(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024051835
(43)【公開日】2024-04-11
(54)【発明の名称】繊維状セルロース複合樹脂、繊維状セルロース含有物、及び繊維状セルロース複合樹脂の製造方法
(51)【国際特許分類】
C08L 101/00 20060101AFI20240404BHJP
C08L 101/08 20060101ALI20240404BHJP
C08L 1/08 20060101ALI20240404BHJP
C08J 3/20 20060101ALI20240404BHJP
C08B 15/06 20060101ALN20240404BHJP
【FI】
C08L101/00
C08L101/08
C08L1/08
C08J3/20 B CER
C08J3/20 CEZ
C08B15/06
【審査請求】有
【請求項の数】5
【出願形態】OL
(21)【出願番号】P 2022158188
(22)【出願日】2022-09-30
(71)【出願人】
【識別番号】390029148
【氏名又は名称】大王製紙株式会社
(74)【代理人】
【識別番号】110002321
【氏名又は名称】弁理士法人永井国際特許事務所
(72)【発明者】
【氏名】青木 隆之介
(72)【発明者】
【氏名】松末 一紘
(72)【発明者】
【氏名】今井 貴章
【テーマコード(参考)】
4C090
4F070
4J002
【Fターム(参考)】
4C090AA10
4C090BA34
4C090BB53
4C090BB62
4C090BB65
4C090BD19
4C090BD31
4C090DA10
4C090DA31
4F070AA02
4F070AA15
4F070AB03
4F070AB05
4F070AB11
4F070AC72
4F070AD02
4F070FA03
4F070FB06
4F070FC06
4J002AA01W
4J002AA02W
4J002AB01X
4J002BB03W
4J002BB12W
4J002BC03W
4J002BG04W
4J002BG05W
4J002CB00W
4J002CC03W
4J002CC16W
4J002CC18W
4J002CD00W
4J002CF00W
4J002CF03W
4J002CF06W
4J002CF07W
4J002CF18W
4J002CF19W
4J002CF21W
4J002CG01W
4J002CK02W
4J002CL00W
4J002CM04W
4J002CP03W
4J002FA04X
(57)【要約】
【課題】強度の高い繊維状セルロース複合樹脂、及び強度の高い繊維状セルロース複合樹脂を製造する方法を提供する。
【解決手段】繊維状セルロース及び樹脂を含み、繊維状セルロースはヒドロキシ基の一部又は全部がカルバメート基で置換されたFine率Aが25%以上、フィブリル化率が1.0%以下のカルバメート化マイクロ繊維セルロースであることを特徴とする繊維状セルロース複合樹脂である。また、その製造方法においては、原料パルプを抄紙して帯状のパルプシートとし、このパルプシートに、尿素及び尿素の誘導体の少なくともいずれか一方を塗工し加熱してカルバメート化パルプシートとし、このカルバメート化パルプシートを解繊してFine率Aを25%以上、フィブリル化率を1.0%以下のカルバメート化マイクロ繊維セルロースとし、このカルバメート化マイクロ繊維セルロース及び樹脂を混練する。
【選択図】
図1
【特許請求の範囲】
【請求項1】
繊維状セルロース及び樹脂を含み、
前記繊維状セルロースは、ヒドロキシ基の一部又は全部がカルバメート基で置換されたFine率Aが25%以上、フィブリル化率が1.0%以下のカルバメート化マイクロ繊維セルロースである、
ことを特徴とする繊維状セルロース複合樹脂。
【請求項2】
前記繊維状セルロースの原料繊維は、Fine率Aが20%以上、かつフリーネス300~700mlである、
請求項1に記載の繊維状セルロース複合樹脂。
【請求項3】
カルバメート化マイクロ繊維セルロースの含有率が1~90質量%である、
請求項1に記載の繊維状セルロース複合樹脂。
【請求項4】
ヒドロキシ基の一部又は全部がカルバメート基で置換されたFine率Aが25%以上、フィブリル化率が1.0%以下のカルバメート化マイクロ繊維セルロースと、
無水マレイン酸変性樹脂と、を含む、
ことを特徴とする繊維状セルロース含有物。
【請求項5】
原料パルプを抄紙して帯状のパルプシートとし、
このパルプシートに、尿素及び尿素の誘導体の少なくともいずれか一方を塗工し加熱してカルバメート化パルプシートとし、
このカルバメート化パルプシートを解繊してFine率Aを25%以上、フィブリル化率を1.0%以下のカルバメート化マイクロ繊維セルロースとし、
このカルバメート化マイクロ繊維セルロース及び樹脂を混練して繊維状セルロース複合樹脂とする、
ことを特徴とする繊維状セルロース複合樹脂の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、繊維状セルロース複合樹脂、繊維状セルロース含有物、及び繊維状セルロース複合樹脂の製造方法に関するものである。
【背景技術】
【0002】
PP(ポリプロピレン)、PE(ポリエチレン)、ABS(アクリロニトリル、ブタジエン、スチレン共重合合成樹脂)等の各種樹脂には、当該樹脂の強度を向上するために、パルプを解繊して得たマイクロ繊維セルロース等の微細繊維を補強材(フィラー)として含ませることがある。しかしながら、微細繊維は乾燥の過程で凝集し易く、一旦凝集すると樹脂との混練時にかかるシェアでは解れずに凝集塊として残ることがある。微細繊維が凝集塊として残ると、当該微細繊維が補強材として機能しないばかりか、かえって樹脂の強度を落とす可能性もある。
【0003】
他方、補強材としてパルプの解繊度合いを抑えた繊維を用いると、繊維の分散性は向上するが、樹脂中において繊維同士が三次元ネットワークを形成しなくなり、樹脂の強度が十分に向上しなくなる可能性がある。
【0004】
この点、微細繊維の分散性に関しては、微細繊維が親水性であるのに対し樹脂は疎水性である点に着目し、微細繊維のヒドロキシ基をカルバメート基で置換する提案もある(例えば、特許文献1等。)。しかしながら、この提案は、凝集していない微細繊維の樹脂中における分散性を高めるという点では非常に有益であるが、いったん凝集してしまった微細繊維の分散性を高めるという点に関しては効果が薄い。したがって、微細繊維の凝集をできる限り抑えることによって樹脂中における微細繊維の分散性を向上させ、もって強度の高い繊維状セルロース複合樹脂を製造する方法の開発が切望されている。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明が解決しようとする課題は、強度の高い繊維状セルロース複合樹脂、繊維状セルロース含有物、及び強度の高い繊維状セルロース複合樹脂を製造する方法を提供することにある。
【課題を解決するための手段】
【0007】
本発明者らは、前述したようにマイクロ繊維セルロース等の微細繊維は乾燥の過程で凝集し易いことから、解繊後の繊維の形状が大きな影響を有していると考え、このことを前提に鋭意検討した。結果、同じ繊維サイズの微細繊維であっても枝分かれしている部分が多いほど、詳細にはFine率Aが同じ微細繊維であってもフィブリル化率が大きい微細繊維ほど、繊維の枝分かれしている部分同士が乾燥の過程で強固に凝集してしまうということを知見した。このような知見のもと上記課題を解決する下記の手段を想到した。
【0008】
すなわち、繊維状セルロース及び樹脂を含み、
