(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024048908
(43)【公開日】2024-04-09
(54)【発明の名称】空気調和装置
(51)【国際特許分類】
F24F 1/0067 20190101AFI20240402BHJP
【FI】
F24F1/0067
【審査請求】未請求
【請求項の数】7
【出願形態】OL
(21)【出願番号】P 2022155066
(22)【出願日】2022-09-28
(71)【出願人】
【識別番号】000002853
【氏名又は名称】ダイキン工業株式会社
(74)【代理人】
【識別番号】110000202
【氏名又は名称】弁理士法人新樹グローバル・アイピー
(72)【発明者】
【氏名】中野 寛之
(72)【発明者】
【氏名】木村 恭彰
(72)【発明者】
【氏名】川島 均
(72)【発明者】
【氏名】神棒 圭太
(72)【発明者】
【氏名】原口 優
【テーマコード(参考)】
3L051
【Fターム(参考)】
3L051BE05
(57)【要約】
【課題】本開示の目的は、冷媒が気液二相状態で減圧機構に入ることを抑制した空気調和装置を提供することである。
【解決手段】
空気調和装置1では、鉛直方向に低い位置にある第1パス201の長さを、第1パス201よりも鉛直方向に高い位置にある第2パス202よりも短くすることによって、第1パス201の流通抵抗が低下し、圧損が低減される。それゆえ、下方に位置する第1パス201に液冷媒が溜まり過ぎることが抑制される。その結果、上方に位置する第2パス202で過冷却が取れずに気液二相状態で弁に入る、という現象の発生が抑制される。
【選択図】
図4
【特許請求の範囲】
【請求項1】
第1熱交換部(20a)と第2熱交換部(20b)とを有する室内熱交換器(20)と、
前記第1熱交換部(20a)と前記第2熱交換部(20b)との間に接続される減圧機構(26)と、
前記減圧機構(26)を動作させて、前記第1熱交換部(20a)を凝縮器、前記第2熱交換部(20b)を蒸発器として機能させる除湿運転を行う制御部(80)と、
を備え、
前記第1熱交換部(20a)は、冷媒が分岐して流れる複数のパス(201~203)を有し、
前記除湿運転時に、前記第1熱交換部(20a)から前記減圧機構(26)に向かう前記複数のパス(201~203)のうち、鉛直方向に低い位置にある第1パス(201)の長さは、前記第1パス(201)よりも鉛直方向に高い位置にある第2パス(202)よりも短い、
空気調和装置(1)。
【請求項2】
前記第1パス(201)において、前記除湿運転時に冷媒を下方に導く区間の長さは、冷媒を上方に導く区間の長さよりも長く設定されている、
請求項1に記載の空気調和装置(1)。
【請求項3】
前記第1パス(201)において、前記除湿運転時、冷媒は出口に向かって下がるように流れる、
請求項1または請求項2に記載の空気調和装置(1)。
【請求項4】
前記第1パス(201)は複数の伝熱管(200b)で形成され、
前記除湿運転時に冷媒を上方に導く前記伝熱管(200b)の数量は、冷媒を下方に導く前記伝熱管(200b)の数量よりも少なく設定されている、
請求項1または請求項2に記載の空気調和装置(1)。
【請求項5】
前記室内熱交換器(20)は、正面視において前記第1熱交換部(20a)が前記第2熱交換部(20b)の前方に配置され、且つ側面視において前記第1熱交換部(20a)と前記第2熱交換部(20b)とが逆V字を形成するように配置されており、
前記第1パス(201)は、前記第1熱交換部(20a)の下部に位置する、
請求項1または請求項2に記載の空気調和装置(1)。
【請求項6】
前記減圧機構(26)は弁であり、流体が20℃の空気であって且つ前後の差圧が98kPaであるときの流量が10.0L/min未満となる開度が、前記除湿運転時の開度である、
請求項1または請求項2に記載の空気調和装置(1)。
【請求項7】
前記複数のパス(201~203)を構成する前記伝熱管(200b)の管径は7mm以上である、
請求項1および請求項2に記載の空気調和装置(1)。
【発明の詳細な説明】
【技術分野】
【0001】
