(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024049746
(43)【公開日】2024-04-10
(54)【発明の名称】車両電源システム
(51)【国際特許分類】
B60R 16/02 20060101AFI20240403BHJP
H02J 7/00 20060101ALI20240403BHJP
【FI】
B60R16/02 645C
H02J7/00 302C
【審査請求】未請求
【請求項の数】6
【出願形態】OL
(21)【出願番号】P 2022156167
(22)【出願日】2022-09-29
(71)【出願人】
【識別番号】000005326
【氏名又は名称】本田技研工業株式会社
(74)【代理人】
【識別番号】110001081
【氏名又は名称】弁理士法人クシブチ国際特許事務所
(72)【発明者】
【氏名】松尾 雄平
(72)【発明者】
【氏名】豊岡 壱規
【テーマコード(参考)】
5G503
【Fターム(参考)】
5G503AA07
5G503BA02
5G503BB02
5G503CA01
5G503CC02
5G503DA05
5G503DA17
5G503GB03
5G503GD03
5G503GD06
(57)【要約】
【課題】交通の安全性確保のために機能する機能部を搭載した車両において、機能部に電力供給する電源システムの小型化及び低コスト化を可能とする。
【解決手段】車両電源システムは、メイン低圧電源及び通常負荷を有する主電源系統と、バックアップ低圧電源及び緊急時重要負荷を有するバックアップ電源系統と、車両制御装置とを有する。車両制御装置は、負荷を起動させる操作が行われた場合、負荷が起動するまでの間に、正常判定処理を実行し、正常判定処理の実行中に副スイッチに流れる電流が閾値以上の場合は、主スイッチを接続させ、かつ、副スイッチを遮断させ、正常判定処理の実行中において副スイッチに流れる電流が閾値より小さい場合は、正常判定処理が完了した後に、主スイッチを接続させ、かつ、副スイッチを遮断させる。
【選択図】
図1
【特許請求の範囲】
【請求項1】
メイン低圧電源及び通常負荷を有する主電源系統と、
バックアップ低圧電源及び緊急時重要負荷を有し前記主電源系統と接続するバックアップ電源系統とを備え、
前記バックアップ電源系統は、前記バックアップ低圧電源の電力を前記主電源系統に供給可能であり、前記主電源系統との接続及び遮断を切り替え可能な主スイッチと、前記主スイッチを制御するバックアップ電源制御装置とを有する車両電源システムであって、
前記主スイッチは制御されていない場合に遮断し、
前記主電源系統と前記バックアップ電源系統との間に前記主スイッチと並列に配置され、前記主スイッチが制御されていない場合に接続する副スイッチを有し、
前記通常負荷及び前記緊急時重要負荷の少なくとも一方と、前記主電源系統と、前記バックアップ電源系統とを制御可能な車両制御装置を有し、
前記車両制御装置は、
前記通常負荷及び前記緊急時重要負荷の少なくとも一方を起動させる操作が行われた場合、前記操作に基づいて前記バックアップ電源制御装置を起動させ、前記バックアップ電源系統が正常か否かを判定する正常判定処理を実行し、
前記正常判定処理の実行中に前記副スイッチに流れる電流が閾値以上の場合は、前記主スイッチを接続させ、かつ、前記副スイッチを遮断させ、
前記正常判定処理の実行中において前記副スイッチに流れる電流が前記閾値より小さい場合は、前記正常判定処理が完了した後に、前記主スイッチを接続させ、かつ、前記副スイッチを遮断させる、車両電源システム。
【請求項2】
前記副スイッチの電流容量は、前記主スイッチの電流容量よりも小さい、請求項1に記載の車両電源システム。
【請求項3】
前記車両制御装置は、前記正常判定処理において前記バックアップ電源系統が正常であると判定した場合は、前記主スイッチが接続した後に前記副スイッチを遮断させる、請求項2に記載の車両電源システム。
【請求項4】
前記車両制御装置は、前記正常判定処理において前記バックアップ電源系統が正常であると判定した場合、前記主スイッチを制御して接続させる動作と前記副スイッチを制御して遮断させる動作とを実行することによって前記主電源系統から前記緊急時重要負荷への電力供給を可能とした後に、前記緊急時重要負荷を起動させる、請求項3に記載の車両電源システム。
【請求項5】
前記正常判定処理は、前記主スイッチが正常に動作することを判定する処理を含む、請求項1から請求項4のいずれかに記載の車両電源システム。
【請求項6】
前記バックアップ電源系統は、前記バックアップ電源制御装置の制御に従って、前記バックアップ低圧電源からの電力供給の実行と遮断とを切り替えるバックアップ電源スイッチを備え、
前記正常判定処理は、前記バックアップ電源スイッチが正常に動作することの判定を含む、請求項5に記載の車両電源システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、車両電源システムに関する。
【背景技術】
【0002】
近年、交通参加者の中でも脆弱な立場にある人々にも配慮した持続可能な輸送システムへのアクセスを提供する取り組みが活発化している。この実現に向けて予防安全に関する研究開発を通して交通の安全性や利便性をより一層改善する研究開発に注力している。また、予防安全に貢献する技術の一つとして、自動運転に関する研究開発への注力が行われている。
【0003】
自動運転など交通の安全性確保のために機能する機能部を搭載した車両においては、この種の機能部に対する電源供給を安定させることが求められる。例えば、特許文献1には、自動運転のために機能する負荷に対して、車両の電源である第1の電源及び第3の電源から電力を供給可能であり、さらに、充放電が可能な第2の電源から電力を供給可能なシステムが開示されている。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
安全性確保のために機能する負荷を確実に動作させるためには、これらの負荷に電力供給が可能な状態を維持することが望まれる。このため、例えば特許文献1に開示されたシステムは、第1の電源及び第2の電源から負荷への電力供給を可能とするため、複数のスイッチを備えている。これらのスイッチには十分な電流容量を持つものを採用することが望まれるが、電流容量の大きいスイッチを採用した場合、回路や装置の体積が大きくなり、製造コストの増大を招く。このため、交通の安全性確保のための機能部を車両に実装する際の課題となっていた。
本願は上記課題の解決のため、自動運転など交通の安全性確保のために機能する機能部を搭載した車両において、機能部に電力供給する電源システムの小型化及び低コスト化を可能とすることを目的とする。そして、延いては持続可能な輸送システムの発展に寄与するものである。
【課題を解決するための手段】
【0006】
上記目的を達成するための一態様は、メイン低圧電源及び通常負荷を有する主電源系統と、バックアップ低圧電源及び緊急時重要負荷を有し前記主電源系統と接続するバックアップ電源系統とを備え、前記バックアップ電源系統は、前記バックアップ低圧電源の電力を前記主電源系統に供給可能であり、前記主電源系統との接続及び遮断を切り替え可能な主スイッチと、前記主スイッチを制御するバックアップ電源制御装置とを有する車両電源システムであって、前記主スイッチは制御されていない場合に遮断し、前記主電源系統と前記バックアップ電源系統との間に前記主スイッチと並列に配置され、前記主スイッチが制御されていない場合に接続する副スイッチを有し、前記通常負荷及び前記緊急時重要負荷の少なくとも一方と、前記主電源系統と、前記バックアップ電源系統とを制御可能な車両制御装置を有し、前記車両制御装置は、前記通常負荷及び前記緊急時重要負荷の少なくとも一方を起動させる操作が行われた場合、前記操作に基づいて前記バックアップ電源制御装置を起動させ、前記バックアップ電源系統が正常か否かを判定する正常判定処理を実行し、前記正常判定処理の実行中に前記副スイッチに流れる電流が閾値以上の場合は、前記主スイッチを接続させ、かつ、前記副スイッチを遮断させ、前記正常判定処理の実行中において前記副スイッチに流れる電流が前記閾値より小さい場合は、前記正常判定処理が完了した後に、前記主スイッチを接続させ、かつ、前記副スイッチを遮断させる、車両電源システムである。
【発明の効果】
【0007】
上記構成によれば、主電源系統及びバックアップ電源系統から緊急時重要負荷への電力供給を可能とする車両電源システムを、副スイッチに大きな電流が継続して流れないように動作させる。このため、副スイッチに求められる電流容量を小さくすることができる。従って、副スイッチの小型化および低コスト化を図ることができ、延いてはバックアップ電源系統の小型化とコスト低減を実現できる。
【図面の簡単な説明】
【0008】
【
図2】実施形態の車両電源システムにおける電流検出部の配置例を示す図。
【
図3】実施形態の車両電源システムの動作を示すフローチャート。
【
図4】実施形態の車両電源システムによる正常判定処理を示すフローチャート。
【
図5】実施形態の車両電源システムによる正常判定処理を示すフローチャート。
【
図6】実施形態の車両電源システムの動作を示すタイミングチャート。
【
