IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ホロジック, インコーポレイテッドの特許一覧

特開2024-51051高密度要素抑制による合成乳房組織画像発生のためのシステムおよび方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024051051
(43)【公開日】2024-04-10
(54)【発明の名称】高密度要素抑制による合成乳房組織画像発生のためのシステムおよび方法
(51)【国際特許分類】
   A61B 6/00 20240101AFI20240403BHJP
   A61B 6/02 20060101ALI20240403BHJP
【FI】
A61B6/00 550P
A61B6/02 501H
A61B6/00 530Z
【審査請求】有
【請求項の数】1
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2024026500
(22)【出願日】2024-02-26
(62)【分割の表示】P 2021517228の分割
【原出願日】2019-09-24
(31)【優先権主張番号】62/738,244
(32)【優先日】2018-09-28
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】501214292
【氏名又は名称】ホロジック, インコーポレイテッド
【氏名又は名称原語表記】Hologic, Inc.
【住所又は居所原語表記】250 Campus Drive, 01752 Marlborough, MA,United States of America
(74)【代理人】
【識別番号】100078282
【弁理士】
【氏名又は名称】山本 秀策
(74)【代理人】
【識別番号】100113413
【弁理士】
【氏名又は名称】森下 夏樹
(72)【発明者】
【氏名】シャオミン リウ
(72)【発明者】
【氏名】ハイリ チュイ
(72)【発明者】
【氏名】シャンウェイ ジャン
(72)【発明者】
【氏名】ニコラオス カナトシオス
(57)【要約】
【課題】好適な高密度要素抑制による合成乳房組織画像発生のためのシステム及び方法を提供する。
【解決手段】乳房組織画像データを処理するための方法及び乳房撮像システムは、乳房画像の画像データを画像プロセッサにフィードすること、乳房組織及び高密度要素を描写する画像部分を識別すること、入力画像に異なる処理方法を実行することを含む。第1の画像処理方法が乳房組織強調及び高密度要素抑制を伴う一方、第2の画像処理方法は高密度要素を強調することを伴う。画像スライスの個別の3次元セットが個別の画像処理方法により発生され得、個別の2次元合成画像が、乳房撮像システムのディスプレイを通して提示される2次元複合合成画像を形成するように発生され、組み合わせられる。第1及び第2の画像処理が、発生された3次元画像セット又は患者の乳房に対して個別の角度で画像入手コンポーネントにより入手される2次元投影画像に実行され得る。
【選択図】図1
【特許請求の範囲】
【請求項1】
本明細書に記載の発明。
【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の相互参照)
本願は、参照することによってその全体として本願に組み込まれる、2018年9月28日に出願された、米国仮特許出願第62/738,244号の利益を35 U.S.C. § 119の下で主張する。
【0002】
本開示される発明は、概して、トモシンセシス等の乳房撮像技法に関し、より具体的には、邪魔になる高密度要素を含む、乳房画像の画像を処理するためのシステムおよび方法に関する。
【背景技術】
【0003】
マンモグラフィが、乳癌および他の異常を検査するために長年使用されてきた。従来的には、マンモグラムが、X線フィルム上に形成されてきた。より近年では、デジタル形態でマンモグラムを入手し、それによって、入手された画像データの分析および記憶を促進し、また、他の利益も提供する、フラットパネルデジタル撮像装置が、導入されている。さらに、実質的な注目および技術的開発が、乳房トモシンセシス等の方法を使用して、乳房の3次元(3D)画像を取得することに向けられている。旧来のマンモグラフィシステムによって発生される2次元(2D)画像と対照的に、乳房トモシンセシスシステムは、一連の2D投影画像から3D画像体積を構築し、または発生させ、各投影画像は、X線源が検出器にわたって走査されるにつれて、画像検出器に対してX線源の異なる角度変位において取得される。構築された3D画像体積またはスタックは、典型的には、画像データの複数のスライスとして提示され、スライスは、典型的には画像検出器と平行な平面上で数学的に再構築される。再構築されたトモシンセシススライスは、放射線科医または他の医療専門家等のユーザが、画像スライスを通してスクロールし、そのスライス内の構造のみを視認することを可能にすることによって、2Dマンモグラフィ画像内に存在する組織重複および構造雑音によって引き起こされる問題を低減させる、または排除する。
【0004】
トモシンセシスシステム等の撮像システムが、近年、乳癌検査および診断のために開発されている。特に、Hologic, Inc.は、乳房が不動化されたままである間に、または乳房の異なる圧縮を受けてのいずれかにおいて、一方または両方のタイプのマンモグラムおよびトモシンセシス画像を入手する、融合マルチモードマンモグラフィ/トモシンセシスシステムを開発した。他の企業は、トモシンセシス撮像を含む、例えば、同一の圧縮においてマンモグラムも入手する能力を含まない、システムを導入している。
【0005】
随意に、トモシンセシス技術への移行を促進するために、既存の医学の専門的知識を活用する、システムおよび方法の実施例が、米国特許第7,760,924号(参照することによってその全体として本明細書に組み込まれる)に説明されている。特に、米国特許第7,760,924号は、随意に、検査および診断を支援するために、トモシンセシス投影または再構築された画像とともに表示され得る、合成2D画像を発生させる方法を説明する。
【0006】
2D合成画像は、従来的2Dマンモグラムをシミュレートする一方、従来的2Dマンモグラムでは容易に可視ではない場合がある、トモシンセシススライスからの関連性がある情報を失わないように設計される。2D合成画像は、従来的2D画像の関連性がある部分内で表しながら、異常病変および正常乳房構造等の任意の臨床的に重要かつ有意義な情報を含む。異なる特性を有する、異なるタイプの画像物体として定義され得る、多くの異なるタイプの病変および乳房構造が存在する。3D体積データにおいて可視である任意の所与の画像物体に関して、2D合成画像内で可能な限り画像特性(例えば、微小石灰化、構造上の歪み等)を維持および強調することが重要である。標的画像物体の強調を達成するために、3Dトモシンセシスデータに存在する画像物体を正確に識別し、表すことが重要である。
【0007】
また、着目物体および臨床的に重要な情報を遮断する、または覆い隠し得る、不要な画像物体およびアーチファクトを低減もしくは排除しながら、乳房組織内の着目構造を明確に描写する、再構築画像スライスの3D体積および3D再構築画像スライスを表す2D合成画像を発生させることが重要である。例えば、放射線科医が、後続の精査の間に、または追跡診察の間に、以前の生検場所を容易に識別し得るように、金属生検マーカが、多くの場合、患者の乳房の中に挿入される。ある公知の生検マーカは、ステンレス鋼、チタン、またはニッケルチタン等の生体適合性金属材料から作製され、用途、ならびにサイズ、配向、および場所等の生検属性に応じて、拡張可能メッシュ様またはネット様構造、円筒体、およびツイストワイヤを含む、種々の形状を有することができる。生検マーカの実施例は、Hologic, Inc.(Marlborough, MA)から入手可能なTUMARK、SECURMARK、TRIMARK、およびCELEROMARK生検部位マーカを含む。
【0008】
しかしながら、3D再構築スライスを発生させるプロセスおよび2D合成画像の後続の発生では、金属生検マーカまたはクリップ等の高密度物体自体が、着目乳房組織を覆い隠し得、これらの金属生検マーカを撮像することによって発生される影もまた、乳房の周囲の撮像の結果として、乳房組織の中に延在または侵入し、種々の方向に乳房組織画像部分を覆い隠し得る。生検マーカまたはクリップならびに異なる形状およびサイズの外部皮膚マーカを撮像することは、3D画像スタックおよび結果として生じる2D合成画像の異なる部分の全体を通して、異なる形状、サイズ、および数の影または画像アーチファクトを導入し得る。これらの影アーチファクトは、対処することが困難であり得、特定の着目乳房組織面積を視認することが可能ではない場合がある。これらの邪魔になる面積は、2D合成画像の品質を低減させ、着目構造が、高密度物体および/または結果として生じる影(ならびに可能性として、利用される生検マーカ材料および撮像システムのタイプに応じて、金属物体からの反射)によって遮断される、または覆い隠され得るため、同画像に基づく査定の正確度を低減させ得る。
【発明の概要】
【課題を解決するための手段】
【0009】
開示される発明の実施形態は、乳房組織内または上の高密度もしくは放射線不透過性物体の撮像によって発生される影等の画像アーチファクトを排除または低減させるためのコンピュータ化画像発生および表示システムならびに方法を提供する。影等の高密度物体が、より正確かつ効率的な画像発生および放射線科医の精査を提供しながら、乳房組織のより明確でより正確な画像を提供するように、合成画像内で抑制される。
【0010】
開示される発明の実施形態はまた、入力画像が、合成複合画像を発生させるように組み合わせられる、またはマージされる、異なる結果として生じる画像を発生させるために、異なる方法で処理されるように、入力乳房画像上の微分またはマルチフロー画像処理も提供する。結果として生じる合成複合画像は、乳房組織内または上の高密度もしくは放射線不透過性物体を撮像することに起因する影アーチファクトが低減している、またはそれを全く有していない一方、画像の他の要素または側面が、維持または強調される。
【0011】
実施形態はまた、異なる次元形式の画像入力に基づく、合成画像の発生を提供する。例えば、一実施形態では、集合的に、乳房撮像システムによって発生される画像データに基づいて乳房組織を描写し、乳房組織内または上の高密度物体を描写する、画像の3Dセットが、異なる中間画像セットを発生させるように、異なる方法で処理される。高密度物体が、第1の中間画像セットの中で抑制され、第2の中間画像セットの中で強調される。高密度物体を含まない2次元(2D)複合合成画像が、第1の中間画像セットおよび第2の中間画像セットに少なくとも部分的に基づき、乳房撮像システムのディスプレイを通して提示される。別の実施形態では、投影画像の2Dセットに基づいて構築される画像の3Dセットではなく、投影画像の2Dセットが、画像プロセッサへの入力であり、1つの画像処理フローにおける高密度要素抑制および乳房強調のために、かつ別の画像処理フローにおける高密度要素強調のために、異なる方法で処理される。高密度物体を含まない2次元(2D)複合合成画像が、第1の中間画像セットおよび第2の中間画像セットに少なくとも部分的に基づき、乳房撮像システムのディスプレイを通して提示される。
【0012】
乳房組織画像データ処理のための別の実施形態は、乳房撮像システムによって発生される画像データに基づいて、乳房組織を集合的に描写する画像の第1のセットを発生させるステップであって、画像の第1のセットは、高密度物体を描写する、ステップと、異なる方法で画像の第1のセットを処理し、高密度物体が抑制され、乳房組織が強調される、画像の第2のセットを発生させ、高密度物体が強調される、画像の第3のセットを発生させるステップとを含む。画像の第2のセットは、高密度物体が抑制される、画像の第4のセットを発生させるように処理され、画像の第3のセットは、高密度物体が強調される、画像の第5のセットを発生させるように処理される。複合合成画像が、発生され、画像の第4のセットおよび画像の第5のセットに少なくとも部分的に基づいて、密度物体を含まず、乳房撮像システムのディスプレイを通して提示される。
【0013】
開示される発明の一実施形態では、(例えば、乳房撮像システムのX線画像デバイスによって入手される2D投影画像の再構築によって発生される)画像スライスの3Dセットまたはスタックが、乳房組織を集合的に描写し、乳房撮像システムのマルチフロー画像プロセッサへの入力としてフィードされる。画像スライスの入力3Dセットは、高密度物体が抑制され、乳房組織が強調される、画像スライスの第1の3Dセット、および高密度物体が強調される、画像スライスの第2の3Dセットを発生させるように、異なる方法で処理される。第1の2D合成画像または第1の中間画像が、第1の3Dセットの強調された組織画像部分に少なくとも部分的に基づいて、もしくはそれを具現化して発生され、第2の2D合成画像または第2の中間画像が、第2の3Dセットの強調された高密度物体画像部分に少なくとも部分的に基づいて、もしくはそれを具現化して発生される。第1および第2の2D合成画像は、画像発生および表示システムのディスプレイを通して放射線科医に提示される、2D複合合成画像を発生させるように、ともに組み合わせられる、またはマージされる。
【0014】
別の実施形態によると、高密度要素抑制を伴うマルチフローまたは微分画像処理が、画像スライスの3Dスタックではなく、2D入手または投影画像に適用される。換言すると、画像プロセッサへの入力は、異なる次元形式の画像のデータであってもよく、マルチフロー画像処理が、画像再構築の前または後に実行されてもよい。したがって、高密度要素抑制を伴うマルチフローまたは微分画像処理は、画像再構築の前に、かつ画像スライスの3Dスタックが発生される前に、または画像再構築後に、かつ画像スライスの3Dスタックが発生された後に実行されてもよく、画像プロセッサが、再構築およびTr画像を伴う場合とそうではない場合がある、異なるタイプおよび/または組み合わせの画像を受信してもよい。
【0015】
一実施形態では、乳房画像処理方法は、例えば、乳房が放射線源と検出器との間にある間に、異なる角度に位置付けられる放射線源および検出器を使用して、画像入手コンポーネントによって、乳房組織を描写する複数の2D画像を入手するステップを伴う。入手された2D画像は、乳房撮像システムのマルチフロー画像プロセッサへの入力としてフィードされる。画像プロセッサは、第1の画像処理方法またはフローを実行し、乳房組織を描写する2D画像の第1の処理されたセットの一部が強調され、高密度要素を描写する2D画像の第1の処理されたセットの他の部分が抑制される、2D画像の第1の処理されたセットを発生させる。画像プロセッサはまた、第1の画像処理方法と異なる第2の画像処理方法を実行し、高密度要素を描写する第2のセットの一部が強調される一方、乳房組織を強調しない、2D画像の第2の処理されたセットを発生させる。この目的のために、第1の画像処理方法またはフローで利用される物体強調モジュールは、第2の画像処理方法またはフローでは実行されない、もしくは非アクティブ化される。中間2D画像の新しいセットを発生させるための2D画像上のマルチフロー画像処理後、合成画像が、発生され、画像発生および表示システムのディスプレイを通して提示される、2D複合合成画像を発生させるようにマージされる、または組み合わせられてもよい。2D合成画像が、2D画像の新しいセットから、または再構築によって発生される画像スライスの発生された3Dスタックから発生されてもよい。これらの実施形態では、2D画像の第1の処理されたセットに少なくとも部分的に基づいて、乳房組織を集合的に描写する、画像スライスの第1の中間3Dセット、および2D画像の第2の処理されたセットに少なくとも部分的に基づいて、乳房組織を集合的に描写する、画像スライスの第2の中間3Dセットが、構築される。これらの3Dセットは、個別の第1および第2の3D画像スライスセットに少なくとも部分的に基づいて、個別の第1および第2の2D合成画像を発生させるために使用される。したがって、ある実施形態が、2D合成画像を発生させるために使用される画像スライスの3Dセットまたはスタックを参照して説明されるが、実施形態は、そのように限定されず、画像合成装置が、Tr(トモシンセシス再構築画像)、Tp(トモシンセシス投影画像)、およびMp(マンモグラフィ投影画像)の異なる組み合わせを含む、異なるタイプおよび組み合わせの画像を使用することもできる。さらに、Mp画像が、石灰化等のある画像要素のより良好な表現を提供するため、Mp画像は、2D合成画像に融合されることができる。故に、金属抑制および金属強調合成装置を含む、画像プロセッサが、トモシンセシス再構築画像Tr、トモシンセシス投影画像Tp、およびマンモグラフィ投影画像Mpのうちの1つ以上のもの、ならびにそれらの異なる組み合わせを使用してもよい。