室温を低下させずに除湿運転を行う空気調和装置に関する。
【背景技術】
【0002】
近年、室温を低下させずに除湿運転を行う空気調和装置が広く普及している。例えば、特許文献1(特開2001-82761号公報)に記載の空気調和装置では、流量制御弁(減圧機構)を用いて室内熱交換器の一部を凝縮器、他の部分を蒸発器として機能させることによって、室温を低下させずに室内空気の除湿だけを行うことができる。
【発明の概要】
【発明が解決しようとする課題】
【0003】
しかしながら、上記のような空気調和装置において、減圧機構の上流で過冷却がとれない場合、冷媒が気液二相状態で減圧機構に入り、冷媒音が発生する。
【0004】
具体的には、低い位置にあるパスでは液冷媒が溜まり易く、その液冷媒が重力の影響によって上に向かって流れ難くなり、高い位置にあるパスでは、冷媒が集中して流れ過冷却が取れない傾向にある。
【0005】
冷媒が減圧機構に入る前に過冷却が取れない場合、冷媒は液化せずに気液二相状態で減圧機構に入り、それが原因で冷媒音が発生する。
【0006】
それゆえ、冷媒が気液二相状態で減圧機構に入ることを抑制した空気調和装置を提供する、という課題が存在する。
【課題を解決するための手段】
【0007】
第1観点の空気調和装置は、室内熱交換器と、減圧機構と、制御部とを備える。室内熱交換器は、第1熱交換部と第2熱交換部とを有する。減圧機構は、第1熱交換部と第2熱交換部との間に接続される。制御部は、減圧機構を動作させて、第1熱交換部を凝縮器、第2熱交換部を蒸発器として機能させる除湿運転を行う。第1熱交換部は、冷媒が分岐して流れる複数のパスを有している。除湿運転時に、第1熱交換部から減圧機構に向かう複数のパスのうち、鉛直方向に低い位置にある第1パスの長さは、第1パスよりも鉛直方向に高い位置にある第2パスよりも短い。
【0008】
この空気調和装置では、鉛直方向に低い位置にある第1パスの長さを、第1パスよりも鉛直方向に高い位置にある第2パスよりも短くすることによって、第1パスの流通抵抗が低下し、圧損が低減される。
【0009】
それゆえ、第1パスの冷媒が流れ易くなり、第2パスに冷媒が集中して流れる事態も抑制される。その結果、第2パスで過冷却が取れるようになり、冷媒が気液二相の状態で減圧機構に入るという事態が抑制され、冷媒音の発生も抑制される。減圧機構としては、開閉のみの電磁弁、または開度調整可能な電動弁が採用される。
【0010】
第2観点の空気調和装置は、第1観点の空気調和装置であって、第1パスにおいて、除湿運転時に冷媒を下方に導く区間の長さは、冷媒を上方に導く区間の長さよりも長く設定されている。
【0011】
この空気調和装置では、第1パスにおいて、冷媒を下方に導く区間の長さが冷媒を上方に導く区間の長さよりも長いので、第1パスの冷媒が流れ易くなる。
【0012】
それゆえ、第1パスの冷媒が上方に向かって流れ易くなり、第2パスに冷媒が集中して流れる事態も抑制される。その結果、第2パスで過冷却が取れるようになり、冷媒が気液二相の状態で減圧機構に入るという事態が抑制され、冷媒音の発生も抑制される。
【0013】
第3観点の空気調和装置は、第1観点または第2観点の空気調和装置であって、第1パスにおいて、除湿運転時、冷媒は出口に向かって下がるように流れる。
【0014】
この空気調和装置では、第1パスにおいて、冷媒が最後に出口に向かって下がるように流れるので、第1パスの冷媒が流れ易くなり、第2パスに冷媒が集中して流れる事態も抑制される。その結果、第2パスで過冷却が取れるようになり、冷媒が気液二相の状態で減圧機構に入るという事態が抑制され、冷媒音の発生も抑制される。
【0015】
第4観点の空気調和装置は、第1観点から第3観点のいずれか1つの空気調和装置であって、第1パスが複数の伝熱管で形成されている。除湿運転時に、冷媒を上方に導く伝熱管の数量は、冷媒を下方に導く伝熱管の数量よりも少なく設定されている。
【0016】
ここで、比較対象である「伝熱管の数量」について定義する。伝熱管は、ヘアピン状の管(以下、「ヘアピン状伝熱管」という。)、および隣接するヘアピン状伝熱管を繋ぐ「曲がり管」で構成されている。また、ヘアピン状伝熱管自体は、2本の直管部とそれらを繋ぐ曲がり管部が一体化したものである。但し、1つのパスにおいて、熱交換性能に実質的に寄与しているのは、フィンに挿入されている直管部である。それゆえ、本願では、「伝熱管の数量」を、「フィンに挿入されている直管部の本数」と定義する。
