IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三菱重工マリンマシナリ株式会社の特許一覧

<>
  • 特開-コンプレッサ羽根車の余寿命評価方法 図1
  • 特開-コンプレッサ羽根車の余寿命評価方法 図2
  • 特開-コンプレッサ羽根車の余寿命評価方法 図3
  • 特開-コンプレッサ羽根車の余寿命評価方法 図4
  • 特開-コンプレッサ羽根車の余寿命評価方法 図5
  • 特開-コンプレッサ羽根車の余寿命評価方法 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024051767
(43)【公開日】2024-04-11
(54)【発明の名称】コンプレッサ羽根車の余寿命評価方法
(51)【国際特許分類】
   F02B 39/16 20060101AFI20240404BHJP
   F04D 29/28 20060101ALI20240404BHJP
   G01M 99/00 20110101ALI20240404BHJP
【FI】
F02B39/16 H
F04D29/28 R
G01M99/00 A
【審査請求】未請求
【請求項の数】7
【出願形態】OL
(21)【出願番号】P 2022158087
(22)【出願日】2022-09-30
(71)【出願人】
【識別番号】518131296
【氏名又は名称】三菱重工マリンマシナリ株式会社
(74)【代理人】
【識別番号】110000785
【氏名又は名称】SSIP弁理士法人
(72)【発明者】
【氏名】松尾 哲也
(72)【発明者】
【氏名】白川 太陽
【テーマコード(参考)】
2G024
3G005
3H130
【Fターム(参考)】
2G024AD04
2G024BA12
2G024CA09
2G024CA16
2G024CA17
2G024DA09
2G024FA02
3G005EA04
3G005EA16
3G005FA21
3G005GB78
3G005JA17
3G005JA40
3H130AA13
3H130AB07
3H130AB12
3H130AB27
3H130AB44
3H130AC14
3H130BA24C
3H130BA90C
3H130CB01
3H130DA02Z
3H130DD01
3H130EA02C
3H130ED04C
(57)【要約】
【課題】過給機に関する運転データを活用することで、コンプレッサ羽根車の余寿命を精度良く評価できるコンプレッサ羽根車の余寿命評価方法を提供する。
【解決手段】過給機が有するコンプレッサ羽根車の余寿命を評価するコンプレッサ羽根車の余寿命評価方法であって、過給機の回転数を取得する回転数取得ステップと、回転数取得ステップで取得した過給機の回転数からコンプレッサ羽根車に生ずる応力を算出する応力算出ステップと、コンプレッサ羽根車のメタル温度を測定するメタル温度測定ステップと、予め取得したコンプレッサ羽根車における応力、メタル温度、及び寿命の関係性を利用して、応力算出ステップで算出した応力と、メタル温度測定ステップで測定したメタル温度とから、コンプレッサ羽根車の余寿命を評価する余寿命評価ステップと、を備える。
【選択図】図4
【特許請求の範囲】
【請求項1】
過給機が有するコンプレッサ羽根車の余寿命を評価するコンプレッサ羽根車の余寿命評価方法であって、
前記過給機の回転数を取得する回転数取得ステップと、
前記回転数取得ステップで取得した前記過給機の回転数から前記コンプレッサ羽根車に生ずる応力を算出する応力算出ステップと、
前記コンプレッサ羽根車のメタル温度を測定するメタル温度測定ステップと、
予め取得した前記コンプレッサ羽根車における応力、メタル温度、及び寿命の関係性を利用して、前記応力算出ステップで算出した前記応力と、前記メタル温度測定ステップで測定した前記メタル温度とから、前記コンプレッサ羽根車の余寿命を評価する余寿命評価ステップと、
を備えるコンプレッサ羽根車の余寿命評価方法。
【請求項2】
前記コンプレッサ羽根車は、
ハブ面及び背面を有するハブと、前記ハブ面に設けられた少なくとも1つの翼と、を含み、
前記背面は、前記背面よりも前記コンプレッサ羽根車の軸方向における後端側に突出する突出部に接続される内周端から前記背面の外周端までに亘り延在し、
前記メタル温度測定ステップでは、
前記背面の外周縁部、内周縁部、前記背面の前記外周縁部と前記内周縁部の間に位置する中央部、前記ハブ面の外周縁部、又は、前記少なくとも1つの翼の翼面の外周部、の5箇所のうち、少なくとも1箇所のメタル温度の測定が行われる、
請求項1に記載のコンプレッサ羽根車の余寿命評価方法。
【請求項3】
前記メタル温度測定ステップでは、
前記背面の前記外周縁部、前記内周縁部、前記中央部、前記ハブ面の前記外周縁部、又は、前記少なくとも1つの翼の前記翼面の前記外周部、の5箇所のうちの何れか1箇所のメタル温度の測定が行われ、
前記コンプレッサ羽根車の余寿命評価方法は、
前記コンプレッサ羽根車における疲労による損傷が生じ易い箇所であるクリティカル箇所を推定するクリティカル箇所推定ステップをさらに備え、
前記余寿命評価ステップは、
予め取得した前記メタル温度測定ステップにおいて前記メタル温度が測定される測定位置の前記メタル温度と前記クリティカル箇所のメタル温度との関係性を利用して、前記メタル温度測定ステップにおいて測定した前記測定位置の前記メタル温度から前記クリティカル箇所の前記メタル温度を算出するメタル温度算出ステップを含み、
前記コンプレッサ羽根車における応力、メタル温度、及び寿命の関係性を利用して、前記応力算出ステップで算出した前記応力と、前記メタル温度算出ステップで算出した前記メタル温度とから、前記コンプレッサ羽根車の余寿命を評価する
請求項2に記載のコンプレッサ羽根車の余寿命評価方法。
【請求項4】
前記コンプレッサ羽根車における疲労による損傷が生じ易い箇所であるクリティカル箇所を推定するクリティカル箇所推定ステップをさらに備え、
前記メタル温度測定ステップでは、
前記背面の前記外周縁部、前記内周縁部、前記中央部、前記ハブ面の前記外周縁部、又は、前記少なくとも1つの翼の前記翼面の前記外周部、の5箇所のうちの、前記クリティカル箇所に最も近い1箇所のメタル温度の測定が行われる、
請求項2に記載のコンプレッサ羽根車の余寿命評価方法。
【請求項5】
前記メタル温度測定ステップでは、
前記背面の前記外周縁部、前記ハブ面の前記外周縁部、又は、前記少なくとも1つの翼の前記翼面の前記外周部、のうちの何れか1箇所と、前記背面の前記内周縁部と、において前記メタル温度の測定が行われる、
請求項2に記載のコンプレッサ羽根車の余寿命評価方法。
【請求項6】
前記余寿命評価ステップは、
予め取得した前記コンプレッサ羽根車における応力とラーソンミラーパラメータとの関係性を利用して、前記応力算出ステップで算出した前記応力からラーソンミラーパラメータを算出するラーソンミラーパラメータ算出ステップと、
前記ラーソンミラーパラメータ算出ステップで算出した前記ラーソンミラーパラメータと、前記メタル温度測定ステップで測定した前記メタル温度とから、前記コンプレッサ羽根車の許容作動時間を算出する許容作動時間算出ステップと、を含む、
請求項1乃至5の何れか1項に記載のコンプレッサ羽根車の余寿命評価方法。
【請求項7】
前記コンプレッサ羽根車は、
ハブ面及び背面を有するハブと、前記ハブ面に設けられた少なくとも1つの翼と、を含み、
前記背面は、前記背面よりも前記コンプレッサ羽根車の軸方向における後端側に突出する突出部に接続される内周端から前記背面の外周端までに亘り延在し、
前記メタル温度測定ステップでは、
前記背面の外周縁部、内周縁部、前記背面の前記外周縁部と前記内周縁部の間に位置する中央部、前記ハブ面の外周縁部、又は、前記少なくとも1つの翼の翼面の外周部、の5箇所のうちの何れか1箇所のメタル温度の測定が行われ、