前記繊維状セルロースは、ヒドロキシ基の一部又は全部がカルバメート基で置換されたFine率A25%以上、フィブリル化率1.0%以下のカルバメート化マイクロ繊維セルロースである、
ことを特徴とする繊維状セルロース複合樹脂である。
【0009】
また、原料パルプを抄紙して帯状のパルプシートとし、
このパルプシートに、尿素及び尿素の誘導体の少なくともいずれか一方を塗工し加熱してカルバメート化パルプシートとし、
このカルバメート化パルプシートを解繊してFine率A25%以上、フィブリル化率1.0%以下のカルバメート化マイクロ繊維セルロースとし、
このカルバメート化マイクロ繊維セルロース及び樹脂を混練して繊維状セルロース複合樹脂とする、
ことを特徴とする繊維状セルロース複合樹脂の製造方法である。
【0010】
さらに、ヒドロキシ基の一部又は全部がカルバメート基で置換されたFine率Aが25%以上、フィブリル化率が1.0%以下のカルバメート化マイクロ繊維セルロースと、
無水マレイン酸変性樹脂と、を含む、
ことを特徴とする繊維状セルロース含有物である。
【発明の効果】
【0011】
本発明によると、強度の高い繊維状セルロース複合樹脂、繊維状セルロース含有物、及び強度の高い繊維状セルロース複合樹脂を製造する方法になる。
【図面の簡単な説明】
【0012】
【
図1】原料パルプからカルバメート化微細繊維を得るまでの工程の説明図である。
【発明を実施するための形態】
【0013】
次に、発明を実施するための形態を説明する。なお、本実施の形態は本発明の一例である。本発明の範囲は、本実施の形態の範囲に限定されない。
【0014】
本形態の繊維状セルロース複合樹脂は、繊維状セルロース及び樹脂を含み、繊維状セルロースはヒドロキシ基の一部又は全部がカルバメート基で置換されたFine率A25%以上、フィブリル化率1.0%以下のカルバメート化マイクロ繊維セルロースである。本形態において、カルバメート化マイクロ繊維セルロースは、原料パルプをカルバメート化し、解繊することで得ることができる。この点、どのような方法でカルバメート化マイクロ繊維セルロースが上記のような物性になっているかは特に限定されるものではない。ただし、原料パルプを抄紙して帯状のパルプシートとし、このパルプシートに、尿素及び尿素の誘導体の少なくともいずれか一方を塗工し加熱してカルバメート化パルプシートとし、このカルバメート化パルプシートを解繊して得るのが好適である。そこで、以下ではこの製造方法に従って説明する。
【0015】
図1に示すように、本形態の製造方法は、原料パルプP1から「尿素及び尿素の誘導体の少なくともいずれか一方(単に「尿素等」とも言う。)を含むパルプシート」として使用可能なセルロース繊維含有物P2を得るまでの工程X1と、この工程X1の後に尿素等をセルロース繊維に反応させてカルバメート化セルロース繊維P3を得るまでの工程X2と、この工程X2の後にカルバメート化セルロース繊維P3を解繊してカルバメート化微細繊維P4を得るまでの工程X3とに主に区分することができる。
【0016】
また、セルロース繊維含有物P2を得るまでの工程X1は、原料パルプP1を抄紙して帯状のパルプシートにする抄紙工程100と、パルプシートに尿素等を塗工する塗工工程200とに主に区分することができる。以下、順に説明する。
【0017】
(原料パルプ)
原料パルプP1としては、例えば、広葉樹、針葉樹等を原料とする木材パルプ、ワラ・バガス・綿・麻・じん皮繊維等を原料とする非木材パルプ、回収古紙、損紙等を原料とする古紙パルプ(DIP)等の中から1種又は2種以上を選択して使用することができる。
【0018】
ただし、不純物の混入を可及的に避けるために、原料パルプP1としては、木材パルプを使用するのが好ましい。木材パルプとしては、例えば、広葉樹クラフトパルプ(LKP)、針葉樹クラフトパルプ(NKP)等の化学パルプ、機械パルプ(TMP)等の中から1種又は2種以上を選択して使用することができる。
【0019】
広葉樹クラフトパルプは、広葉樹晒クラフトパルプであっても、広葉樹未晒クラフトパルプであっても、広葉樹半晒クラフトパルプであってもよい。同様に、針葉樹クラフトパルプは、針葉樹晒クラフトパルプであっても、針葉樹未晒クラフトパルプであっても、針葉樹半晒クラフトパルプであってもよい。
【0020】
ただし、NKP(好適には、NBKP。)及びLKP(好適には、LBKP。)を併用するのが好ましい。この点、NKPはセルロース繊維が太く長いため、セルロース繊維含有物の強度が向上するが、地合いが悪化する。他方、LKPはセルロース繊維が細く短いため、抄紙した際にパルプシートの強度は低下するが、地合いが改善される。このような特性から、NKP及びLKPを併用する場合、NKPの配合割合は、好ましくは1~99質量%、より好ましくは5~95質量%、特に好ましくは10~90質量%である。NKPの配合割合が10質量%を下回ると、引張強さや引裂強度の不足が原因と考えられる断紙が抄紙工程や塗工工程において発生する可能性がある。他方、NKPの配合割合が90質量%を上回ると、つまり、LKPの配合割合が10質量%を下回ると、例えば、樹脂の補強効果等の特性が十分に得られない可能性がある。
【0021】
一方、機械パルプとしては、例えば、ストーングランドパルプ(SGP)、加圧ストーングランドパルプ(PGW)、リファイナーグランドパルプ(RGP)、ケミグランドパルプ(CGP)、サーモグランドパルプ(TGP)、グランドパルプ(GP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)、リファイナーメカニカルパルプ(RMP)、漂白サーモメカニカルパルプ(BTMP)等の中から1種又は2種以上を選択して使用することができる。
【0022】
原料パルプP1のJIS P 8121-2に準拠して測定したフリーネスは、好ましくは200~700cc、より好ましくは250~650cc、特に好ましくは300~600ccである。フリーネスが200cc未満であると、後述するワイヤーパートでの脱水性が悪く、抄紙速度を上げられない可能性がある。他方、フリーネスが700ccを超えると、地合いが悪く、後段の塗工工程で断紙する可能性がある。
【0023】
原料パルプP1には、必要によりサイズ剤を内添及び/又は外添し、ステキヒトサイズ度(JIS P 8122)やコッブサイズ度(JIS P 8140)を調整するのが好ましい。この点、ステキヒトサイズ度は、薬液がパルプシートに浸透し呈色するまでに要する時間を測定する試験で、数値が低いほど浸透性が高い。一方、コッブサイズ度は、パルプシートの片面が一定時間、水に接触する場合の吸水量(質量)を計測する試験で、数値が高いほど吸水性が高い。したがって、サイズ剤を含んでいる場合とサイズ剤を含んでいない場合とでは、浸透性の指標となるステキヒトサイズ度や、吸水性の指標となるコッブサイズ度が大きく異なる。しかるに、サイズ剤の量が多いと、後述する塗工工程における尿素等の添加量(浸透量)が不足し、反応が不十分になる可能性がある。他方、サイズ剤の量が少ないと、湿潤紙力強さ低下による断紙の可能性がある。そこで、サイズ剤の添加量を調整する必要があるが、この量は、尿素等を塗工する前のパルプシートのステキヒトサイズ度やコッブサイズ度を基準にするとよい。
【0024】
具体的には、JIS P 8122に準拠して測定したステキヒトサイズ度が、好ましくは0.1~100秒、より好ましくは0.2~80秒、特に好ましくは0.5~50秒である。また、JIS P 8140に準拠して測定したコッブサイズ度(10秒)が、好ましくは10~600g/m2、より好ましくは20~580g/m2、特に好ましくは30~550g/m2である。
