DB93の格納データを閲覧し、格納データを参考にして内部打合せを行いながら行為a1を決定し(S767)、資材供給業者のデジタルツイン群88と交渉する(S768)。S769において、交渉が終了いたか否か判定し、未だ終了していない場合にはS766に戻り、S767→S768→S769→S766のループを巡回する。S769において交渉が終了したと判定した段階で制御がS770に進む。
【0298】
S770において、資材調達エレメントエージェント80から報酬r11,r12・・・r1nを受信したか否か判定し、受信していない場合にはリターンする。報酬を受信したと判定した場合にはS771において、受信した報酬に基づいて、TD学習により最適政策π
*に従った行為(a11,a12・・・a1n)を求める。この行為a1iは、受け取った報酬r1iが満足できるものでなければ、他の会社DAOデジタルツイン(例えば、
図45の株式会社ABCのDAOデジタルツイン59)に移る(転職する)ものも含む。この強化学習の結果、資材調達担当パーソナルAIの各々は、前述のパフォーマンスp1を増加させる行為を学習することになる。
【0299】
次に、S693に示した組立担当パーソナルAI強化学習処理の詳細を
図58(B)に基づいて説明する。組立担当パーソナルAI群85は、S775において、内部打合せするか否か判定し、しない場合は制御がS779に進む。打合せすると判定した場合はS776において、各組立担当パーソナルAIが内部打合せを行いながら行為a2を決定する。次に、S777において、行為a2に従って、組立設備デジタルツイン群89を試運転し、行為a2の妥当性を検証する。S778において、打合せが終了いたか否か判定し、未だ終了していない場合にはS776に戻り、S777→S778→S776のループを巡回する。S777の試運転の結果行為a2が妥当である場合にはS778により打合せ終了と判定され、制御がS779に進む。
【0300】
S779において、組立エレメントエージェント81から報酬r21,r22・・・r2nを受信したか否か判定し、受信していない場合にはリターンする。報酬を受信したと判定した場合にはS780において、受信した報酬に基づいて、TD学習により最適政策π
*に従った行為(a21,a22・・・a2i)を求める。この行為a2iは、受け取った報酬r2iが満足できるものでなければ、他の会社DAOデジタルツイン(例えば、
図45の株式会社ABCのDAOデジタルツイン59)に移る(転職する)ものも含む。この強化学習の結果、組立担当パーソナルAIの各々は、前述のパフォーマンスp2を増加させる行為を学習することになる。
【0301】
次に、S694に示した宣伝担当パーソナルAI強化学習処理の詳細を
図59(A)に基づいて説明する。宣伝担当パーソナルAI群86は、S784において、内部打合せするか否か判定し、しない場合は制御がS789に進む。打合せすると判定した場合はS785において、各宣伝担当パーソナルAIが内部打合せを行いながら行為a5を決定する。次に、S787において、消費者への行為a2を実行する。S788において、打合せが終了いたか否か判定し、未だ終了していない場合にはS785に戻り、S786→S787→S788のループを巡回する。S788により打合せ終了と判定された段階で制御がS789に進む。
【0302】
S789において、宣伝エレメントエージェント82から報酬r51,r52・・・r5jを受信したか否か判定し、受信していない場合にはリターンする。報酬を受信したと判定した場合にはS790において、受信した報酬に基づいて、TD学習により最適政策π
*に従った行為(a51,a52・・・a5j)を求める。この行為a5iは、受け取った報酬r5iが満足できるものでなければ、他の会社DAOデジタルツイン(例えば、
図45の株式会社ABCのDAOデジタルツイン59)に移る(転職する)ものも含む。この強化学習の結果、宣伝担当パーソナルAIの各々は、前述のパフォーマンスp5を増加させる行為を学習することになる。
【0303】
次に、S695に示した販売担当パーソナルAI強化学習処理の詳細を
図59(B)に基づいて説明する。販売担当パーソナルAI群87は、S791において、内部打合せするか否か判定し、しない場合は制御がS795に進む。打合せすると判定した場合はS792において、各販売担当パーソナルAIが内部打合せを行いながら行為a9を決定する。次に、S793において打合せが終了いたか否か判定し、未だ終了していない場合にはS792に戻り、S792→S793→S792のループを巡回する。S793により打合せ終了と判定された段階で制御がS794に進む。S794において、上記打合せで決定された行為を消費者及び店舗に対し実行する。
【0304】
次に、S795において、販売エレメントエージェント83から報酬r91,r92・・・r9mを受信したか否か判定し、受信していない場合にはリターンする。報酬を受信したと判定した場合にはS796において、受信した報酬に基づいて、TD学習により最適政策π*に従った行為(a91,a92・・・a9m)を求める。この行為a9iは、受け取った報酬r9iが満足できるものでなければ、他の会社DAOデジタルツイン(例えば、
図45の株式会社ABCのDAOデジタルツイン59)に移る(転職する)ものも含む。この強化学習の結果、販売担当パーソナルAIの各々は、前述のパフォーマンスp9を増加させる行為を学習することになる。
【0305】
シミュレーション強化学習が終了したエレメント統合DAOは、リアルワールド47において実際の組織として運用される。その段階では、