【0017】
この空気調和装置では、第1パスにおいて、冷媒を上方に導く伝熱管の数量が冷媒を下方に導く伝熱管の数量よりも少ないので、第1パスの流通抵抗が低下し圧損が低減される。
【0018】
それゆえ、第1パスの冷媒が流れ易くなり、第2パスに冷媒が集中して流れる事態も抑制される。その結果、第2パスで過冷却が取れるようになり、冷媒が気液二相の状態で減圧機構に入るという事態が抑制され、冷媒音の発生も抑制される。
【0019】
第5観点の空気調和装置は、第1観点から第4観点のいずれか1つの空気調和装置であって、室内熱交換器は、正面視において第1熱交換部が第2熱交換部の前方に配置され、且つ側面視において第1熱交換部と第2熱交換部とが逆V字を形成するように配置されている。第1パスは、第1熱交換部の下部に位置する。
【0020】
この空気調和装置では、第1パスは第1熱交換部の下部に位置しているが、第1パスの流通抵抗が低く、冷媒が流れ易くなっている。それゆえ、第2パスに冷媒が集中して流れる事態も抑制されている。その結果、第2パスで過冷却が取れるようになり、冷媒が気液二相の状態で減圧機構に入るという事態が抑制され、冷媒音の発生も抑制される。
【0021】
第6観点の空気調和装置は、第1観点から第5観点のいずれか1つの空気調和装置であって、減圧機構が弁である。当該弁では、流体が20℃の空気であって且つ前後の差圧が98kPaであるときの流量が10.0L/min未満となる開度が、除湿運転時の開度である。
【0022】
この空気調和装置では、小さい冷媒循環量で再熱除湿運転を行う場合、弁開度の絞り量を大きくする必要があので、当該減圧機構が低流量での使用に適している。
【0023】
第7観点の空気調和装置は、第1観点から第6観点のいずれか1つの空気調和装置であって、複数のパスを構成する伝熱管の管径は7mm以上である。
【図面の簡単な説明】
【0024】
【
図1】本開示の一実施形態に係る空気調和装置の外観図である。
【
図4】除湿運転時の冷媒の流れ方向を記載した室内熱交換器の側面図である。
【
図6】除湿運転時の冷媒の流れ方向を記載した、変形例に係る室内熱交換器の側面図である。
【発明を実施するための形態】
【0025】
(1)空気調和装置1の構成
図1は、本開示の一実施形態に係る空気調和装置1の外観図である。
図1において、空気調和装置1は、室内の壁面などに取り付けられる室内ユニット2と、室外に設置される室外ユニット3とを備えている。
【0026】
図2は、空気調和装置1の冷媒回路の構成図である。
図2において、冷媒回路は、室内熱交換器20、アキュムレータ31、圧縮機32、四路切換弁33、室外熱交換器30及び電動膨張弁34を含んでいる。
【0027】
(1-1)室内ユニット2
室内ユニット2には、室内熱交換器20およびファン21が搭載されている。室内熱交換器20は、接触する空気との間で熱交換を行う。ファン21は、室内空気を吸い込み、室内熱交換器20との間で熱交換を行わせ、熱交換された後の空気を室内に排出する。
【0028】
(1-2)室外ユニット3
室外ユニット3には、圧縮機32、圧縮機32の吐出側に接続される四路切換弁33、圧縮機32の吸入側に接続されるアキュムレータ31、四路切換弁33に接続された室外熱交換器30、及び室外熱交換器30に接続された電動膨張弁34を含んでいる。電動膨張弁34は、フィルタ35および液閉鎖弁36を介して配管41に接続されている。配管41は、室内熱交換器20の一端と接続されている。また、四路切換弁33は、ガス閉鎖弁37を介して配管42に接続されている。配管42は、室内熱交換器20の他端と接続されている。配管41,42は、
図1の冷媒配管4に相当する。また、室外ユニット3は、プロペラファン38をさらに含んでいる。プロペラファン38は、室外熱交換器30での熱交換後の空気を外部に排出する。プロペラファン38は、モータ39によって回転駆動される。
【0029】
(1-3)制御部80