【0025】
原料パルプP1のJIS P 8251に準拠して測定した灰分は、好ましくは0~20質量%、より好ましくは0~15質量%、特に好ましくは0~10質量%である。灰分が20質量%を超えると、濡れた状態にあるパルプシートの強度が下がり、特に塗工工程において断紙が発生する可能性がある。
【0026】
なお、本形態の製造方法は、紙の製造方法ではなく、尿素等を効率的に反応させるうえでパルプシートという状態、ないしは形態を利用しているだけである。したがって、紙の製造技術における灰分の添加に関する知見は直接的には利用することができず、例えば、後工程で解繊する場合においては、この灰分の量が解繊の進行に影響するという側面にも考慮する必要がある。
【0027】
(抄紙工程)
本形態の製造方法においては、抄紙工程100において原料パルプP1を抄紙して帯状のパルプシートにする。ここで、帯状とは、所定の幅(例えば、300~10000mm。)を有して連続する細長状のシートであり、紙の製造プロセスにおける湿紙や紙匹と同様、ないしは類似の形状を意味する。
【0028】
抄紙工程100において使用する抄紙設備としては、例えば、ワイヤーパート110やプレスパート120等を有する長網フォーマや、長網フォーマにオントップフォーマを組み合わせたフォーマ、ギャップフォーマ等を例示することができる。
【0029】
ただし、ヘッドボックスから噴出された紙料ジェットを2枚のワイヤーで直ちに挟み込むギャップフォーマを使用すると、表裏差が少なく、パルプシートの厚さ方向(Z軸方向)に関して尿素等をパルプシートに対して均等に浸み込ませることができるとの利点がある。
【0030】
もっとも、このギャップフォーマは表裏差が少ないという利点を有するが、両面がワイヤー面なので平坦性に劣り、また、紙料をワイヤーに吹き出した瞬間に地合が決まるため地合いが劣るという特性を有する。本形態は紙の製造自体が目的ではないため平坦性や地合いが問題にならない場合もあり得るが、後段の塗工方式との関係や薬液の浸透性との関係からは、オントップのリニアフォードとする方が平坦性や地合いに優れ好ましい。特に、ワイヤーにシェーキング装置(ワイヤーを横に揺する装置)を付ければ、地合がより向上して好ましい。
【0031】
ワイヤーパート110のパルプシート(紙層)は、プレスパート120に流れて(移行されて)、脱水が行われる。
【0032】
プレスパート120で使用するプレス機は、例えば、ストレートスルー型、インバー型、リバース型のいずれであっても、これらの組み合わせであってもよい。ただし、オープンドローを無くしたストレートスルー型は、パルプシートを保持し易く、断紙などの操業トラブルが少ないため、好ましい。
【0033】
プレスパート120を通ったパルプシート(湿紙)は、例えば、シングルデッキ方式、あるいはダブルデッキ方式のプレドライヤーパート130に移行し、乾燥を図ることができる。ただし、プレドライヤーパート130は、断紙が少なく、嵩を落とすことなく高効率に乾燥を行えることから、ノーオープンドロー形式のシングルデッキドライヤーが好ましい。
【0034】
プレドライヤーパート130における乾燥温度は、好ましくは80~140℃、より好ましくは85~135℃、特に好ましくは90~130℃である。乾燥温度が140℃を超えると部分的な過乾燥が生じ、この過乾燥部分において塗工工程200における尿素等の浸透が悪くなる可能性がある。他方、乾燥温度が80℃未満であると部分的な乾燥不良が生じ、この乾燥不良部分において断紙が生じる可能性がある。
【0035】
プレドライヤーパート130を経たパルプシートの水分率は、好ましくは0.1~10%、より好ましくは1~9%、特に好ましくは2~8%である。水分率が0.1%未満であると過乾燥となり、塗工工程200における尿素等の浸透が悪くなる可能性がある。他方、水分率が10%を超えると乾燥不良となり、塗工工程200において断紙が生じる可能性がある。
【0036】
本形態において上記水分率は、BM計(Basis weight/Moisture)の赤外線で測定した値である。
【0037】
抄紙工程100において得られる帯状のパルプシートは、JIS P 8124に準拠して測定した坪量が、好ましくは60~800g/m2、より好ましくは80~750g/m2、特に好ましくは100~700g/m2である。坪量が60g/m2未満であると、特に塗工工程200において強度不足を原因とする断紙が発生する可能性がある。他方、坪量が800g/m2を超えると、塗工工程200において尿素等が十分に浸透しない可能性がある。なお、以上の坪量は、1層抄きの場合である。2層以上の多層抄きになると、薬剤が層の界面で留まる可能性がある。
【0038】
塗工工程200において塗工される尿素等は、任意の抄紙薬品を含有したものであってもよい。抄紙薬品の種類に制限はなく、抄紙薬品の濃度は必要に応じて適宜調節することができる。ただし、尿素等を塗工する趣旨を害しない必要があるのは当然であり、調整が必要な場合もある。例えば、塗工工程200において尿素等を使用する本形態においては、抄紙工程100において各種澱粉、CMC(カルボキシメチルセルロース)等の水酸基を持つ抄紙薬品、コロイダルシリカ、硫酸バンド等のシラノール基等のある元素に-OHが結合した基を持つ抄紙薬品、ロジンサイズ剤、ASA(アルケニル無水コハク酸)、AKD(アルキルケテンダイマー)、各種澱粉、CMC等の抄紙薬品が、それぞれ好ましくは0~10%、より好ましくは0.1~9%、特に好ましくは0.2~8%となるように抄紙する。以上の抄紙薬品は尿素等による変性反応を受けるため、以上の抄紙薬品を多く含んでいると、その分、反応工程X2における尿素等の利用が妨げられる。以上の薬品は、内添、外添に依存しない。
【0039】
一方、染料は、その後の用途に依存し、例えば、樹脂の補強材料等が用途であり、微細繊維による着色が好ましくない場合等であれば、好ましくは0~10%、より好ましくは0.1~5%、特に好ましくは0.2~3%となるように抄紙する。
【0040】
また、同様の観点から、パルプシートのJIS P 8148に準拠して測定した白色度は、好ましくは80%以上、より好ましくは82%以上、特に好ましくは85%以上である。なお、前述した例のように、原料パルプP1としてLBKP及びNBKPを使用した場合は、通常、白色度が80%以上になり、白色度を調整する必要がない。
【0041】
パルプシートのJIS P 8113に準拠して測定した引張強さは、好ましくは10MPa以上、より好ましくは15MPa以上、特に好ましくは20MPa以上である。引張強さが10MPa(1kN/m、厚み100μm)未満では塗工工程200で断紙する可能性がある。もっとも、坪量を上げれば引張強さも上がるが、前述したように坪量を多くすると塗工工程200において尿素等が浸透しにくくなる。したがって、引張強さは坪量とのバランスも重要であり、比引張強さ(引張強さ/坪量)を、好ましくは1~10000Nm/g、より好ましくは5~5000Nm/g、特に好ましくは10~1000Nm/gとすると好適である。
【0042】
一方、パルプシートのJIS P 8135に準拠して測定した湿潤紙力強さは、好ましくは0.1kN/m以上、より好ましくは0.2kN/m以上、特に好ましくは0.5kN/m以上である。湿潤紙力強さが0.1kN/m未満では塗工工程200で断紙する可能性がある。もっとも、坪量を上げれば湿潤紙力強さも上がるが、前述したように坪量を多くすると塗工工程200において尿素等が浸透しにくくなる。したがって、湿潤紙力強さと坪量とのバランスも重要であり、比湿潤紙力強さ(湿潤紙力強さ/坪量)を、好ましくは0.1~5000Nm/g、より好ましくは0.5~1000Nm/g、特に好ましくは1~500Nm/gとすると好適である。