前記コンプレッサ羽根車の余寿命評価方法は、
前記コンプレッサ羽根車における疲労による損傷が生じ易い箇所であるクリティカル箇所を推定するクリティカル箇所推定ステップをさらに備え、
前記余寿命評価ステップは、
予め取得した前記メタル温度測定ステップにおいて前記メタル温度が測定される測定位置の前記メタル温度と前記クリティカル箇所のメタル温度との関係性を利用して、前記メタル温度測定ステップにおいて測定した前記測定位置の前記メタル温度から前記クリティカル箇所の前記メタル温度を算出するメタル温度算出ステップを含み、
前記許容作動時間算出ステップでは、前記ラーソンミラーパラメータ算出ステップで算出した前記ラーソンミラーパラメータと、前記メタル温度算出ステップで算出した前記クリティカル箇所の前記メタル温度とから、前記コンプレッサ羽根車の許容作動時間を算出することが行われる
請求項6に記載のコンプレッサ羽根車の余寿命評価方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、過給機が有するコンプレッサ羽根車の余寿命を評価するコンプレッサ羽根車の余寿命評価方法に関する。
【背景技術】
【0002】
従来、過給機が有するコンプレッサ羽根車は、コンプレッサ羽根車を構成する材料の材料特性に基づいて推定された余寿命に、所定の裕度を加えた期間を交換期間として設定することが行われていた。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特許第4589751号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
上記交換期間は、過給機を実際に運転した際のコンプレッサ羽根車の状態の変化が考慮されていないため、実際の余寿命に対して乖離する可能性がある。このため、上記交換期間が到来したときにコンプレッサ羽根車の交換を行うと、実際の寿命よりも早期にコンプレッサ羽根車の交換が行われることがあり、コンプレッサ羽根車の交換頻度が高くなるという課題があった。コンプレッサ羽根車の交換頻度を適切なものとするため、コンプレッサ羽根車の余寿命を、より正確に評価することが望まれている。
【0005】
なお、コンプレッサ羽根車の余寿命を評価するための方法は、これまでも幾つか案出されているが、実用化に至ってはいない。例えば、特許文献1には、圧縮機ホイールのクリープを監視するクリープ監視アルゴリズムを備える、ターボ過給機の寿命決定装置が開示されている。このクリープ監視アルゴリズムは、検出した圧縮機入口温度と、算出した圧縮機の圧力比との異なる組み合わせの下で動作する時間量を監視することで、クリープを監視している。上記組み合わせには、特定の組み合わせにより生じる圧縮機ホイール上の応力を表すクリープ評点が含まれており、特定の組み合わせ下における時間量とクリープ評点との積が上記特定の組み合わせにおいて生じるクリープ応力損傷となり、クリープ応力損傷の合計が監視されるクリープとなる。
【0006】
上述した事情に鑑みて、本開示の少なくとも一実施形態の目的は、過給機に関する運転データを活用することで、コンプレッサ羽根車の余寿命を精度良く評価できるコンプレッサ羽根車の余寿命評価方法を提供することにある。
【課題を解決するための手段】
【0007】
本開示の一実施形態にかかるコンプレッサ羽根車の余寿命評価方法は、
過給機が有するコンプレッサ羽根車の余寿命を評価するコンプレッサ羽根車の余寿命評価方法であって、
前記過給機の回転数を取得する回転数取得ステップと、
前記回転数取得ステップで取得した前記過給機の回転数から前記コンプレッサ羽根車に生ずる応力を算出する応力算出ステップと、
前記コンプレッサ羽根車のメタル温度を測定するメタル温度測定ステップと、
予め取得した前記コンプレッサ羽根車における応力、メタル温度、及び寿命の関係性を利用して、前記応力算出ステップで算出した前記応力と、前記メタル温度測定ステップで測定した前記メタル温度とから、前記コンプレッサ羽根車の余寿命を評価する余寿命評価ステップと、を備える。
【発明の効果】
【0008】
本開示の少なくとも一実施形態によれば、過給機に関する運転データを活用することで、コンプレッサ羽根車の余寿命を精度良く評価できるコンプレッサ羽根車の余寿命評価方法が提供される。
【図面の簡単な説明】
【0009】
図1】本開示の一実施形態にかかるコンプレッサ羽根車の余寿命評価方法の評価対象であるコンプレッサ羽根車を搭載したエンジンシステムの構成を概略的に示す概略構成図である。
図2】本開示の一実施形態における過給機の軸線に沿った概略断面図である。
図3】本開示の一実施形態における過給機のコンプレッサ側の軸線に沿った概略断面図である。
図4】本開示の一実施形態にかかるコンプレッサ羽根車の余寿命評価方法のフロー図である。
図5】コンプレッサ羽根車における応力とラーソンミラーパラメータとの関係を説明するための説明図である。
図6】本開示の一実施形態における回転数取得ステップのフロー図である。
【発明を実施するための形態】
【0010】
以下、添付図面を参照して本開示の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本開示の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
なお、同様の構成については同じ符号を付し説明を省略することがある。
【0011】
図1は、本開示の一実施形態にかかるコンプレッサ羽根車の余寿命評価方法の評価対象であるコンプレッサ羽根車を搭載したエンジンシステムの構成を概略的に示す概略構成図である。本開示の幾つかの実施形態にかかるコンプレッサ羽根車の余寿命評価方法1は、過給機3が有するコンプレッサ羽根車4の余寿命を評価するためのものである。過給機3は、図1に示されるような、エンジン5を備えるエンジンシステム2に搭載される。
【0012】
(エンジンシステム)
エンジンシステム2は、図1に示されるように、内部で燃料を燃焼させることで動力を発生させるように構成されたエンジン(エンジン本体)5と、エンジン5の内部での燃焼に供される燃焼用気体(例えば、空気)を圧縮して供給するための燃焼用気体供給ライン6と、燃焼用気体供給ライン6に設けられたコンプレッサ羽根車4を有する過給機3と、燃焼用気体供給ライン6のコンプレッサ羽根車4よりも下流側に設けられた中間冷却器7と、を備える。中間冷却器7は、中間冷却器7を通過する燃焼用気体を冷却するように構成された熱交換器からなる。
【0013】
図示される実施形態では、エンジンシステム2は、図1に示されるように、エンジン5から排出された排ガスを導くための排ガス排出ライン8と、エンジン5の内部に燃料を噴射するように構成された燃料噴射弁9と、制御装置11と、をさらに備える。制御装置11は、エンジンシステム2における各装置(エンジン5や燃料噴射弁9など)の運転を制御するためのエンジンコントロールユニットからなる。
【0014】
エンジン5は、少なくとも1つのシリンダ51と、少なくとも1つのシリンダ51の内部に各々が軸方向に沿って往復動可能に収容された少なくとも1つのピストン52と、を含む。エンジン5は、シリンダ51とピストン52により区画された燃焼室53を内部に有する。燃焼室53は、燃焼用気体供給ライン6の中間冷却器7よりも下流側に気体を流通可能に接続されている。燃焼用気体供給ライン6は、コンプレッサ32からの燃焼用気体を燃焼室53に導くための流路である。燃焼室53は、排ガス排出ライン8に気体を流通可能に接続されている。排ガス排出ライン8は、燃焼室53から排出された排ガスをタービン33に流通させるための流路である。
【0015】
燃料噴射弁9から燃焼室53又は燃焼用気体供給ライン6に噴射された燃料は、燃焼用気体供給ライン6を通じて燃焼室53に送られる燃焼用気体に混合された後に、燃焼室53内で燃焼する。燃焼室53で燃焼後の排ガスは、排ガス排出ライン8を通り、エンジンシステム2の外部に排出される。