【0016】
実施形態は、したがって、異なる次元画像形式、1つの次元形式から別の次元形式への変換、2D合成複合画像の発生の前に発生される異なるタイプおよび数の中間画像セット、ならびに異なる次元形式の画像に実行される画像処理および異なる次元形式を伴う特定の画像処理シーケンスを伴い得る。実施形態は、マルチフロー画像処理が、2D入手または投影画像に実行され得ないように、画像スライスの構築された3Dセット上で実行されているマルチフロー画像プロセッサを伴い得る。実施形態は、マルチフロー画像処理が、画像スライスの再構築された3Dスタックに実行され得ないように、2D入手または投影画像上で実行されている、マルチフロー画像プロセッサを伴い得る。加えて、2D合成画像の発生は、2D投影画像から構築される画像スライスの中間または3Dスタックに基づく、もしくは3Dスタックを発生させることなく2D画像から発生され得る。さらに、第1の画像処理フローにおける選択的抑制が、高密度もしくは放射線不透過性物体自体の形態の高密度要素、および/または高密度物体を撮像することによって発生される画像アーチファクトもしくは影の形態の高密度要素に適用され得る。
【0017】
さらに他の実施形態は、2D入手または投影画像上で実行される高密度要素抑制を含む、マルチフローまたは微分画像処理、次いで、画像スライスの構築された3Dセット上で実行される高密度要素抑制を含む、マルチフローまたは微分処理を伴い得る。したがって、高密度要素抑制および強調が、画像スライスの3Dスタックを発生させ、さらに強調された2D複合合成画像を提供するように、再構築の前後の両方で実施されてもよい。
【0018】
乳房組織の画像を処理するためのコンピュータ実装方法の一実施形態は、画像発生および表示システムのマルチフロー画像プロセッサの中への入力として、患者の乳房の複数の画像の画像データをフィードするステップを含む。画像プロセッサは、(例えば、患者の組織の反対側に配置される放射線検出器に影響を及ぼす、放射線源によって発生される放射線を使用して)乳房組織を描写する乳房組織画像の部分および患者の乳房内または上の高密度物体を撮像することによって発生される高密度要素を描写する画像の部分を識別する。本方法はさらに、画像プロセッサが、並行して同一の画像データ入力上に実行され得る、異なる画像処理方法を実行するステップを含む。第1の画像処理方法は、高密度要素を描写する画像部分を抑制しながら、乳房組織を描写する画像部分を強調する。例えば、放射線不透過性金属物体またはそれによって発生される影等の高密度要素が、高密度要素の放射線不透過性も示し得る、測定されたコントラストおよび明度のうちの1つ以上のものに基づく所定のフィルタまたは基準、もしくは他の画像基準またはフィルタを使用して、高密度要素であるものとして画像内で識別され得る。高密度要素部分が、他の画像背景データ内に充填されること、またはそれと置換されることによって、例えば、相互運用または背景サンプリングおよび複製によって、検出、セグメント化、および抑制され得る。このように、高密度または放射線不透過性要素は、本質的に排除または修正され、処理された画像内で視覚的に知覚可能ではない。画像スライスの第1の3Dスタックは、乳房組織を描写する強調された画像部分、および高密度要素を描写する抑制された画像部分を具現化する。例えば、画像スライスの第1の3Dセットは、各画像が、任意の所望の角度においてそのスライスの画像内に出現するであろうような乳房のスライスを表す、画像スライスの再構築されたセットの形態であってもよい。第1の画像処理方法はさらに、画像スライスの第1の3Dセットに少なくとも部分的に基づいて、第1の2D合成または「人工」画像を発生させるステップを含む。第2の画像処理方法は、第1の画像処理方法と異なり、高密度要素を描写する画像部分を抑制するのではなく強調するステップを伴い、これは、乳房組織または病変もしくはその着目物体を強調または重視することなく、実施されてもよい。識別された高密度または放射線不透過性要素は、その実施例が、エッジ強調、コントラスト強調、および強度投影(例えば、最大/平均強度投影)のためのアルゴリズムを含む、鮮明なコントラストを伴って物体を強調表示するように設計される、1つ以上の画像フィルタリング/処理アルゴリズムを使用して強調されてもよい。高密度要素を描写する、強調された画像部分を具現化する、画像スライスの第2の3Dセットが、発生され、第2の2D合成画像が、画像スライスの第2の3Dセットに少なくとも部分的に基づいて発生される。画像プロセッサは、個別の第1および第2の画像処理フローによって発生される第1および第2の2D合成画像を組み合わせ、またはマージし、システムのユーザに表示される複合2D画像を発生させる。
【0019】
単一または複数の実施形態では、画像発生および表示システムのX線画像入手コンポーネント等の入手コンポーネントが、患者の乳房の複数の画像を入手するようにアクティブ化される。2D投影画像等の入手された画像が、乳房が放射線源と検出器との間にある間に、異なる角度に位置付けられる放射線源および検出器を使用して、入手されてもよい。
【0020】
単一または複数の実施形態では、画像プロセッサの中にフィードされ、第1および第2の画像処理フローが実行される画像データは、2D投影画像の画像データである。したがって、これらの実施形態では、第1の画像処理フローの高密度または放射線不透過性要素抑制が、画像再構築の前に、したがって、画像スライスの3Dスタックの発生の前に実行され、高密度または放射線不透過性要素抑制は、画像スライスの3Dスタックに実行されない。
【0021】
単一または複数の実施形態では、画像プロセッサの中にフィードされ、第1および第2の画像処理フローが実行される画像データは、画像スライスの3Dセットまたはスタックである。したがって、これらの実施形態では、第1の画像処理フローの高密度要素抑制は、画像再構築後に、したがって、画像スライスの3Dスタックの発生後に実行される。高密度要素抑制は、2D投影画像に実行されない。
【0022】
単一または複数の実施形態では、第1の画像処理フローの金属抑制および第2の画像処理フローの金属強調が、2D投影画像等の同一の入力画像に直接実行される。他の実施形態では、第1の画像処理方法の金属抑制および第2の画像処理方法の金属強調が、2D投影画像ではなく、中間3D再構築画像スライスセットに実行される。
【0023】
単一または複数の実施形態では、抑制される高密度要素画像部分は、金属もしくは放射線不透過性物体自体および/またはそれによって発生される影を含む。高密度要素は、3D画像スライスの入力セットの複数のスライスを横断して延在し得る。金属物体は、金属生検マーカまたはクリップ等の乳房組織の中に挿入される異物であり得る。高密度要素はまた、金属生検マーカまたは他の異物の撮像によって発生される影であり得る。本発明の実施形態はまた、石灰化画像処理方法の形態で、高密度または放射線不透過性物体を含む画像を処理するときに、使用されてもよい。したがって、高密度または放射線不透過性要素は、異物または乳房組織内から生じる要素であり得る。さらに、放射線不透過性であり得る、そのような高密度物体が参照されるが、そのような物体は、実際に放射線不透過性であり、または完全には放射線不透過性ではないが、依然として、乳房組織を覆い隠すように、ある程度のみ放射線不透過性であり得、金属物体を撮像することによって発生される影アーチファクトは、放射線不透過性ではない場合があることを理解されたい。故に、「高密度要素」は、生検マーカまたは皮膚マーカ、放射線不透過性材料もしくは物体等の金属物体、および同物体の撮像によって発生される影または影アーチファクトを含むように解釈および定義され、実施形態が、画像内のいくつかまたは全ての高密度要素を抑制する、例えば、生検マーカではなく影を抑制するように実行されてもよい。
【0024】
実施形態を用いると、第1の画像処理方法は、高密度要素が、画像スライスの第1の3Dセットまたは最終的に発生された2D合成画像内で可視ではないように、高密度要素を描写する、識別された画像部分を抑制する。単一または複数の実施形態では、第1の2D合成画像は、高密度要素および/または高密度要素を撮像することによって発生される影要素を含まない。
【0025】
単一または複数の実施形態では、画像処理方法は、高密度要素が強調される、第2の2D合成画像を発生させるために使用される、セグメント化マスクを伴い得、高密度要素を描写する、強調された画像部分の画像エッジを膨張または収縮し、その鮮明度を増加させるように、第2の2D合成画像に実行される、モルフォロジカル演算を伴い得る。例えば、第2の画像処理方法は、高密度要素を描写するものとして識別される画像部分をセグメント化し、セグメント化された画像部分の個別のピクセルデータまたは値を決定するステップと、個別のピクセルデータまたは値に基づいて、高密度要素マスクを発生させるステップとを伴い得る。マスクは、高密度要素のピクセルに関する「1」、および他のピクセルのピクセルに関する「0」である、2値ピクセルレベルマスクであってもよい。マスクは、続いて、例えば、高密度要素マスクを利用する、第1の2D合成画像および第2の2D合成画像の変調された組み合わせによって、第1の2次元合成画像および第2の2次元合成画像をマージする、または組み合わせるときに、2D合成画像内に含むべき第2の2D合成画像の部分を決定するために、画像プロセッサによって利用されてもよい。
【0026】
単一または複数の実施形態では、第1の画像処理方法の高密度要素抑制が、高密度要素を描写する画像部分にわたる補間によって実行され、高密度要素ピクセルを、サンプリングされた乳房組織または強調されていない背景ピクセルと置換する。
本発明は、例えば、以下を提供する。
(項目1)
乳房組織の画像を処理するためのコンピュータ実装方法であって、前記コンピュータ実装方法は、
画像発生および表示システムの画像プロセッサの中への入力として、乳房の複数の画像の画像データをフィードすることと、
乳房組織を描写する画像部分および乳房組織とともに高密度物体を撮像することによって発生される高密度要素を描写する画像部分を、前記画像プロセッサによって識別することと、
乳房組織を描写する識別された画像部分を強調することと、前記高密度要素を描写する識別された画像部分を抑制することと、強調された乳房組織画像部分および抑制された高密度要素画像部分に少なくとも部分的に基づいて、第1の2次元(2D)合成画像を発生させることとを含む第1の画像処理方法を、前記画像プロセッサによって実行することと、
前記高密度要素を描写する識別された画像部分を強調することと、強調された高密度要素部分に少なくとも部分的に基づいて、第2の2D合成画像を発生させることとを含む第2の画像処理方法を、前記画像プロセッサによって実行することと、
前記画像プロセッサによって、前記第1の画像処理方法によって発生される前記第1の2D合成画像および前記第2の画像処理方法によって発生される前記第2の2D合成画像を組み合わせ、2D複合合成画像を発生させることと、
前記画像発生および表示システムのディスプレイを通して前記2D複合合成画像を提示することと
を含む、コンピュータ実装方法。
(項目2)
前記第1の2D合成画像を発生させ、前記第2の2D合成画像を発生させる前に、
前記画像プロセッサによって、強調された乳房組織画像および抑制された高密度要素画像部分に少なくとも部分的に基づいて、画像スライスの第1の3次元(3D)セットを発生させ、強調された高密度要素画像部分に少なくとも部分的に基づいて、画像スライスの第2の3Dセットを発生させること
をさらに含み、
前記第1の2D合成画像は、前記画像スライスの第1の3Dセットに少なくとも部分的に基づいて発生され、前記第2の2D合成画像は、前記画像スライスの第2の3Dセットに少なくとも部分的に基づいて発生される、
項目1に記載のコンピュータ実装方法。
(項目3)
前記画像発生および表示システムがX線画像入手コンポーネントをアクティブ化することと、
前記X線画像入手コンポーネントによって、前記乳房の複数の画像を入手することと
をさらに含む、項目1に記載のコンピュータ実装方法。
(項目4)
前記X線画像入手コンポーネントが前記画像データをデータ記憶部に記憶することをさらに含み、前記画像プロセッサは、前記データ記憶部から前記画像データを受信する、項目3に記載のコンピュータ実装方法。
(項目5)
前記画像プロセッサは、通信ネットワークを通して前記データ記憶部から前記画像データを受信する、項目4に記載のコンピュータ実装方法。
(項目6)
前記X線画像入手コンポーネントによって入手される前記複数の画像の画像データは、前記画像プロセッサへの入力としてフィードされる、項目3に記載のコンピュータ実装方法。
(項目7)
前記画像プロセッサへの入力は、前記乳房と前記X線画像入手コンポーネントとの間の個別の角度において前記画像発生および表示システムのX線入手コンポーネントによって入手される複数の2D投影画像の画像データを備え、前記第1の画像処理方法および前記第2の画像処理方法は、前記2D投影画像の画像データに実行される、項目1に記載のコンピュータ実装方法。
(項目8)
前記画像プロセッサによって、前記第1の画像処理方法によって処理される2D投影画像に基づいて、画像スライスの第1の3Dセットを発生させ、前記第2の画像処理方法によって処理される2D投影画像に基づいて、画像スライスの第2の3Dセットを発生させることをさらに含み、
前記第1の2D合成画像は、前記画像スライスの第1の3Dセットに少なくとも部分的に基づいて発生され、前記第2の2D合成画像は、前記画像スライスの第2の3Dセットに少なくとも部分的に基づいて発生される、項目7に記載のコンピュータ実装方法。
(項目9)
前記第1の画像処理方法の金属抑制および前記第2の画像処理方法の金属強調は、前記画像スライスの第1の3Dセットまたは前記画像スライスの第2の3Dセットに実行されない、項目8に記載のコンピュータ実装方法。
(項目10)
前記画像発生および表示システムが、X線画像入手コンポーネントをアクティブ化し、前記X線画像入手コンポーネントによって、前記乳房とX線画像入手コンポーネントとの間の個別の角度において入手される複数の2D投影画像を入手することと、
前記複数の2D投影画像に基づいて、画像スライスの入力3Dスタックを発生させることであって、前記画像スライスの入力3Dスタックは、前記乳房を集合的に描写し、前記画像プロセッサへの入力は、前記画像スライスの入力3Dスタックである、ことと
をさらに含む、項目1に記載のコンピュータ実装方法。
(項目11)
前記第1の画像処理方法の高密度要素抑制および前記第2の画像処理方法の高密度要素強調は、前記X線画像入手コンポーネントによって入手される前記複数の2D投影画像に実行されない、項目10に記載のコンピュータ実装方法。
(項目12)