【0043】
(塗工工程)
プレドライヤーパート130にて乾燥されたパルプシートは、アフタードライヤーパート220との間のコーターパート210において尿素等が塗工される。ここで、本明細書において、「塗工」とは単に「塗る」行為を意味し、塗られた後の尿素等がどのような状態になるかまでを限定する趣旨ではない。したがって、例えば、尿素等がパルプシートの表面にも残り塗工層が形成される形態の他、尿素等が全てパルプシートに浸み込みパルプシートの表面に塗工層が形成されない形態、つまり単なる含浸状態となる形態をも含む。
【0044】
コーターパート210においては、例えば、ベベルブレード塗工、サイズプレス塗工、ベントブレード塗工、ロッド塗工、含浸塗工、スプレー塗工、コンマ塗工等の塗工方法によって尿素等を塗工することができる。ただし、コーターパート210における塗工は、ベントブレード塗工によるのが好ましい。この点、ベントブレード塗工はブレード塗工の一種であるが、同じくブレード塗工の一種であるベベルブレード塗工ではファウンテンで吹き付けた尿素等を掻き落とすのに対し、ベントブレード塗工では尿素等をパルプシートに押し込みながら塗工する。したがって、尿素等をパルプシートに浸透させる必要が大きい本形態に適している。
【0045】
一方、含浸塗工及びコンマ塗工には、それぞれ次のような特徴が存在する。
すなわち、まず、本形態においては、含浸方式とは、尿素等が入った容器内をパルプシートが走行することで塗工を行う方式を意味する。また、コンマ塗工とは、2本のロールとブレードの間に液だまりを作り、塗工量を調整するクリアランスの間をパルプシートが走行することで塗工を行う方式を意味する。
【0046】
尿素等の濃度は必要に応じて適宜調節することができるが、カルバメート化する本形態においては、好ましくは20~50質量%、より好ましくは25~45質量%、特に好ましくは30~40質量%である。尿素等の濃度が20質量%未満であるとカルバメート化率が不十分となり、また、乾燥困難となる可能性がある。他方、尿素等の濃度が50質量%を超えると、尿素水の作製時に尿素等の融解による吸熱反応で溶液の温度が低下し尿素等が析出する可能性がある。
【0047】
尿素水(濃度40%)のJIS-Z8803(2011)に準拠して測定した粘度は、好ましくは2000cps以下、より好ましくは1700cps以下、特に好ましくは1500cps以下である。粘度が2000cpsを超えると、尿素水がパルプシートに浸透し難くなる。
【0048】
本形態の製造方法においては、塗工工程200をオフラインで行うことも、オンラインで行うことも可能である。しかしながら、製造速度が300m/分以上である場合においては、抄紙工程100及び塗工工程200がオンマシン内の連続的な工程として順に組み込まれている(オンライン)と好適である。オンラインであれば、製造効率が向上するうえに、パルプシートの保存状態等による影響を受けず、塗工の均質化が図られる。
【0049】
本形態の製造方法において尿素等は、パルプシートの片面にのみ塗工することも、両面に塗工することもできる。ただし、後工程で行う反応の均一化という観点からは、両面に塗工する方が好ましい。
【0050】
なお、尿素等の塗工を、オフラインで、かつパルプシートの両面に行う場合は、パルプシートの特性に応じて、表裏面でそれぞれ塗工量を異なるものとすることができるとの利点がある。
【0051】
セルロース繊維に対する尿素等の塗工質量比(尿素等/セルロース繊維)は、好ましくは10~400kg/pt(パルプトン)、より好ましくは20~300kg/pt、特に好ましくは45~200kg/ptである。塗工質量比が45kg/pt未満であると、十分にカルバメート化が進まない可能性がある。他方、塗工質量比が200kg/ptを上回ると、過剰塗工となり、余剰の尿素等が装置に付着する可能性がある。なお、通常、塗工量は1m2当たりの質量で規定するが、本形態において尿素等は、セルロース繊維に反応させるための薬剤(反応薬)であるため、セルロース繊維単位質量当たりの尿素量で規定するのが好ましい。
【0052】
コーターパート210を通り抜けたパルプシートは、アフタードライヤーパート220に進み乾燥が図られる。
【0053】
アフタードライヤーパート220における乾燥においては、例えば、熱風乾燥装置、ガスヒーター乾燥装置、赤外線乾燥装置等の乾燥装置を使用することができる。ただし、赤外線乾燥装置を使用すると尿素等がパルプシートの表層において固化し、尿素等の浸透が妨げられる可能性がある。したがって、熱風乾燥装置を使用する方が好ましい。特に、熱風乾燥装置は温度制御が容易なため、熱風乾燥装置を複数段設け、徐々に温度が向上するように設計すると、尿素等の浸透を妨げることなく乾燥を進めることができる。
【0054】
アフタードライヤーパート220においては、乾燥温度が、好ましくは80~140℃、より好ましくは85~135℃、特に好ましくは90~130℃である。乾燥温度が80℃未満であると、乾燥時間が短い場合に乾燥不十分となる可能性があり、したがって高速での製造に不向きである。他方、乾燥温度が140℃を超えると、尿素等から副生成物が生成される可能性がある。
【0055】
アフタードライヤーパート220を経たパルプシートの水分率は、好ましくは0~10%、より好ましくは0~8%、特に好ましくは0~7%である。水分率が10%を超えると、反応工程において、反応効率が低下する可能性がある。
【0056】
この工程において、上記水分率はBM計(Basis weight/Moisture)の赤外線で測定した値である。
【0057】
アフタードライヤーパート220を経たパルプシートの表面温度は、好ましくは30~95℃、より好ましくは35~90℃、特に好ましくは40~85℃である。表面温度が40℃未満であると、乾燥不十分となる可能性がある。他方、表面温度が95℃を超えると、反応薬から副生成物が生成する可能性がある。
【0058】
なお、本形態は、紙の製造自体が目的ではなく、紙(パルプシート)という形状を一時的に利用しているに過ぎないため、この後、カレンダー工程に進んでも、このカレンダー工程を省略して反応工程に進んでもよい。
【0059】
(カルバメート化工程)
アフタードライヤーパート220を通り抜けたパルプシート(パルプ繊維含有物)は、例えば、ワインダーパート(図示せず)においていったん巻取り、巻取り原反として保存することができる。その後は、この巻取り原反を、巻き取った状態のままで加熱、冷却等の処理をし、セルロース繊維に尿素等を反応させることも考えられるが、本形態においては、巻取り原反からパルプシートを引き出し、このパルプシートを処理してカルバメート化を進める。
【0060】
いったん巻取り原反とする場合は、引き出したパルプシートを水分率10質量%以下となるように乾燥するの好ましく、9質量%以下となるように乾燥するのがより好ましく、8質量%以下となるように乾燥するのが特に好ましい。この乾燥は、反応効率を高めるために行うものである。
【0061】
ただし、以上のように、いったん巻取り原反とする形態によると、製造効率が低下する。そこで、アフタードライヤーパート220を通り抜けたパルプシートは、そのまま連続してカルバメート化工程X2に進める(移行させる)のも好ましい。この場合は、カルバメート化に先立つパルプシートの上記乾燥を省略することができる。
【0062】
カルバメート化工程X2においては、パルプシート、すなわちセルロース繊維含有物に含まれている尿素等をセルロース繊維に反応させる。ここで、この反応について詳細に説明する。