制御部80は、室内ユニット2の内部に配置される室内側制御部81と、室外ユニット3の内部に配置される室外側制御部82とを含む。
【0030】
室内側制御部81は、ファン21および電磁弁26を制御する。室外側制御部82は、圧縮機32、四路切換弁33、電動膨張弁34およびプロペラファン38を制御する。
【0031】
室内側制御部81および室外側制御部82は、相互に信号の送受信が可能なように通信機能を有している。
【0032】
(2)室内ユニット2の詳細構成
室内ユニット2は、
図1に示すように、正面視に置いて横方向に長いケーシング23を有している。ケーシング23は、室内熱交換器20およびファン21を収容している。室内熱交換器20は分割されており、分割されている室内熱交換器20の隙間がシール部材24によって覆われている。シール部材24は、当該隙間を空気が通過することを防ぐ(
図3参照)。
【0033】
(2-1)ケーシング23
図3は、室内ユニット2の側面断面図である。
図3において、ケーシング23は、前面パネル23aおよび底フレーム23bを含む。
【0034】
前面パネル23aは、上面230、下面232、前面235及び側面236,237(
図1参照)を有している。
【0035】
上面230は、室内熱交換器20の上方を覆っている。上面230は、複数のスリット状の開口からなる吸込口231を有している。
【0036】
下面232は、室内熱交換器20及びファン21の下方を覆っている。下面232は、室内ユニット2の長手方向に沿う開口である吹出口233を有している。
【0037】
吹出口233には、水平フラップ234が設けられている。水平フラップ234は、室内ユニット2の長手方向に平行な軸を中心に回動自在に設けられている。水平フラップ234は、モータによって回動し、吹出口233の開閉、および吹出空気の案内を行う。
【0038】
前面235は、概ね平坦に形成されており、室内熱交換器20の前方を覆っている。側面236、237は、室内熱交換器20の側方を覆っている。側面236,237として、左側面236と右側面237とが存在し、左側面236は正面視において室内熱交換器20の左側方、右側面は室内熱交換器20の右側方に配置されている(
図1参照)。
【0039】
底フレーム23bは、室内熱交換器20の後方を覆うとともに、室内ユニット2の背面を構成している。
【0040】
また、ドレンパン238が、室内熱交換器20の下方に配置されている。冷房運転時、吸込口231から吸い込まれた空気が、室内熱交換器20の内部を通過する冷媒との間で熱交換を行うので、室内熱交換器20の表面に水滴が発生する。ドレンパン238は、その水滴を受ける。ドレンパン238には、溜まった水滴を外部に排出するドレンホース(図示せず)が取り付けられている。
【0041】
(2-2)ファン21
ファン21は、クロスフローファンである。ファン21は、円筒形状のロータと、ロータの周面に回転軸方向に延びる羽根とを有し、回転軸と交わる方向に空気流を生成する。ファン21は、モータ22によって回転駆動される(
図2参照)。
【0042】
(2-3)室内熱交換器20
室内熱交換器20は、フィン・アンド・チューブ式の熱交換器である。室内熱交換器20は、ファン21の前方、上方および後部上方を取り囲むように配置されている。室内熱交換器20は、水平方向に長い形状を呈している。室内熱交換器20は、側面視において概ね逆V字型の断面形状を有している。
【0043】
図2に示すように、室内熱交換器20は、第1熱交換部20a、第2熱交換部20bとから構成されている。そして、第1熱交換部20aと第2熱交換部20bとの間には減圧機構としての電磁弁26が設けられている。
【0044】
また、
図3に示すように、第1熱交換部20aおよび第2熱交換部20bは、複数のフィン200aと、複数の伝熱管200bとを含んでいる。複数のフィン200a、および複数の伝熱管200bはアルミニウム又はアルミニウム合金製である。また、伝熱管200bの管外径は7mmである。
【0045】
(2-3-1)第1熱交換部20a
第1熱交換部20aは、上端が室内ユニット2の後方へ向けて傾斜して第2熱交換部20bの前方に配置されている。第1熱交換部20aは、第1領域211、第2領域212、第3領域213を有している。