図7】実施形態の車両電源システムの動作を示すタイミングチャート。
【
図8】実施形態の車両電源システムの動作を示すタイミングチャート。
【
図9】実施形態の車両電源システムの動作を示すフローチャート。
【発明を実施するための形態】
【0009】
以下、本発明の車両電源システムの一実施形態を、添付図面に基づいて説明する。
【0010】
[1.車両電源システムの構成]
[1-1.車両電源システムの全体構成]
図1は、車両電源システム1の概略構成図である。
図1において実線は電力線を示し、破線は信号線を示す。
【0011】
本実施形態における車両Vの車両電源システム1は、主電源系統10と、主電源系統10と接続するバックアップ電源系統20と、高圧電源系統30と、降圧装置40と、を備える。高圧電源系統30は、降圧装置40を介して主電源系統10及びバックアップ電源系統20と接続している。降圧装置40は、高圧電源系統30を流れる電力を降圧して、主電源系統10及び/またはバックアップ電源系統20に出力する。降圧装置40は、例えば、DC/DCコンバータである。
【0012】
本実施形態では、一例として、車両Vが、走行用の動力源として回転電機MGを備える電動車両である場合を説明する。回転電機MGは、例えば3相モータであり、不図示のインバータユニットにより供給される電力により駆動力を発生し、車両Vを走行させる。車両Vは、後述する回転電機MGを備える駆動ユニット321を備える。車両Vは、駆動ユニット321に駆動用の電力を供給する高圧電源31を搭載する。駆動ユニット321は、高圧電源31が出力する高圧の電力の供給を受ける負荷であり、後述する高圧負荷32に含まれる。
【0013】
なお、車両Vは、内燃機関を搭載する車両であってもよい。内燃機関は、車両Vを駆動する動力源として機能してもよい。或いは、内燃機関は、不図示の発電機を駆動する動力源として機能し、後述する高圧電源31を充電してもよい。すなわち、車両Vは、内燃機関を備えていない電動車両であってもよいし、内燃機関と車両駆動用の回転電機MGとを備えるハイブリッド車両であってもよいし、内燃機関により駆動される車両であってもよい。車両Vは、例えば、自律運転、或いは、自動運転が可能な車両である。車両Vが、内燃機関を搭載する場合、高圧電源31から電力の供給を受ける高圧負荷32は、例えばスターターモータを含む。
【0014】
[1-2.主電源系統の構成]
主電源系統10は、メイン低圧電源11と、通常負荷12と、を有する。
【0015】
メイン低圧電源11は、高圧電源31よりも低電圧の電源である。メイン低圧電源11は、例えば12[V]の直流電流を出力する。メイン低圧電源11は、例えば、充電および放電が可能な二次電池である。具体的には、メイン低圧電源11としては、鉛バッテリ、リチウムイオンバッテリ、リチウムポリマーバッテリ、リン酸鉄リチウムバッテリ、金属水素化物バッテリ、或いはその他のバッテリが挙げられる。
【0016】
メイン低圧電源11は、接続線L11に設けられている。接続線L11は、一端部が接続線L10に形成された接点C11に接続され、他端部が車両電源システム1の基準電位を有するグランドラインに接続されている。メイン低圧電源11は、正極側が接続線L11の接点C11側に接続しており、負極側が接続線L11のグランドライン側に接続される。
【0017】
接続線L10の一端部には、通常負荷12が接続される。通常負荷12(図中、EL)は、車両Vが搭載する電力負荷である。通常負荷12は単一の機器であってもよいし、複数の機器を含んでもよい。本実施形態において、通常負荷12は、車両Vの走行に関する機能を担う機能部である。通常負荷12は、例えば、車両Vの走行操作、停車操作、又は、運転制御に関する機能を担う負荷を含む。通常負荷12は、高圧負荷32よりも低い電圧により動作するので、高圧負荷32との対比により低圧負荷と呼ぶことができる。また、通常負荷12は、車両Vにおいて、いわゆる補機と呼ばれる機器を含んでもよい。
【0018】
具体的には、通常負荷12は、車両Vの運転制御を実行可能なECU50(Electronic Control Unit)を含む。
図1に示すECU50は、一つのECUで構成されてもよいし、複数のECUを含んでもよい。例えば、通常負荷12は、車両Vが備える複数のECUの一部を含んでもよい。また、通常負荷12は、車両Vが搭載する制御ユニットであって、ECU50とは異なる不図示の制御ユニットを含んでもよい。
【0019】
また、通常負荷12は、自動ブレーキ装置等の車両Vの制動に用いられる補機負荷を含んでもよい。通常負荷12は、自動ステアリング装置等の車両Vの操舵に用いられる補機負荷を含んでもよい。通常負荷12は、LiDAR(Light Detection And Ranging)等の車両Vの外界情報の取得に用いられる補機負荷を含んでもよい。通常負荷12は、ワイパー装置、パワーウインドウ装置、メーターパネル等の計器類を含んでもよい。
【0020】
[1-3.バックアップ電源系統の構成]
バックアップ電源系統20は、バックアップ電源ユニット21と、緊急時重要負荷22と、を有する。
【0021】
バックアップ電源ユニット21は、バックアップ低圧電源23と、切替装置24と、切替装置24を制御するバックアップ電源制御装置25と、を備える。
【0022】
バックアップ電源ユニット21は、第1外部接続端子T211、第2外部接続端子T212、及びグランド端子T213を備える。第1外部接続端子T211には、接続線L10の他端部が接続される。グランド端子T213は、グランドラインに接続される。
【0023】
緊急時重要負荷22(図中、EL)は、車両Vが搭載する電力負荷である。緊急時重要負荷22は、単一の機器であってもよいし、複数の機器を含んでもよい。緊急時重要負荷22は、高圧負荷32よりも低い電圧により動作するので、高圧負荷32との対比により低圧負荷と呼ぶことができる。
【0024】
緊急時重要負荷22は、接続線L21によって、バックアップ電源ユニット21の第2外部接続端子T212に接続される。
【0025】
切替装置24は、第1端子T241、第2端子T242、及び第3端子T243を備える。第1端子T241は、接続線L211によって、バックアップ電源ユニット21の第1外部接続端子T211に接続されている。第2端子T242は、接続線L212によって、バックアップ電源ユニット21の第2外部接続端子T212に接続されている。
【0026】
切替装置24は、第1端子T241と第2端子T242とを接する接続線L241を備える。接続線L241には、第1スイッチSW1が設けられている。本実施形態では、第1スイッチSW1は、ノーマリーオープン型(N.O.型)の接点を有するスイッチである。すなわち、第1スイッチSW1は、第1スイッチSW1に操作信号が加わっていない場合にオフ状態に維持され、接続線L241を遮断状態に維持する接点である。第1スイッチSW1は、操作信号が印加されることによりオン状態に切り替わって、第1端子T241と第2端子T242とを接続する。
【0027】
例えば、第1スイッチSW1が、電磁力により開閉する電磁スイッチで構成される場合、第1スイッチSW1は、操作電流による電磁力が発生していない場合にオフ状態に維持され、接続線L241を遮断状態に維持する。
第1スイッチSW1は、電磁接触器、電磁開閉器、リレー等の電磁スイッチであってもよいし、半導体スイッチ素子であってもよいし、スイッチ機能を有するDC/DCコンバータ等の回路であってもよい。
【0028】
切替装置24は、接続線L241と第3端子T243とを接続する接続線L242を備える。接続線L242は、接続線L241の第1スイッチSW1と第2端子T242との間に形成された接点C241で一端部が接続線L241に接続し、他端部が第3端子T243に接続する。
【0029】
接続線L242には、第2スイッチSW2が設けられている。第2スイッチSW2は、オン状態において接続線L242を接続し、オフ状態において接続線L242を遮断する。
【0030】
第2スイッチSW2は、電磁接触器、電磁開閉器、リレー等の電磁スイッチであってもよいし、半導体スイッチ素子であってもよいし、スイッチ機能を有するDC/DCコンバータ等の回路であってもよい。本実施形態において、第2スイッチSW2は、DC/DCコンバータである。このため、後述するように、第2スイッチSW2は、オン状態において接続線L242から接点C241に出力される電圧を昇降圧可能となっている。つまり、本実施形態の第2スイッチSW2は、接続線L242を接続および遮断する機能と、接続線L242から接点C241に出力する電圧を変換する機能とを有する。
【0031】
切替装置24は、接続線L241と並列に接続する接続線L243を備える。接続線L243の一端部は、接続線L241の第1端子T241と第1スイッチSW1との間に形成された接点C242に接続する。接続線L243の他端部は、接続線L241の接点C241と第2端子T242との間に形成された接点C243に接続する。接続線L243には、第3スイッチSW3が設けられる。
【0032】
本実施形態では、第3スイッチSW3は、ノーマリークローズ型(N.C.型)の接点を有するスイッチである。すなわち、第3スイッチSW3は、第3スイッチSW3に操作信号が加わっていない場合にオン状態に維持される接点である。第3スイッチSW3は、操作信号が印加されることによりオフ状態に切り替わって、接続線L243を接続状態にする。