【0063】
まず、カルバメート化とは、セルロース繊維をカルバメート基を有するものに変性することを意味する。つまり、セルロース繊維をカルバメート(カルバミン酸のエステル)が導入された状態にすることを意味する。
【0064】
カルバメート基は、-O-CO-NH-で表される基であり、例えば、-O-CO-NH2、-O-CONHR、-O-CO-NR2等で表わされる基である。つまり、カルバメート基は、下記の構造式(1)で示すことができる。
【0065】
【0066】
ここでnは、1以上の整数を表す。Rは、それぞれ独立して、水素、飽和直鎖状炭化水素基、飽和分岐鎖状炭化水素基、飽和環状炭化水素基、不飽和直鎖状炭化水素基、不飽和分岐鎖状炭化水素基、芳香族基、及びこれらの誘導基の少なくともいずれかである。加えて、カルバメート基を介する架橋構造をセルロース分子又は繊維間で形成した、架橋カルバメート化セルロースを挙げることができる。
【0067】
飽和直鎖状炭化水素基としては、例えば、メチル基、エチル基、プロピル基等の炭素数1~10の直鎖状のアルキル基を挙げることができる。
【0068】
飽和分岐鎖状炭化水素基としては、例えば、イソプロピル基、sec-ブチル基、イソブチル基、tert-ブチル基等の炭素数3~10の分岐鎖状アルキル基を挙げることができる。
【0069】
飽和環状炭化水素基としては、例えば、シクロペンチル基、シクロヘキシル基、ノルボルニル基等のシクロアルキル基を挙げることができる。
【0070】
不飽和直鎖状炭化水素基としては、例えば、エテニル基、プロペン-1-イル基、プロペン-3-イル基等の炭素数2~10の直鎖状のアルケニル基、エチニル基、プロピン-1-イル基、プロピン-3-イル基等の炭素数2~10の直鎖状のアルキニル基等を挙げることができる。
【0071】
不飽和分岐鎖状炭化水素基としては、例えば、プロペン-2-イル基、ブテン-2-イル基、ブテン-3-イル基等の炭素数3~10の分岐鎖状アルケニル基、ブチン-3-イル基等の炭素数4~10の分岐鎖状アルキニル基等を挙げることができる。
【0072】
芳香族基としては、例えば、フェニル基、トリル基、キシリル基、ナフチル基等を挙げることができる。
【0073】
誘導基としては、上記飽和直鎖状炭化水素基、飽和分岐鎖状炭化水素基、飽和環状炭化水素基、不飽和直鎖状炭化水素基、不飽和分岐鎖状炭化水素基及び芳香族基が有する1又は複数の水素原子が、置換基(例えば、ヒドロキシ基、カルボキシ基、ハロゲン原子等。)で置換された基を挙げることができる。
【0074】
カルバメート基を有する(カルバメートが導入された)セルロース繊維においては、極性の高いヒドロキシ基の一部又は全部が、相対的に極性の低いカルバメート基に置換されている。したがって、当該セルロース繊維は、親水性が低く、極性の低い樹脂等との親和性が高い。結果、当該セルロース繊維を解繊して得た微細繊維は、樹脂との均一分散性に優れる等の特性がある。また、当該微細繊維のスラリーは、粘性が低く、ハンドリング性が良い。
【0075】
セルロース繊維のヒドロキシ基に対するカルバメート基の置換度の下限は、好ましくは0.05、より好ましくは0.1、特に好ましくは0.2である。置換度を0.05以上にすると、カルバメートを導入した効果が確実に奏せられる。他方、置換度の上限は、好ましくは1、より好ましくは0.5、特に好ましくは0.4である。この点、置換度の高いセルロース繊維は、高価であるとの問題がある。
【0076】
なお、セルロースは、無水グルコースを構造単位とする重合体であり、一構造単位当たり3つのヒドロキシ基を有する。したがって、全てのヒドロキシ基がカルバメート基に置換されると、置換度は3になる。
【0077】
セルロース繊維に対するカルバメート基の導入量は、好ましくは0.5~4.5mmol/g、より好ましくは0.6~4.0mmol/g、特に好ましくは0.7~3.5mmol/gである。導入量が0.5mmol/g未満であると、樹脂に複合化した際に十分な補強効果が得られないる可能性がある。他方、購入量が4.5mmol/gを超えると、過分な尿素が必要となる可能性がある。
【0078】
セルロース繊維にカルバメートを導入する(カルバメート化)点については、セルロース繊維をカルバメート化してから微細化する方法と、セルロース繊維を微細化して微細繊維としてからカルバメート化する方法とがある。しかしながら、本形態のように、先にカルバメート化を行い、その後に、解繊をする方が好ましい。解繊する前のセルロース繊維は脱水効率が高く、また、カルバメート化に伴う加熱によってセルロース繊維が解繊され易い状態になるためである。
【0079】
従来、セルロース繊維をカルバメート化する工程には、例えば、混合工程、除去工程、加熱工程等が存在した。混合工程においては、セルロース繊維と尿素等とを分散媒中で混合する。しかしながら、この工程が加わると、製造効率が著しく低下する。そこで、本形態においては、帯状のパルプシートの状態にあるセルロース繊維に対して尿素等を反応させる。この際、パルプシートは、巻取り原反の状態であることと、巻取り原反から引き出された状態であることとが考えられるが、反応効率や反応の均一性に優れるという観点から、引き出された状態にする。
【0080】
尿素や尿素の誘導体としては、例えば、尿素、チオ尿素、ビウレット、フェニル尿素、ベンジル尿素、ジメチル尿素、ジエチル尿素、テトラメチル尿素、尿素の水素原子をアルキル基で置換した化合物等を使用することができる。これらの尿素又は尿素の誘導体は、それぞれを単独で又は複数を組み合わせて使用することができる。ただし、尿素を使用するのが好ましい。
【0081】
本形態のカルバメート化工程X2においては、パルプシート、すなわち、尿素等を含むセルロース繊維含有物P2を加熱処理する。このカルバメート化工程X2においては、セルロース繊維のヒドロキシ基の一部又は全部が尿素等と反応してカルバメート基に置換される。より詳細には、尿素等が加熱されると下記の反応式(1)に示すようにイソシアン酸及びアンモニアに分解される。そして、イソシアン酸はとても反応性が高く、例えば、下記の反応式(2)に示すようにセルロースの水酸基にカルバメートを形成する。
【0082】
NH2-CO-NH2 → H-N=C=O + NH3 …(1)
【0083】
Cell-OH + H-N=C=O → Cell-O-CO-NH2 …(2)
【0084】
尿素等をセルロース繊維に反応させる場合、カルバメート化工程X2における加熱温度は、好ましくは150~280℃、より好ましくは160~270℃、特に好ましくは180~260℃、である。加熱温度が150℃未満であると十分に反応しない可能性がある。他方、加熱温度が280℃を超えると、尿素等が熱分解する可能性があり、また、着色が顕著になる可能性がある。
【0085】
尿素等をセルロース繊維に反応させる場合、カルバメート化工程X2における加熱時間は、好ましくは1~60秒、より好ましくは1~30秒、特に好ましくは1~20秒である。加熱時間が60秒を超えると、着色が顕著になる可能性があり、また、生産性に劣る。
【0086】
前述したように、パルプシートは、巻き取った状態のままで加熱することも、巻取り原反から引き出して加熱することも考えられる。そして、巻き取った状態のままで加熱する場合、この加熱の装置としては、例えば、熱風加熱方式、高周波加熱方式、ロータリーキルン方式等を使用することができる。他方、巻取り原反から引き出して加熱する場合、この加熱の装置としては、例えば、誘導式加熱ロール、オイル式加熱ロール、熱風加熱、遠赤外線加熱、マイクロ波加熱等を使用することができる。
【0087】