前記第1の画像処理方法は、画像スライスの第1の3Dスタックを発生させるように、前記3D画像スライスの入力スタックに実行され、前記第2の画像処理方法は、画像スライスの第2の3Dスタックを発生させるように、前記3D画像スライスの入力スタックに実行され、
前記第1の2D合成画像は、前記画像スライスの第1の3Dセットに少なくとも部分的に基づいて発生され、前記第2の2D合成画像は、前記画像スライスの第2の3Dセットに少なくとも部分的に基づいて発生される、
項目11に記載のコンピュータ実装方法。
(項目13)
前記高密度要素は、前記3D画像スライスの入力スタックのうちの複数のスライスを横断して延在するものとして描写される、項目12に記載のコンピュータ実装方法。
(項目14)
前記第1の画像処理方法の金属抑制および前記第2の画像処理方法の金属強調は、前記複数の2D投影画像に実行されない、項目13に記載のコンピュータ実装方法。
(項目15)
前記第1の画像処理方法は、前記高密度要素が前記画像スライスの第1の3Dスタック内で可視ではないように、前記高密度要素を描写する前記識別された画像部分を抑制する、項目12に記載のコンピュータ実装方法。
(項目16)
前記高密度要素を描写する画像部分を識別することは、乳房組織内の金属物体を描写する画像部分を識別することを含み、前記金属物体を描写する画像部分は、前記第1の画像処理方法によって抑制され、前記第2の画像処理方法によって強調される、項目1に記載のコンピュータ実装方法。
(項目17)
前記金属物体を識別することは、乳房組織内に位置付けられる金属生検マーカまたはクリップを描写する画像部分を識別することを含む、項目16に記載のコンピュータ実装方法。
(項目18)
前記金属物体の撮像の結果として前記金属物体によって投じられる影を描写する画像部分を識別することをさらに含む、項目16に記載のコンピュータ実装方法。
(項目19)
前記高密度要素を描写する画像部分を識別することは、前記金属物体の撮像の結果として前記金属物体によって投じられる影を描写する画像部分を識別することを含み、前記影を描写する画像部分は、前記第1の画像処理方法によって抑制され、前記第2の画像処理方法によって強調される、項目1に記載のコンピュータ実装方法。
(項目20)
前記高密度要素を描写する画像部分を識別することは、前記乳房組織内の石灰化を描写する画像部分を識別することを含み、前記石灰化を描写する画像部分は、前記第1の画像処理方法によって抑制され、前記第2の画像処理方法によって強調される、項目1に記載のコンピュータ実装方法。
(項目21)
前記高密度要素を描写する画像部分を識別することは、前記石灰化の撮像の結果として前記石灰化によって投じられる影を描写する画像部分を識別することを含み、前記影を描写する画像部分は、前記第1の画像処理方法によって抑制され、前記第2の画像処理方法によって強調される、項目20に記載のコンピュータ実装方法。
(項目22)
前記高密度要素を識別する画像部分を識別することは、乳房組織内の放射線不透過性物体を識別する画像部分を識別することを含む、項目1に記載のコンピュータ実装方法。
(項目23)
前記第1の画像処理方法および前記第2の画像処理方法は、並行して同時に実行される、項目1に記載のコンピュータ実装方法。
(項目24)
前記画像プロセッサが前記入力を受信することは、前記複数の画像のピクセルデータを備える画像データを受信することを含む、項目1に記載のコンピュータ実装方法。
(項目25)
個別の画像の個別の画像部分は、コントラストフィルタおよび明度フィルタのうちの少なくとも1つを利用して、前記高密度要素を描写するものとして識別される、項目1に記載のコンピュータ実装方法。
(項目26)
前記第2の画像処理方法は、乳房組織または前記乳房組織内の病変を描写する画像部分を強調することなく、前記高密度要素を描写する画像部分を強調する、項目1に記載のコンピュータ実装方法。
(項目27)
前記2D複合合成画像を発生させる前に、前記画像プロセッサが、前記第2の2D合成画像にモルフォロジカル演算を実行し、前記高密度要素の少なくとも一部を描写する強調された画像部分の画像エッジを膨張または収縮することをさらに含む、項目1に記載のコンピュータ実装方法。
(項目28)
前記2D複合合成画像は、前記第1の2D合成画像および前記第2の2D合成画像を伴う強度投影を実行することによって発生される、項目1に記載のコンピュータ実装方法。(項目29)
前記強度投影は、平均強度投影または最大強度投影である、項目28に記載のコンピュータ実装方法。
(項目30)
前記高密度要素を描写する画像部分は、前記高密度要素を描写する前記画像部分にわたる補間によって抑制される、項目1に記載のコンピュータ実装方法。
(項目31)
前記高密度要素を描写する画像部分は、前記高密度要素を描写する画像部分を強調されていない背景画像データと置換することによって抑制される、項目1に記載のコンピュータ実装方法。
(項目32)
前記第1の2D合成画像は、前記高密度要素を描写する画像部分を含まない、項目1に記載のコンピュータ実装方法。
(項目33)
前記第1の2D合成画像は、前記高密度要素を描写する画像部分を含まず、前記乳房組織を伴う前記高密度要素を撮像することによって発生される影を描写する画像部分を含まない、項目32に記載のコンピュータ実装方法。
(項目34)
前記第2の2D合成画像は、乳房組織を描写する画像部分を含まない、項目1に記載のコンピュータ実装方法。
(項目35)
前記第2の画像処理方法は、
前記高密度要素を描写するものとして識別される画像部分をセグメント化し、セグメント化された画像部分の個別のピクセル値を決定することと、
個別のピクセル値に基づいて、高密度要素マスクを発生させることと
を含み、
前記高密度要素マスクは、前記第1の2D合成画像および前記第2の2D合成画像を組み合わせるときに、前記2D複合画像内に含むべき前記第2の2D合成画像の部分を決定するために、前記画像プロセッサによって利用される、
項目1に記載のコンピュータ実装方法。
(項目36)
前記高密度要素マスクは、2値ピクセルレベルマスクを備える、項目35に記載のコンピュータ実装方法。
(項目37)
前記第1の2D合成画像および前記第2の2D合成画像を組み合わせることは、前記画像プロセッサが、前記高密度要素マスクを用いて、前記第1の2D合成画像および前記第2の2D合成画像の変調された組み合わせを実行することを含む、項目35に記載のコンピュータ実装方法。
(項目38)
前記第1の画像処理方法および前記第2の画像処理方法は、トモシンセシスシステムによって実行される、項目1に記載のコンピュータ実装方法。
(項目39)
乳房組織画像データ処理のためのコンピュータ実装方法であって、
乳房撮像システムによって発生される画像データに基づいて、乳房組織を集合的に描写する画像の3次元(3D)セットを発生させることであって、前記画像の3Dセットは、乳房組織内または上の高密度物体を描写する、ことと、
異なる方法で前記画像の3Dセットを処理し、異なる中間画像セットを発生させることであって、前記高密度物体は、第1の中間画像セットの中で抑制され、第2の中間画像セットの中で強調される、ことと、
前記第1の中間画像セットおよび前記第2の中間画像セットに少なくとも部分的に基づいて、前記高密度物体を含まない2次元(2D)複合合成画像を発生させることと、
前記乳房撮像システムのディスプレイを通して前記2D複合合成画像を提示することと
を含む、コンピュータ実装方法。
(項目40)
乳房組織画像データ処理のためのコンピュータ実装方法であって、前記コンピュータ実装方法は、
乳房撮像システムによって発生される画像データに基づいて、乳房組織を集合的に描写する画像の第1の3次元(3D)セットを発生させることと、
異なる方法で前記画像の第1の3Dセットを処理し、高密度物体が抑制され、乳房組織が強調される画像の第2の3Dセットと、前記高密度物体が強調される画像の第3の3Dセットとを発生させることと、
前記高密度物体が抑制される前記画像の第2の3Dセットに少なくとも部分的に基づいて、第1の2次元(2D)合成画像を発生させ、前記高密度物体が強調される前記画像の第3の3Dセットに少なくとも部分的に基づいて、第2の2D合成画像を発生させることと、
前記高密度物体を含まず、前記第1の2D合成画像および前記第2の2D合成画像の一部を組み込む2D複合合成画像を発生させることと、
前記コンピューティングシステムのディスプレイを通して前記2D複合合成画像を提示することと
を含む、コンピュータ実装方法。
(項目41)
乳房組織画像データ処理のためのコンピュータ実装方法であって、前記コンピュータ実装方法は、
乳房撮像システムによって発生される画像データに基づいて、乳房組織を集合的に描写する画像の2次元(2D)セットを発生させることであって、前記画像の2Dセットは、高密度物体を描写する、ことと、
異なる方法で前記画像の2Dセットを処理し、異なる中間画像セットを発生させることであって、前記高密度物体は、第1の中間画像セットの中で抑制され、第2の中間画像セットの中で強調される、ことと、
前記第1の中間画像セットおよび前記第2の中間画像セットに少なくとも部分的に基づいて、前記高密度物体を含まない2D複合合成画像を発生させることと、
前記乳房撮像システムのディスプレイを通して前記2D複合合成画像を提示することと
を含む、コンピュータ実装方法。
(項目42)
乳房組織画像データ処理のためのコンピュータ実装方法であって、前記コンピュータ実装方法は、
乳房撮像システムによって発生される画像データに基づいて、乳房組織を集合的に描写する画像の第1のセットを発生させることであって、前記画像の第1のセットは、高密度物体を描写する、ことと、
異なる方法で前記画像の第1のセットを処理し、前記高密度物体が抑制され、乳房組織が強調される画像の第2のセットを発生させ、前記高密度物体が強調される画像の第3のセットを発生させることと、
前記画像の第2のセットを処理し、前記高密度物体が抑制される画像の第4のセットを発生させることと、
前記画像の第3のセットを処理し、前記高密度物体が強調される画像の第5のセットを発生させることと、
前記画像の第4のセットおよび前記画像の第5のセットに少なくとも部分的に基づいて、前記高密度物体を含まない複合合成画像を発生させることと、
前記乳房撮像システムのディスプレイを通して前記複合合成画像を提示することと
を含む、コンピュータ実装方法。
(項目43)
前記画像の第1のセット、前記画像の第2のセット、および前記画像の第3のセットは、1次元形式であり、前記画像の第4のセット、前記画像の第5のセット、および前記複合合成画像は、前記1次元形式と異なる2次元形式である、項目42に記載のコンピュータ実装方法。
【図面の簡単な説明】
【0027】
図面は、類似する要素が共通参照番号によって参照される、開示される発明の実施形態の設計および有用性を図示する。これらの図面は、必ずしも一定の縮尺で描かれていない。上記に記載される、および他の利点ならびに目的が取得される方法をさらに理解するために、付随する図面に図示される実施形態のより具体的な説明が、表されるであろう。これらの図面は、開示される発明の典型的実施形態のみを描写し、したがって、その範囲の限定と見なされるものではない。
【0028】
図1図1は、開示される発明の実施形態による、例示的乳房画像入手および処理システムを通したデータのフローを図示する、ブロック図である。
【0029】
図2図2は、開示される発明の実施形態による、複数の標的物体認識/強調モジュールを利用し、画像スタック内の個別の物体を識別する、2D合成装置を通したデータのフローを図示する、ブロック図である。
【0030】
図3図3は、標的物体認識/強調モジュールを画像スタック上に適用し、個別の物体を認識し、2D合成画像上の物体を低減させることの一実施形態を図示する。
【0031】
図4図4は、単一の標的物体認識/強調モジュールを画像スタック上に適用するときのデータのフローを図示する。
【0032】
図5図5は、複数の標的物体認識/強調モジュールを画像スタック上に適用するときのデータのフローを図示する。
【0033】
図6図6Aおよび6Bは、複数の標的物体合成モジュールからのデータを組み合わせる連続組み合わせ技法を図示する。
【0034】
図7図7Aおよび7Bは、複数の標的物体合成モジュールからのデータを組み合わせる並行組み合わせ技法を図示する。
【0035】
図8図8Aおよび8Bは、それぞれ、連続組み合わせおよび並行組み合わせ技法を使用して、2D合成画像を発生させることの2つの例示的フロー図を図示する。
【0036】
図9図9は、画像スライスの3Dスタックと、乳房組織内の金属物体を撮像することによって発生される影等の高密度要素が乳房組織および臨床的に重要な情報を覆い隠し得る様子とを描写する。
【0037】
図10図10は、乳房画像内の高密度要素の選択的抑制および強調を伴う、開示される発明の実施形態による、例示的乳房画像入手および処理システムを通したデータのフローを図示するブロック図である。
【0038】
図11図11は、一実施形態による、複合2D合成画像を発生させるように実行されるマルチフローまたは微分画像処理のフロー図を図示する。
【0039】
図12図12は、入力画像に実行される第1の画像処理フローの乳房組織強調および高密度抑制のフロー図を図示する。
【0040】
図13図13は、入力画像に実行される第2の画像処理フローの高密度要素強調のフロー図を図示する。
【0041】
図14図14は、画像スライスの入力3Dスタックに直接実行される、マルチフローまたは微分画像処理のフロー図を図示する。
【0042】
図15図15は、マルチフロー画像プロセッサが3D画像スライスの入力を受信する、図14のマルチフローまたは微分画像処理の実施形態を図示する、画像フロー図を図示する。
【0043】
図16図16は、高密度要素が抑制され、乳房組織要素が強調される、第1の画像処理フローの乳房組織強調および高密度抑制の画像フロー図を図示する。
【0044】
図17図17は、高密度要素が強調される、第2の画像処理フローの高密度要素強調の画像フロー図を図示する。
【0045】
図18図18は、高密度要素が強調される、第2の画像処理フローで利用される2D画像合成装置の画像フロー図を図示する。
【0046】
図19図19は、複数の2D合成画像を組み合わせ、2D複合合成画像を発生させることの画像フロー図を図示する。
【0047】
図20A図20Aは、金属生検マーカによって発生される影が乳房組織および臨床的に重要な情報を覆い隠す様子を示す、2D合成画像を描写し、図20Bは、実施形態に従って発生され、図20Aの影が、乳房組織および臨床的に重要な情報のより明確で覆い隠されていないビューを提供するように抑制または排除される様子を示す、2D合成複合画像を描写する。
図20B図20Aは、金属生検マーカによって発生される影が乳房組織および臨床的に重要な情報を覆い隠す様子を示す、2D合成画像を描写し、図20Bは、実施形態に従って発生され、図20Aの影が、乳房組織および臨床的に重要な情報のより明確で覆い隠されていないビューを提供するように抑制または排除される様子を示す、2D合成複合画像を描写する。
【0048】
図21図21は、入力2D画像に直接実行される、マルチフローまたは微分画像処理のフロー図を図示する。
【0049】
図22図22は、マルチフロー画像プロセッサが2D画像の入力を受信する、図21のマルチフローまたは微分画像処理の実施形態を図示する、画像フロー略図を図示する。
【0050】
図23図23は、2D画像入力に実行され、その間に高密度要素が抑制され、乳房組織要素が強調される、マルチフロー画像プロセッサによって実行される第1の画像処理フローの乳房組織強調および高密度抑制の画像フロー略図を図示する。
【0051】
図24図24は、2D画像入力に実行され、その間に高密度要素が強調される、多段画像プロセッサの第2の画像処理フローの高密度要素強調の画像フロー略図を図示する。
【発明を実施するための形態】
【0052】