【0033】
例えば、第3スイッチSW3が、電磁力により開閉する電磁スイッチで構成される場合、第3スイッチSW3は、操作電流による電磁力が発生していない場合にオン状態に維持され、接続線L243を接続状態に維持する。
第3スイッチSW3は、電磁接触器、電磁開閉器、リレー等の電磁スイッチであってもよいし、半導体スイッチ素子であってもよいし、スイッチ機能を有するDC/DCコンバータ等の回路であってもよい。
【0034】
本実施形態では、第1スイッチSW1と第3スイッチSW3とは、スイッチモジュール241としてモジュール化されている。スイッチモジュール241の具体的な構成は制限されず、例えば、スイッチモジュール241は、1つの半導体デバイスであってもよいし、複数のデバイスを含む回路であってもよい。
【0035】
切替装置24は、接続線L241とグランドラインとを接続する接続線L244を備える。接続線L244の一端部は接続線L241の第1スイッチSW1と接点C241との間に形成された接点C244に接続する。接続線L244の他端部はグランドラインに接続する。接続線L244には、キャパシタCPが設けられている。
【0036】
バックアップ低圧電源23は、高圧電源31よりも低電圧の電源である。バックアップ低圧電源23は、例えば12[V]の直流電流を出力する。バックアップ低圧電源23は、例えば、充電および放電が可能な二次電池である。具体的には、バックアップ低圧電源23としては、鉛バッテリ、リチウムイオンバッテリ、リチウムポリマーバッテリ、リン酸鉄リチウムバッテリ、金属水素化物バッテリ、或いはその他のバッテリが挙げられる。
【0037】
バックアップ低圧電源23は、接続線L213に設けられている。接続線L213の一端部は切替装置24の第3端子T243に接続される。接続線L213の他端部はグランドラインに接続されている。バックアップ低圧電源23は、正極側が切替装置24の第3端子T243側、負極側がグランドライン側となるように接続線L213に設けられている。
【0038】
第2スイッチSW2がオン状態のとき、バックアップ低圧電源23は、接続線L213から切替装置24の接続線L242を通ってバックアップ電源系統20に電力を供給する。バックアップ低圧電源23から出力される電力は、第2スイッチSW2で所望の電圧に昇圧または降圧されて、バックアップ電源系統20に供給される。第2スイッチSW2がオフ状態のとき、切替装置24の接続線L242が遮断状態となるので、バックアップ低圧電源23からバックアップ電源系統20に電力は供給されない。
【0039】
上述のように、バックアップ電源系統20には、第1端子T241と第2端子T242との間に、ノーマリーオープン型の接点を有する第1スイッチSW1と、ノーマリークローズ型の接点を有する第3スイッチSW3とが、並列に接続されている。
【0040】
第1スイッチSW1及び第3スイッチSW3の少なくとも一方がオン状態である場合、バックアップ電源系統20は主電源系統10と接続される。この状態では、第1外部接続端子T211を通じて、バックアップ低圧電源23から主電源系統10に電力を供給することが可能となり、メイン低圧電源11から緊急時重要負荷22に電力を供給することもできる。
【0041】
一方、第1スイッチSW1及び第3スイッチSW3の双方がオフ状態である場合、バックアップ電源系統20と主電源系統10との接続が遮断される。
【0042】
バックアップ電源制御装置25(図中、BMS)は、バックアップ電源制御装置25は、第1スイッチSW1、第2スイッチSW2、及び第3スイッチSW3と信号線で接続されている。バックアップ電源制御装置25は、ECU50の制御に従って、第1スイッチSW1、第2スイッチSW2、及び、第3スイッチSW3の切り替えを制御する。バックアップ電源制御装置25は、例えば、CPU(Central Processing Unit)等のプロセッサを備え、プロセッサによってプログラムを実行することにより、ソフトウェアとハードウェアとの協働によりバックアップ電源系統20を制御する。この場合、バックアップ電源制御装置25は、プログラムやデータを記憶する記憶部を備えてもよく、記憶部は、例えばROM(Read Only Memory)である。バックアップ電源制御装置25は、プログラムされたハードウェアにより構成されてもよい。
【0043】
バックアップ電源制御装置25は、第1スイッチSW1、第2スイッチSW2、及び第3スイッチSW3のそれぞれに対し、信号線を通じて操作信号を出力する。バックアップ電源制御装置25は、第1スイッチSW1、第2スイッチSW2、及び第3スイッチSW3のそれぞれに対し、操作信号を出力する状態と操作信号を出力しない状態とを切り替えることができる。
【0044】
第1スイッチSW1は、ノーマリーオープン型のスイッチである。バックアップ電源制御装置25は、第1スイッチSW1に操作信号を出力することによって第1スイッチSW1をオフ状態からオン状態に切り替えさせる。第3スイッチSW3は、ノーマリークローズ型のスイッチである。バックアップ電源制御装置25は、第3スイッチSW3に操作信号を出力することにより、第3スイッチSW3をオン状態からオフ状態に切り替えさせる。
【0045】
バックアップ電源制御装置25は、第2スイッチSW2に操作信号を出力することによって、第2スイッチSW2にオン状態とオフ状態とを切り替えさせる。また、バックアップ電源制御装置25は、第2スイッチSW2に操作信号を出力することによって、第2スイッチSW2における昇圧または降圧を制御する。すなわち、バックアップ電源制御装置25は第2スイッチSW2の出力電圧を制御する。
【0046】
バックアップ電源制御装置25は、例えば、高圧電源部36またはバックアップ低圧電源23から電力の供給を受けて動作する。
【0047】
本実施形態において、緊急時重要負荷22は、車両Vの走行に関する機能を担う機能部であり、例えば、車両Vの走行操作、停車操作、又は、運転制御に関する機能を担う負荷を含む。緊急時重要負荷22は、車両Vの走行中において緊急時に対応するための機能を担う負荷を含む。具体的には、緊急時重要負荷22は、車両Vの走行に関するミニマル・リスク・マヌーバー(MRM:Minimal Risk Maneuver)の実行に関する機能を担う負荷を含む。例えば、MRMは、駆動源の駆動力が喪失した場合でも車両Vを安全に道路の路肩に移動させて停車させるための必要最低限の走行操作、停車操作、運転制御の少なくともいずれかに該当する操作または制御を含む。
【0048】
緊急時重要負荷22は、車両Vの運転制御を実行可能な前述のECU50の一部または全部を含んでもよい。緊急時重要負荷22は、車両Vが搭載する制御ユニットであって、ECU50とは異なる不図示の制御ユニットを含んでもよい。
【0049】
緊急時重要負荷22は、自動ブレーキ装置等の車両Vの制動に用いられる補機負荷を含んでもよい。緊急時重要負荷22は、自動ステアリング装置等の車両Vの操舵に用いられる補機負荷を含んでもよい。緊急時重要負荷22は、LiDAR等の車両Vの外界情報の取得に用いられる補機負荷を含んでもよい。
【0050】
緊急時重要負荷22に含まれる負荷の一部は、主電源系統10の通常負荷12に含まれる負荷と重複していてもよい。すなわち、通常負荷12の一部が緊急時重要負荷22にもなっていてもよく、この負荷は主電源系統10及びバックアップ電源系統20の両方に属することになる。この構成によれば、緊急時重要負荷22を冗長化することができる。換言すると、主電源系統10の通常負荷12と重複する緊急時重要負荷22は、主電源系統10に供給される電力によって動作可能であり、バックアップ電源系統20に供給される電力によっても動作可能である。このため、主電源系統10の通常負荷12と重複する緊急時重要負荷22は、主電源系統10の異常が発生しても動作可能であり、バックアップ電源系統20に異常が発生しても動作を実行できる。
【0051】
上記構成において、第1スイッチSW1は、主スイッチの一例に対応する。第2スイッチSW2は、バックアップ電源スイッチの一例に対応する。第3スイッチSW3は副スイッチの一例に対応する。
ここで、第1スイッチSW1を主スイッチと呼び、第3スイッチSW3を副スイッチと呼ぶ理由は、第3スイッチSW3の電流容量を第1スイッチSW1よりも小さくすることができるためである。主スイッチおよび副スイッチとの呼称は、第3スイッチSW3のオン/オフ状態が第1スイッチSW1のオン/オフ状態に拘束されることを意味しない。バックアップ電源制御装置25は、第1スイッチSW1と第3スイッチSW3とを、それぞれ独立して、オン状態およびオフ状態とすることができる。
【0052】
[1-4.高圧電源系統の構成]
高圧電源系統30は、高圧電源31と、高圧負荷32と、を有する。
【0053】
高圧電源31は、メイン低圧電源11及びバックアップ低圧電源23よりも高電圧の電力を供給する電源である。高圧電源31は、例えば、充電および放電が可能な二次電池である。具体的には、高圧電源31としては、リチウムイオンバッテリ、リチウムポリマーバッテリ、リン酸鉄リチウムバッテリ、金属水素化物バッテリ、或いはその他のバッテリが挙げられる。高圧電源31は、例えば、200[V]の直流電流を出力する。