ここで、以上の加熱装置を使用した場合の特徴について、説明する。
まず、加熱の方法は、大きく2種類(バッチ式、連続式(ロールtoロール式))に分けられる。バッチ式では、一度に多量のサンプルを反応できる設備である高周波加熱装置及びロータリーキルンがある。この点、高周波加熱装置においては、電極内に被加熱物を置くと、被加熱物内部で分極を起こして電荷が生じ、周波数の速度変化により分子は激しい内部摩擦を起こして加熱される。一方、ロータリーキルンは、回転式の高温焼成装置で、製紙業界では、クラフトパルプ化工程の薬品回収工程で使用されている。
【0088】
一方、パルプシートを一対のロール間に通して加熱するロールtoロール式においては、尿素等が塗工されたパルプシートの状態で連続して加熱できるよう、誘導式加熱ロール、オイル式加熱ロール、更に連続式加熱とすることができる熱風加熱、遠赤外線加熱、マイクロ波加熱がある。この点、誘導式加熱ロールは、電気がつくる磁場の作用でロール自体を発熱させる方法で、抄紙工程のカレンダー設備でも使用されている。また、オイル式加熱ロールは、加熱した油をロール内部に循環させ、ロール表面を加熱する方法である。さらに、熱風加熱は、コンベアの上下に配置されたノズルからパルプシートの上下面へ熱風を噴射し、その間を通るパルプシートを加熱する方法である。また、遠赤外線加熱は、波長が3μm~1mmの赤外線を放射して、原子間が収縮・変角運動するのを利用して加熱する方法である。また、マイクロ波加熱は、周波数(300MHz~30GHz)に応じてパルプシートを構成している分子の各分子間で摩擦熱が発生するのを利用して発熱する方法で、一般的には電子レンジが挙げられる。
【0089】
オイル式加熱ロールに比べて、反応効率やエネルギー効率が良い誘導式加熱ロールを用いた反応設備が好ましい。一方で、巻取り原反の状態を利用したバッチ式での加熱、特に高周波を用いた加熱においては、大量のサンプルを一度に加熱することから、反応ムラが発生し均一なカルバメート反応には困難である。
【0090】
一方、誘導式加熱ロールやオイル式加熱ロール等のロールtoロール以外での連続加熱、例えば、熱風式加熱や遠赤外線加熱のような非接触の加熱方法では、反応温度を高くすることでカルバメート化反応が進めることができる。
【0091】
結論としては、原料パルプP1を抄紙することで帯状とした尿素等を含むパルプシートを、一対のロール間に通して加熱し、この加熱で反応を行うのが特に好ましいと言える。ただし、パルプシートのシート幅が300~1000mmである場合においては、一対のロールの少なくともいずれか一方が加熱ロールであるとより好ましいものとなる。この際、加熱ロールの加熱温度は、好ましくは180~280℃、より好ましくは200~270℃、特に好ましくは220~260℃である。
【0092】
さらに、多段(一対のロールを複数組設置)で構成し、一段目の加熱温度を80~140℃(より好ましくは90~120℃。)に抑え、かつ二段目以降の加熱温度を180~280℃(より好ましくは200~280℃。)にすると好適である。加えて、各加熱ロールの加熱温度を80~280℃の間で、段階的に加熱温度が上がっていく構成としても良い。また、この場合においては、以上のように一段目を低温にすることに変えて、少なくともいずれか一段の一対のロールのニップ線圧を1~100000N/cm、好ましくは10~50000N/cmとするのも好適である。なお、以上によると、パルプシートの収縮を抑えることができるとの利点がある。
【0093】
加熱処理後の混合物は、洗浄してもよい。この洗浄は、水等で行えばよい。この洗浄によって未反応で残留している尿素等を除去することができる。
【0094】
ここで、洗浄が十分に行われたかどうかは、濾液(スラリー)の窒素濃度や透明度を測定することで確認することができるが、次記で定義される「置換洗浄率」をもって評価するのが好ましい。なお、以下の「初段」とは、脱水前(離解後)のパルプスラリーを脱水工程に供した1回目のことを意味する。また、「2段目以降」とは、上記の初段が全量完了し、希釈水添加、撹拌後に同様の脱水工程を再度行うことを意味する。
【0095】
置換洗浄率D0(初段)=(A0)/(X0+Y0)×100(%)
X0:脱水前のパルプ中に含まれる水量=脱水前のパルプ水分散液量-脱水前のパルプ濃度×脱水前のパルプ水分散液量
Y0:脱水後のパルプ中に含まれる水量=脱水後のパルプ水分散液量-脱水後のパルプ濃度×脱水後のパルプ水分散液量
A0:脱水後の濾液量=X0-Y0
【0096】
置換洗浄率Dn(2段目以降)=Dn-1+An×(1-Dn-1)/(Xn+Yn)×100(%)
Dn-1:前段の置換洗浄率
Xn:脱水前のパルプ中に含まれる水量=脱水前のパルプ水分散液量-脱水前のパルプ濃度×脱水前のパルプ水分散液量
Yn:脱水後のパルプ中に含まれる水量=脱水後のパルプ水分散液量-脱水後のパルプ濃度×脱水後のパルプ水分散液量
An:脱水後の濾液量=Xn-Yn
【0097】
本形態において置換洗浄率は、80%以上となることが好ましい。1回の脱水洗浄では洗浄率が80%以上とすることが難しい場合は、80%以上となるまで脱水洗浄を数回繰り返し、希釈脱水洗浄を行うことが好ましい。
【0098】
以上のようにして得たカルバメート化セルロース繊維P3は、Fine率Aが、好ましくは10~40%、より好ましくは15~35%、特に好ましくは20~30%である。このように解繊前における繊維のFine率を高くしておくことで、解繊工程を経た繊維のフィブリル化率を下げるのが容易になる。
【0099】
なお、抄紙工程においては、断紙を避けるために抄紙の前にパルプを若干解繊しておくのが好ましい。この解繊を行っておくと抄紙後における繊維のFineA率が高くなる。したがって、抄紙後における繊維のFineA率を高くするために抄紙前の繊維について解繊を行いフリーネスを下げておけば最終的に得られる繊維のフィブリル化率を下げやすくなるばかりでなく、製造工程における断紙も減らすことができる。この観点から、抄紙前における繊維のフリーネスは、好ましくは100~800ml、より好ましくは200~750ml、特に好ましくは300~700である。
【0100】
フリーネスは、JIS P8121-2(2012)に準拠して測定した値である。
【0101】
(解繊工程)
本形態においては、以上のようにして得たカルバメート化セルロース繊維P3を、必要により粉砕する等し、解繊工程X3において解繊(微細化)する。この解繊により、カルバメート化微細繊維P4が得られる。
【0102】
なお、本形態において微細繊維とは、平均繊維幅が0.01~19μmのセルロース繊維を意味するものとする。微細繊維には、例えば、マイクロ繊維セルロース(ミクロフィブリル化セルロース)やセルロースナノファイバーが含まれる。
【0103】
また、カルバメート化セルロース繊維P3は粉砕等して直ちに解繊することもできるが、解繊に先立ってシート状、あるいは粉砕された反応セルロース繊維P3を水に離解させ、更にバルブレスフィルター等の脱水設備で脱水して反応セルロース繊維P3を洗浄するのが好ましい。また、脱水にバルブレスフィルターを使用する場合は、脱水後のマット状の反応セルロース繊維P3にシャワーを掛けることでより洗浄を完全なものとすることができる。洗浄することで未反応の反応液、反応液の副生物、あるいは水溶性の不純物を除去することができる。
【0104】