全ての数値は、本明細書では、明示的に示されるかどうかにかかわらず、用語「約」または「およそ」によって修飾されると仮定され、用語「約」または「およそ」は、概して、当業者が列挙された値と同等(すなわち、同一の機能または結果を有する)と見なすであろう数の範囲を指す。いくつかの事例では、用語「約」または「およそ」は、最も近い有効数字に四捨五入される数を含み得る。終点による数値範囲の列挙は、その範囲内の全ての数字を含む(例えば、1~5は、1、1.5、2、2.75、3、3.80、4、および5を含む)。
【0053】
本明細書および添付の請求項で使用されるように、単数形「a」、「an」、および「the」は、内容が別様に明確に決定付けない限り、複数の指示対象を含む。本明細書および添付の請求項で使用されるように、用語「または」は、概して、内容が別様に明確に決定付けない限り、「および/または」を含む、その意味で採用される。付随する図に図示される、開示される発明の描写される実施形態を説明する際に、具体的用語が、説明を明確および容易にするために採用される。しかしながら、本特許明細書の開示は、そのように選択される具体的用語に限定されることを意図しておらず、各具体的要素が、類似様式で動作する全ての技術的均等物を含むことを理解されたい。さらに、本開示および添付の請求項の範囲内で可能であれば、異なる例証的実施形態の種々の要素および/または特徴が、相互と組み合わせられる、ならびに/もしくは相互に代用され得ることを理解されたい。
【0054】
開示される発明の種々の実施形態は、図を参照して以降に説明される。図は、一定の縮尺で描かれておらず、類似構造または機能の要素は、図の全体を通して同様の参照番号によって表されることに留意されたい。また、図は、実施形態の説明を促進することのみを意図していることにも留意されたい。それらは、本発明の包括的説明として、または添付の請求項およびそれらの均等物のみによって定義される、開示される発明の範囲への限定として、意図されていない。加えて、開示される発明の図示される実施形態は、示される全ての側面または利点を有する必要はない。例えば、開示される発明の特定の実施形態と併せて説明される側面または利点は、必ずしもその実施形態に限定されず、そのように図示されない場合でさえも、任意の他の実施形態で実践されることができる。
【0055】
以下の定義された用語および略語に関して、これらの定義は、異なる定義が請求項内または本明細書の他の場所で与えられない限り、本特許明細書および付随する請求項の全体を通して適用されるものとする。
【0056】
「入手された画像」は、患者の組織を可視化しながら発生される画像を指す。入手された画像は、従来のマンモグラムのように、患者の組織の反対側に配置される放射線検出器に影響を及ぼす、放射線源からの放射線によって発生されることができる。
【0057】
「再構築された画像」は、複数の入手された画像から導出されるデータから発生される画像を指す。再構築された画像は、複数の入手された画像に含まれない、入手された画像をシミュレートする。
【0058】
「合成画像」は、複数の入手および/または再構築された画像から導出されるデータから発生される人工画像を指す。合成画像は、入手および/または再構築された画像からの要素(例えば、物体および領域)を含むが、必ずしも可視化の間に入手され得る画像に対応しない。合成画像は、構築された分析ツールである。
【0059】
「Mp」画像は、乳房の2次元(2D)投影画像であり、フラットパネル検出器または別の撮像デバイスによって入手されるようなデジタル画像と、(例えば、医療従事者への)表示、(例えば、病院のPACSシステム内への)記憶、および/または他の使用のためにそれを調製するための従来の処理後の画像との両方を包含する、従来のマンモグラムまたはコントラスト強調マンモグラムである。
【0060】
「Tp」画像は、同様に2次元(2D)であるが、乳房と撮像X線の起点(典型的には、X線管の焦点)との間の個別のトモシンセシス角度において入手され、入手されるような画像、ならびに表示、記憶、および/または他の使用のために処理された後の画像データを包含する、画像である。
【0061】
「Tr」画像は、例えば、米国特許第7,577,282号、第7,606,801号、第7,760,924号、および第8,571,289号(その開示は、参照することによってそれらの全体として本明細書に完全に組み込まれる)のうちの1つ以上のものに説明される様式で、トモシンセシス投影画像Tpから再構築される、再構築された画像のタイプ(またはサブセット)であり、Tr画像は、TpまたはMp画像を入手するために使用される角度だけではなく、所望の角度において、そのスライスの投影X線画像内に出現するであろうような乳房のスライスを表す。
【0062】
「Ms」画像は、頭尾方向(CC)または中外斜位方向(MLO)画像等のマンモグラフィ画像をシミュレートする、合成画像、特に、合成2D投影画像のタイプ(またはサブセット)であり、トモシンセシス投影画像Tp、トモシンセシス再構築画像Tr、またはそれらの組み合わせを使用して、構築される。Ms画像は、医療従事者への表示のために、または病院もしくは別の施設のPACSシステム内の記憶のために提供され得る。Ms画像を発生させるために使用され得る方法の実施例は、上記に組み込まれる米国特許第7,760,924号および第8,571,289号、また、2016年12月22日に米国公開第2016/0367120号として公開され、「System and Method for Generating and Displaying Tomosynthesis Image Slabs」と題された、米国出願第15/120,911号、2018年3月28日に出願され、「System and Method for Hierarchical Multi-Level Feature Image
Synthesis and Representation」と題された、PCT出願第PCT/US2018/024911号、2018年3月28日に出願され、「System and Method for Synthesizing Low-Dimensional Image Data From High-Dimensional Image Data Using an Object Grid Enhancement」と題された、PCT出願第PCT/US2018/024912号、ならびに2018年3月28日に出願され、「System and Method for Targeted Object Enhancement to Generate Synthetic Breast Tissue Images」と題された、PCT出願第PCT/US018/0249132号(その全ての内容は、全体として記載される場合と同様に、参照することによって本明細書に組み込まれる)に説明される。
【0063】
Tp、Tr、Ms、およびMp画像データは、いかなる形態でも、表示、さらなる処理、または記憶のための個別の画像を説明するために十分である情報を包含することを理解されたい。高密度要素抑制および強調を受けるものを含む、個別のMp、Ms、Tp、およびTr画像は、典型的には、表示されることに先立って、デジタル形態で提供され、各画像は、ピクセルの2次元アレイ内の各ピクセルの性質を識別する情報によって定義される。ピクセル値は、典型的には、乳房内の対応する体積、すなわち、組織のボクセルまたは列のX線に対する個別の測定、推定、または検出された応答に関する。好ましい実施形態では、トモシンセシス画像(TrおよびTp)ならびにマンモグラフィ画像(MsおよびMp)の幾何学形状は、米国特許第7,702,142号に説明されるように、共通座標系に合致される。別様に規定されない限り、そのような座標系合致は、本特許明細書の続く詳細な説明に説明される実施形態に関して実装されると仮定される。
【0064】
用語「画像を発生させる」および「画像を伝送する」は、それぞれ、表示のための画像を説明するために十分である情報を発生させること、および伝送することを指す。発生および伝送された情報は、典型的には、デジタル情報である。
【0065】
用語「高密度要素」は、乳房組織とともに撮像されると、撮像された乳房組織または悪性の乳房のしこり、腫瘍等の乳房組織の臨床的に重要な情報を部分的もしくは完全に覆い隠す、要素として定義される。高密度要素は、コントラスト、明度、放射線不透過性、または他の属性のうちの1つ以上のものを伴う、所定の基準もしくはフィルタに基づいて検出され得る。高密度要素は、異物であり、または乳房組織内で自然発生し得、部分的または完全に放射線不透過性であり得る。例えば、1つのタイプの高密度要素は、乳房組織の中に挿入される金属生検マーカ等の金属物体である。そのようなマーカは、X線を使用するときに明確に可視であるように、放射線不透過性であるように設計される。高密度要素の別の実施例は、乳房組織内の石灰化である。高密度要素はまた、金属マーカを撮像することによって発生され、放射線不透過性と見なされない場合がある、影アーチファクト等の非金属または非石灰化要素であり得る。故に、「高密度要素」は、生検マーカまたは皮膚マーカ、放射線不透過性材料もしくは物体等の金属物体、および同物体の撮像によって発生される影または影アーチファクトを含むように定義される。
【0066】
用語「微分」または「マルチフロー」画像処理は、異なる画像結果を発生させるように異なる方法で処理されている入力画像を指すように定義され、撮像された高密度要素の抑制を伴い、かつ撮像された高密度要素の強調を伴う、1つのフローを含むように定義される。異なる画像処理フローが、並行して同時に実行されることができ、実施形態の画像プロセッサに入力される画像は、異なる次元形式であり得る。
【0067】
精査者またはエンドユーザに表示される合成2D画像(例えば、Ms画像)が、最も臨床的に関連性がある情報を含むことを確実にするために、乳房組織内の悪性の乳房のしこり、腫瘍等の3D物体を検出および識別することが必要である。この目的に向けて、本開示される発明の実施形態によると、3D物体が、複数の標的物体認識/合成モジュールを使用して識別され得、各標的認識/合成モジュールは、特定のタイプの物体を識別および再構築するように構成されてもよい。これらの複数の標的合成モジュールは、1つ以上の合成2D画像を発生させる再構築プロセスの間に、個別の物体に関する情報を組み合わせ、各物体が正確に表されることを確実にし、エンドユーザに表示される2D合成画像上に臨床的に有意な情報を留保することで協働してもよい。
【0068】
エンドユーザに表示される合成2D画像はまた、臨床的に関連性がある情報および物体が、生検マーカおよび/または乳房撮像の間に同マーカの撮像によって発生される影等の高密度要素を含み得る、望ましくない画像要素またはアーチファクトによって覆い隠されないように、より明確となるべきである。この目的に向けて、本開示される発明の実施形態によると、異なる画像処理フローによって発生される異なる2D合成画像が組み合わせられると、影等の高密度要素が、低減または排除され、より正確かつ効率的な放射線科医の精査を提供しながら、より明確であり、乳房組織および乳房組織物体をより正確に描写する、複合2D合成画像をもたらすように、マルチフロー画像プロセッサが、1つの画像処理方法において高密度要素を抑制し、別の画像処理方法において高密度要素を強調することによって、2D合成画像を発生させるために利用される。
【0069】
臨床的に着目に値する特性を維持および強調する2D合成画像を発生させるように設計される実施形態が、図1-8Bを参照して説明され、影等の高密度要素の低減のためにマルチフロー画像処理方法を利用し、より明確な2D複合合成画像を発生させる実施形態が、図9-24を参照して説明される。
【0070】
図1は、合成画像発生、物体識別、および表示技術のそれぞれを組み込む、例示的画像発生および表示システム100内のデータのフローを図示する。図1は、あるプロセスが特定の連続順で、または並行して行われる、フロー図の特定の実施形態を図示するが、本明細書に説明される請求項および種々の他の実施形態は、そのように規定されない限り、任意の特定の順序での画像処理ステップの実施に限定されないことを理解されたい。
【0071】
より具体的には、画像発生および表示システム100は、随意に、現在利用可能なシステムのうちのいずれかの個別の3Dおよび/またはトモシンセシス入手方法を使用して、患者の乳房のTp画像を発生させるためのトモシンセシス画像データを入手する、画像入手システム101を含む。入手システムが、複合トモシンセシス/マンモグラフィシステムである場合、Mp画像もまた、発生されてもよい。いくつかの専用トモシンセシスシステムまたは複合トモシンセシス/マンモグラフィシステムが、旧来のマンモグラム画像(図1で鎖線および凡例「Mplegacy」によって示される)を受け取り、好ましくは、DICOM準拠画像アーカイビングおよび通信システム(PACS)記憶デバイスである、記憶デバイス102内に記憶するように適合されてもよい。入手に続いて、トモシンセシス投影画像Tpもまた、(図1に示されるように)記憶デバイス102に伝送されてもよい。記憶デバイス102はさらに、有意な3D画像パターンをエンドユーザに識別するために使用され得る、既知の3D物体のライブラリを記憶してもよい。他の実施形態では、別個の専用記憶デバイス(図示せず)が、それを用いて3D画像パターンまたは物体を識別する、既知の3D物体のライブラリを記憶するために使用されてもよい。
【0072】
Tp画像は、上記に組み込まれる特許および出願に開示されるように、入手システム101または記憶デバイス102のいずれかから、もしくは両方から、Tp画像を、選択された配向において選択された厚さの乳房スライスを表す、再構築された画像「スライス」Trに再構築する、再構築エンジン103として構成されるコンピュータシステムに伝送される。
【0073】
モードフィルタ107が、画像入手と画像表示との間に配置される。フィルタ107は、加えて、個別の画像タイプのある側面を識別および強調表示または強調するように配列される、画像のタイプ(すなわち、Tp、Mp、およびTr画像)毎にカスタマイズされたフィルタを含んでもよい。このように、各撮像モードが、具体的目的のために最適な方法で同調または構成されることができる。例えば、種々の2D画像スライスを横断して物体を認識するためにプログラムされるフィルタが、特定の高次元物体に属し得る画像パターンを検出するために適用されてもよい。同調または構成は、画像のタイプに基づいて自動であり得る、または、例えば、ディスプレイに結合されるユーザインターフェースを通して、手動入力によって定義され得る。図1の図示される実施形態では、モードフィルタ107は、個別の撮像モードで最良に表示される画像の特定の特性を強調表示するように選択される、例えば、物体を識別すること、しこりまたは石灰化を強調表示すること、3D物体に構築され得る、ある画像パターンを識別することに向けて、もしくは2D合成画像(下記に説明される)を作成するために作られている。図1は、1つだけのモードフィルタ107を図示するが、任意の数のモードフィルタが、乳房組織内の着目構造を識別するために利用され得ることを理解されたい。
【0074】
撮像および表示システム100はさらに、1つ以上の入力Tp(トモシンセシス投影)、Mp(マンモグラフィ投影)、および/またはTr(トモシンセシス再構築)画像の組み合わせを使用して、2D合成画像を発生させるために、再構築エンジン103と実質的に並行して動作する、2D画像合成装置104を含む。2D画像合成装置104は、入力画像のセットを取り込み、入力画像のそれぞれから最も関連性がある特徴のセットを決定し、1つ以上の合成2D画像を出力する。合成2D画像は、種々のスライスの有意な部分を1つの画像上に凝縮する、連結された合成画像を表す。これは、効率的な様式で、最も臨床的に関連性がある画像データをエンドユーザ(例えば、医療従事者、放射線科医等)に提供し、有意なデータを有していない場合がある他の画像で費やされる時間を短縮する。
【0075】