【0046】
(2-3-1-1)第1領域211
図3に示すように、第1領域211は、上端が室内ユニット2の後方へ向けて傾斜し、ファン21の前部上方を覆うように配置されている。第1領域211には、冷媒が流れる複数のパスが形成されている。
【0047】
(2-3-1-2)第2領域212
第2領域212は、第1領域211の後方へ向けて傾斜している上辺を覆うように配置されている。第2領域212の伝熱管200bには、室外熱交換器30から送られてくる冷媒が流れる。
【0048】
(2-3-1-3)第3領域213
第3領域213は、第1領域211のほぼ鉛直に延びる前辺を覆うように配置されている。第3領域213の伝熱管200bには、第2領域212を通過した冷媒が流れる。
【0049】
(2-3-2)第2熱交換部20b
第2熱交換部20bは、上端が室内ユニット2の前方へ向けて傾斜して配置されており、ファン21の上方から後部上方を覆うように配置されている。第2熱交換部20bの上端は、第1熱交換部20aの上端に近接している。
【0050】
このように第1熱交換部20aの上端と第2熱交換部20bの上端とが近接することにより、逆V字型の頂上部分が形成されている。
【0051】
(2-3-3)シール部材24
図3に示すように、第1熱交換部20aと第2熱交換部20bとによって形成される頂上部分に隙間が存在する。当該隙間は、吸込口231のすぐ内側であって、吸込口231とファン21との間に位置しており、空気が通り易いので熱交換率の低下の原因となる。それゆえ、シール部材24が、この隙間を塞ぐように取り付けられている。
【0052】
シール部材24は、頂上部分に沿って上方から被せられるため、頂上部分の形状に合うようにV字型の断面形状となっている。頂上部分の隙間は室内熱交換器20の長手方向に沿って存在し、シール部材24も室内熱交換器20の長手方向の長さと略同じ長さの細長い形状である。
【0053】
(2-3-4)電磁弁26
電磁弁26は、減圧機構である。室温を低下させずに除湿運転を行う際には、電磁弁26が所定の開度に絞られ、第1熱交換部20aを凝縮器、第2熱交換部20bを蒸発器として機能させる。
【0054】
但し、減圧機構として、開閉のみの電磁弁に替わり、開度調整可能な電動弁を用いても良い。
【0055】
(3)除湿運転の概要
ここでは、室温を低下させずに除湿運転を行う、いわゆる「再熱除湿運転」について説明する。
【0056】
再熱除湿運転は、室内熱交換器20の一部を凝縮器、他の部分を蒸発器として機能させて室内を除湿する運転である。
【0057】
四路切換弁33は、
図2に示す実線の位置に設定され、電動膨張弁34は全開され、電磁弁26は所定の開度に絞られ、圧縮機32が起動される。
【0058】
圧縮機32から吐出される高圧冷媒は、室外熱交換器30、電動膨張弁34を介して第1熱交換部20aに流入する。そして、第1熱交換部20aで凝縮された冷媒は、電磁弁26で減圧される。
【0059】
減圧された低圧冷媒は、第2熱交換部20bで蒸発した後、四路切換弁33、アキュムレータ31を介して圧縮機32に戻る。このとき、第1熱交換部20aでは、冷媒が凝縮するため室内空気は加熱され、第2熱交換部20bでは、冷媒が蒸発するため室内空気を冷却、除湿される。
【0060】
室内ユニット2では、室内から取り込まれた空気が凝縮器として機能している第1熱交換部20aを通る際に加熱される。また、室内から取り込まれた他の空気は、蒸発器として機能している第2熱交換部20bを通る際に冷却されて除湿される。第1熱交換部20aを通って加熱された空気と第2熱交換部20bを通って除湿された除湿空気とは、混合されて室内ユニット2から吹き出され、室内へと供給される。これにより、室温を落とさずに室内空気の除湿だけを行うことができる。
【0061】
(4)室内熱交換器20における除湿運転時の冷媒の流れ
図4は、除湿運転時の冷媒の流れ方向を記載した室内熱交換器20の側面図である。
図4において、第1熱交換部20aの第1領域211には、第1パス201、第2パス202および第3パス203が形成されている。
【0062】