本形態において、マイクロ繊維セルロースは、セルロースナノファイバーよりも平均繊維径の太い繊維を意味する。具体的には、例えば0.1~19μm、好ましくは0.2~10μmである。マイクロ繊維セルロースの平均繊維径が0.1μmを下回ると(未満になると)、セルロースナノファイバーであるのと変わらなくなり、例えば、樹脂と混練した場合において樹脂の強度(特に曲げ弾性率)向上効果が十分に得られないおそれがある。また、解繊時間が長くなり、大きなエネルギーが必要になる。さらに、セルロース繊維スラリーの脱水性が悪化する。脱水性が悪化すると、乾燥に大きなエネルギーが必要になり、乾燥に大きなエネルギーをかけるとセルロース繊維が熱劣化して、強度が低下するおそれがある。他方、マイクロ繊維セルロースの平均繊維径が19μmを上回ると(超えると)、パルプであるのと変わらなくなり、樹脂の補強効果が十分でなくなるおそれがある。
【0105】
微細繊維(マイクロ繊維セルロース及びセルロースナノファイバー)の平均繊維径の測定方法は、次のとおりである。
【0106】
まず、固形分濃度0.01~0.1質量%の微細繊維の水分散液100mlをテフロン(登録商標)製メンブレンフィルターでろ過し、エタノール100mlで1回、t-ブタノール20mlで3回溶媒置換する。次に、凍結乾燥し、オスミウムコーティングして試料とする。この試料について、構成する繊維の幅に応じて3,000倍~30,000倍のいずれかの倍率で電子顕微鏡SEM画像による観察を行う。具体的には、観察画像に二本の対角線を引き、対角線の交点を通過する直線を任意に三本引く。さらに、この三本の直線と交錯する合計100本の繊維の幅を目視で計測する。そして、計測値の中位径を平均繊維径とする。
【0107】
カルバメート化セルロース繊維P3、あるいはその粉砕物は、解繊するに先立って化学的手法によって前処理や漂白処理等することができる。
【0108】
化学的手法による前処理としては、例えば、酸による多糖の加水分解(酸処理)、酵素による多糖の加水分解(酵素処理)、アルカリによる多糖の膨潤(アルカリ処理)、酸化剤による多糖の酸化(酸化処理)、還元剤による多糖の還元(還元処理)等を例示することができる。ただし、化学的手法による前処理としては、酵素処理を施すのが好ましく、加えて酸処理、アルカリ処理、及び酸化処理の中から選択された1又は2以上の処理を施すのがより好ましい。以下、酵素処理について詳細に説明する。
【0109】
酵素処理に使用する酵素としては、セルラーゼ系酵素及びヘミセルラーゼ系酵素の少なくともいずれか一方を使用するのが好ましく、両方を併用するのがより好ましい。これらの酵素を使用すると、セルロース繊維の解繊がより容易になる。なお、セルラーゼ系酵素は、水共存下でセルロースの分解を惹き起こす。また、ヘミセルラーゼ系酵素は、水共存下でヘミセルロースの分解を惹き起こす。
【0110】
セルラーゼ系酵素としては、例えば、トリコデルマ(Trichoderma、糸状菌)属、アクレモニウム(Acremonium、糸状菌)属、アスペルギルス(Aspergillus、糸状菌)属、ファネロケエテ(Phanerochaete、担子菌)属、トラメテス(Trametes、担子菌)属、フーミコラ(Humicola、糸状菌)属、バチルス(Bacillus、細菌)属、スエヒロタケ(Schizophyllum、担子菌)属、ストレプトミセス(Streptomyces、細菌)属、シュードモナス(Pseudomonas、細菌)属などが産生する酵素を使用することができる。これらのセルラーゼ系酵素は、試薬や市販品として購入可能である。市販品としては、例えば、セルロイシンT2(エイチピィアイ社製)、メイセラ-ゼ(明治製菓社製)、ノボザイム188(ノボザイム社製)、マルティフェクトCX10L(ジェネンコア社製)、セルラーゼ系酵素GC220(ジェネンコア社製)等を例示することができる。
【0111】
また、セルラーゼ系酵素としては、EG(エンドグルカナーゼ)及びCBH(セロビオハイドロラーゼ)のいずれかもを使用することもできる。EG及びCBHは、それぞれを単体で使用しても、混合して使用してもよい。また、ヘミセルラーゼ系酵素と混合して使用してもよい。
【0112】
ヘミセルラーゼ系酵素としては、例えば、キシランを分解する酵素であるキシラナーゼ(xylanase)、マンナンを分解する酵素であるマンナーゼ(mannase)、アラバンを分解する酵素であるアラバナーゼ(arabanase)等を使用することができる。また、ペクチンを分解する酵素であるペクチナーゼも使用することができる。
【0113】
ヘミセルロースは、植物細胞壁のセルロースミクロフィブリル間にあるペクチン類を除いた多糖類である。ヘミセルロースは多種多様で木材の種類や細胞壁の壁層間でも異なる。針葉樹の2次壁では、グルコマンナンが主成分であり、広葉樹の2次壁では4-O-メチルグルクロノキシランが主成分である。そこで、針葉樹晒クラフトパルプ(NBKP)から微細繊維を得る場合は、マンナーゼを使用するのが好ましい。また、広葉樹晒クラフトパルプ(LBKP)から微細繊維を得る場合は、キシラナーゼを使用するのが好ましい。
【0114】
セルロース繊維に対する酵素の添加量は、例えば、酵素の種類、原料となる木材の種類(針葉樹か広葉樹か)、機械パルプの種類等によって決まる。ただし、セルロース繊維に対する酵素の添加量は、好ましくは0.1~3質量%、より好ましくは0.3~2.5質量%、特に好ましくは0.5~2質量%である。酵素の添加量が0.1質量%を下回ると、酵素の添加による効果が十分に得られないおそれがある。他方、酵素の添加量が3質量%を上回ると、セルロースが糖化され、微細繊維の収率が低下するおそれがある。また、添加量の増量に見合う効果の向上を認めることができないとの問題もある。
【0115】
酵素としてセルラーゼ系酵素を使用する場合、酵素処理時のpHは、酵素反応の反応性の観点から、弱酸性領域(pH=3.0~6.9)であるのが好ましい。他方、酵素としてヘミセルラーゼ系酵素を使用する場合、酵素処理時のpHは、弱アルカリ性領域(pH=7.1~10.0)であるのが好ましい。
【0116】
酵素処理時の温度は、酵素としてセルラーゼ系酵素及びヘミセルラーゼ系酵素のいずれを使用する場合においても、好ましくは30~70℃、より好ましくは35~65℃、特に好ましくは40~60℃である。酵素処理時の温度が30℃以上であれば、酵素活性が低下し難くなり、処理時間の長期化を防止することができる。他方、酵素処理時の温度が70℃以下であれば、酵素の失活を防止することができる。
【0117】
酵素処理の時間は、例えば、酵素の種類、酵素処理の温度、酵素処理時のpH等によって決まる。ただし、一般的な酵素処理の時間は、0.5~24時間である。
【0118】
酵素処理した後には、酵素を失活させるのが好ましい。酵素を失活させる方法としては、例えば、アルカリ水溶液(好ましくはpH10以上、より好ましくはpH11以上)を添加する方法、80~100℃の熱水を添加する方法等が存在する。
【0119】
次に、アルカリ処理の方法について説明する。
解繊に先立ってアルカリ処理すると、セルロース繊維が持つヘミセルロースやセルロースの水酸基が一部解離し、分子がアニオン化することで分子内及び分子間水素結合が弱まり、解繊におけるセルロース繊維の分散が促進される。
【0120】
アルカリ処理に使用するアルカリとしては、例えば、水酸化ナトリウム、水酸化リチウム、水酸化カリウム、アンモニア水溶液、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム、水酸化ベンジルトリメチルアンモニウム等の有機アルカリ等を使用することができる。ただし、製造コストの観点からは、水酸化ナトリウムを使用するのが好ましい。
【0121】
解繊に先立って酵素処理や酸処理、酸化処理を施すと、微細繊維の保水度を低く、結晶化度を高くすることができ、かつ均質性を高くすることができる。この点、マイクロ繊維セルロースの保水度が低いと脱水し易くなり、セルロース繊維スラリーの脱水性が向上する。