【0054】
高圧電源31は、接続線L31に接続している。接続線L31の一端部はグランドラインに接続しており、高圧電源31は、負極側が接続線L31のグランドライン側に接続される。
【0055】
高圧負荷32は、通常負荷12及び緊急時重要負荷22よりも高い電圧で動作する電力負荷であり、高圧電源31から供給される電力により動作する。本実施形態では、高圧負荷32は、車両Vを駆動する駆動ユニット321と、車両Vの車室内の空気調和を行う空調装置322(図中、A/C)と、を含む。
【0056】
駆動ユニット321は、回転電機MGと、回転電機MGを制御するパワー制御ユニットPCUと、を備える。パワー制御ユニットPCUは、不図示のDC/DCコンバータ、及び、不図示のインバータ等を備える。
【0057】
駆動ユニット321は、接続線L31の他端部に接続されている。駆動ユニット321は、高圧電源31から供給される直流の電力を、パワー制御ユニットPCUによって三相交流の電力に変換して、回転電機MGに供給する。これにより、回転電機MGは、高圧電源31の電力によって車両Vを駆動する動力を発生させる。
【0058】
駆動ユニット321は、車両Vの制動時に回転電機MGを回生ブレーキとして機能させる。この場合、駆動ユニット321は、回転電機MGで発電される三相交流の電力を、パワー制御ユニットPCUで三相交流の電力を直流の電力に変換して、高圧電源31に充電してもよい。
【0059】
空調装置322は、接続線L31の高圧電源31と駆動ユニット321との間に形成された接点C31で接続線L31に接続する接続線L32に接続されている。空調装置322は、高圧電源31の電力によって動作する。
【0060】
[1-5.降圧装置の構成]
降圧装置40は、接続線L40に設けられている。接続線L40の一端部は接点C32に接続し、他端部が接点C12に接続している。接点C32は、接続線L31の高圧電源31と接点C31との間に形成された接点である。接点C12は、接続線L10の接点C11と、接続線L10の他端部との間に形成された接点である。ここで、接続線L10の他端部とは、バックアップ電源系統20の第1外部接続端子T211に相当する。
【0061】
このように、高圧電源系統30は、降圧装置40を介して、主電源系統10及びバックアップ電源系統20と接続している。
【0062】
降圧装置40は、高圧電源系統30を流れる電力を降圧する。降圧装置40は、例えば、DC/DCコンバータである。降圧装置40は、高圧電源系統30が出力する電圧を降圧させて、主電源系統10及びバックアップ電源系統20に供給する。
【0063】
降圧装置40は、接続状態と遮断状態とを切り替え可能である。降圧装置40が接続状態のとき、高圧電源系統30は、接続線L40及び降圧装置40を介して、主電源系統10及びバックアップ電源系統20に接続される。降圧装置40が遮断状態のとき、高圧電源系統30は、主電源系統10及びバックアップ電源系統20と遮断される。
【0064】
高圧電源31及び降圧装置40は、高圧電源部36を構成する。高圧電源部36は、バックアップ電源系統20の定格電圧よりも高い電圧を出力可能である。また、高圧電源部36は、メイン低圧電源11の定格電圧よりも高い電圧を出力可能であってもよい。
【0065】
上述したように、車両Vが内燃機関を有する車両である場合、車両Vは、内燃機関の動力により駆動されるジェネレータを備える。このジェネレータは、発電した交流電流を、不図示の昇圧回路や整流回路を介して高圧電源31に供給し、高圧電源31を充電する。また、ジェネレータが出力する交流電流が、直接または不図示の昇圧回路や整流回路を介して、降圧装置40に供給される構成であってもよい。
【0066】
車両電源システム1は、ECU50を備える。ECU50は、上述したように複数のECUを含んでもよいし、単一のデバイスであってもよい。ECU50は、車両制御装置の一例に対応する。
【0067】
ECU50は、通常負荷12、緊急時重要負荷22、バックアップ電源制御装置25、及び、高圧負荷32に信号線により接続される。ECU50が接続される機器は上記の各部に制限されない。ECU50は、車両Vが搭載する各機器のうち
図1に示されていない機器に接続されてもよい。
【0068】
ECU50は、例えば、CPU等のプロセッサを備え、プロセッサによってプログラムを実行することにより、ソフトウェアとハードウェアとの協働により車両電源システム1の各部を制御する。この場合、ECU50は、プログラムやデータを記憶する記憶部を備えてもよく、記憶部は、例えばROMである。また、ECU50は、プログラムされたハードウェアにより構成されてもよい。
【0069】
ECU50には、操作部55が接続される。操作部55は、車両Vのユーザにより操作されるスイッチ等を含む。例えば、操作部55は、ユーザが車両Vの起動および停止を指示するために操作するSSSW(Start Stop SWitch)56を含む。また、操作部55は、ユーザが車両Vの自律運転の実行を指示するスイッチ等を含む。操作部55は、不図示のリモコン装置と無線接続し、リモコン装置による操作を検出する無線通信装置であってもよい。ここで、車両Vのユーザとは、例えば車両Vの運転者であるが、運転者以外の人であって車両Vを使用する人を含んでもよい。
【0070】
車両Vの停止状態において、車両電源システム1は、後述するオフ状態となる。車両電源システム1のオフ状態では、高圧電源31から供給される電力によって、ECU50が動作可能な状態を維持する。この状態は、いわゆるスリープ状態あるいは低消費電力状態と呼ばれる状態であってもよい。スリープ状態あるいは低消費電力状態で、ECU50は、例えば、ECU50の一部のコンポーネントへの電力供給が停止した状態であってもよい。また、スリープ状態あるいは低消費電力状態において、ECU50の動作クロック数やECU50がSSSW56や他のセンサーの状態を検出するサンプリング周波数が、車両Vの動作中よりも長い周期に設定されてもよい。
【0071】
車両電源システム1のオフ状態では、通常負荷12及び緊急時重要負荷22に、電力が供給される。これは、車両電源システム1のオフ状態で緊急時重要負荷22や通常負荷12を動作させるためである。例えば、緊急時重要負荷22に含まれるセンサー、或いは、緊急時重要負荷22に接続されるセンサーの検出値を、ECU50により監視する場合が挙げられる。また、例えば、緊急時重要負荷22に含まれるカメラによって駐車中の車両Vの周囲を監視する機能を実行する場合が挙げられる。このような場合、緊急時重要負荷22を動作させるため、高圧電源部36から緊急時重要負荷22に電力が供給される。通常負荷12にも同様に、高圧電源部36から電力が供給される。これらの電力は、いわゆる暗電流と呼ばれる。上述のように第3スイッチSW3はノーマリークローズ型であるため、バックアップ電源制御装置25が停止している状態であっても、第3スイッチSW3を介して、緊急時重要負荷22へ主電源系統10から電力を供給できる。
【0072】
車両Vの停止状態において、SSSW56の操作を検出した場合、ECU50は、通常負荷12、緊急時重要負荷22、高圧負荷32等を起動させる。ECU50は、バックアップ電源制御装置25を起動させて、バックアップ電源制御装置25によって第1スイッチSW1、第2スイッチSW2及び第3スイッチSW3を制御させる。これにより、車両Vは、停止状態から起動する。車両Vは、起動状態において、ユーザの操作に従って走行可能である。
【0073】
ECU50は、車両Vが起動している状態において、SSSW56の操作を検出した場合、通常負荷12、緊急時重要負荷22、高圧負荷32等を停止させる。これにより、車両Vは、停止状態に移行する。この場合、ECU50は、バックアップ電源制御装置25を制御して、車両Vを停止するための第1スイッチSW1、第2スイッチSW2及び第3スイッチSW3に対する制御を実行させてもよい。
【0074】
車両電源システム1において、車両Vの起動状態では、高圧電源31から主電源系統10の各部へ電力が供給される。さらに、主電源系統10及び緊急時重要負荷22に対して、高圧電源部36から電力が供給される。車両Vの停止状態では、上述のように高圧電源部36から暗電流が緊急時重要負荷22へ流れる。
【0075】
ところで、主電源系統10において短絡や地絡が発生した場合、車両電源システム1の保護のため、高圧電源部36から緊急時重要負荷22への電力供給が停止することがある。例えば、車両電源システム1を構成する回路には複数の箇所に不図示のヒューズが設けられる。地絡や短絡が発生すると、接続線L31、L32、L40等に設けられるヒューズが切れ、高圧電源部36から緊急時重要負荷22への電力供給が停止する。また、保護機能により降圧装置40が出力を遮断されることもあり得る。
【0076】