除湿運転時、圧縮機32から吐出される高圧冷媒は室外熱交換器30から冷媒配管41を流れ室内熱交換器20に到る。室内熱交換器20に到達した高圧冷媒は、第1熱交換部20aの第2領域212および第3領域213を流れて第1分流器251に入る。
【0063】
高圧冷媒は第1分流器251において、3方向に分流され、第1領域211の第1パス201、第2パス202および第3パス203に流れる。高圧冷媒は、第1パス201、第2パス202および第3パス203を流れる間に凝縮し液冷媒となる。第1パス201、第2パス202および第3パス203から流出した液冷媒は合流して電磁弁26へ流入する。
【0064】
液冷媒は、電磁弁26で減圧された後、2方向に分流されて第2熱交換部20bに到る。第2熱交換部20bには、第4パス204と第5パス205が形成されており、電磁弁26で2方向に分流された冷媒の一方は第4パス204に入り、他方は第5パス205に入る。
【0065】
第4パス204および第5パス205に入った冷媒は、第4パス204および第5パス205を流れる間に蒸発し、ガス冷媒となって第2熱交換部20bから流出する。
【0066】
その後、ガス冷媒は第2分流器252で合流し、冷媒配管42を通って室外ユニット3に到る。
【0067】
(5)冷媒音の抑制
図3および
図4に示すように、第1パス201は、他のパスよりも第1領域211の鉛直方向に低い位置に形成されている。また、第2パス202は、第1パス201よりも鉛直方向に高い位置に形成されている。さらに、第3パス203は、第2パス202よりも鉛直方向に高い位置に形成されている。
【0068】
小さい冷媒循環量で再熱除湿運転を行う場合、第1パス201は他のパスよりも鉛直方向に低い位置に形成されているので、第1パス201に液冷媒が溜まり易く、その液冷媒が重力の影響によって上に向かって流れ難くなる。
【0069】
その結果、第1パス201から液冷媒が抜けず、第2パス202および第3パス203だけに冷媒が流れるようになり、電磁弁26の前で過冷却が取れない傾向にある。
【0070】
電磁弁26の前で過冷却が取れない場合、第2パス202および第3パス203を流れる冷媒は、液化せずに、気液二相の状態で電磁弁26に入る。それゆえ、冷媒音が発生する虞がある。
【0071】
ここでは、小さい冷媒循環量でも、第1パス201の冷媒を流れ易くした室内熱交換器について、説明する。
【0072】
(5-1)パス長さ
本実施形態では、第1パス201の長さが、第1パス201よりも鉛直方向に高い位置にある第2パス202および第3パス203よりも短く設定されている。
【0073】
図5Aは、第3パス203の分解平面図である。
図5Aにおいて、第3パス203を構成する伝熱管200bは、4個のヘアピン状の管200ba(以下、「ヘアピン状伝熱管200ba」という。)と、隣接するヘアピン状伝熱管200baを接続する3個の曲がり管200bdとを含んでいる。第2パス202も、同様である。
【0074】
図5Bは、第1パス201の分解平面図である。
図5Bにおいて、第1パス201を構成する伝熱管200bは、3個のヘアピン状伝熱管200baと、隣接するヘアピン状伝熱管200baを接続する2個の曲がり管200bdとを含んでいる。
【0075】
図5Aおよび
図5Bからわかるように、第1パス201では、1個のヘアピン状伝熱管200baと1個の曲がり管が、第2パス202および第3パス203よりも少ない。したがって、第1パス201は、第2パス202および第3パス203よりも短い。
【0076】
それゆえ、第1パス201における冷媒の流通抵抗が低減され、第1パス201の冷媒が流れ易くなり、第2パス202および第3パス203に冷媒が集中して流れる事態も抑制される。
【0077】
ここで、第1パス201の長さと第3パス203の長さを単に比較するだけならば、上記のようにパスの長さを伝熱管200bの部位ごとに把握する必要はない。
図5Aおよび
図5Bに示すように、ヘアピン状伝熱管200baは、2本の直管部200bbとそれらを継ぎ目なく繋ぐU字管部200bcで構成されている。
【0078】