【0016】
(過給機)
図2は、本開示の一実施形態における過給機の軸線に沿った概略断面図である。図3は、本開示の一実施形態における過給機のコンプレッサ側の軸線に沿った概略断面図である。図示される実施形態では、過給機3は、エンジン5から排出された排気(排ガス)のエネルギにより駆動するタービン33と、エンジン5に供給される燃焼用気体(例えば、空気)を圧縮するコンプレッサ32と、回転シャフト31とを含む。コンプレッサ32は、上述した燃焼用気体供給ライン6に設けられたコンプレッサ羽根車4と、コンプレッサ羽根車4を回転可能に収容するコンプレッサハウジング34と、を含む。コンプレッサ羽根車4は、回転シャフト31の一方側に機械的に接続されている。タービン33は、上述した排ガス排出ライン8に設けられたタービン翼35と、タービン翼35を回転可能に収容するタービンハウジング36と、を含む。タービン翼35は、回転シャフト31の他方側に機械的に接続されている。
【0017】
コンプレッサ32のコンプレッサ羽根車4を通過した燃焼用気体は、燃焼用気体供給ライン6を通じてエンジン5の燃焼室53に導かれ、燃焼室53における燃焼に供される。燃焼室53における燃焼により生じた排ガスは、排ガス排出ライン8を通じてタービン33のタービン翼35に導かれる。過給機3は、エンジン5から排出された排ガスのエネルギにより、タービン翼35を回転させるように構成されている。コンプレッサ羽根車4は、回転シャフト31を介してタービン翼35に機械的に連結されているため、タービン翼35の回転に連動して回転する。過給機3は、コンプレッサ羽根車4の回転により、コンプレッサ羽根車4を通過する燃焼用気体を圧縮し、上記燃焼用気体の密度を高めてエンジン5に送るように構成されている。
【0018】
過給機3は、図2に示されるように、コンプレッサ羽根車4とタービン翼35との間において回転シャフト31を回転可能に支持する軸受37と、コンプレッサハウジング34とタービンハウジング36との間に配置され、軸受37を支持する軸受台38と、をさらに含む。コンプレッサハウジング34は、回転シャフト31の軸方向に沿って延在し、コンプレッサハウジング34に燃焼用気体を導くための気体導入流路341を形成する気体導入流路形成部342と、コンプレッサ羽根車4の外周側に設けられ、回転シャフト31の周方向に沿って延在する渦巻状のスクロール流路343を形成するスクロール流路形成部344と、を有する。タービンハウジング36は、タービン翼35の外周側に設けられ、回転シャフト31の周方向に沿って延在する渦巻状のスクロール流路361を形成するスクロール流路形成部362と、回転シャフト31の軸方向に沿って延在し、タービン翼35を通過した排ガスを排出するための排ガス排出流路363を形成する排ガス排出流路形成部364と、を有する。
【0019】
(エンジンシステムに搭載される測定機器)
エンジンシステム2では、一般的に、コンプレッサ羽根車4の入口圧力Ps、燃焼用気体供給ライン6の中間冷却器7よりも下流側における燃焼用気体(コンプレッサ羽根車4の作動流体)の圧力Pd、および過給機3の回転数Nの測定が行われている。ここで、コンプレッサ羽根車4の入口圧力Psは、燃焼用気体供給ライン6のコンプレッサ羽根車4よりも上流側における燃焼用気体(コンプレッサ羽根車4の作動流体)の圧力である。
【0020】
エンジンシステム2は、図1に示されるように、コンプレッサ羽根車4の入口圧力Psを測定するように構成された第1の圧力測定装置(図示例では、圧力センサ)21と、コンプレッサ羽根車4の作動流体の上記圧力Pdを測定するように構成された第2の圧力測定装置(図示例では、圧力センサ)22と、過給機3の回転数Nを測定するように構成された第1の回転数測定装置(図示例では、回転数センサ)25と、を備える。過給機3は、図3に示されるように、コンプレッサ羽根車4のメタル温度Tmを測定するように構成された少なくとも1つの温度測定装置(図示例では、温度センサ)40(40A,40B,40C,40D)を備える。
【0021】
上述した制御装置11には、第1の圧力測定装置21、第2の圧力測定装置22、第1の回転数測定装置25及び少なくとも1つの温度測定装置40(40A,40B,40C,40D)の夫々から測定結果が送られるようになっている。
【0022】
(コンプレッサ羽根車の余寿命評価方法)
図4は、本開示の一実施形態にかかるコンプレッサ羽根車の余寿命評価方法のフロー図である。
幾つかの実施形態にかかるコンプレッサ羽根車の余寿命評価方法1は、図4に示されるように、回転数取得ステップS1と、応力算出ステップS2と、メタル温度測定ステップ(S3)と、余寿命評価ステップS5と、を備える。図示される実施形態では、余寿命評価方法1における幾つかのステップ(応力算出ステップS2、余寿命評価ステップS5など)は、制御装置11により行われている。換言すると、制御装置11は、応力算出ステップS2や余寿命評価ステップS5を実行可能に構成されており、これらのステップを行うようになっている。なお、余寿命評価方法1における幾つかのステップは、制御装置11以外の装置や機器により行われてもよいし、手動により行うようにしてもよい。
【0023】
或る実施形態では、制御装置11とは異なる装置である余寿命評価装置が、制御装置11の代わりに余寿命評価方法1における幾つかのステップ(応力算出ステップS2、余寿命評価ステップS5など)を実行可能に構成されており、上記ステップを行うようになっている。上記余寿命評価装置には、エンジンシステム2における測定データ(第1の圧力測定装置21、第2の圧力測定装置22、第1の回転数測定装置25及び少なくとも1つの温度測定装置40の夫々における測定結果)が送られるようになっている。上記余寿命評価装置は、制御装置11から離れた遠隔地に配置されていてもよい。具体的には、制御装置11を含むエンジンシステム2が船舶に設けられている場合には、上記余寿命評価装置は、船内における制御装置11の設置箇所に配置されてもよいし、船内における制御装置11の設置箇所とは異なる箇所に配置されていてもよい。また、上記余寿命評価装置は、上記船舶から離れた陸上に設けられた施設内に配置されていてもよい。上記余寿命評価装置によれば、制御装置11を含むエンジンシステム2から離れた遠隔地においても、コンプレッサ羽根車4の余寿命評価を行うことができる。
【0024】
回転数取得ステップS1では、過給機3の回転数Nを取得することが行われる。図示される実施形態では、回転数取得ステップS1において、第1の回転数測定装置25で測定された過給機3の回転数の測定値が過給機3の回転数Nとして取得される。
【0025】
応力算出ステップS2では、回転数取得ステップS1で取得した過給機3の回転数Nからコンプレッサ羽根車4に生じる応力(遠心応力)σを算出することが行われる。具体的には、応力算出ステップS2よりも前に、コンプレッサ羽根車4に生じる応力σと過給機3の回転数Nとの関係性を示す第1の関係性情報R1を取得することが行われる。応力算出ステップS2では、予め取得した第1の関係性情報R1に基づいて、回転数Nから応力σを算出することが行われる。
【0026】
第1の関係性情報R1は、コンプレッサ羽根車4に生じる応力σと、過給機3の回転数Nとの間の対応関係を示すものであり、回転数Nを入力情報とした際に、入力情報である回転数Nに対応する応力σを出力情報として取得できるものであればよい。第1の関係性情報R1には、上記入力情報と上記出力情報との対応関係を示すリストや表、マップ、関数、機械学習のモデルなどが含まれる。第1の関係性情報R1は、定常試験データを基に作成してもよいし、定常試験データ以外の過去の実績値や実験値、数値解析結果などを基に作成してもよい。
【0027】