このような場合であっても緊急時重要負荷22に対する電力供給が途絶しないように、車両電源システム1は、バックアップ低圧電源23から緊急時重要負荷22への電力供給を行うことができる。具体的には、第2スイッチSW2がオンに切り替わることにより、バックアップ低圧電源23が接続線L212に接続され、バックアップ低圧電源23から緊急時重要負荷22への電力供給が開始される。或いは、車両Vの起動中に緊急時重要負荷22が動作している間は、バックアップ電源制御装置25によって第2スイッチSW2が状態になっており、降圧装置40からバックアップ電源系統20への電力供給が途絶する事態に備える構成であってもよい。この場合、第2スイッチSW2から降圧装置40に向かう方向に電流が流れないように、降圧装置40の出力電圧に対応して第2スイッチSW2の出力電圧が調整されていればよい。
【0077】
車両電源システム1は、高圧電源部36が供給する電力によって、メイン低圧電源11、及び、バックアップ低圧電源23に充電を行うことが可能な構成であってもよい。具体的には、メイン低圧電源11の充電容量が低下した場合に、ECU50またはバックアップ電源制御装置25の制御により、降圧装置40が出力する電力によりメイン低圧電源11が充電される構成とすることができる。バックアップ低圧電源23についても同様である。
【0078】
[1-6.電流検知部]
車両電源システム1は、第3スイッチSW3に流れる電流を検出する電流検出部27を備える。電流検出部27は、バックアップ電源系統20の回路上に配置され、バックアップ電源制御装置25に接続される。
【0079】
図2は、車両電源システム1における電流検出部27の配置例を示す図である。
図2には、電流検出部27の例として、電流検出部27a、27b、27cを示す。
【0080】
電流検出部27a、27bは、緊急時重要負荷22とスイッチモジュール241との間に配置される。電流検出部27aは、バックアップ低圧電源23に繋がる接点C241と緊急時重要負荷22との間に位置する。電流検出部27aは、メイン低圧電源11、緊急時重要負荷22、及び、高圧電源部36の少なくともいずれかから緊急時重要負荷22に電力が供給される場合に、緊急時重要負荷22に流れる電流を検出する。
【0081】
電流検出部27bは、スイッチモジュール241と接点C241との間に位置する。電流検出部27bは、メイン低圧電源11及び高圧電源部36のいずれかから緊急時重要負荷22に電力が供給される場合に、スイッチモジュール241を通じて緊急時重要負荷22に流れる電流を検出する。バックアップ低圧電源23から緊急時重要負荷22に流れる電流は、電流検出部27bにより検出されない。
【0082】
電流検出部27cは、第3スイッチSW3と緊急時重要負荷22との間に配置される。電流検出部27cは、第3スイッチSW3が緊急時重要負荷22に繋がる接点C243と、第3スイッチSW3の緊急時重要負荷22側の接点とに接続されている。電流検出部27cは、メイン低圧電源11または高圧電源部36から緊急時重要負荷22に電力が供給される場合に、第3スイッチSW3を流れる電流を検出する。電流検出部27cは、第1スイッチSW1を流れる電流、及び、バックアップ低圧電源23から緊急時重要負荷22に流れる電流を検出する目的には不適である。
【0083】
バックアップ電源制御装置25は、電流検出部27a、27b、27cによって、第3スイッチSW3に流れる電流を検出できる。例えば、バックアップ電源制御装置25は、第1スイッチSW1及び第2スイッチSW2をオフにした状態で、電流検出部27aを用いてスイッチSW3に流れる電流を検出できる。また、例えば、バックアップ電源制御装置25は、第1スイッチSW1をオフにした状態で、電流検出部27bを用いてスイッチSW3に流れる電流を検出できる。また、バックアップ電源制御装置25は、電流検出部27cを用いることにより、第1スイッチSW1及び第2スイッチSW2の状態に関わらずスイッチSW3に流れる電流を検出できる。
【0084】
車両電源システム1が電流検出部27a、27b、27cの少なくともいずれかを備える構成であれば、バックアップ電源制御装置25により第3スイッチSW3に流れる電流を検出できる。バックアップ電源制御装置25は、検出した電流値をECU50に出力する。電流検出部27a、27b、27cは、電流検出部27の具体的な例であり、車両電源システム1は、電流検出部27a、27b、27cの少なくともいずれか1以上を備えていればよく、車両電源システム1における他の位置に電流検出部27を配置してもよい。以下の説明では、電流検出部27a、27b、27cを区別しない場合に電流検出部27と記載する。
【0085】
[2.車両電源システムの動作]
[2-1.車両電源システムの起動]
車両電源システム1の動作について説明する。
図3は、車両電源システム1の動作を示すフローチャートであり、車両電源システム1がオフ状態からオン状態に遷移するときの動作を示す。
【0086】
車両電源システム1のオン状態とは、車両Vの駆動源が起動しており、かつ、走行に必要な補機類に対し、車両Vを駆動させるために必要な電力が供給されている状態である。駆動源が起動しているとは、車両Vを走行させるために駆動源が即時に動作できることである。オン状態は、車両Vが走行中の状態、又は、車両Vが即時に走行可能な状態と言い換えることができる。本実施形態では、車両電源システム1のオン状態とは、駆動ユニット321が起動しており、且つ、通常負荷12及び緊急時重要負荷22が起動している状態をいう。
【0087】
車両電源システム1のオフ状態とは、車両Vの駆動源が起動しておらず、かつ、走行に必要な補機類に対し、車両Vを駆動させるために必要な電力が供給されていない状態である。本実施形態では、車両電源システム1のオフ状態は、駆動ユニット321を含む高圧負荷32が起動しておらず、通常負荷12及び緊急時重要負荷22は起動しておらず、通常負荷12及び緊急時重要負荷22には待機電力が供給されている状態をいう。上述したように、車両電源システム1のオフ状態で主電源系統10から通常負荷12及び緊急時重要負荷22に流れる電流を暗電流と呼ぶ。
【0088】
車両電源システム1は、オフ状態において、オン操作が実行されることをトリガーとしてオン状態に移行する。オン操作は、例えば、車両Vに設けられた操作部が車両Vのユーザによってオン操作されることをいう。操作部は、例えば、SSSW56である。
【0089】
車両電源システム1は、オン状態において、オフ操作が実行されることをトリガーとしてオフ状態に移行する。オフ操作は、例えば、車両Vに設けられたSSSW56等の操作部が車両Vのユーザによって操作されることをいう。
【0090】
車両Vが内燃機関を備える場合には、車両電源システム1のオン状態とは、内燃機関が起動しており、かつ、通常負荷12及び緊急時重要負荷22が起動している状態ということができる。この場合のオフ状態とは、内燃機関が起動しておらず、かつ、通常負荷12及び緊急時重要負荷22は起動しておらず、通常負荷12及び緊急時重要負荷22に待機電力が供給されている状態である。
【0091】
車両Vが内燃機関を備える場合、車両電源システム1のオン操作は、例えば、車両Vのイグニッション操作であり、具体的には、イグニッションスイッチをオンにする操作である。また、車両電源システム1のオフ操作は、イグニッションスイッチをオフにする操作である。SSSW56は、イグニッションスイッチの一例ということができる。
【0092】
通常負荷12及び緊急時重要負荷22の待機電力は、上述した暗電流であり、主電源系統10から通常負荷12及び緊急時重要負荷22に供給される。
【0093】
以下に説明する車両電源システム1の動作は、車両Vに搭載されたECU50及びバックアップ電源制御装置25に予め記憶されたプログラムを実行することにより実現される。
【0094】
図3に示す動作は、ECU50及びバックアップ電源制御装置25のいずれかにより実行されてもよい。本実施形態では、ECU50が
図3の動作を実行する例を説明する。
【0095】
ECU50は、車両電源システム1のオフ状態においてSSSW56の操作を検出すると(ステップS11)、バックアップ電源系統20を起動させる(ステップS12)。ステップS12において、ECU50は、バックアップ電源制御装置25への電力供給を開始させる。さらに、ECU50は、バックアップ電源制御装置25を、第1スイッチSW1、第2スイッチSW2、及び第3スイッチSW3のスイッチングが可能な状態に移行させる。
【0096】
続いて、ECU50は、バックアップ電源制御装置25を制御することにより、正常判定処理を実行する(ステップS13)。正常判定処理は、バックアップ電源系統20が正常か否かを判定する処理である。ECU50は、正常判定処理においてバックアップ電源系統20が正常であると判定された場合に、次のステップS14に移行する。正常判定処理の詳細は
図4及び
図5を参照して後述する。
【0097】
正常判定処理の後、ECU50の制御に従って、バックアップ電源制御装置25が第1スイッチSW1をオンに切り替える(ステップS14)。第1スイッチSW1の切り替えが完了した後、バックアップ電源制御装置25は、ECU50の制御に従って、第3スイッチSW3をオフに切り替える(ステップS15)。第3スイッチSW3がオフに切り替わった後、ECU50は、通常負荷12及び緊急時重要負荷22を起動させる(ステップS16)。これにより、車両電源システム1がオン状態に移行する。
【0098】
[2-2.正常判定処理]
図4及び
図5は、車両電源システム1の動作を示すフローチャートであり、