1つのパスにおいて、熱交換性能に実質的に寄与しているのはフィンに挿入されている直管部200bbである。したがって、簡易的にパスの長さを比較する場合には、「伝熱管の数量」を「フィンに挿入されている直管部200bbの本数」で代用して比較すればよい。
【0079】
上記観点で
図4、
図5Aおよび
図5Bを見ると、第2パス202および第3パス203それぞれが、8本の直管部200bbで構成されている。
【0080】
これに対して、第1パス201は、第2パス202および第3パス203よりも短くなるように、6本の直管部200bbで構成されている。それゆえ、第1パス201における冷媒の流通抵抗が低減され、第1パス201の冷媒が流れ易くなり、第2パス202および第3パス203に冷媒が集中して流れる事態も抑制される。
【0081】
その結果、第2パス202および第3パス203で過冷却が取れるようになり、冷媒が気液二相の状態で電磁弁26に入るという事態が抑制され、冷媒音の発生も抑制される。
【0082】
(5-2)冷媒を下方に導く区間の長さ
本実施形態では、第1パス201において、除湿運転時に冷媒を下方に導く区間の長さが、冷媒を上方に導く区間の長さよりも長く設定されている。
【0083】
図5AのLa-La線は、第3パス203の「冷媒を上方に導く区間」および「冷媒を下方に導く区間」の境界線である。
図5A正面視で、La-La線よりも上側の区間が「冷媒を上方に導く区間」であり、La-La線よりも下側の区間が「冷媒を下方に導く区間」である。
【0084】
第3パス203では、除湿運転時に冷媒を上方に導く区間は、2個のヘアピン状伝熱管200baおよび1.5個の曲がり管200bdで構成されている。また、除湿運転時に冷媒を下方に導く区間は、2個のヘアピン状伝熱管200baおよび1.5個の曲がり管200bdで構成されている。
【0085】
したがって、第3パス203では、除湿運転時に冷媒を下方に導く区間および冷媒を上方に導く区間がほぼ同じ長さである。
【0086】
図5BのLb-Lb線は、第1パス201の「冷媒を上方に導く区間」および「冷媒を下方に導く区間」の境界線である。
図5B正面視で、Lb-Lb線よりも上側の区間が「冷媒を下方に導く区間」であり、Lb-Lb線よりも下側の区間が「冷媒を上方に導く区間」である。
【0087】
第1パス201では、除湿運転時に冷媒を上方に導く区間は、1個のヘアピン状伝熱管200baおよび0.5個の曲がり管200bdで構成されている。また、除湿運転時に冷媒を下方に導く区間は、2個のヘアピン状伝熱管200baおよび1.5個の曲がり管200bdで構成されている。
【0088】
したがって、第1パス201では、除湿運転時に冷媒を下方に導く区間が冷媒を上方に導く区間よりも長い。
【0089】
それゆえ、第1パス201おける冷媒は上方に向かって流れ易くなる。その結果、第2パス202および第3パス203で過冷却が取れるようになり、冷媒が気液二相の状態で電磁弁26に入るという事態が抑制され、冷媒音の発生も抑制される。
【0090】
ここでも[(5-1)パス長さ]の節で説明したように、簡易的に区間の長さを比較する場合には、フィンに挿入されている直管部200bbの本数を「伝熱管の数量」として比較すればよい。
【0091】
上記観点で
図4、
図5Aおよび
図5Bを見ると、第2パス202および第3パス203では、除湿運転時に冷媒を下方に導く区間および冷媒を上方に導く区間が共に4本の直管部200bbで構成されている。
【0092】
これに対して、第1パス201では、
図4および
図5Bに示すように、除湿運転時に冷媒を下方に導く区間は4本の直管部200bbで構成され、冷媒を上方に導く区間は2本の直管部200bbで構成されている。
【0093】
それゆえ、第1パス201おける冷媒は上方に向かって流れ易くなる。その結果、第2パス202および第3パス203で過冷却が取れるようになり、冷媒が気液二相の状態で電磁弁26に入るという事態が抑制され、冷媒音の発生も抑制される。
【0094】
(6)電磁弁26の選定
小さい冷媒循環量で再熱除湿運転を行う場合、流量の小さい電磁弁を使って、弁開度の絞り量を大きくする必要がある。
【0095】