コンプレッサ羽根車4に生じる応力σは、過給機3の回転数Nの二乗に比例している。このため、回転数Nが増加するほど、応力σが増加する。以上により、応力σと回転数Nとの間には相関関係があるといえる。第1の関係性情報R1には、応力σと回転数Nとの間の上記相関関係が含まれる。
【0028】
メタル温度測定ステップS3では、コンプレッサ羽根車4のメタル温度Tmを測定することが行われる。図示される実施形態では、メタル温度測定ステップS3において少なくとも1つの温度測定装置40で測定されたコンプレッサ羽根車4のメタル温度Tmの測定値がコンプレッサ羽根車4のメタル温度Tmとして取得される。少なくとも1つの温度測定装置40は、コンプレッサ羽根車4に非接触の状態で、メタル温度Tmを取得可能に構成されている。なお、メタル温度測定ステップS3においてコンプレッサ羽根車4のメタル温度Tmを測定する温度測定装置40の設置位置や数は、任意であり、後述する温度測定装置40(40A,40B,40C,40D)に関する記載に限定されるものではない。また、温度測定装置40によるコンプレッサ羽根車4のメタル温度Tmの測定位置も、後述する温度測定装置40(40A,40B,40C,40D)の測定位置に関する記載に限定されるものではない。
【0029】
余寿命評価ステップS5では、予め取得したコンプレッサ羽根車4における応力σ、メタル温度Tm、および寿命の関係性を利用して、応力算出ステップS2で算出した応力σと、メタル温度測定ステップS3で測定したメタル温度Tmとから、コンプレッサ羽根車4の余寿命を評価することが行われる。
【0030】
コンプレッサ羽根車4における応力σやメタル温度Tmの現時点までの履歴に応じて、コンプレッサ羽根車4に損傷(クリープ損傷など)が発生し、進展している場合がある。コンプレッサ羽根車の余寿命評価方法1によれば、余寿命評価ステップS5において、コンプレッサ羽根車4の応力σ、メタル温度Tm、および寿命の関係性を利用することで、応力算出ステップS2で算出した応力σと、メタル温度測定ステップS3で測定したメタル温度Tmとから、コンプレッサ羽根車4の現時点までの損傷を考慮した余寿命を求めることができるため、コンプレッサ羽根車4の余寿命を精度良く評価できる。特に、実際に測定したメタル温度Tmの測定値を用いて余寿命の評価を行うことで、他のパラメータから推定したメタル温度Tmの推定値を用いる場合に比べて、コンプレッサ羽根車4の余寿命を精度良く評価できる。
【0031】
(コンプレッサ羽根車の形状)
幾つかの実施形態では、図3に示されるように、上述したコンプレッサ羽根車4は、ハブ面42及び背面43を有するハブ41と、ハブ面42に設けられた少なくとも1つの翼44と、を含む。背面43は、背面43よりもコンプレッサ羽根車4の軸方向における後端側に突出する突出部45に接続される内周端432から背面の外周端431までに亘り延在している。
【0032】
図示される実施形態では、突出部45は、コンプレッサ羽根車4と一体的に形成されている。突出部45は、コンプレッサ羽根車4の軸方向に沿って延在する外側面451と、外側面451の上記軸方向の後端に連なり、コンプレッサ羽根車4の径方向に沿って延在する当接面452と、を有する。外側面451の上記軸方向の前端が背面43の内周端432に接続されている。当接面452は、突出部45に対してコンプレッサ羽根車4の軸方向における後端側に隣接して配置されたロータ49に少なくとも一部が当接している。ロータ49は、コンプレッサ羽根車4の軸方向に沿って延在する外側面491を有する。ロータ49は、回転シャフト31と一体的に形成されていてもよいし、回転シャフト31とは別体に形成されていてもよい。なお、他の幾つかの実施形態では、突出部45は、コンプレッサ羽根車4と別体に形成されていてもよい。例えば、突出部45は、回転シャフト31を挿通させるスリーブであってもよい。
【0033】
幾つかの実施形態では、上述したメタル温度測定ステップS3では、図3に示されるような、背面43の外周縁部46、内周縁部47、背面43の外周縁部46と内周縁部47の間に位置する中央部48、ハブ面42の外周縁部421、又は、上述した少なくとも1つの翼44の翼面の外周部441、の5箇所のうち、少なくとも1箇所のメタル温度Tmの測定が行われる。
【0034】
コンプレッサ羽根車4の径方向において、背面43の内周端432の径方向位置を0%と定義し、背面43の外周端431の径方向位置を100%と定義し、80%以上100%以下の径方向範囲における背面43を背面43の外周縁部46とし、0%以上20%以下の径方向範囲における背面43を背面43の内周縁部47とし、20%超80%未満の径方向範囲における背面43を背面43の中央部48とする。また、上述した80%以上100%以下の径方向範囲におけるハブ面42をハブ面42の外周縁部421とする。また、上述した80%以上100%以下の径方向範囲における翼44の翼面を上記翼面の外周部441とする。なお、コンプレッサ羽根車4の径方向において、背面43の内周端432の径方向位置の代わりに、突出部45の外側面451の径方向位置、又は、ロータ49の外側面491の径方向位置、の何れかを0%と定義してもよい。
【0035】
図示される実施形態では、ハブ面42の外周縁部421のメタル温度Tmの測定、又は、上記翼面の外周部441のメタル温度Tmの測定、の少なくとも一方は、第1温度測定装置40Aにより行われる。コンプレッサハウジング34は、コンプレッサ羽根車4の少なくとも1つの翼44に隙間を挟んで対向するシュラウド面345を含むシュラウド部346をさらに有する。図3に示される実施形態では、気体導入流路形成部342とシュラウド部346が一体に形成され、これらとスクロール流路形成部344の間に回転シャフト31の周方向に沿って延在する環状又は円弧状の間隙部347が形成されている。第1温度測定装置40Aは、シュラウド部346における外周縁部421に隙間を挟んで対向するシュラウド面345に設置される。
【0036】
背面43の外周縁部46のメタル温度Tmの測定は、第2温度測定装置40Bにより行われる。第2温度測定装置40Bは、軸受台38における外周縁部46に隙間を挟んで対向する対向面381に設置される。背面43の内周縁部47のメタル温度Tmの測定は、第3温度測定装置40Cにより行われる。第3温度測定装置40Cは、軸受台38における内周縁部47に隙間を挟んで対向する対向面381に設置される。背面43の中央部48のメタル温度Tmの測定は、第4温度測定装置40Dにより行われる。第4温度測定装置40Dは、軸受台38における中央部48に隙間を挟んで対向する対向面381に設置される。
【0037】
コンプレッサ羽根車4における疲労による損傷が生じ易い箇所であるクリティカル箇所は、コンプレッサ羽根車4の形状や作動条件等に依存するため、過給機3ごとに異なることがある。一般的に、ハブ41の比較的温度が高くなる外周部や比較的応力が高くなるボス部が、上記クリティカル箇所となる可能性が高い。上記の方法によれば、上記5箇所のうち、背面43の外周縁部46、ハブ面42の外周縁部421、又は、上記翼面の外周部441、のメタル温度Tmの測定値を用いて余寿命の評価を行うことで、特にハブ41の外周部が上記クリティカル箇所となる場合に、コンプレッサ羽根車4の余寿命を精度良く評価できる。そして、上記5箇所のうち、背面43の内周縁部47のメタル温度Tmの測定値を用いて余寿命の評価を行うことで、特にハブ41のボス部が上記クリティカル箇所となる場合に、コンプレッサ羽根車4の余寿命を精度良く評価できる。また、上記5箇所のうち、背面43の中央部48のメタル温度Tmの測定値を用いて余寿命の評価を行うことで、上記クリティカル箇所がハブ41の外周部又はボス部の何れかである場合だけでなく、上記クリティカル箇所が不明である場合であっても、コンプレッサ羽根車4の余寿命を比較的高精度で評価できる。