図3のステップS13で実行される正常判定処理を詳細に示す。正常判定処理は、バックアップ電源系統20が正常か否かを判定する処理であり、ここでは一例として、バックアップ電源ユニット21が備えるスイッチが正常に動作するか否かを判定する処理を説明する。
【0099】
第1スイッチSW1、第2スイッチSW2及び第3スイッチSW3が正常に動作しない事象は、具体的には、オン固着、及び、オフ固着である。オン固着、及び、オフ固着は、スイッチの故障モードの一種であり、スイッチの接点がオンまたはオフで固定される事象である。ここで、スイッチとは第1スイッチSW1、第2スイッチSW2及び第3スイッチSW3を含む。例えば、接点を有する機械的スイッチにおいては、接点の開閉に伴うアークが生じた場合や、接点に定格値を超える電流が流れた場合に、接点が溶着することがある。この場合、スイッチは、オン状態に固定され、オン固着の故障となる。オフ固着は、寿命による接点消耗や、断線等により接点間が非接続状態に固定されてしまうことにより発生する。第1スイッチSW1、第2スイッチSW2及び第3スイッチSW3のいずれかのスイッチにおいてオン固着またはオフ固着が発生すると、そのスイッチはバックアップ電源制御装置25の制御によらずオン状態またはオフ状態で固定される。このような場合、ECU50は、バックアップ電源ユニット21が正常に動作しないと判定する。
【0100】
図4及び
図5に示す動作例では、第1スイッチSW1、第2スイッチSW2及び第3スイッチSW3のそれぞれのオン固着及びオフ固着の有無を判定する。
図4のステップS21-S24は第3スイッチSW3のオフ固着の有無を判定する処理であり、第1判定処理と呼ぶ。
図4のステップS25-S31は第1スイッチSW1及び第3スイッチSW3のオン固着の有無と、第2スイッチSW2のオフ固着の有無を判定する処理であり、第2判定処理と呼ぶ。
図5のステップS41-S44は第1スイッチSW1のオフ固着の有無を判定する処理であり、第3判定処理と呼ぶ。ステップS45-S48は第2スイッチSW2のオン固着の有無を判定する処理であり、第4判定処理と呼ぶ。
【0101】
ECU50は、ステップS13において、
図4及び
図5に示した処理の一部を省略してもよい。換言すれば、ECU50は、ステップS13で、第1~第4判定処理のいずれか1以上を実行すればよい。また、第1~第4判定処理の実行順序は
図4及び
図5に示した順序に制限されず、適宜に順序を入れ替えることも勿論可能である。
【0102】
本実施形態では、正常判定処理をECU50が実行する例を説明するが、バックアップ電源制御装置25が正常判定処理を実行してもよい。
ECU50は、ステップS21-S24で第1判定処理を実行する。ECU50は、第1スイッチSW1をオフ状態とし、第2スイッチSW2をオフ状態とし、第3スイッチSW3をオン状態とする(ステップS21)。
【0103】
ECU50は、主電源系統10の電位P1と、バックアップ電源系統20の電位P2とを測定あるいは検出する(ステップS22)。電位P1は、例えば、
図1に示す接点C12、または、接点C12と等電位の位置における電位である。電位P2は、第2外部接続端子T212、または、第2外部接続端子T212と等電位の位置における電位である。
【0104】
ECU50は、電位P1と電位P2とを比較し、電位P1と電位P2との差が所定値以下であるか否かを判定する(ステップS23)。ステップS23で判定に用いられる所定値は、予めECU50に設定された値である。ステップS23の所定値と、後述するステップS27、S30、S44、S48の所定値とは、それぞれECU50に設定される値であり、同一の値であっても異なる値であってもよい。
【0105】
ECU50は、電位P1と電位P2との差が所定値以下でない、すなわち所定値より大きいと判定した場合(ステップS23;NO)、第3スイッチSW3がオフ固着していると判定する(ステップS24)。この場合、ECU50は、後述するステップS29に移行する。
【0106】
電位P1と電位P2との差が所定値以下であると判定した場合(ステップS23;YES)、ECU50は、ステップS25-S31で第2判定処理を実行する。ECU50は、第1スイッチSW1をオフ状態とし、第2スイッチSW2をオン状態とし、第3スイッチSW3をオフ状態とする(ステップS25)。ECU50は、電位P1及び電位P2を測定あるいは検出する(ステップS26)。電位P1、P2は上述した位置の電位である。ECU50は、電位P1と電位P2との差が所定値以下であるか否かを判定する(ステップS27)。
【0107】
ECU50は、電位P1と電位P2との差が所定値以下であると判定した場合(ステップS27;YES)、第1スイッチSW1または第3スイッチSW3がオン固着していると判定する(ステップS28)。この場合、ECU50は、ステップS29に移行して、スイッチ異常を出力する動作を行い(ステップS29)、正常判定処理を終了する。ステップS29の出力は、バックアップ電源ユニット21が正常でないことを示す出力である。例えば、ECU50は、車両Vに搭載される不図示のディスプレイにスイッチ異常に対応するエラーコードや、警告表示を行う。また、ECU50は、内蔵する記憶部に、バックアップ電源ユニット21のスイッチの異常を示すエラーに関する情報を記憶させる。ステップS29の後、ECU50は、
図3の処理を停止し、車両電源システム1をオフ状態に維持してもよい。
【0108】
ECU50は、電位P1と電位P2との差が所定値より大きいと判定した場合(ステップS27;NO)、電位P2が予め設定された所定値以下であるか否かを判定する(ステップS30)。ここで、電位P2が所定値以下の場合(ステップS30;YES)、ECU50は、第2スイッチSW2がオフ固着していると判定し(ステップS31)、ステップS29に移行する。
【0109】
電位P2が所定値より高いと判定した場合(ステップS30;NO)、ECU50は
図5の第3判定処理を実行する。ECU50は、第1スイッチSW1をオン状態とし、第2スイッチSW2をオン状態とし、第3スイッチSW3をオフ状態とする(ステップS41)。ECU50は、電位P1及び電位P2を測定あるいは検出する(ステップS42)。電位P1、P2は上述した位置の電位である。ECU50は、電位P1と電位P2との差が所定値以下であるか否かを判定する(ステップS43)。
【0110】
ECU50は、電位P1と電位P2との差が所定値より大きいと判定した場合(ステップS43;NO)、第1スイッチSW1がオフ固着していると判定し(ステップS44)、ステップS29に移行する。
【0111】
ECU50は、電位P1と電位P2との差が所定値以下であると判定した場合(ステップS43;YES)、第4判定処理を実行する。ECU50は、第1スイッチSW1をオン状態とし、第2スイッチSW2をオフ状態とし、第3スイッチSW3をオフ状態とする(ステップS45)。ECU50は、電位P2、及び、バックアップ低圧電源23の出力電位P3を測定あるいは検出する(ステップS46)。出力電位P3は、例えば、バックアップ低圧電源23の正極の電位であり、例えば
図1の第3端子T243の電位である。
【0112】
ECU50は、電位P2と出力電位P3との差が所定値以下であるか否かを判定する(ステップS47)。ECU50は、電位P2と出力電位P3との差が所定値以下であると判定した場合(ステップS47;YES)、第2スイッチSW2がオン固着していると判定し(ステップS48)、ステップS29に移行する。
【0113】
ECU50は、電位P2と出力電位P3との差が所定値より大きいと判定した場合(ステップS47;NO)、第1スイッチSW1、第2スイッチSW2及び第3スイッチSW3が正常であると判定する(ステップS49)。これは、バックアップ電源ユニット21が正常に動作すると判定することである。この場合、ECU50は、正常判定処理を正常に完了させて(ステップS50)、
図3のステップS14に移行する。
【0114】
[2-3.車両電源システムの起動における電流の変化]
図6は、車両電源システム1がオフ状態からオン状態に移行する過程を示すタイミングチャートである。
図6において、(a)はSSSW56の操作状態を示し、(b)は緊急時重要負荷22の消費電力を示す。
図6(c)は第3スイッチSW3の状態を示し、(d)は第1スイッチSW1の状態を示し、(e)はバックアップ電源ユニット21の状態を示す。(f)は第3スイッチSW3を流れる電流I3の大きさを示す。
【0115】
図6において、ECU50がSSSW56の操作を検出したタイミングを時刻T1とする。時刻T1で車両電源システム1はオフ状態であるため、
図6(c)、(d)に示すように第3スイッチSW3がオン状態であり、第1スイッチSW1はオフ状態である。また、
図6(b)に示すように、緊急時重要負荷22はスリープ状態であって消費電力が小さい状態である。時刻T1で、第3スイッチSW3には、
図6(e)に示すように主電源系統10から緊急時重要負荷22に流れる暗電流I3が流れている。
【0116】
ECU50は、SSSW56の操作を検出すると、