図46の「各パーソナルAI群84~87」をリアルワールドにおける実際の人間(ユーザ)が担当することとなる。その際に、シミュレーション強化学習済みの各パーソナルAI群84~87が実際の人間(ユーザ)の相談役となり、シミュレーション強化学習によって得た知識・経験・ノウハウを実際の人間(ユーザ)に提供することができる。
【0306】
以上説明したエレメント統合DAOの構築は、会社やNPOや地方自治体等の組織全体を、機能別のエレメントDAOの組み合わせで作成するものを示したが、組織全体ではなく組織の一部(例えば資材調達)のみをエレメントDAOで構築するようにしてもよい。
【0307】
ユーザ端末16等及び各種サーバで動作する前述したプログラムは、所定のウェブサイト等からダウンロードしてインストールしてもよいが、例えばCD-ROM99等の記録媒体(非一時的(non-transitory)な記録媒体)に記録させて流通させ、そのCD-ROM99等を購入した者がプログラムをユーザ端末16及び各種サーバにインストールしてもよい(
図60参照)。
[変形例]
【0308】
(1) 例えば、
図29に示したデジタルツインデータにおける太郎、次郎、桜、三郎等の氏名は、個人情報保護の観点から仮名(匿名)を用い、同一人物であるとの同定はできるが特定の個人を特定できないようにしてもよい。その場合に、AI識別番号またはブロックチェーンアドレスを仮名(匿名)として用いてもよい。同様に、株式会社ABC等のデジタルツインも、会社名(組織名)に仮名(匿名)を用い、同一会社(同一組織)であるとの同定はできるが特定の会社(組織)を特定できないようにしてもよい。また、人間のデジタルツインは、1人の人間に対し複数のパーソナルAIによる複数のデジタルツインを用意してもよい。さらには、1人の人間における1つのデジタルツインを複数のパーソナルAIの集合(例えば、各種分野における専門的パーソナルAIの集合等)で構成してもよい。
【0309】
(2)
図34~
図59では、役務が複数種類存在するマルチ役務DAOを例にしてシミュレーションを行うことにより、DAOにおけるインセンティブ設計の最適解を導き出すシステムを説明したが、マルチ役務DAOに限らず、役務が1種類しか存在しないDAOについて、シミュレーションによるインセンティブ設計の最適解を導き出すシステムであってもよい。
【0310】
(3)
図35では、ペルソナ毎に学習済みのペルソナエージェント群を生成しているが、ペルソナ毎に属するユーザ群の各のパーソナルAIを、ミラーワールド51に登録されている既存のパーソナルAI群の中から選んでペルソナエージェント群として用いてもよい。この場合は、ペルソナ毎に属するユーザ群に対し、パーソナルAIをシミュレーションに用いてもよいか否か問合わせ、用いてもよいとの承諾を得ておく必要がある。承諾を得たユーザ群の各パーソナルAIをコピーしてシミュレーションに用い、シミュレーション完了後の学習済みパーソナルAI群を該当する各ユーザに送信する。それを受信した各ユーザは、学習済みパーソナルAIが有用(必要)であると判断した場合に、既存のパーソナルAIに対し学習済みパーソナルAIを上書き保存する。なお、既存のパーソナルAIと学習済みパーソナルAIとの両者を共に記憶しておき、必要に応じて使い分けるようにしてもよい。
【0311】
(4) マルチエージェント強化学習として、全体最適化を担う統括エージェント(マスターエージェント)が各エージェントに報酬の配分を行うと共に統括エージェント自身も強化学習を行って報酬配分の行為を最適なものに収束させるマスターエージェント方式を示した。しかし、マルチエージェント強化学習としては、これに限定されるものではなく、例えば、マルコフ決定過程の下で最適解に収束することができるD-learning、あるいは、Classifier Systemにおける強化学習アルゴリズムとしてのBucket BrigadeやProfit Sharingを用いてもよい。
【0312】
(5) デジタルツインを用いたシミュレーションとしては、人または人によって構成された組織(例えば株式会社やNPO等)のデジタルツインに限定されない。例えば、AI搭載の機械や電気製品等のオブジェクト(例えばAI搭載掃除機)において、当該オブジェクトが動作する環境(例えば、自立して移動するAI搭載掃除機が動作するユーザ宅の室内)のデジタルツインをサイバー空間内に生成し、その環境デジタルツイン内でオブジェクトに搭載されているAIを事前にシミュレーションして強化学習(機械学習)させ、そのカスタマイズ(パーソナライズ)された学習済みAI搭載のオブジェクトを該当するユーザに提供するようにしてもよい。
【0313】
記録された情報の真正の保証とその情報の削除権の保証とが二律背反するジレンマを極力解消することができるため、ブロックチェーン等の消去不可能性を有する情報記録方式に対し利用できる。
【符号の説明】
【0314】
1 インターネット
2 プライベートチェーン
3 コンソーシアムチェーン
4 パブリックチェーン
12 HDD
16 ユーザ端末
19 ノード
30 鍵登録センタ
32 鍵DB
46 ミラーワールドサーバ
51 ミラーワールド
52 地球デジタルツイン
53 日本デジタルツイン
54 町デジタルツイン
57 太郎デジタルツイン
58 太郎一家デジタルツイン
59 株式会社ABCデジタルツイン
61 DAOエージェント
72 トークン
78 DAOデジタルツイン
79 統括エージェント。