【0038】
幾つかの実施形態では、上述したメタル温度測定ステップS3では、上述した背面43の外周縁部46、内周縁部47、中央部48、ハブ面42の外周縁部421、又は、上述した翼面の外周部441、の5箇所のうち、の何れか1箇所のメタル温度Tmの測定が行われる。上述したコンプレッサ羽根車の余寿命評価方法1は、コンプレッサ羽根車4における疲労による損傷が生じ易い箇所であるクリティカル箇所を推定するクリティカル箇所推定ステップS4をさらに備える。上述した余寿命評価ステップS5は、予め取得したメタル温度測定ステップS3においてメタル温度Tmが測定される測定位置のメタル温度Tm1とクリティカル箇所のメタル温度Tm2との関係性を利用して、メタル温度測定ステップS3において測定した測定位置のメタル温度Tm1からクリティカル箇所のメタル温度Tm2を算出するメタル温度算出ステップS50を含む。
【0039】
本実施形態では、クリティカル箇所におけるコンプレッサ羽根車4の余寿命の評価が行われる。本実施形態の応力算出ステップS2では、回転数取得ステップS1で取得した過給機3の回転数Nから、コンプレッサ羽根車4の上記クリティカル箇所に生じる応力σを算出することが行われる。すなわち、本実施形態の第1の関係性情報R1は、コンプレッサ羽根車4の上記クリティカル箇所に生じる応力σと、過給機3の回転数Nとの間の対応関係を示すものである。なお、他の幾つかの実施形態では、上述した応力算出ステップS2において、回転数取得ステップS1で取得した過給機3の回転数Nから、コンプレッサ羽根車4の上記測定位置に生じる応力σを算出することが行われてもよい。この実施形態の第1の関係性情報R1は、コンプレッサ羽根車4の上記測定位置に生じる応力σと、過給機3の回転数Nとの間の対応関係を示すものであってもよい。
【0040】
クリティカル箇所推定ステップS4におけるクリティカル箇所の推定は、定常試験データを基に行ってもよいし、定常試験データ以外の過去の実績値や実験値、数値解析結果などを基に行ってもよい。クリティカル箇所推定ステップS4は、上述した制御装置11や余寿命評価装置が行うようにしてもよい。クリティカル箇所推定ステップS4は、メタル温度算出ステップS50よりも前に行われる。
【0041】
メタル温度算出ステップS50よりも前に、第2の関係性情報R2を取得することが行われる。第2の関係性情報R2は、測定位置のメタル温度Tm1とクリティカル箇所のメタル温度Tm2との間の対応関係を示すものであり、測定位置のメタル温度Tm1を入力情報とした際に、入力情報である測定位置のメタル温度Tm1に対応するクリティカル箇所のメタル温度Tm2を出力情報として取得できるものであればよい。第2の関係性情報R2には、上記入力情報と上記出力情報との対応関係を示すリストや表、マップ、関数、機械学習のモデルなどが含まれる。第2の関係性情報R2は、定常試験データを基に作成してもよいし、定常試験データ以外の過去の実績値や実験値、数値解析結果などを基に作成してもよい。
【0042】
余寿命評価ステップS5では、クリティカル箇所のメタル温度Tm2を用いることを基本とするが、測定位置がクリティカル箇所に該当する場合には、測定位置のメタル温度Tm1を用いてもよい。余寿命評価ステップS5では、予め取得したコンプレッサ羽根車4における応力σ、メタル温度Tm(Tm2)、および寿命の関係性を利用して、応力算出ステップS2で算出した応力σと、メタル温度算出ステップS50で算出したメタル温度Tm2とから、コンプレッサ羽根車4の余寿命を評価することが行われてもよい。
【0043】
上記の方法によれば、クリティカル箇所推定ステップS4及びメタル温度算出ステップS50を備えることで、メタル温度測定ステップS3において測定された測定位置のメタル温度Tm1からクリティカル箇所のメタル温度Tm2を算出できる。クリティカル箇所のメタル温度Tm2を用いて余寿命の評価を行うことで、クリティカル箇所におけるコンプレッサ羽根車4の余寿命を精度良く評価できる。
【0044】
なお、他の幾つかの実施形態では、上述した余寿命評価ステップS5は、メタル温度算出ステップS50を含んでいなくてもよい。この場合には、余寿命評価ステップS5では、予め取得したコンプレッサ羽根車4における応力σ、メタル温度Tm(Tm1)、および寿命の関係性を利用して、応力算出ステップS2で算出した応力σと、メタル温度測定ステップS3で測定したメタル温度Tm1とから、コンプレッサ羽根車4の余寿命を評価することが行われてもよい。
【0045】
幾つかの実施形態では、上述したコンプレッサ羽根車の余寿命評価方法1は、上述したクリティカル箇所推定ステップS4を備える。上述したメタル温度測定ステップS3では、上述した背面43の外周縁部46、内周縁部47、中央部48、ハブ面42の外周縁部421、又は、上述した翼面の外周部441、の5箇所のうちの、クリティカル箇所に最も近い1箇所のメタル温度Tm1の測定が行われる。
【0046】
上記の方法によれば、クリティカル箇所推定ステップS4において推定されたクリティカル箇所に最も近い1箇所のメタル温度Tm1を用いて余寿命の評価を行うことで、クリティカル箇所におけるコンプレッサ羽根車4の余寿命を比較的高精度で評価できる。なお、クリティカル箇所に最も近い1箇所以外の箇所のメタル温度Tm1を測定するための、温度測定装置40は設置しなくてもよい。
【0047】
幾つかの実施形態では、上述したメタル温度測定ステップS3では、背面43の外周縁部46、ハブ面42の外周縁部421、又は、上述した翼面の外周部441、のうちの何れか1箇所と、背面43の内周縁部47と、においてメタル温度Tm1の測定が行われる。
【0048】
上記の方法によれば、背面43の外周縁部46、ハブ面42の外周縁部421、又は、上記翼面の外周部441の何れかにおいて測定されたメタル温度Tm1を用いて余寿命の評価を行うことができ、且つ、背面43の内周縁部47において測定されたメタル温度Tm1を用いて余寿命の評価を行うことができる。この場合には、上記クリティカル箇所がハブ41の外周部又はボス部の何れかである場合だけでなく、上記クリティカル箇所が不明である場合であっても、コンプレッサ羽根車4の余寿命を比較的高精度で評価できる。
【0049】
(コンプレッサ羽根車の許容作動時間)
幾つかの実施形態では、図4に示されるように、上述した余寿命評価ステップS5は、予め取得したコンプレッサ羽根車4における応力σとラーソンミラーパラメータLMPとの関係性(第3の関係性情報R3)を利用して、応力算出ステップS2で算出した応力σからラーソンミラーパラメータLMPを算出するラーソンミラーパラメータ算出ステップS51と、ラーソンミラーパラメータ算出ステップS51で算出したラーソンミラーパラメータLMPと、メタル温度測定ステップS3で測定したメタル温度Tmとから、コンプレッサ羽根車4の許容作動時間trを算出する許容作動時間算出ステップS52と、を含む。コンプレッサ羽根車4の許容作動時間trは、一定のメタル温度Tmで一定の応力σを受けるコンプレッサ羽根車4が破断するまでの時間を示している。
【0050】
ラーソンミラーパラメータ算出ステップS51よりも前に、第3の関係性情報R3を取得することが行われる。第3の関係性情報R3は、コンプレッサ羽根車4における応力σと、ラーソンミラーパラメータLMPとの間の対応関係を示すものであり、応力σを入力情報とした際に、入力情報である応力σに対応するラーソンミラーパラメータLMPを出力情報として取得できるものであればよい。第3の関係性情報R3には、上記入力情報と上記出力情報との対応関係を示すリストや表、マップ、関数、機械学習のモデルなどが含まれる。第3の関係性情報R3は、定常試験データを基に作成してもよいし、定常試験データ以外の過去の実績値や実験値、数値解析結果などを基に作成してもよい。
【0051】