本実施形態で採用する電磁弁26は、流体が20℃の空気であって且つ前後の差圧が98kPaであるときの流量が10.0L/min未満となる第1開度を実現している。除湿運転時、電磁弁26の開度は、第1開度に設定される。
【0096】
本実施形態における実際の第1開度は、流体が20℃の空気であって且つ前後の差圧が98kPaであるときの流量が6.0L/minとなる開度である。
【0097】
(7)特徴
(7-1)
空気調和装置1では、鉛直方向に低い位置にある第1パス201の長さを、第1パス201よりも鉛直方向に高い位置にある第2パス202よりも短くすることによって、第1パス201の流通抵抗が低下し、圧損が低減される。
【0098】
それゆえ、第1パス201の冷媒が流れ易くなり、第2パス202および第3パス203に冷媒が集中して流れる事態も抑制される。その結果、第2パス202および第3パス203で過冷却が取れるようになり、冷媒が気液二相の状態で電磁弁26に入るという事態が抑制され、冷媒音の発生も抑制される。
【0099】
(7-2)
空気調和装置1では、第1パス201において、冷媒を下方に導く区間の長さが冷媒を上方に導く区間の長さよりも長いので、第1パス201の冷媒が流れ易くなる。
【0100】
それゆえ、第1パス201の冷媒が上方に向かって流れ易くなり、第2パス202および第3パス203に冷媒が集中して流れる事態も抑制される。その結果、第2パス202および第3パス203で過冷却が取れるようになり、冷媒が気液二相の状態で電磁弁26に入るという事態が抑制され、冷媒音の発生も抑制される。
【0101】
(7-3)
空気調和装置1では、第1パス201において、冷媒を上方に導く伝熱管200bの数量が冷媒を下方に導く伝熱管200bの数量よりも少ないので、第1パス201の流通抵抗が低下し圧損が低減される。
【0102】
それゆえ、第1パス201の冷媒が流れ易くなり、第2パス202および第3パス203に冷媒が集中して流れる事態も抑制される。その結果、第2パス202および第3パス203で過冷却が取れるようになり、冷媒が気液二相の状態で電磁弁26に入るという事態が抑制され、冷媒音の発生も抑制される。
【0103】
(7-4)
空気調和装置1では、たとえ第1パス201が第1熱交換部20aの下部に位置しても、第1パス201の流通抵抗が低く、第1パス201の冷媒が流れ易くなっている。
【0104】
それゆえ、第2パス202および第3パス203に冷媒が集中して流れる事態も抑制される。その結果、第2パス202および第3パス203で過冷却が取れるようになり、冷媒が気液二相の状態で電磁弁26に入るという事態が抑制され、冷媒音の発生も抑制される。
【0105】
(7-5)
空気調和装置1では、除湿運転時の電磁弁26の開度は、流体が20℃の空気であって且つ前後の差圧が98kPaであるときの流量が10.0L/min未満となる開度であり、低流量での使用に適している。
【0106】
(7-6)
空気調和装置1では、伝熱管200bの管径は7mm以上である。
【0107】
(8)変形例
図3および
図4に示す実施形態では、第1パス201における冷媒が最後に出口に向かって上がる構成であるが、室内熱交換器20の第1パス201における冷媒は最後に出口に向かって下がる構成が好ましい。
【0108】
図6は、除湿運転時の冷媒の流れ方向を記載した、変形例に係る室内熱交換器20の側面図である。
図6において、第1パス201において、冷媒が最後に出口に向かって下がるように流れるので、第1パス201の冷媒が流れ易くなる。
【0109】
それゆえ、第2パス202および第3パス203に冷媒が集中して流れる事態も抑制される。その結果、第2パス202および第3パス203で過冷却が取れるようになり、冷媒が気液二相の状態で電磁弁26に入るという事態が抑制され、冷媒音の発生も抑制される。
【0110】
以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
【符号の説明】
【0111】
1 空気調和装置
20 室内熱交換器
20a 第1熱交換部
20b 第2熱交換部
26 電磁弁(減圧機構)
80 制御部
200b 伝熱管
201 第1パス
202 第2パス
203 第3パス
【先行技術文献】
【特許文献】
【0112】