合成2D画像内で強調表示するべき1つのタイプの関連性がある画像データは、1つ以上のMp、Tr、および/またはTp画像を横断して見出される、関連性がある物体であろう。2D画像スライスのそれぞれの中の着目画像パターンを単に査定するのではなく、着目2D画像パターンのうちのいずれかがより大型の高次元構造に属するかどうかを決定し、該当する場合、識別された2D画像パターンを高次元構造に組み合わせることが役立ち得る。本アプローチは、いくつかの利点を有するが、特に、乳房組織の種々のスライス/深度を横断して高次元構造を識別することによって、エンドユーザは、乳房の種々の2Dスライスでは容易に可視ではない場合がある、潜在的に有意な構造の存在に関して、より明確に知らされ得る。
【0076】
さらに、2つの2Dスライス(おそらく相互に隣接する)内の類似画像パターンを識別し、2Dスライスの一方または両方からの画像データを強調表示するかどうかを決定する代わりに、同一の高次元構造に属するものとして両方の画像パターンを識別することが、本システムが、構造の性質に関してより正確な査定を行い、その結果として、有意により貴重な情報をエンドユーザに提供することを可能にし得る。また、高次元構造を識別することによって、構造は、合成2D画像上でより正確に描写されることができる。乳房組織の種々の捕捉された2Dスライス内の高次元構造を識別することのさらに別の利点は、識別された高次元構造の可能性として考えられるサイズ/範囲を識別することに関する。例えば、いったん構造が識別されると、高次元構造に若干近接する、以前は目立たなかった画像パターンが、ここでは、同一の構造に属するものとして識別され得る。これは、高次元構造がサイズ/範囲を増加させているというインジケーションをエンドユーザに提供し得る。
【0077】
この目的で、2D画像合成装置104は、異なるタイプの物体を識別および再構築するように構成される、複数の標的物体認識/強調モジュール(標的物体合成モジュールとも称される)を採用する。各標的画像認識/合成モジュールは、患者の乳房組織の2D画像スライスのスタック(例えば、トモシンセシス画像スタック)上に適用(または「起動」)され、乳房組織内にあり得る特定のタイプの物体を識別し、そのような物体が、エンドユーザに提示される、結果として生じる2D合成画像内で、臨床的に有意な様式で表されることを確実にするように稼働してもよい。例えば、第1の標的画像合成モジュールは、乳房組織内の石灰化を識別するように構成されてもよい。別の標的画像合成モジュールは、乳房組織内の針骨状病変を識別および再構築するように構成されてもよい。さらに別の標的画像合成モジュールは、乳房組織内の球形のしこりを識別および再構築するように構成されてもよい。1つ以上の実施形態では、複数の標的画像合成モジュールは、画像スライスデータを処理し、乳房組織に存在する個別の高次元構造(例えば、3D物体)を備える、高次元グリッド(例えば、3Dグリッド)内に個別の物体を投入する。本高次元グリッドは、次いで、2D合成画像内の種々の構造を正確に描写するために利用されてもよい。
【0078】
高次元物体は、少なくとも3つ以上の次元を備える任意の物体、例えば、3Dまたはより高次の物体、もしくは3Dまたはより高次の物体および時間次元等を指し得る。そのような物体または構造の実施例は、限定ではないが、石灰化、針骨状病変、良性腫瘍、不規則なしこり、濃密物体等を含む。画像物体は、画像データに存在する、あるタイプの画像パターンとして定義され得る。物体は、3D空間内の単純な丸い物体、および2D空間内の対応する平坦な丸い物体であり得る。これは、複雑なパターンおよび複雑な形状を伴う物体であり得、これは、任意のサイズまたは寸法であり得る。物体の概念は、局所的に拘束された幾何学的物体を超えて拡張し得る。むしろ、画像物体は、任意の次元形状で存在し得る、抽象パターンまたは構造を指し得る。本明細書に開示される発明は、3D物体および/または構造に限定されず、高次元構造を含み得ることを理解されたい。標的画像合成モジュールはそれぞれ、個別のタイプの物体を識別および再構築するために構成されることを理解されたい。これらの「物体」は、2D形状、2D画像パターン、3D物体、または任意の他の高次元物体を指し得るが、いずれの場合も、簡単にするために本明細書では全て「物体」または「3D物体」と称されるであろうが、本例証的使用は、請求項の範囲を限定するものとして別様に読まれるべきではない。
【0079】
図示される実施形態では、2D合成装置104は、特定のタイプの物体を認識および強調するためにそれぞれ構成される、複数の標的物体認識/強調モジュール(例えば、110a、110b…110n)を備える。標的物体認識/強調モジュール110はそれぞれ、2D画像スタック(例えば、Tr画像スタック)上で起動されてもよく、その中の個別の物体(いずれかが存在する場合)を識別するように構成される。2D画像スタック内の割り当てられた物体を識別することによって、各標的物体認識/強調モジュール110は、個別の物体が、エンドユーザに提示される、結果として生じる2D合成画像内で保存され、正確に描写されることを確実にするように稼働する。
【0080】
いくつかの実施形態では、階層モデルが、標的物体認識/強調モジュールに割り当てられる加重または優先順位に基づいて、2D合成画像内で重視または重視解除するべき物体を決定する際に利用されてもよい。他の実施形態では、全ての物体が、等しく扱われてもよく、異なる物体が、下記にさらに詳細に議論されるであろうように、z方向に重複が存在する場合、ともに融合されてもよい。これらの再構築技法は、不必要な、または視覚的に混乱させる情報を排除もしくは低減させながら、臨床的に有意な情報を備える2D合成画像の作成を可能にする。
【0081】
合成2D画像は、表示システム105において閲覧されてもよい。再構築エンジン103および2D画像合成装置104は、好ましくは、高速伝送リンクを介して表示システム105に接続される。表示システム105は、標準入手ワークステーションの(例えば、入手システム101の)、または入手システム101から物理的に遠隔にある標準(マルチディスプレイ)精査ステーション(図示せず)の一部であってもよい。いくつかの実施形態では、通信ネットワークを介して接続されるディスプレイ、例えば、パーソナルコンピュータの、またはいわゆるタブレット、スマートフォン、もしくは他のハンドヘルドデバイスのディスプレイが、使用されてもよい。いずれの場合も、本システムのディスプレイ105は、好ましくは、例えば、精査ワークステーションの別個の並んだモニタ内で、並行して個別のMs、Mp、Tr、および/またはTp画像を表示することができるが、本発明は、依然として、画像を切り替えることによって、単一の表示モニタを伴って実装されてもよい。
【0082】
したがって、限定ではなく例証の目的のためとして説明される、撮像および表示システム100は、トモシンセシス投影画像Tp、トモシンセシス再構築画像Tr、合成マンモグラム画像Ms、および/またはマンモグラム(コントラストマンモグラムを含む)画像Mp、もしくはこれらの画像タイプのうちのいずれか1つまたは副次的組み合わせを受信し、選択的に表示することが可能である。システム100は、トモシンセシス画像Tpを画像Trに変換する(すなわち、再構築する)ためのソフトウェア、マンモグラム画像Msを合成するためのソフトウェア、3D物体を分解するためのソフトウェア、特徴マップおよび物体マップを作成するためのソフトウェアを採用する。ソース画像内の着目物体または特徴は、1つ以上のアルゴリズムおよび/または発見的問題解決法とともに、物体マップの適用に基づいて、2D合成画像内に包含するための「最も関連性がある」特徴と見なされ得、アルゴリズムは、個別の領域内または特徴の間の識別/検出された着目物体および特徴に基づいて、数値、加重、または閾値を、個別のソース画像のピクセルまたは領域に割り当てる。着目物体および特徴は、例えば、針骨状病変、石灰化、および同等物を含み得る。
【0083】
図2は、さらに詳細に2D画像合成装置104を図示する。上記に議論されるように、3Dトモシンセシスデータセットまたは「スタック」202の種々の画像スライス218(例えば、患者の乳房組織のフィルタ処理された、および/またはフィルタ処理されていないTrならびに/もしくはTp画像)が、2D画像合成装置104の中に入力され、次いで、ディスプレイ105上に表示されるであろう合成2D画像内で強調表示するべき画像の部分を決定するように処理される。画像スライス218は、患者の乳房組織の連続的に捕捉された断面であってもよい。または、画像スライス218は、既知の間隔において捕捉される患者の乳房組織の断面画像であってもよい。画像スライス218を備える、3Dトモシンセシススタック202は、(1)1つ以上の2D合成画像内の可能性として考えられる包含のための種々のタイプの物体(Tr)を識別する、および/または(2)識別された物体を含有する画像内の個別のピクセル領域を識別するために、ソース画像のそれぞれを評価する、2D画像合成装置104に転送されてもよい。
【0084】
図示される実施形態に示されるように、3Dトモシンセシススタック202は、患者の乳房組織の種々の深度/断面において撮影される複数の画像218を備える。3Dトモシンセシススタック202内の画像218のうちのいくつかは、2D画像パターンを備える。したがって、トモシンセシススタック202は、スタックの画像内に種々の画像パターンを含有する、多数の入力画像を備える。
【0085】
より具体的には、図2に示されるように、3つの標的物体認識/強調モジュール210a、210b、および210cは、3Dトモシンセシススタック202上で起動するように構成され、標的物体認識および強調モジュール210はそれぞれ、特定の物体、および3Dトモシンセシススタック202によって描写される乳房組織に存在し得る他の物体の中からその特定の物体を識別する方法を定義する、プログラム/ルールおよびパラメータの個別のセットに対応する。例えば、フィルタリング/画像認識技法および種々のアルゴリズム/発見的問題解決法が、特定の標的物体認識/強調モジュール210に割り当てられる物体を識別するために、3Dトモシンセシススタック202上で起動されてもよい。画像操作/フィルタ処理技法の組み合わせを使用して、物体を認識するための多くの方法が存在することを理解されたい。
【0086】
例証の目的のために、標的物体認識/強調モジュール210がそれぞれ、少なくとも1つの個別の物体を識別することが仮定されるであろうが、多くの場合、いずれの物体も識別されないであろうことを理解されたい。しかしながら、健康な乳房組織でさえも、1つ以上の疑わしい物体もしくは構造を有し得、標的物体認識/強調モジュールは、乳房背景物体を不注意に識別し得る。例えば、全ての乳房線形組織および密度組織構造が、乳房背景物体として表示され得る。他の実施形態では、球形、卵形等の「健康な」物体が、単に、標的物体認識/強調モジュール210のうちの1つ以上のものによって識別され得る。識別された3D物体は、次いで、2D合成画像206上に表示され得、当然ながら、全ての識別された2D物体の中から、より臨床的に有意な物体が、下記にさらに詳細に議論されるであろうように、2D合成画像上に個別の物体を表示するときに、優先/強調され得る。
【0087】
図示される実施形態では、第1の標的物体認識/強調モジュール210aは、3Dトモシンセシススタック202の画像218(例えば、Tr、Tp等)内の円形および/または球形を認識するように構成される。第2の標的物体合成モジュール210bは、分葉状形を認識するように構成される。第3の標的物体合成モジュール210cは、石灰化パターンを認識するように構成される。特に、標的物体合成モジュール210a、210b、および210cはそれぞれ、Tr画像スタック202上で起動され、特徴/物体のセットが、個別の標的物体合成モジュールによって認識される。
【0088】
例えば、標的物体認識/強調モジュール210aは、1つ以上の円形を認識し、これらを「認識された物体」220aとして記憶してもよい。3Dトモシンセシススタック202の複数の画像スライス218は、円形を含有し得、これらの形状は、同一の球形物体と関連付けられ得る、または異なる球形物体に属し得ることを理解されたい。図示される実施形態では、少なくとも2つの明確に異なる円形物体が、標的物体認識/強調モジュール210aによって認識される。
【0089】
同様に、標的物体認識/強調モジュール210bは、1つ以上の分葉状形を認識し、これらを認識された物体220bとして記憶してもよい。図示される実施形態では、1つの分葉状物体が、標的物体認識/強調モジュール210bによって3Dトモシンセシススタック202内で認識された。分かり得るように、3Dトモシンセシススタック202内の2つの異なる画像スライス218は、分葉状物体の部分を描写するが、個別の部分は、認識/強調モジュール210bによって単一の分葉状物体に属するものとして認識され、単一の認識された物体220bとして記憶される。
【0090】
最後に、標的物体認識/強調モジュール210cは、1つ以上の石灰化形状を認識し、これらを認識された物体220cとして記憶してもよい。図示される実施形態では、(単一の)石灰化塊が、標的物体認識/強調モジュール210cによって認識され、認識された物体220cとして記憶された。認識された物体220a、220b、および220cは、個別の標的物体認識/強調モジュール210a、210b、および210cに対応する記憶設備において、または代替として、標的物体認識/強調モジュールのそれぞれによってアクセスされ得る別個の(すなわち、単一の)記憶設備において、記憶されてもよい。
【0091】
ここで図3を参照すると、標的物体認識/強調モジュール210はそれぞれ、1つ以上の2D合成画像上に表示されるべき個別の3D物体を識別および合成するように(例えば、2Dに変えるように)構成されてもよい。換言すると、いったん3D物体が、個別の標的物体認識/強調モジュール210a、210b、または210cによって認識されると、標的物体認識/強調モジュールは、その後、認識された物体が2D合成画像上に表示され得るように、認識された3D物体を2D形式に変換する。図示される実施形態では、標的物体認識/強調モジュール210a、210b、および210cは、個別の物体を認識し、認識された物体を個別の2D形式に変換する。変換プロセスの一部として、認識された物体のうちのあるものが、下記にさらに詳細に議論されるであろうように、表示された画像に関して、多かれ少なかれ強調されてもよい。3つ全ての標的物体認識/強調モジュール210a、210b、および210cが、2D画像合成装置104にとって等しく重要と見なされると仮定して、全ての認識された物体(例えば、2つの球形物体、1つの小葉状物体、および1つの石灰化のしこり)の個別の2D形式が、2D合成画像302上に描写される。
【0092】
図4は、単一の標的物体認識/強調モジュール210が、2D合成画像の一部を発生させるように3Dトモシンセシススタック上で起動され得る様子を図示する。図示される実施形態では、3Dトモシンセシススタックの画像スライス402が、画像402のスタック内の星形物体を認識するように構成される、単一の標的物体認識/強調モジュール404を通してフィードされる。結果として、単一の標的物体合成モジュールは、画像スライスの種々の深度から単一の2D合成画像406上に獲得される、認識された星形に関する情報を削減する。
【0093】
図5は、2D合成画像を生成するように複数の標的物体認識/強調モジュールを協働させるための例示的実施形態を図示する。図示される実施形態では、(個別の3Dトモシンセシススタックの)画像スライス502が、円形および/または球形を認識および再構築するように構成される第1の標的物体認識/強調モジュール504a、星様形状を認識および再構築するように構成される第2の標的物体認識/強調モジュール504b、ならびに石灰化構造を認識および再構築するように構成される第3の標的物体認識/強調モジュール504cを通してフィードされる。任意の数の標的物体認識/強調モジュールが、任意の数の物体タイプに関してプログラムされ得ることを理解されたい。