図5は、コンプレッサ羽根車における応力とラーソンミラーパラメータとの関係を説明するための説明図である。図5には、コンプレッサ羽根車4における応力σを縦軸とし、ラーソンミラーパラメータLMPを横軸とするグラフが示されている。図5には、応力σとラーソンミラーパラメータLMPとの間の関係性を示す1本のマスターカーブM1が示されている。マスターカーブM1は、例えば、数段階の応力σおよびメタル温度Tmにおけるクリープ破断試験の結果から求められる。第3の関係性情報R3には、マスターカーブM1が含まれる。或る実施形態では、ラーソンミラーパラメータ算出ステップS51において、マスターカーブM1に基づいて、応力算出ステップS2で算出した応力σから、該応力σに対応するラーソンミラーパラメータLMPを算出することが行われる。
【0052】
許容作動時間算出ステップS52では、下記式(1)に基づいて、ラーソンミラーパラメータ算出ステップS51で算出したラーソンミラーパラメータLMPと、メタル温度測定ステップS3で測定したメタル温度Tmとから、コンプレッサ羽根車4の許容作動時間trを算出することが行われる。
LMP=Tm×(C+log(tr))・・・・・・(1)
ここで、LMPはラーソンミラーパラメータ、Tmはコンプレッサ羽根車4のメタル温度、Cは材料定数であり、trはコンプレッサ羽根車4の許容作動時間である。また、本実施形態では、材料定数C=20である。
【0053】
上記の方法によれば、ラーソンミラーパラメータLMPを用いることで、応力算出ステップS2で算出した応力σと、メタル温度測定ステップS3で測定したメタル温度Tmとから、コンプレッサ羽根車4の現時点までのクリープ損傷を考慮したコンプレッサ羽根車4の許容作動時間trを求めることができる。余寿命評価ステップS5(S51およびS52)で算出したコンプレッサ羽根車4の許容作動時間trにより、コンプレッサ羽根車4の余寿命を精度良く評価できる。
【0054】
なお、許容作動時間算出ステップS52で許容作動時間trの算出に用いられるメタル温度Tmは、メタル温度測定ステップS3で測定した測定位置のメタル温度Tm1であってもよいし、メタル温度算出ステップS50で算出したクリティカル箇所のメタル温度Tm2であってもよい。クリティカル箇所におけるコンプレッサ羽根車4の余寿命を評価するためには、許容作動時間算出ステップS52で許容作動時間trの算出に用いられるメタル温度Tmは、クリティカル箇所のメタル温度Tm2であることが好ましい。
【0055】
幾つかの実施形態では、上述した許容作動時間算出ステップS52では、ラーソンミラーパラメータ算出ステップS51で算出したラーソンミラーパラメータLMPと、メタル温度測定ステップS3で測定した測定位置のメタル温度Tm1とから、コンプレッサ羽根車4の許容作動時間trを算出することが行われる。
【0056】
また、他の幾つかの実施形態では、上述した許容作動時間算出ステップS52では、ラーソンミラーパラメータ算出ステップS51で算出したラーソンミラーパラメータLMPと、メタル温度算出ステップS50で算出したクリティカル箇所のメタル温度Tm2とから、コンプレッサ羽根車4の許容作動時間trを算出することが行われる。この場合には、クリティカル箇所のメタル温度Tm2を用いて許容作動時間trを算出することで、クリティカル箇所におけるコンプレッサ羽根車4の余寿命を精度良く評価できる。
【0057】
また、上述した幾つかの実施形態では、ラーソンミラーパラメータLMPを用いて、応力σとメタル温度Tmとからコンプレッサ羽根車4の許容作動時間trを求めているが、他の公知の外挿法を用いて、応力σとメタル温度Tm(Tm1又はTm2)とからコンプレッサ羽根車4の許容作動時間trを求めてもよい。
【0058】
(過給機の回転数)
図6は、本開示の一実施形態における回転数取得ステップのフロー図である。
上述したエンジンシステム2が、過給機3の回転数Nを測定するように構成された上述した第1の回転数測定装置25を備えていない場合には、過給機3の回転数Nを求める必要がある。幾つかの実施形態では、図6に示されるように、上述した回転数取得ステップS1は、圧力比取得ステップS11と、流量取得ステップS12と、回転数算出ステップS13と、を含む。
【0059】
圧力比取得ステップS11では、コンプレッサ羽根車4の圧力比Prを取得することが行われる。図示される実施形態では、圧力比取得ステップS11は、コンプレッサ羽根車4の入口圧力Psを測定する入口圧力測定ステップS14と、コンプレッサ羽根車4の出口圧力Peを取得する出口圧力取得ステップS15と、入口圧力測定ステップS14で測定したコンプレッサ羽根車4の入口圧力Psと、出口圧力取得ステップS15で取得したコンプレッサ羽根車4の出口圧力Peとから、コンプレッサ羽根車4の圧力比Prを算出する圧力比算出ステップS16と、を含む。
【0060】
流量取得ステップS12では、コンプレッサ羽根車4の流量Frを取得することが行われる。流量取得ステップS12において、コンプレッサ羽根車4の流量Frは、エンジンの仕様やエンジンシステム2において一般的に測定されるパラメータを用いて公知の手法により推定される。
【0061】
回転数算出ステップS13では、予め取得したコンプレッサ羽根車4の圧力比Pr、流量Fr、および過給機3の回転数Nの関係性(第4の関係性情報R4)を利用して、圧力比取得ステップS11で取得した圧力比Prと、流量取得ステップS12で取得した流量Frとから、過給機3の回転数Nを算出することが行われる。
【0062】
回転数算出ステップS13よりも前に、第4の関係性情報R4を取得することが行われる。第4の関係性情報R4は、コンプレッサ羽根車4の圧力比Pr、流量Fr、および過給機3の回転数Nとの間の対応関係を示すものであり、圧力比Prおよび流量Frを入力情報とした際に、入力情報である圧力比Prおよび流量Frに対応する回転数Nを出力情報として取得できるものであればよい。第4の関係性情報R4には、上記入力情報と上記出力情報との対応関係を示すリストや表、マップ、関数、機械学習のモデルなどが含まれる。第4の関係性情報R4は、定常試験データを基に作成してもよいし、定常試験データ以外の過去の実績値や実験値、数値解析結果などを基に作成してもよい。
【0063】
上記の方法によれば、コンプレッサ羽根車4の圧力比Pr、流量Frおよび過給機3の回転数Nの関係性を利用することで、圧力比取得ステップS11で取得した圧力比Prと、流量取得ステップS12で取得した流量Frとから、過給機3の回転数Nを算出できる。上記の方法によれば、エンジンシステム2に過給機3の回転数Nを測定する回転数測定装置が設けられていない場合でも、コンプレッサ羽根車4の余寿命評価方法1を実行可能になる。
【0064】
幾つかの実施形態では、図6に示されるように、上述した圧力比取得ステップS11は、上述した入口圧力測定ステップS14と、上述した出口圧力取得ステップS15と、上述した圧力比算出ステップS16と、を含む。
【0065】
上記の方法によれば、入口圧力測定ステップS14で測定したコンプレッサ羽根車4の入口圧力Psと、出口圧力取得ステップS15で取得したコンプレッサ羽根車4の出口圧力Peとから、コンプレッサ羽根車4の圧力比Prを算出できる。上記の方法によれば、エンジンシステム2にコンプレッサ羽根車4の圧力比Prを測定する圧力比測定装置が設けられていない場合でも、コンプレッサ羽根車4の余寿命評価方法1を実行可能になる。
【0066】
幾つかの実施形態では、図6に示されるように、上述した回転数取得ステップS1は、圧力比取得ステップS11と、流量取得ステップS12と、回転数算出ステップS13と、を含み、上述した圧力比取得ステップS11は、上述した入口圧力測定ステップS14と、上述した出口圧力取得ステップS15と、上述した圧力比算出ステップS16と、を含む。上述した出口圧力取得ステップS15では、中間冷却器7よりも下流側において測定したコンプレッサ羽根車4の作動流体の圧力Pdに、中間冷却器7により生じる圧力損失ΔPを加えたものが出口圧力Peとして取得される。