図6(e)に示すようにバックアップ電源系統20を起動させて、正常判定処理を実行する。正常判定処理では、上述した例のように、第1スイッチSW1、第2スイッチSW2、第3スイッチSW3の故障の有無が判定される。正常判定処理の実行中は、第3スイッチSW3はオン状態に維持され、第1スイッチSW1はオフ状態に維持される。上述した例では、正常判定処理において第1スイッチSW1及び第3スイッチSW3をオン状態及びオフ状態に切り替える動作が何度か実行される。このため、厳密に言えば、正常判定処理の実行中において、第3スイッチSW3がオフ状態となる期間、及び、第1スイッチSW1がオン状態となる期間があるが、これらの期間は比較的短いので、第1スイッチSW1及び第3スイッチSW3の状態は
図6の通りと見做すことができる。
【0117】
正常判定処理が完了したタイミングを時刻T2とする。時刻T2で第1スイッチSW1、第3スイッチSW3、及び、緊急時重要負荷22は、車両電源システム1のオフ状態を維持している。ECU50は、時刻T2で第1スイッチSW1をオンに切り替える。この切り替えの完了後である時刻T3で、ECU50は、第3スイッチSW3をオフに切り替えさせる。時刻T2で第1スイッチSW1がオンになることにより、第3スイッチSW3を流れる電流I3は時刻T2に低下する。さらに、時刻T3で第3スイッチSW3がオフになることにより、電流I3は時刻T3で0[A]となる。
【0118】
ECU50は、時刻T3で第3スイッチSW3がオフになった後に、時刻T4で緊急時重要負荷22を起動させる。時刻T4は、内燃機関を搭載する車両Vにおいてはイグニッションがオンになるタイミングであり。時刻T4は、車両電源システム1がオン状態になったタイミングといえる。
【0119】
時刻T1~T4において、第3スイッチSW3を流れる電流I3は、車両電源システム1のオフ状態で緊急時重要負荷22に流れる暗電流相当、及び、それより小さい電流である。この場合の電流I3の値は、車両電源システム1のオン状態で主電源系統10から緊急時重要負荷22に流れる電流に比べて小さい。車両電源システム1のオン状態では、主電源系統10から緊急時重要負荷22に流れる電流は第1スイッチSW1を経由するので、第3スイッチSW3に大きな電流が流れることがない。
【0120】
このように、第3スイッチSW3に流れる電流は、第1スイッチSW1に比べて小さいので、第3スイッチSW3としては、第1スイッチSW1よりも電流容量が小さいスイッチを採用できる。これにより、第3スイッチSW3として簡易な構成のスイッチを用いることができるので、バックアップ電源ユニット21の小型化とコスト低減を実現できる。
【0121】
緊急時重要負荷22の中には、SSSW56の操作をECU50が受け付けてから短時間で起動し、電力を消費するものがある。車両Vが搭載する緊急時重要負荷22の機能や種類は様々であり、時刻T4で車両Vがイグニッションオンとなる前に起動する緊急時重要負荷22が存在する。この種の緊急時重要負荷22を搭載した車両Vでは、車両電源システム1の起動時における状態は、例えば、
図7に示すように変化する。
【0122】
図7は、車両電源システム1がオフ状態からオン状態に移行する過程の別の例を示すタイミングチャートである。
図7の(a)~(f)、及び、時刻T1~T4は
図6と共通である。
【0123】
図7の例では、バックアップ電源系統20の正常判定処理が完了する時刻T2よりも前に、緊急時重要負荷22の一部が起動する。この起動のタイミングを時刻T11とする。時刻T11では、符号POで示すように緊急時重要負荷22の消費電力が立ち上がる。時刻T11では第3スイッチSW3がオン、第1スイッチSW1がオフであるから、緊急時重要負荷22が消費する電力は第3スイッチSW3を通じて供給される。従って、第3スイッチSW3の電流I3は、
図7(f)に時刻T11で立ち上がる。この電流I3の立ち上がりをピーク電流PC1と呼ぶ。
【0124】
第3スイッチSW3が
図7の動作例にも対応できる構成とするためには、第3スイッチSW3の電流容量を、ピーク電流PC1の電流値より大きくする必要がある。例えば、第3スイッチSW3が第1スイッチSW1と同等の電流容量を持つ必要がある。このような構成では、スイッチモジュール241の大型化やコストの増大を招く可能性がある。
【0125】
本実施形態の車両電源システム1は、一例として、緊急時重要負荷22の消費電力の立ち上がりPOが発生した場合に、正常判定処理の実行中であっても第1スイッチSW1をオンに切り替えることにより、第3スイッチSW3のみに大きな電流が流れることを防止する。これにより、車両電源システム1を、第3スイッチSW3に大きな電流容量を持たせることなく実現可能とする。この動作例について
図8及び
図9を参照して説明する。
【0126】
図8は、車両電源システム1がオフ状態からオン状態に移行する過程の別の例を示すタイミングチャートである。
図8の(a)~(f)、及び、時刻T1~T4、T11は、
図7と共通である。
【0127】
ECU50は、バックアップ電源系統20が正常判定処理を実行している間、第3スイッチSW3に流れる電流I3を監視する。例えば、ECU50は、バックアップ電源制御装置25が電流検出部27により検出した電流値を、所定のサンプリング周期で取得することにより、電流I3を監視できる。
【0128】
上述のように、正常判定処理が完了する前に時刻T11で緊急時重要負荷22の消費電力の立ち上がりPOが発生すると、電流I3の電流値が立ち上がる。この電流I3の立ち上がりをピーク電流PC2と呼ぶ。
【0129】
ここで、ECU50は、電流I3の値が閾値TH以上であることをトリガーTGとして、時刻T12で第1スイッチSW1をオンに切り替えるとともに、正常判定処理を中断させる。第1スイッチSW1がオンになることで、スイッチモジュール241を通じて緊急時重要負荷22に供給される電流のうち第3スイッチSW3に流れる電流は低減する。さらに、ECU50は、第3スイッチSW3をオフに切り替えさせる。これにより、第3スイッチSW3を流れる電流I3は、ほぼ0[A]となる。ECU50が第3スイッチSW3をオフに切り替えるタイミングは、第1スイッチSW1をオンにするタイミングと同時、すなわち時刻T12であってもよい。また、ECU50は、時刻T12より後に、第3スイッチSW3をオフに切り替えてもよい。閾値THの値は、予めECU50またはバックアップ電源制御装置25が有している。
【0130】
時刻T12で正常判定処理が中断されて第1スイッチSW1がオンになることにより、スイッチモジュール241を通じて緊急時重要負荷22に流れる電流が第3スイッチSW3に集中する状態を解消し、ピーク電流PC2の電流値を抑制できる。従って、第3スイッチSW3の電流容量が比較的小さくても、第3スイッチSW3の故障や損傷を防止できる。また、ピーク電流PC2が流れる時間は、例えば
図8に時刻T11-T12で示すように短い時間である。このため、仮に、ピーク電流PC2の電流値が第3スイッチSW3の定格容量を超えるとしても、第3スイッチSW3の発熱は第3スイッチSW3の熱容量の範囲内に収まる。従って、第3スイッチSW3の故障や損傷を招く可能性は極めて小さい。これにより、第3スイッチSW3の電流容量が、例えば、緊急時重要負荷22の定格消費電流よりも小さい構成とすることができる。また、第3スイッチSW3の電流容量が、第1スイッチSW1の電流容量よりも小さい構成とすることができる。
【0131】
図9は、車両電源システム1の動作を示すフローチャートであり、
図8に示した動作を実現する動作例である。
図9のステップS61-S67は、ECU50及びバックアップ電源制御装置25のいずれかにより実行されてもよい。本実施形態では、ECU50が
図3の動作を実行する例を説明する。
【0132】
図9の動作は、ステップS13(
図3)で正常判定処理が開始されるとき、或いは、SSSW56の操作をECU50が受け付けたときに、開始される。このため、
図9の動作は
図3に示した動作と並行して実行される。
【0133】
ECU50は、第3スイッチSW3に流れる電流I3の監視を開始する(ステップS61)。電流I3の監視は、例えば、バックアップ電源制御装置25が電流検出部27を利用して検出した電流値を、ECU50が所定時間毎に取得することによって行われる。ECU50は、電流I3の電流値を閾値THと比較して、電流I3の電流値が閾値TH以上であるか否かを判定する(ステップS62)。
【0134】
電流I3の電流値が閾値TH以上でない、すなわち電流I3の電流値が閾値THより小さいであると判定した場合(ステップS62;NO)、ECU50は、正常判定処理が終了したか否かを判定する(ステップS63)。正常判定処理が実行中である場合(ステップS63;NO)、ECU50はステップS62を所定周期で実行する。正常判定処理が終了した場合(ステップS63;YES)、ECU50は本処理を終了する。
【0135】
電流I3の電流値が閾値TH以上であると判定した場合(ステップS62;YES)、ECU50は、正常判定処理を中断させ(ステップS64)、第1スイッチSW1をオンに切り替えさせる(ステップS65)。ECU50は、ステップS64で正常判定処理を中断させた後は、
図3の動作のステップS14以後を実行しない。
【0136】
ステップS64及びステップS65で、ECU50は、バックアップ電源制御装置25を制御して、正常判定処理の中断と第1スイッチSW1の切り替えを実行させる。ステップS64及びステップS65の制御は同時に、或いは並行して実行されてもよいし、ステップS64よりも前にステップS65が実行されてもよい。