【0094】
標的物体認識/強調モジュール504a、504b、および504cはそれぞれ、これらのプログラムが、個別の物体を正常に認識し、認識された物体を2D形式に変えることを可能にする、種々の所定のルールおよび属性を伴って構成される個別のアルゴリズムに対応する。3つの全ての標的物体認識/合成モジュール504a、504b、および504cを画像スライス502に適用することによって、2D合成画像506が、発生される。特に、単に単一のタイプの物体を表示するのではなく、2D合成画像506は、3つの標的物体認識/強調モジュール504a、504b、および504cによって認識および合成される、3つ全ての物体タイプを備え、認識された物体はそれぞれ、等しく重視される。これは、全ての物体タイプが等しく重要である場合に望ましくあり得るが、それらの加重/優先順位に基づいて、種々の程度に異なる物体タイプを強調/重視することが役立ち得る。本技法は、あまり重要ではない物体を重視解除しながら、エンドユーザに潜在的に重要な物体をアラートする際に、より効果的であり得る。
【0095】
ここで図6Aを参照すると、複数の標的物体認識/強調モジュールからのデータを組み合わせるための階層連続アプローチが、図示される。特に、種々の物体タイプが、それらと関連付けられる明確に定義された階層を有する場合、連続組み合わせ技法が、適用されてもよい。例えば、1つのタイプの物体(例えば、針骨状病変)が、別のタイプの物体(例えば、乳房組織内の球形のしこり)よりも臨床的に有意と見なされ得る。本タイプの物体(および対応する標的物体モジュール)は、特定の高い加重/優先順位を割り当てられてもよい。そのような場合には、2つの物体が、2D合成画像上の空間を巡って競合している場合、より高い優先順位と関連付けられる物体タイプが、2D合成画像上で重視/表示されてもよく、他の物体タイプは、重視解除される、または全く表示されなくてもよい。同様に、そのようなアプローチでは、標的物体認識/強調モジュールはそれぞれ、個別の有意性に基づいて、個別の加重を割り当てられてもよい。
【0096】
図示される実施形態では、3Dトモシンセシススタックの画像スライス602が、2D合成画像610を発生させるように、3つの異なる標的物体認識/強調モジュール(604、606、および608)を通して連続的にフィードされ、標的物体合成モジュールはそれぞれ、特定のタイプの物体を認識および再構築するように構成される。第1の標的物体認識/強調モジュール604(正方形の物体と関連付けられる)が、再構築画像スライス602上で最初に起動され、その後に、第2の標的物体認識/強調モジュール606(菱形の物体と関連付けられる)が続き、次いで、第3の標的物体認識/強調モジュール608(円形の物体と関連付けられる)が続く。標的物体認識/強調モジュールが、連続的に適用(または「起動」)されるため、第2の標的物体認識/強調モジュール606は、第1の標的物体認識/強調モジュール604と比較して、より高い優先順位の物体と見なされ得、第3の標的物体認識/強調モジュール608は、第2の標的物体認識/強調モジュール606と比較して、高い優先順位を有すると見なされ得ることを理解されたい。したがって、第3の物体タイプは、第2の物体タイプをオーバーライドしてもよく(またはそれと比べて重視され)、第2の物体タイプは、第1の物体タイプをオーバーライドしてもよい(またはそれと比べて重視される)。
【0097】
図6Bは、種々の物体タイプを連続的に組み合わせることへの本階層アプローチを図示する。特に、3Dトモシンセシス画像スタック652は、種々の画像スライス内で認識され得る、物体656、658、および660を含む。図示されるように、物体658および660は、z方向に若干重複し、これは、それらが2D合成画像654内で表現を巡って競合する可能性が高いことを意味する。図6Aの連続アプローチを使用し、複数の標的物体認識/強調モジュール604、606、および608からのデータを組み合わせるとき、プログラムされた階層が、保存される。したがって、円形の物体を認識および再構築するように構成される標的物体認識/強調モジュール608が、正方形の物体を認識および再構築するように構成される標的物体認識/強調モジュール604と比較して、より高い優先順位を有するため、(図6Bの場合のように)2つの物体の間の重複の場合、円形の物体658が、2D合成画像654内で正方形の物体660をオーバーライドする。当然ながら、菱形の物体656が、他の2つの物体とz方向に重複しないため、菱形の物体656もまた、2D合成画像654内に表示されることを理解されたい。他の実施形態では、より低い優先順位の物体をオーバーライドすることを完了する代わりに、高優先順位を伴う物体が、(ディスプレイから省略されるのではなく)より低い優先順位の物体に対して重視され得る。
【0098】
画像スライスのセット上で複数の標的物体合成モジュールを起動することへの別のアプローチが、図7Aに図示される。分かり得るように、最高優先順位を有する、最後に起動される標的物体合成モジュールと連続的に、複数の標的物体認識/強調モジュールを起動するのではなく、全ての標的物体認識/強調モジュールが、並行して適用されてもよい。特に、1つ以上の強調もしくは融合モジュール712が、種々の物体が2D合成画像上で適切に組み合わせられることを確実にするために利用されてもよい。本アプローチは、階層アプローチに従わなくてもよく、物体の全てが、等しい加重を与えられてもよい。
【0099】
画像スライス702が、並行して3つの異なる標的物体認識/強調モジュール704、706、および708を通してフィードされる。第1の標的物体認識/強調モジュール604(正方形の物体と関連付けられる)、第2の標的物体認識/強調モジュール606(菱形の物体と関連付けられる)、および第3の標的物体認識/強調モジュール608(円形の物体と関連付けられる)は全て、画像スライス702上で並行して起動される。いくつかの実施形態では、強調および融合モジュール712が、複数の物体の間の重複の場合に、異なる物体が適切にともに融合されることを確実にするために、利用されてもよい。並行して起動される標的物体認識/強調モジュール704、706、および708は、2D合成画像710を発生させてもよい。
【0100】
並行して種々の物体タイプを組み合わせることへの本アプローチが、図7Bに図示される。特に、トモシンセシススタック752は、種々の画像スライスにおいて図6Bと同一の物体(例えば、物体756、758、および760)を描写する。図示されるように、物体758および760は、z方向に若干重複し、これは、それらが2D合成画像754内で表現を巡って競合する、および/または重複する可能性が高いことを意味する。ここでは、図6Bの場合のように、1つの物体タイプが別の物体タイプをオーバーライドするのではなく、複数の標的物体認識/強調モジュールが、並行して起動されるため、正方形物体760および円形物体758の両方が、2D合成画像754内でともに融合される。したがって、本アプローチは、物体の間の固有の優先順位/階層を仮定せず、全ての物体が、2D合成画像754内で適切にともに融合されてもよい。
【0101】
図8Aは、図6Aおよび6Bと併せて上記に概説される連続組み合わせアプローチに従って実行される画像マージプロセスにおいて実施され得る、例示的ステップを図示する、フロー図800を描写する。ステップ802では、画像データセットが、入手される。画像データセットは、トモシンセシス入手システム、複合トモシンセシス/マンモグラフィシステムによって、または、例えば、通信ネットワークを通して、画像ディスプレイデバイスに対してローカルもしくは遠隔に位置するかどうかにかかわらず、記憶デバイスから既存の画像データを読み出すことによって、入手されてもよい。ステップ804および806では、2D画像の範囲(例えば、Trスタック)に関して、第1の標的物体認識/強調モジュールが、第1の標的物体認識/強調モジュールと関連付けられる第1の物体を認識するために起動される。任意の認識された物体が、第1の標的物体認識/強調モジュールと関連付けられる記憶モジュール内に記憶されてもよい。ステップ808では、第2の標的物体認識/強調モジュールが、第2の標的物体認識/強調モジュールと関連付けられる第2の物体を認識するために起動される。ステップ810では、第1の認識された物体および第2の認識された物体がz方向に相互に重複するかどうかが、決定されてもよい。2つの物体が重複することが決定される場合、第2の物体のみが、ステップ812において2D合成画像上に表示されてもよい(または別様に第1の物体と比べて重視される)。他方では、2つの物体が重複しないことが決定される場合、両方の物体がステップ814において2D合成画像上に表示される。
【0102】
図8Bは、図7Aおよび7Bと併せて上記に概説される並行組み合わせアプローチに従って実行される画像合成プロセスにおいて実施され得る、例示的ステップを図示する、フロー図850を描写する。ステップ852では、画像データセットが、入手される。画像データセットは、トモシンセシス入手システム、複合トモシンセシス/マンモグラフィシステムによって、または画像ディスプレイデバイスに対してローカルもしくは遠隔に位置するかどうかにかかわらず、記憶デバイスから既存の画像データを読み出すことによって、入手されてもよい。ステップ854および856では、2D画像の範囲(例えば、Trスタック)に関して、全てのプログラムされた標的物体認識/強調モジュールが、Tr画像スタック内の個別の物体を認識するように起動される。ステップ858では、1つ以上の強調モジュールもまた、融合プロセスが生じる必要があるかどうかを決定するように起動されてもよい。ステップ860では、任意の認識された物体がz方向に重複するかどうかが、決定されてもよい。いずれか2つの(以上の)物体が重複することが決定される場合、重複する物体は、ステップ862においてともに融合されてもよい。他方では、いずれの物体も重複しないことが決定される場合、全ての物体が、ステップ814において2D合成画像上にあるように表示される。
【0103】
画像スライスの3Dスタックが、精査者またはエンドユーザに表示される合成2D画像が最も臨床的に関連性がある情報を含むことを確実にするために、標的物体認識/強調モジュールを備える2D合成装置によって発生および処理される方法を説明したが、より明確で影が低減した、または影を含まない2D合成画像を発生させることに関連する実施形態が、図9-24を参照して説明される。図9-24を参照して説明される実施形態は、2D入手または投影画像および/または2D投影画像に基づいて再構築される3Dスライスのセットもしくはスタック内で、金属物体ならびに/もしくは同物体を撮像することによって発生される影を描写する、画像部分等の高密度要素を排除または低減させる。実施形態を用いると、影等の高密度要素が、排除または低減され、分析されている乳房組織をより正確に描写し、臨床的に関連性がある情報が2D合成画像内の影によって遮断されない、または覆い隠されないため、より正確かつ効率的な放射線科医の診察を可能にする、より明確な2D合成画像をもたらす。
【0104】
図9を参照し、再度、図1-2を参照すると、再構築された画像Trは、画像スライス918の3Dトモシンセシススタック902を形成する。非限定的実施例として、3Dトモシンセシススタック902は、分析されている患者または乳房の周囲で集合的に回転するX線源および検出器等のX線画像入手コンポーネント101によって入手される、約15枚以上の2D投影画像Tpから導出される、もしくはそれに基づいて構築される、約30~約120枚の画像スライスTr(例えば、約60枚の画像スライスTr)を含んでもよい。図9は、例えば、図2に図示されるスタック202に類似する、画像スライス918を含む、3Dトモシンセシススタック902を描写する。図9はさらに、乳房組織910内にあり、複数の画像スライス918を横断して延在する、高密度要素920を図示する。図9は、2枚のスライス918を横断して延在する高密度要素920を図示するが、高密度要素が種々の深度まで延在し得ることを理解されたい。
【0105】
高密度要素920の実施例は、ステンレス鋼またはチタン、もしくは他の放射線不透過性または濃密材料から作製され得る、金属生検マーカまたはクリップである。高密度要素920の別の実施例は、外部皮膚マーカである。高密度要素920はまた、他の臨床的に関連性がある情報または乳房組織910内の着目物体を覆い隠す、石灰化または他の濃密生物学的もしくは組織構造等の乳房組織910内の生物学的または組織成分であり得る。高密度要素920はまた、乳房撮像の間に高密度要素900を撮像または放射することによって発生される影922を含む、それによって発生される画像アーチファクトを含むように定義される。したがって、「高密度要素」は、乳房組織910の中に挿入される、または外側乳房表面910に取り付けられる、「異物」または「外部」物体、もしくは乳房組織910の臨床的に関連性がある情報である、他の乳房組織を覆い隠すために十分な密度を有する乳房組織910の自然発生材料または成分であり得る。限定ではなく解説を容易にするために、高密度要素920、ならびに金属生検マーカおよび金属生検マーカ920を撮像することによって発生される影922の具体的実施例が参照されるが、実施形態がそのように限定されないことを理解されたい。
【0106】
高密度要素920は、複数の画像スライス918を横断して延在するものとして図示される。概して、図9に図示されるように、高密度要素920は、撮像されたときに、影922が発生され、影922(ならびに金属生検マーカ920)が、下層および/または隣接乳房組織910ならびに同組織に関する臨床的に関連性がある情報を覆い隠すように、乳房組織910よりも濃密である。
【0107】
概して、図9に図示される実施例では、金属生検マーカ920を撮像することによって発生される影922は、影922が金属生検マーカ920を囲繞するため、「完全な」、「円周方向の」、または「大域的な」影である。影は、画像入手の種々の側面から引き起こされ得る。例えば、概して、図9に描写される影922のタイプは、再構築アーチファクトとしても公知であるトモシンセシス入手および再構築、ならびに強調アーチファクトとしても公知である画像処理および強調の限定された角度のうちの1つ以上のものに起因し得る。図9に描写される例証的影922は、着目物体または病変および突起形成等の乳房組織910の臨床的に関連性がある情報に重複する、もしくはそれを覆い隠す924。高密度要素920の撮像に起因する、3Dトモシンセシススタック902に(または2D投影画像Tpに)描写される影922の深度および寸法は、利用されるX線源の角度および入手される投影画像Tpの数、金属生検マーカ920材料、ならびに撮像されている金属生検マーカ920のサイズ、形状、および配向を含む、1つの撮像および/または材料属性に基づいて変動し得る。したがって、図9は、1つ以上の画像に描写される、金属生検マーカ920および/または影922の形態の高密度要素が、臨床的に関連性がある情報を覆い隠し得ることを図示するように、限定ではなく一般的例証の目的のために提供される。さらに、図9は、3Dトモシンセシススタック902内の単一の高密度要素920を図示するが、それぞれ、それらの独自の影922を発生させ得、明確に異なり、相互から独立する、または他の影922と重複し得る、複数の高密度要素920が存在し得る。したがって、複数のマーカ920および影922は、複数の視点から関連性がある情報を覆い隠し得るため、合成画像の発生および精査をさらに複雑にし得る。
【0108】