【0067】
出口圧力取得ステップS15では、コンプレッサ羽根車4の出口圧力Peを取得することが行われる。コンプレッサ羽根車4の出口圧力Peは、燃焼用気体供給ライン6のコンプレッサ羽根車4よりも下流側、且つ中間冷却器7よりも上流側における燃焼用気体(コンプレッサ羽根車4の作動流体)の圧力である。中間冷却器7における圧力損失ΔPにより、中間冷却器7よりも下流側における燃焼用気体の圧力Pdは、コンプレッサ羽根車4の出口圧力Peよりも低くなっている。
【0068】
図示される実施形態では、出口圧力取得ステップS15において、第2の圧力測定装置22で測定された上記圧力Pdに、中間冷却器7により生じる圧力損失ΔPを加えたものが出口圧力Peとして取得される。圧力損失ΔPは、出口圧力取得ステップS15よりも前に中間冷却器7の仕様に基づいて予め設定されている。
【0069】
上記の方法によれば、出口圧力取得ステップS15において、中間冷却器7よりも下流側におけるコンプレッサ羽根車4の作動流体の圧力Pdに、中間冷却器7により生じる圧力損失ΔPを加えることで、コンプレッサ羽根車4の出口圧力Peを精度良く推定できる。これにより、圧力比算出ステップS16において、コンプレッサ羽根車4の圧力比Prを精度良く推定できる。また、上記の方法によれば、過給機3を備えるエンジンシステム2において一般的に測定が行われている中間冷却器7よりも下流側におけるコンプレッサ羽根車4の作動流体の圧力Pd、およびコンプレッサ羽根車4の入口圧力Psを用いて、コンプレッサ羽根車4の圧力比Prを推定できる。上記の方法によれば、エンジンシステム2にコンプレッサ羽根車4の出口圧力Peを測定する圧力測定装置やコンプレッサ羽根車4の圧力比Prを測定する圧力比測定装置が設けられていない場合でも、コンプレッサ羽根車4の余寿命評価方法1を実行可能になる。なお、圧力比取得ステップS11における出口圧力Peの推定や圧力比算出ステップS16、流量取得ステップS12および回転数算出ステップS13は、上述した制御装置11や余寿命評価装置が行うようにしてもよい。
【0070】
本開示は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
【0071】
上述した幾つかの実施形態に記載の内容は、例えば以下のように把握されるものである。
【0072】
1)本開示の少なくとも一実施形態にかかるコンプレッサ羽根車の余寿命評価方法(1)は、
過給機(3)が有するコンプレッサ羽根車(4)の余寿命を評価するコンプレッサ羽根車の余寿命評価方法(1)であって、
前記過給機(3)の回転数(N)を取得する回転数取得ステップ(S1)と、
前記回転数取得ステップ(S1)で取得した前記過給機(3)の回転数(N)から前記コンプレッサ羽根車(4)に生ずる応力(σ)を算出する応力算出ステップ(S2)と、
前記コンプレッサ羽根車(4)のメタル温度(Tm)を測定するメタル温度測定ステップ(S3)と、
予め取得した前記コンプレッサ羽根車(4)における応力(σ)、メタル温度(Tm)、及び寿命の関係性を利用して、前記応力算出ステップ(S2)で算出した前記応力(σ)と、前記メタル温度測定ステップ(S3)で測定した前記メタル温度(Tm)とから、前記コンプレッサ羽根車(4)の余寿命を評価する余寿命評価ステップ(S5)と、を備える。
【0073】
コンプレッサ羽根車(4)における応力(σ)やメタル温度(Tm)の現時点までの履歴に応じて、コンプレッサ羽根車(4)に損傷(クリープ損傷など)が発生し、進展している場合がある。上記1)の方法によれば、余寿命評価ステップ(S5)において、コンプレッサ羽根車(4)の応力(σ)、メタル温度(Tm)、及び寿命の関係性を利用することで、応力算出ステップ(S2)で算出した応力(σ)と、メタル温度測定ステップ(S3)で測定したメタル温度(Tm)とから、コンプレッサ羽根車(4)の現時点までの損傷を考慮した余寿命を求めることができるため、コンプレッサ羽根車(4)の余寿命を精度良く評価できる。特に、実際に測定したメタル温度(Tm)の測定値を用いて余寿命の評価を行うことで、他のパラメータから推定したメタル温度(Tm)の推定値を用いる場合に比べて、コンプレッサ羽根車(4)の余寿命を精度良く評価できる。
【0074】
2)幾つかの実施形態では、上記1)に記載のコンプレッサ羽根車の余寿命評価方法(1)であって、
前記コンプレッサ羽根車(4)は、
ハブ面(42)及び背面(43)を有するハブ(41)と、前記ハブ面(42)に設けられた少なくとも1つの翼(44)と、を含み、
前記背面(43)は、前記背面(43)よりも前記コンプレッサ羽根車(4)の軸方向における後端側に突出する突出部(45)に接続される内周端(432)から前記背面(43)の外周端(431)までに亘り延在し、
前記メタル温度測定ステップ(S3)では、
前記背面(43)の外周縁部(46)、内周縁部(47)、前記背面(43)の前記外周縁部(46)と前記内周縁部(47)の間に位置する中央部(48)、前記ハブ面(42)の外周縁部(421)、又は、前記少なくとも1つの翼(44)の翼面の外周部(441)、の5箇所のうち、少なくとも1箇所のメタル温度(Tm)の測定が行われる。
【0075】
コンプレッサ羽根車(4)における疲労による損傷が生じ易い箇所であるクリティカル箇所は、コンプレッサ羽根車(4)の形状や作動条件等に依存するため、過給機(3)ごとに異なることがある。一般的に、ハブ(41)の比較的温度が高くなる外周部や比較的応力が高くなるボス部が、上記クリティカル箇所となる可能性が高い。上記2)の方法によれば、上記5箇所のうち、背面(43)の外周縁部(46)、ハブ面(42)の外周縁部(421)、又は、翼面の外周部(441)、のメタル温度(Tm)の測定値を用いて余寿命の評価を行うことで、特にハブ(41)の外周部が上記クリティカル箇所となる場合に、コンプレッサ羽根車(4)の余寿命を精度良く評価できる。そして、上記5箇所のうち、背面(43)の内周縁部(47)のメタル温度(Tm)の測定値を用いて余寿命の評価を行うことで、特にハブ(41)のボス部が上記クリティカル箇所となる場合に、コンプレッサ羽根車(4)の余寿命を精度良く評価できる。また、上記5箇所のうち、背面(43)の中央部(48)のメタル温度(Tm)の測定値を用いて余寿命の評価を行うことで、上記クリティカル箇所がハブ(41)の外周部又はボス部の何れかである場合だけでなく、上記クリティカル箇所が不明である場合であっても、コンプレッサ羽根車(4)の余寿命を比較的高精度で評価できる。
【0076】
3)幾つかの実施形態では、上記2)に記載のコンプレッサ羽根車の余寿命評価方法(1)であって、
前記メタル温度測定ステップ(S3)では、
前記背面(43)の前記外周縁部(46)、前記内周縁部(47)、前記中央部(48)、前記ハブ面(42)の前記外周縁部(421)、又は、前記少なくとも1つの翼(44)の翼面の外周部(441)、の5箇所のうちの何れか1箇所のメタル温度(Tm)の測定が行われ、
前記コンプレッサ羽根車の余寿命評価方法(1)は、
前記コンプレッサ羽根車(4)における疲労による損傷が生じ易い箇所であるクリティカル箇所を推定するクリティカル箇所推定ステップ(S4)をさらに備え、
前記余寿命評価ステップ(5)は、
予め取得した前記メタル温度測定ステップ(S3)において前記メタル温度(Tm)が測定される測定位置の前記メタル温度(Tm1)と前記クリティカル箇所のメタル温度(Tm2)との関係性を利用して、前記メタル温度測定ステップ(S3)において測定した前記測定位置の前記メタル温度(Tm1)から前記クリティカル箇所の前記メタル温度(Tm2)を算出するメタル温度算出ステップ(S50)を含み、