【0137】
ECU50は、さらに、バックアップ電源制御装置25を制御して、第3スイッチSW3をオフに切り替えさせる(ステップS66)。第3スイッチSW3の切り替えは、ステップS64の正常判定処理の中断、及び、ステップS65の第1スイッチSW1の切り替えと同時に、或いは並行して実行されてもよい。ステップS66の第3スイッチSW3の切り替えは、ステップS65の第1スイッチSW1の切り替えと同時か、その後であることが好ましい。第1スイッチSW1がオンに切り替わった後に第3スイッチSW3がオフに切り替わることにより、メイン低圧電源11または高圧電源部36から緊急時重要負荷22への電力供給が途絶しないので、緊急時重要負荷22の動作に支障を来さないという利点がある。
【0138】
また、ECU50はバックアップ電源制御装置25を制御して、第2スイッチSW2をオンに切り替えさせてから第3スイッチSW3をオフにする制御を行ってもよい。具体的には、ステップS64で正常判定処理を中断させる制御と並行して、或いは、その後に、第2スイッチSW2をオンに切り替えさせる。これにより、第2スイッチSW2は、第3スイッチSW3がオフに切り替わるタイミングより前に、オンに切り替わる。この場合、バックアップ低圧電源23から緊急時重要負荷22への電力供給が可能となる。このため、第3スイッチSW3及び第1スイッチSW1の両方がオフになる状態が発生しても、緊急時重要負荷22への電力供給が途絶することを回避でき、緊急時重要負荷22が動作を継続できる。
【0139】
ECU50は、ステップS65-S66の後、緊急時重要負荷22及び通常負荷12を起動させる(ステップS67)。緊急時重要負荷22の消費電力が立ち上がった後は、既に緊急時重要負荷22の一部が起動しているが、ECU50は、ステップS67において、ステップS16(
図3)と同様に緊急時重要負荷22の全体と、通常負荷12とを動作可能な状態に移行させる。これにより、車両電源システム1はオン状態に移行する。
【0140】
このように、ECU50は、第3スイッチSW3を流れる電流I3の電流値が閾値TH以上となった場合に、正常判定処理を中断させて、第1スイッチSW1をオンに切り替える。これにより、正常判定処理が終了する前に緊急時重要負荷22が起動して、第3スイッチSW3に定格容量を超える電流I3が流れた場合であっても、第3スイッチSW3の故障や損傷を回避できる。従って、第3スイッチSW3の電流容量を、例えば第1スイッチSW1よりも小さくすることが可能であるため、第3スイッチSW3やスイッチモジュール241の小型化および低コスト化を図ることができる。
【0141】
[3.他の実施形態]
上記実施形態は本発明を適用した一具体例を示すものであり、発明が適用される形態を限定するものではない。
【0142】
例えば、
図4及び
図5に示した正常判定処理の内容は一例であり、バックアップ電源系統20が正常に動作するか否かを判定する処理であればよい。例えば、正常判定処理において、ECU50は、主電源系統10から電力を供給させてもよい。具体的には、ECU50は、第1スイッチSW1及び第3スイッチSW3をオフ状態とし、第2スイッチSW2の出力電圧よりも高い電圧を降圧装置40から出力させる。この場合に、第1スイッチSW1の両端電圧の差が所定値以下であれば、第1スイッチSW1及び/または第3スイッチSW3がオン固着していると判定できる。
【0143】
また、
図6-
図8に示したタイミングチャートは一動作例に過ぎず、車両電源システム1の動作は適宜に変更可能である。
【0144】
[4.上記実施形態によりサポートされる構成]
上記実施形態は、以下の構成をサポートする。
【0145】
(構成1)メイン低圧電源及び通常負荷を有する主電源系統と、バックアップ低圧電源及び緊急時重要負荷を有し前記主電源系統と接続するバックアップ電源系統とを備え、前記バックアップ電源系統は、前記バックアップ低圧電源の電力を前記主電源系統に供給可能であり、前記主電源系統との接続及び遮断を切り替え可能な主スイッチと、前記主スイッチを制御するバックアップ電源制御装置とを有する車両電源システムであって、前記主スイッチは制御されていない場合に遮断し、前記主電源系統と前記バックアップ電源系統との間に前記主スイッチと並列に配置され、前記主スイッチが制御されていない場合に接続する副スイッチを有し、前記通常負荷及び前記緊急時重要負荷の少なくとも一方と、前記主電源系統と、前記バックアップ電源系統とを制御可能な車両制御装置を有し、前記車両制御装置は、前記通常負荷及び前記緊急時重要負荷の少なくとも一方を起動させる操作が行われた場合、前記操作に基づいて前記バックアップ電源制御装置を起動させ、前記バックアップ電源系統が正常か否かを判定する正常判定処理を実行し、前記正常判定処理の実行中に前記副スイッチに流れる電流が閾値以上の場合は、前記主スイッチを接続させ、かつ、前記副スイッチを遮断させ、前記正常判定処理の実行中において前記副スイッチに流れる電流が前記閾値より小さい場合は、前記正常判定処理が完了した後に、前記主スイッチを接続させ、かつ、前記副スイッチを遮断させる、車両電源システム。
構成1によれば、主電源系統及びバックアップ電源系統から緊急時重要負荷への電力供給を可能とする車両電源システムを、副スイッチに大きな電流が継続して流れないように動作させる。このため、副スイッチに求められる電流容量を小さくすることができる。従って、副スイッチの小型化および低コスト化を図ることができ、延いてはバックアップ電源系統の小型化とコスト低減を実現できる。
【0146】
(構成2)前記副スイッチの電流容量は、前記主スイッチの電流容量よりも小さい、構成1に記載の車両電源システム。
構成2によれば、副スイッチとして主スイッチよりも電流容量が小さいスイッチを採用することにより、バックアップ電源系統の小型化とコスト低減を実現できる。
【0147】
(構成3)前記車両制御装置は、前記正常判定処理において前記バックアップ電源系統が正常であると判定した場合は、前記主スイッチが接続した後に前記副スイッチを遮断させる、構成1または構成2に記載の車両電源システム。
構成3によれば、主スイッチによりバックアップ低圧電源と主電源系統とが接続した後に副スイッチを遮断する。これにより、バックアップ電源系統の緊急時重要負荷へ主スイッチを経由して主電源系統から電力供給が可能になってから、副スイッチが遮断する。このため、主スイッチ及び副スイッチの切離を行う間に、主電源系統から緊急時重要負荷への電力供給が可能な状態を維持できる。従って、緊急時重要負荷への電力供給を確保し、緊急時重要負荷を安定して動作させることができる。
【0148】
(構成4)前記車両制御装置は、前記正常判定処理において前記バックアップ電源系統が正常であると判定した場合、前記主スイッチを制御して接続させる動作と前記副スイッチを制御して遮断させる動作とを実行することによって前記主電源系統から前記緊急時重要負荷への電力供給を可能とした後に、前記緊急時重要負荷を起動させる、構成1から構成3のいずれかに記載の車両電源システム。
構成4によれば、主スイッチを経由して主電源系統から緊急時重要負荷への電力供給を可能とし、かつ、副スイッチを遮断させてから、緊急時重要負荷を起動させる。これにより、副スイッチに大きな電流が流れない状態を確実に実現できるので、副スイッチの小型化および低コスト化を図ることができる。
【0149】
(構成5)前記正常判定処理は、前記主スイッチが正常に動作することを判定する処理を含む、構成1から構成4のいずれかに記載の車両電源システム。
構成5によれば、主スイッチの動作不良により副スイッチに大きな電流が流れる状態を回避できるので、副スイッチの小型化および低コスト化を図ることができる。
【0150】
(構成6)前記バックアップ電源系統は、前記バックアップ電源制御装置の制御に従って、前記バックアップ低圧電源からの電力供給の実行と遮断とを切り替えるバックアップ電源スイッチを備え、前記正常判定処理は、前記バックアップ電源スイッチが正常に動作することの判定を含む、構成1から構成5のいずれかに記載の車両電源システム。
構成6によれば、バックアップ電源スイッチが正常に動作すると判定した場合に、緊急時重要負荷を起動させる。このため、緊急時重要負荷に対してバックアップ低圧電源による電力供給が可能であると判定されてから緊急時重要負荷が起動される。従って、緊急時重要負荷への電力供給を確実に確保できる。
【符号の説明】
【0151】
1…車両電源システム、10…電源系統、11…メイン低圧電源、12…通常負荷、20…バックアップ電源系統、21…バックアップ電源ユニット、22…緊急時重要負荷、23…バックアップ低圧電源、24…切替装置、25…バックアップ電源制御装置、27、27a、27b、27c…電流検出部、30…高圧電源系統、31…高圧電源、32…高圧負荷、40…降圧装置、50…ECU(車両制御装置)、55…操作部、56…SSSW、241…スイッチモジュール、321…駆動ユニット、322…空調装置、CP…キャパシタ、MG…回転電機、PCU…パワー制御ユニット、SW1…第1スイッチ(主スイッチ)、SW2…第2スイッチ(バックアップ電源スイッチ)、SW3…第3スイッチ(副スイッチ)、V…車両。