図10を参照すると、発明の実施形態は、図9を参照して上記に議論されるように、乳房画像内の高密度要素920を撮像することに伴う複雑性に対処し、より正確かつ効率的な放射線科医の精査のために、低減した影を有する、または影を含まない、より明確でより正確な画像を提供する、乳房画像入手および処理システム100sならびにマルチフロー画像処理方法1000を提供する。図10は、一実施形態に従って構築され、乳房画像内の選択的高密度要素抑制および高密度要素強調のためのマルチフローまたは微分画像処理方法1000を実行するように構成される、乳房画像発生および表示システム100s(「s」は高密度要素を「抑制する」乳房画像発生および表示システムを指す)を図示する。入手システム101、記憶システム102、再構築エンジン103、2D画像合成装置104、およびディスプレイ105等の種々のシステム100sのコンポーネントおよびそれらの相互運用性の詳細は、図1-8Bを参照して上記に議論されているため、繰り返されない。入手された画像、再構築された画像、合成画像、Tp画像(個別のトモシンセシス角度において入手される2D画像)、Tr画像(トモシンセシス投影画像Tpから再構築される、再構築された画像のタイプ(またはサブセット))、およびMs画像(合成画像、特に、マンモグラフィ画像をシミュレートする合成2D投影画像のタイプ(またはサブセット))を含む、それによって発生または処理される、異なる画像もまた、図1-8Bを参照して上記に説明されている。解説を容易にするために、発明の実施形態が、2D投影画像(例えば、Tp)、再構築された画像(例えば、Tr)、または画像スライス918および2D合成画像の3Dスタック902等の2D入手画像を参照して説明される。
【0109】
図示される実施形態では、乳房画像発生および表示システム100sは、再構築エンジン103およびディスプレイ105と通信するマルチフロー画像プロセッサ1000を含む。画像プロセッサ1000は、1つ以上のタイプの画像の入力画像もしくはデジタル画像データ1001を受信する。入力画像データ1001(概して、入力データ1001)は、2D投影画像および/または画像Tpスライス218の3Dトモシンセシススタック902等の異なる次元形式の画像に関し得る。入力データ1001は、第1の画像処理フローまたは方法1010に従って処理され、同一の入力データ1001は、第1の処理フローまたは方法1010と異なる第2の画像処理フローまたは方法1020を用いて処理される。結果として生じる2D合成画像は、高密度要素抑制に少なくとも部分的に基づき、高密度要素強調に少なくとも部分的に基づき、画像融合またはマージ要素1030が、個別の画像処理フローまたは方法1010および1020によって発生される2D合成画像を組み合わせ、ディスプレイ105に通信される、新しい2D複合画像1032を発生させる。
【0110】
したがって、乳房画像発生および表示システム100sを用いると、同一の入力データ1001が、単一の2D合成複合画像1034を発生させるようにマージされる、異なる2D合成画像を発生させるように、異なる画像処理フローに従って異なる方法で処理される。
【0111】
図示される実施形態では、マルチフロー画像プロセッサ1000は、並行および同時画像処理フローによって行われ得る、異なる方法で同一の入力データ1001を処理する。一実施形態では、入力データ1001は、2D投影画像(Tp)のデータである。別の実施形態では、入力データ1001は、画像スライス908のスタック902の3D画像のデータである。受信される入力データのタイプに基づいて実行される、異なる画像処理方法が、下記にさらに詳細に説明される。
【0112】
画像プロセッサによって受信される入力データ1001は、1つ以上の画像検出器1011、1021から開始して、最初に異なる方法で処理される。2つの画像検出器1011、1021は、個別の第1および第2の画像処理フロー1010、1020の開始として図示される。画像検出器1011は、高密度要素920および乳房組織/背景910等の他の要素を識別および差別化する。画像検出器1021は、高密度要素920を識別する。
【0113】
画像検出器1011、1021は、例えば、画像コントラスト、明度、および放射線不透過性属性のうちの1つ以上のものを伴う、所定のフィルタまたは基準に基づいて、高密度要素920を乳房組織910または他の画像部分と区別するように動作してもよい。例えば、高密度要素920は、乳房組織または背景910と比較して、高いコントラストおよび明度属性と関連付けられ、したがって、高密度要素として識別されてもよい。検出基準は、群が高密度要素であるものとして識別されるように、ある範囲内の一般的な特性、例えば、コントラストまたは明度を有する、ピクセルの群または隣接するピクセルを伴い得る。画像検出器はまた、形状、配向、および/または場所データに基づいて、高密度要素920を乳房組織と区別してもよい。例えば、画像プロセッサ1000は、既知の金属生検マーカの仕様を具備してもよい。本データは、類似性質を有する画像部分がまた、生検マーカの既知の形状に類似する形状を形成し、それらのピクセルが、高密度要素920を描写するものとして識別されるように、画像またはピクセルデータと併せて使用されてもよい。別の実施例として、高密度要素920を差別化するために利用され得る別の要因は、皮膚マーカが、典型的には、乳房組織の中に挿入されるのではなく、乳房の外側表面に取り付けられることである。したがって、類似性質を有し、外部皮膚マーカを示す、外側表面に位置するピクセルが、高密度要素920として識別される。場所データもまた、例えば、あるマーカが特定の乳房組織領域の中に挿入される場合、要因であり得る。故に、高密度要素に対応する画像部分および乳房組織または背景910に対応する画像部分が、種々のフィルタ、基準、および/または特徴ベースの機械学習アルゴリズムもしくは深層畳み込みニューラルネットワークアルゴリズム等のより精巧なアルゴリズムを使用して、種々の方法で差別化または検出され得ることを理解されたい。
【0114】
画像検出器1011は、高密度要素抑制モジュール1012と通信し、画像検出器1012は、個別の検出結果が、個別の抑制および強調モジュール1012、1022に提供されるように、高密度強調モジュール1024と通信する。個別の高密度要素抑制および強調モジュール1012、1022の個別の出力が、個別の2D画像合成装置1014、1024への入力として提供される。
【0115】
一実施形態によると、第1の画像処理フロー1010で使用され、高密度要素抑制画像部分に実行される、2D画像合成装置1014は、2D画像合成装置1014が高密度抑制画像データを受信することを除いて、図1-8Bを参照して上記に議論されるように、物体強調および認識モジュール110a-nを実行する2D画像合成装置104と同一の様式で動作する。第1の画像処理フロー1010の2D画像合成装置は、したがって、2D画像合成装置104supp(「supp」は、「抑制される」高密度要素を指す)と称される。したがって、2D画像合成装置1014は、モジュール110a-nを介して乳房組織物体強調および認識を提供しながら、高密度要素抑制データを処理するように構成される。
【0116】
対照的に、2D画像合成装置1024は、高密度要素抑制または高密度要素抑制データを伴わず、代わりに、高密度要素強調画像データを処理する一方、乳房組織を強調しない。このように、2D画像合成装置1024の焦点は、2D画像合成装置1024がまた、2D画像合成装置104enh(「enh」は、「強調される」高密度要素を指す)とも称され得るように、乳房組織910強調ではなく、高密度要素920強調画像データである。本目的のために、2D画像合成装置1024は、物体強調および認識モジュール110a-nを含まなくてもよい、またはこれらの物体強調および認識モジュール110a-nは、非アクティブ化されてもよい。したがって、2D画像合成装置1024は、乳房組織が強調されていない間に、高密度要素強調データを処理するように構成される。
【0117】
2D画像合成装置1014/104suppは、高密度要素抑制および乳房組織強調データを具現化する、2D合成画像1016を出力し、2D画像合成装置1024/104enhは、高密度要素強調データを具現化する、異なる2D合成画像1026を出力する。これらの異なる2D合成画像1016、1026は、2D合成画像1014、1024を組み合わせ、またはマージし、2D合成画像1014、1024の両方の要素を組み込む、2D複合合成画像1032を発生させる、画像融合またはマージ要素1030への入力として提供される。異なるタイプの入力データ1001および中間画像を伴う、マルチフロー画像処理方法、ならびに異なる次元形式および画像またはスライス構成を伴う、関連付けられる処理が、図11-24を参照してさらに詳細に説明される。
【0118】
図11を参照すると、1102において、一実施形態による、乳房画像入手および処理システム100sによって実行される、マルチフロー画像処理方法1100では、1つ以上の乳房組織画像のデジタル入力データ1001が、トモシンセシスシステム等の画像発生および表示システム100sのマルチフローまたは微分画像プロセッサ1000への入力としてフィードされる。1104では、乳房組織910を描写する画像の部分、および高密度要素920を描写する画像の部分が、識別または検出される。第1の画像処理フロー1010が、第1の2D合成画像1016を発生させるように入力データに実行される。
【0119】
図12を参照すると、第1の画像処理フローまたは方法1010、もしくは金属抑制フローが、1202において乳房組織910を描写する画像部分を強調するステップを含む一方、金属生検マーカ920および/または影922等の高密度要素920を描写する画像部分は、1204において抑制、置換、または排除される。1206では、強調された乳房組織および抑制された高密度要素画像部分を具現化する、3D画像スライス(例えば、Trスライス)の第1のセットまたはスタックが、構築され、1208では、第1の2D合成画像1016が、3D画像スライスの第1のスタックに少なくとも部分的に基づいて発生される。
【0120】
図13を参照すると、第2の画像処理方法1020は、第1の画像処理方法1010と異なり、同一の入力データ1001に実行される。第2の画像処理方法1020は、異なる第2の2D合成画像1026を発生させる。1302では、高密度要素920を描写する画像部分が、(乳房組織強調を伴わずに、または乳房組織を重視解除することによって)重視され、1304では、高密度要素を描写する、強調された画像部分に少なくとも部分的に基づく、3D画像スライスの第2のセットが、発生される。1306では、第2の2D合成画像1026が、3D画像スライスの第2のセットに少なくとも部分的に基づいて発生される。
【0121】
図11を再び参照すると、1110では、第1および第2の2D合成画像1016、1026が、複合合成画像1032を発生させるように組み合わせられ、またはマージされ、1112では、複合合成画像1032が、画像発生および表示システム100sのディスプレイ105を通して放射線科医またはエンドユーザに提示される。
【0122】
図14を参照し、さらに図15を参照すると、図10に示され、図11-13を参照して説明されるようなシステム100s構成を使用して、乳房画像を処理するための方法1400の一実施形態が、説明される。方法1400では、マルチフロー画像処理方法1000が、乳房組織910および高密度要素920が両方とも可視である、画像スライスの再構築された3Dスタックの入力に実行される。したがって、本実施形態では、2D投影画像1502ではなく、3D画像スライス1506のスタックが、マルチフロー画像処理方法1500が2D投影画像1502に実行されないように、画像プロセッサ1500への入力1501として提供される。
【0123】
1402では、画像入手コンポーネント101(例えば、デジタルトモシンセシスシステムのX線デバイス))が、アクティブ化され、1404では、患者の乳房の複数の2D画像1502が、入手される。例えば、トモシンセシスシステムでは、約15枚の2D投影画像Tp1502が、乳房とX線源-検出器との間の個別の角度において入手されてもよい。15枚の2D投影画像が、入手され得る投影画像の数の実施例として提供されるが、15を上回る、および15未満の他の数もまた、利用され得ることを理解されたい。1406では、必要とされる場合、入手または投影画像1502が、画像プロセッサ1000に対して遠隔にあり、通信ネットワークを介したデータ記憶部102からであり得る、後続の読出のために、入手コンポーネント101によってデータ記憶部102に記憶される。
【0124】
1408では、2D投影画像再構築1504が、画像スライスTr1506(例えば、例証的実施例では、約60枚の画像スライス)の3Dスタック1508を発生させるように実行される。1410では、第1の画像処理フロー1510の第1の検出器1511が、乳房組織910を描写する入力3D画像スライス1506の部分、および乳房内または上の高密度要素920を撮像することによって発生される高密度要素920(例えば、金属物体または石灰化、もしくは影)を描写する画像スライス1506の部分を識別する。第2の検出器1521が、高密度要素920を識別する。これらの目的のために、画像プロセッサ1500は、上記に説明されるような1つ以上の基準もしくはフィルタを利用し、3Dスタック1506内の乳房組織または背景910および高密度要素画像部分920を識別ならびに差別化してもよい。
【0125】
図14-15の参照を続けると、1412では、第1の画像処理フロー1510は、入力スタック1508の高密度要素抑制1512を伴い、その結果は、高密度要素920が抑制または排除される、第1の処理された3Dスタック1513の発生である。
【0126】
図16は、高密度要素抑制1512が入力3Dスタック1508に実行され得る1つの様式、また、随意のマスクが2D合成複合画像1032を発生させる際の後続の使用のために発生され得る様子をさらに詳細に図示する。図示される実施形態では、3D画像スライス1506の入力1501上の第1の画像処理フロー1510は、1602における金属生検マーカ等の高密度要素920を描写する画像スライス1506の部分の検出、1604における検出された高密度要素部分920のセグメント化またはピクセル識別を伴い、1606では、セグメント化マスクが、セグメント化結果に基づいて発生されてもよい。マスクは、続いて、2D合成複合画像1032を発生させるときに利用されてもよい。1608では、セグメント化された部分が、高密度要素抑制のために3Dスタックの画像スライスから抑制または排除される。これは、セグメント化された部分を画像スライス背景の他のサンプリングされた部分で補間または置換することによって行われてもよい。高密度要素抑制は、高密度要素920が、放射線科医に視覚的に知覚可能ではない、またはより少ない程度に視覚的に知覚可能であろうように、画像スライスの3Dスタック1508からの高密度要素920画像部分の排除をもたらす。したがって、抑制プロセスの最終結果1610は、高密度要素920の画像部分を抑制または排除しながら、また、別個の「高密度マスク」も発生させながら、乳房組織画像部分910が維持される、再構築画像スライスまたは金属抑制乳房組織スライスの処理された3Dスタック1610である。
【0127】