前記コンプレッサ羽根車(4)における応力(σ)、メタル温度(Tm)、及び寿命の関係性を利用して、前記応力算出ステップ(S2)で算出した前記応力(σ)と、前記メタル温度算出ステップ(S50)で算出した前記メタル温度(Tm2)とから、前記コンプレッサ羽根車(4)の余寿命を評価する。
【0077】
上記3)の方法によれば、クリティカル箇所推定ステップ(S4)及びメタル温度算出ステップ(S50)を備えることで、メタル温度測定ステップ(S3)において測定された測定位置のメタル温度(Tm1)からクリティカル箇所のメタル温度(Tm2)を算出できる。クリティカル箇所のメタル温度(Tm2)を用いて余寿命の評価を行うことで、クリティカル箇所におけるコンプレッサ羽根車(4)の余寿命を精度良く評価できる。
【0078】
4)幾つかの実施形態では、上記2)に記載のコンプレッサ羽根車の余寿命評価方法(1)であって、
前記コンプレッサ羽根車(4)における疲労による損傷が生じ易い箇所であるクリティカル箇所を推定するクリティカル箇所推定ステップ(S4)をさらに備え、
前記メタル温度測定ステップ(S3)では、
前記背面(43)の前記外周縁部(46)、前記内周縁部(47)、前記中央部(48)、前記ハブ面(42)の前記外周縁部(421)、又は、前記少なくとも1つの翼(44)の翼面の外周部(441)、の5箇所のうちの、前記クリティカル箇所に最も近い1箇所のメタル温度(Tm1)の測定が行われる。
【0079】
上記4)の方法によれば、クリティカル箇所推定ステップ(S4)において推定されたクリティカル箇所に最も近い1箇所のメタル温度(Tm1)を用いて余寿命の評価を行うことで、クリティカル箇所におけるコンプレッサ羽根車(4)の余寿命を比較的高精度で評価できる。
【0080】
5)幾つかの実施形態では、上記2)に記載のコンプレッサ羽根車の余寿命評価方法(1)であって、
前記メタル温度測定ステップ(S3)では、
前記背面(43)の前記外周縁部(46)前記ハブ面(42)の前記外周縁部(421)、又は、前記少なくとも1つの翼(44)の翼面の外周部(441)、のうちの何れか1箇所と、前記背面(43)の前記内周縁部(47)と、において前記メタル温度(Tm1)の測定が行われる。
【0081】
上記5)の方法によれば、背面(43)の外周縁部(46)、ハブ面(42)の外周縁部(421)、又は、上記翼面の外周部(441)、の何れかにおいて測定されたメタル温度(Tm1)を用いて余寿命の評価を行うことができ、且つ、背面(43)の内周縁部(47)において測定されたメタル温度(Tm1)を用いて余寿命の評価を行うことができる。この場合には、上記クリティカル箇所がハブ(41)の外周部又はボス部の何れかである場合だけでなく、上記クリティカル箇所が不明である場合であっても、コンプレッサ羽根車(4)の余寿命を比較的高精度で評価できる。
【0082】
6)幾つかの実施形態では、上記1)から上記5)の何れかに記載のコンプレッサ羽根車の余寿命評価方法(1)であって、
前記余寿命評価ステップ(S5)は、
予め取得した前記コンプレッサ羽根車(4)における応力(σ)とラーソンミラーパラメータ(LMP)との関係性を利用して、前記応力算出ステップ(S2)で算出した前記応力(σ)からラーソンミラーパラメータ(LMP)を算出するラーソンミラーパラメータ算出ステップ(S51)と、
前記ラーソンミラーパラメータ算出ステップ(S51)で算出した前記ラーソンミラーパラメータ(LMP)と、前記メタル温度測定ステップ(S3)で測定した前記メタル温度(Tm)とから、前記コンプレッサ羽根車(4)の許容作動時間(tr)を算出する許容作動時間算出ステップ(S52)と、を含む。
【0083】
上記6)の方法によれば、ラーソンミラーパラメータ(LMP)を用いることで、応力算出ステップ(S2)で算出した応力(σ)と、メタル温度測定ステップ(S3)で測定したメタル温度(Tm)とから、コンプレッサ羽根車(4)の現時点までのクリープ損傷を考慮したコンプレッサ羽根車(4)の許容作動時間(tr)を求めることができる。余寿命評価ステップ(S5)で算出したコンプレッサ羽根車(4)の許容作動時間(tr)により、コンプレッサ羽根車(4)の余寿命を精度良く評価できる。
【0084】
7)幾つかの実施形態では、上記6)に記載のコンプレッサ羽根車の余寿命評価方法(1)であって、
前記コンプレッサ羽根車(4)は、
ハブ面(42)及び背面(43)を有するハブ(41)と、前記ハブ面(42)に設けられた少なくとも1つの翼(44)と、を含み、
前記背面(43)は、前記背面(43)よりも前記コンプレッサ羽根車(45)の軸方向における後端側に突出する突出部(45)に接続される内周端(432)から前記背面(43)の外周端(431)までに亘り延在し、
前記メタル温度測定ステップ(S3)では、
前記背面(43)の前記外周縁部(46)、前記内周縁部(47)、前記中央部(48)、前記ハブ面(42)の前記外周縁部(421)、又は、前記少なくとも1つの翼(44)の翼面の外周部(441)、の5箇所のうちの何れか1箇所のメタル温度(Tm)の測定が行われ、
前記コンプレッサ羽根車の余寿命評価方法(1)は、
前記コンプレッサ羽根車(4)における疲労による損傷が生じ易い箇所であるクリティカル箇所を推定するクリティカル箇所推定ステップ(S4)をさらに備え、
前記余寿命評価ステップ(5)は、
予め取得した前記メタル温度測定ステップ(S3)において前記メタル温度(Tm)が測定される測定位置の前記メタル温度(Tm1)と前記クリティカル箇所のメタル温度(Tm2)との関係性を利用して、前記メタル温度測定ステップ(S3)において測定した前記測定位置の前記メタル温度(Tm1)から前記クリティカル箇所の前記メタル温度(Tm2)を算出するメタル温度算出ステップ(S50)を含み、
前記許容作動時間算出ステップ(S52)では、前記ラーソンミラーパラメータ算出ステップ(S51)で算出した前記ラーソンミラーパラメータ(LMP)と、前記メタル温度算出ステップ(S50)で算出した前記クリティカル箇所の前記メタル温度(Tm2)とから、前記コンプレッサ羽根車(4)の許容作動時間(tr)を算出することが行われる。
【0085】
上記7)の方法によれば、クリティカル箇所のメタル温度(Tm2)を用いて許容作動時間(tr)を算出することで、クリティカル箇所におけるコンプレッサ羽根車(4)の余寿命を精度良く評価できる。
【符号の説明】
【0086】
1 コンプレッサ羽根車の余寿命評価方法
2 エンジンシステム
3 過給機
4 コンプレッサ羽根車
5 エンジン
6 燃焼用気体供給ライン
7 中間冷却器
8 排ガス排出ライン
9 燃料噴射弁
11 制御装置
21 第1の圧力測定装置
22 第2の圧力測定装置
25 第1の回転数測定装置
31 回転シャフト
32 コンプレッサ
33 タービン
34 コンプレッサハウジング
35 タービン翼
36 タービンハウジング
40,40A~40D 温度測定装置
51 シリンダ
52 ピストン
53 燃焼室
C 材料定数
Fr 流量
LMP ラーソンミラーパラメータ
M1 マスターカーブ
N 回転数
Pd 圧力
Pe 出口圧力
Pr 圧力比
Ps 入口圧力
R1,R2,R3,R4 関係性情報
S1 回転数取得ステップ
S2 応力算出ステップ
S3 メタル温度測定ステップ
S4 クリティカル箇所推定ステップ
S5 余寿命評価ステップ
S11 圧力比取得ステップ
S12 流量取得ステップ
S13 回転数算出ステップ
S14 入口圧力測定ステップ
S15 出口圧力取得ステップ
S16 圧力比算出ステップ
S50 メタル温度算出ステップ
S51 ラーソンミラーパラメータ算出ステップ
S52 許容作動時間算出ステップ
Tm,Tm1,Tm2 メタル温度
tr 許容作動時間

図1
図2
図3
図4
図5
図6