図17は、入力3Dスタック1508内の高密度要素強調1522が実行され得る1つの様式、また、随意のセグメント化またはピクセルマスクが2D合成複合画像1032を発生させる際の後続の使用のために発生され得る様子をさらに詳細に図示する。図示される実施形態では、入力3D画像スライス1501上の第2の画像処理フロー1520は、1702において金属生検マーカ等の高密度要素920を描写する画像スライスの部分を検出するステップ、1704における検出された高密度要素部分のセグメント化を伴い、1706では、セグメント化マスクが、発生されてもよく、続いて、2D合成複合画像1032を発生させるときに利用されてもよい。金属セグメント化1704情報が、金属セグメント化マスク1706として記録されてもよく、異なるスライスからのマスクが、金属合成装置モジュール1524からの副出力である、単一の2D金属マスクに組み合わせられることができる。実施例として、本2D金属マスク画像内で2値マスクを使用する場合、高密度要素領域は、1でマークされ、背景または乳房組織領域は、0でマークされる。異なるマスク構成または設計もまた、2値「0」および「1」標識のみではなく、他または複数の標識を利用することによって、これらの目的のために利用されることができる。1708では、セグメント化された部分が、3Dスタックの画像スライス内で単離および重視または強調される。高密度要素強調1708は、例えば、最大強度投影または「MIP」を使用して実行されてもよい。金属強調モジュールによって発生される最終結果1710は、乳房組織画像部分910が処理されず、または強調されず、高密度要素920が強調または重視される、3D再構築画像スライスのスタック1523である。
【0128】
図10および14-15を再び参照すると、1414では、マルチフロー画像プロセッサ1000が、入力として3D画像スライスの処理または金属抑制スタック1513を受信する、第1の2D画像合成装置1514を実行する。第1の2D画像合成装置1514は、特定のタイプの物体を認識および強調するためにそれぞれ構成される、標的物体認識/強調モジュール(例えば、110a、110b…110n)の使用によって、乳房組織画像部分を強調または重視しながら、金属抑制3Dスタックの抑制された高密度画像部分に基づいて、2D合成画像1515を発生させる。第1の2D画像合成装置1514は、2D画像合成装置が高密度要素抑制1512に起因する画像データを受信することを除いて、上記に議論される2D画像合成装置104と同一の様式で動作してもよい。図1-8Bを参照して上記に議論されるように、標的物体認識/強調モジュール110a-nは、結果として生じる2D合成画像が臨床的に有意な情報を含むように、その中の個別の物体(いずれかが存在する場合)を識別するように構成される。
【0129】
図14-15の参照を続け、さらに図18を参照すると、マルチフロー画像プロセッサ1000が、入力として3D画像スライスの処理または金属強調スタック1523を受信し、金属強調3Dスタックの強調された高密度画像部分に基づいて、2D合成画像1525/1802を発生させる、第2の2D画像合成装置1524/1801を実行する一方、他の背景または乳房組織部分は、例えば、その明度を低減させることによって、維持される、または強調されない、もしくは重視解除さえされる。本目的のために、第2の2D画像合成装置1524は、これらの乳房組織分析および強調が、実施されず、高密度要素920構造に照らして必要ではないように、標的物体認識/強調モジュール(例えば、110a、110b…110n)を含まない、または非アクティブ化する。例えば、金属生検マーカは、あまり複雑ではない幾何学的形状(例えば、円柱)を有し得る、または典型的には、乳房組織ほど複雑ではない。例えば、より複雑な標的物体認識/強調110a-nを採用するのではなく、高密度要素920が強調される、第2の画像処理フローは、単に、金属物体スライスの3Dスタックを、バッファに記憶され得る単一の金属物体2D合成画像1810に組み合わせるための基本方法として、平均強度投影または最大強度投影等の画像処理アルゴリズムを展開することができる。第2の2D合成装置1524/1801によって発生される結果は、概して、図18の2D合成画像1525/1802内に「ドット」として出現する高密度物体によって図示される。
【0130】
図18はまた、金属検出およびセグメント化プロセスの不完全性に起因する種々のアーチファクト1810を含む、2D合成画像1802も図示する。モルフォロジカル演算1803(例えば、ピクセル膨張および/または収縮)が、高密度物体境界を平滑化し、結果として生じる2D画像1525/1804内の境界をより正確でより視覚的に目を引くようにすることによって、これらのアーチファクト1810を一掃するように2D合成画像1802に実行されることができる。
【0131】
図14-15を再び参照すると、1420において、3D画像スライスの第1のスタックに少なくとも部分的に基づく第1の2D合成画像1515、および3D画像スライスの第2のスタックに少なくとも部分的に基づく第2の2D合成画像1525を発生させた上で、個別の第1および第2の画像処理フロー1510、1520によって発生される、これらの中間の第1および第2の2D合成画像1515、1525は、1422においてディスプレイ105を介して放射線科医またはエンドユーザに提示される、2D最終または複合合成画像1532を発生させるように、マージされる、または組み合わせられる1530。一実施形態によると、画像の組み合わせ1530は、各合成画像バッファから2D合成画像データの最良信号を選択するステップと、乳房組織910と高密度要素920との間の遷移がシームレスであることを確実にするステップとを伴い得る。2D複合合成画像1532は、不要な影アーチファクトが、臨床的に重要な情報を覆い隠さない一方、強調された乳房組織または背景および乳房組織910と高密度要素920との間の鮮明な描画も含むように、影アーチファクト920を視覚的に含まない。
【0132】
図19を参照すると、第1および第2の2D合成画像1515、1525を組み合わせるステップ1030の一実施形態によると、上記に議論されるようなセグメント化によって発生される2D金属マスク1900が、2D複合合成画像1532を発生させるように、中間の第1および第2の2D合成画像1515、1525の変調された組み合わせ1902または最大強度投影もしくは「MIP」組み合わせのために利用されてもよい。本実施形態は、結果として生じる2D複合画像1032が、視覚的に鮮明で、高密度影要素を含まない一方、最適な乳房組織背景を提供するように、乳房組織910と高密度要素920との間のシームレスな遷移のために、各2D合成画像1515、1525バッファから信号または画像部分を本質的に抽出する。
【0133】
図20A-Bは、マルチフロー画像処理実施形態が、低減または排除された影922アーチファクトを伴って視覚的に鮮明かつ明確である2D合成複合画像1032を発生させるように実行され得る様子の実施例を図示する。図21Bは、金属生検マーカ920の周囲に種々の影アーチファクト922を含む、図21Aと比較して、覆い隠す影アーチファクト922を排除する実施形態のマルチフロー画像処理に従って構築される、2D合成画像1032を図示する。実施形態に従って発生される2D合成複合画像1032の最終結果が、鮮明で影922を含まない一方、乳房組織または背景910もまた、強調される。
【0134】
図10-20Bを参照して上記に説明される、ある実施形態は、マルチフロー画像処理が同一の3Dスタック1508に実行されるように、マルチフロー画像プロセッサ1500が、入力1001として、再構築または発生された画像もしくは画像スライス1506(例えば、60枚の再構築されたスライス)の3Dスタック1508を受信するステップを伴う。3Dスタック1508は、これらの実施形態では、画像プロセッサ1000への入力1001として提供されない、入手された2D投影画像1502に基づいて発生される。したがって、マルチフロー画像処理は、これらの実施形態では、2D投影画像1502に実行されない。換言すると、マルチフロー画像処理は、画像スライスの3Dスタック1508が基づく2D投影画像1502ではなく、画像スライスの3Dスタック1508に直接実行され、マルチフロー画像処理は、再構築1504後に実行される。他の実施形態は、画像プロセッサ1000が異なる画像タイプおよび次元形式の入力を受信するステップを伴い得る。
【0135】
例えば、他の実施形態では、マルチフロー画像プロセッサは、マルチフロー画像処理が、再構築後に最終的に発生される画像スライスの3Dスタックではなく、2D投影画像に直接実行されるように、2D投影画像の入力を受信する。画像スライスの異なる3Dスタックが、抑制および強調処理が2D投影画像に実行された後に、個別の2D画像合成装置への個別の入力として提供される。したがって、ある実施形態では、高密度要素抑制および強調が、画像スライス1506の3Dスタック1508の再構築1504後に生じる一方、他の実施形態では、高密度要素抑制および強調は、画像スライスの3Dスタックの再構築の前に生じる。画像プロセッサへの入力として2D投影画像を使用する、画像処理実施形態の実行を伴うマルチフロー画像処理の代替実施形態が、図21-24を参照して説明される。上記に説明されるシステムコンポーネントおよびそれらの相互運用性は、繰り返されない。
【0136】
図21-22を参照すると、別の実施形態による画像処理方法2100では、2102において、画像発生および表示システム100sの画像入手コンポーネント101(例えば、X線デバイス)が、アクティブ化され、2104では、患者の乳房2201の複数の2D画像(例えば、乳房とX線源-検出器との間の個別の角度における約15枚の投影画像)が、入手される。2106では、2D投影画像2201が、データ記憶部102に記憶され、2108では、2D投影画像2201のデジタル画像データが、データ記憶部102から受信され、画像発生および表示システム100sのマルチフロー画像プロセッサ2200への入力として提供される。2210では、第1の検出モジュール2211が、乳房組織910を描写する個々の2D投影画像2201の部分、および金属生検マーカを撮像することによって発生される高密度要素920(例えば、金属生検マーカまたは影)を描写する個々の2D投影画像2201の部分を識別し、第2の検出モジュール2221は、乳房内または上の高密度物体を撮像することによって発生される高密度要素920(例えば、金属物体または影)を描写する個々の2D投影画像2201の部分を識別する。
【0137】
2212では、高密度要素抑制2212を含む、第1の画像処理方法またはフロー2210が、処理された/高密度要素抑制2D投影画像2213を発生させるように、入力2D投影画像2201に実行され、2214では、高密度要素強調2222を含む、第2の画像処理方法またはフロー2220が、処理された/高密度要素強調2D投影画像2223を発生させるように、入力2D投影画像2201に実行される。
【0138】
ある実施形態では、入力2D投影画像2201の全てが、ある方法で抑制される一方、他の実施形態では、ある入力2D投影画像2201のみ、例えば、高密度要素920の少なくとも一部を含むと決定されるもののみが、高密度抑制2212を受ける。したがって、ある実施形態では、高密度抑制2212および高密度強調2222は両方とも、画像スライスの3Dスタックへの任意の画像再構築の前に実行される。さらに、一実施形態では、各入力2D投影画像2201は、処理された2D投影画像2213、2223のセットが、入力2D投影画像2201の数と同一であるように、処理されるが、実施形態がそのように限定されないことを理解されたい。例えば、高密度要素抑制2212および強調2213を受ける、入力2D投影画像2201の数は、高密度要素920を含むと決定されるそれらの入力2D投影画像2201のみが処理される場合、入力2D投影画像2201の数未満であり得る。したがって、例えば、画像入手は、15枚の入力2D投影画像2201をもたらし得、そのうちの8枚のみが、高密度要素920の少なくとも一部を含有し、その場合、それらの8枚の入力2D投影画像2201のみが、高密度要素抑制2212および強調2222のために処理される。残りの7枚の入力2D投影画像2201は、3Dスタックの再構築および発生に先立って、15枚の投影画像のセットのために処理された8枚と再継合されてもよい。
【0139】
故に、高密度要素抑制2212および強調2222は、任意の3D画像再構築の前に、それによって発生される金属物体または影920が、高密度要素サイズ、撮像のために使用される放射線源および検出器に対する場所ならびに配向および位置に応じて、ある画像に存在しない場合があるため、入力セットの2D投影画像2201の全てに、または入力セットの選択された2D投影画像2201、例えば、検出器2211によって高密度要素を含有すると決定されるものに実行されてもよい。さらに、抑制2212および強調2222に続く、処理された2D投影画像2213、2223の数は、未処理入力2D投影画像2201が処理されたセットに追加され得るため、入力2D投影画像2201のうちのいくつかのみが処理される場合でさえも、入力2D投影画像2201の数と同一であり得る。
【0140】
図21-22の参照を続けると、2216において、2D投影画像2213、2223の処理されたセットを発生させた上で、3D画像スライス(例えば、約60枚の画像スライス)の第1のスタック2214が、高密度要素抑制2212を伴う、処理された2D投影画像2213(例えば、約15枚の画像)の第1のセットに少なくとも部分的に基づいて発生され、2218では、3D画像スライスの第2のスタック2224が、高密度要素強調2222を伴う、処理された2D投影画像2223の第2のセットに少なくとも部分的に基づいて発生される。
【0141】
3D画像2214、2224の第1および第2のスタックを構築した上で、これらのスタックは、次いで、個別の第1および第2のスタック2214、2224に少なくとも部分的に基づいて、個別の第1および第2の2D合成画像2216、2226を発生させるように、個別の2D画像合成装置2215、2225によって、2120、2122において処理される。2124では、モルフォロジカル演算が、必要に応じて高密度要素を描写する、強調された画像部分の画像エッジを膨張または収縮するように、必要に応じて第2の2D合成画像2226に実行されてもよく、2226では、第1および第2の2D合成画像2216、2226は、2232において、ディスプレイ105を介して放射線科医またはエンドユーザに提示される2D複合画像を発生させるように、マージされる、または組み合わせられる2230。
【0142】
図23-24はさらに、個別の抑制2212および強調2222処理が実行される様子を図示し、検出、セグメント化、ならびに抑制(図16)および抑制(図17)が、画像スライスの入力3Dスタックではなく、個々の入力2D投影画像1502の入力に基づき、セグメント化によって発生される、結果として生じるマスク2306、2406が、図15-17に示されるような3D画像スライスのスタックのためではなく、図23-24に示されるような個々の画像のためのマスクであり、抑制および強調処理の結果または出力が、高密度要素抑制3Dスタックの出力ではなく、図22に示されるような抑制または強調される処理された2D投影画像であることを除いて、上記の図15-17を参照して説明される処理に類似する。
【0143】
例示的実施形態を説明したが、上記に説明され、付随する図に描写される実施例は、例証にすぎず、他の実施形態および実施例もまた、添付の請求項の範囲内に包含されることを理解されたい。例えば、付随する図内で提供されるフロー図は、例示的ステップの例証にすぎないが、全体的な画像マージプロセスは、当技術分野で公知である他のデータマージ方法を使用して、種々の様式で達成され得る。システムブロック図は、同様に、代表にすぎず、開示される発明の限定的要件と見なされることにならない機能の描画を図示する。種々の変更および修正が、以下の請求項およびそれらの均等物のみによって定義されることになる、開示される発明の範囲から逸脱することなく、描写および/または説明される実施形態(例えば、種々の部品の寸法)に行われ得ることも、当業者に明白となるであろう。本明細書および図面は、故に、制限ではなく例証的な意味で見なされることになる。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20A
図20B
図21
図22
図23
図24
【外国語明細書】