【0122】
セルロース繊維を酵素処理や酸処理、酸化処理すると、パルプが持つヘミセルロースやセルロースの非晶領域が分解される。結果、解繊のエネルギーを低減することができ、セルロース繊維の均一性や分散性を向上することができる。ただし、前処理は、マイクロ繊維セルロースのアスペクト比を低下させるため、樹脂の補強材として使用する場合には、過度の前処理を避けるのが好ましい。
【0123】
一方、漂白処理としては、過酸化物漂白、次亜塩素酸塩漂白、二酸化塩素漂白、過硫酸塩類漂白、オキソン漂白及びそれらを組み合わせた多段漂白処理、ハイドロサルファイト、水素化ホウ素ナトリウム等による還元漂白を施してもよい。
【0124】
セルロース繊維の解繊は、例えば、ビーター、高圧ホモジナイザー、対向衝突型のホモジナイザー、高圧均質化装置等のホモジナイザー、グラインダー、摩砕機等の石臼式摩擦機、単軸混練機、多軸混練機、ニーダーリファイナー、ジェットミル等を使用して原料パルプを叩解することによって行うことができる。ただし、リファイナーやジェットミルを使用して行うのが好ましい。
【0125】
マイクロ繊維セルロースの平均繊維長(単繊維の長さの平均)は、好ましくは0.02~2.0mm、より好ましくは0.05~1.5mm、特に好ましくは0.1~1.0mmである。平均繊維長が0.02mmを下回ると、繊維同士の三次元ネットワークを形成できず、樹脂の補強効果が低下するおそれがある。他方、平均繊維長が2.0mmを上回ると、原料パルプと変わらない長さのため補強効果が不十分となるおそれがある。
【0126】
マイクロ繊維セルロースの平均繊維長は、例えば、原料パルプP1の選定、前処理、解繊等で任意に調整可能である。
【0127】
マイクロ繊維セルロースの繊維長は、0.2mm以下の割合(Fine率A)が、好ましくは25%以上、より好ましくは26~80%、特に好ましくは27~65%である。Fine率Aが25%を下回ると、樹脂の補強効果が十分に得られない可能性がある。他方、80%を上回ると、曲げ弾性率が不十分になる可能性がある。
【0128】
マイクロ繊維セルロースのアスペクト比は、好ましくは2~15000、より好ましくは10~10000である。アスペクト比が2を下回ると、三次元ネットワークを構築できないため補強効果が不十分となるおそれがある。他方、アスペクト比が15000を上回ると、マイクロ繊維セルロース同士の絡み合いが高くなり、樹脂中での分散が不十分となるおそれがある。
【0129】
アスペクト比とは、平均繊維長を平均繊維幅で除した値である。アスペクト比が大きいほど引っかかりが生じる箇所が多くなるため補強効果が上がるが、他方で引っかかりが多くなる分、樹脂の延性が低下するものと考えられる。
【0130】
以上の平均繊維長、Fine率A、及びアスペクト比において繊維長の測定方法は、バルメット社製の繊維分析計「FS5」によって測定することができる。
【0131】
マイクロ繊維セルロースのフィブリル化率は、好ましくは1.0%以下、より好ましくは0.45~0.95%、特に好ましくは0.60~0.90%である。フィブリル化率が1.0%を超えると、乾燥時に繊維同士が凝集し、樹脂中で分散が不十分となる恐れがある。この点、従来は、このフィブリル化率が1.0%を超えた方が好ましいものとされていた。繊維長が短く、それに伴いフィブリル化率が1.0%を超えた方が樹脂中で繊維が三次元ネットワークを構築し、補強効果が上がるというものである。しかしながら、フィブリル化率が高い繊維を使用した場合は、繊維が凝集し易く樹脂中において繊維を分散させるのが難しくなり、製造条件が限定的になる(例えば、繊維の凝集を避けるために乾燥に時間をかける必要がある。)ため、大量生産が難しいことがわかった。一方で、フィブリル化率1.0%以下のマイクロ繊維セルロースを用いることで、大量生産した場合でも繊維が分散し、また、Fine率Aを制御しておけば三次元ネットワーク構築という点でも問題はなく、強度の高い複合樹脂が得られる。
【0132】
フィブリル化率は、繊維全体の投射部に対する小繊維の投射部の割合であり、毛羽立ち部分/毛羽立ちを含めた繊維全体である。この値は、例えば、バルメット社製の繊維分析計「FS5」によって測定することができる。
【0133】
マイクロ繊維セルロースの結晶化度は、好ましくは50%以上、より好ましくは55%以上、特に好ましくは60%以上である。結晶化度が50%を下回ると、パルプやセルロースナノファイバーとの混合性は向上するものの、繊維自体の強度が低下するため、樹脂の強度を向上することができなくなるおそれがある。他方、マイクロ繊維セルロースの結晶化度は、好ましくは95%以下、より好ましくは90%以下、特に好ましくは85%以下である。結晶化度が95%を上回ると、分子内の強固な水素結合割合が多くなり、繊維自体が剛直となり、分散性が劣るようになる。
【0134】
マイクロ繊維セルロースの結晶化度は、例えば、原料パルプP1の選定、前処理、微細化処理で任意に調整可能である。
【0135】
結晶化度は、JIS K 0131(1996)に準拠して測定した値である。
【0136】
マイクロ繊維セルロースの粘度は、好ましくは2cps以上、より好ましくは4cps以上である。マイクロ繊維セルロースのパルプ粘度が2cpsを下回ると、マイクロ繊維セルロースの凝集を抑制するのが困難になるおそれがある。
【0137】
マイクロ繊維セルロースの粘度は、TAPPI T 230に準拠して測定した値である。
【0138】
マイクロ繊維セルロースのフリーネスは、好ましくは500ml以下、より好ましくは300ml以下、特に好ましくは100ml以下である。マイクロ繊維セルロースのフリーネスが500mlを上回ると、マイクロ繊維セルロースの平均繊維径が10μmを超え、樹脂の強度向上効果が十分に得られなくなるおそれがある。
【0139】
フリーネスは、JIS P8121-2(2012)に準拠して測定した値である。
【0140】
マイクロ繊維セルロースのゼータ電位は、好ましくは-150~20mV、より好ましくは-100~0mV、特に好ましくは-80~-10mVである。ゼータ電位が-150mVを下回ると、樹脂との相溶性が著しく低下し補強効果が不十分となるおそれがある。他方、ゼータ電位が20mVを上回ると、分散安定性が低下するおそれがある。
【0141】
次に、セルロースナノファイバーについて説明する。
本形態においては、セルロースナノファイバーは、マイクロ繊維セルロースと同様に微細繊維であり、樹脂の強度向上にとって特有の役割を有する。
【0142】
まず、セルロースナノファイバーは、カルバメート化セルロース繊維P3を解繊(微細化)することで得ることができる。原料パルプP1としては、マイクロ繊維セルロースと同じものを使用することができ、マイクロ繊維セルロースと同じものを使用するのが好ましい。
【0143】
セルロースナノファイバーの原料繊維は、マイクロ繊維セルロースの場合と同様の方法で前処理や解繊をすることができる。ただし、解繊の程度は異なり、例えば、平均繊維径が0.1μmを下回るように行う必要がある。以下、マイクロ繊維セルロースの場合と異なる点を中心に説明する。
【0144】
セルロースナノファイバーの平均繊維径(平均繊維幅。単繊維の直径平均。)は、好ましくは4~100nm、より好ましくは10~80nmである。セルロースナノファイバーの平均繊維径が4nmを下回ると、脱水性が悪化するおそれがある。また、セルロースナノファイバーを分散剤と混合する形態においては、分散剤がセルロースナノファイバーを十分に覆わなくなり(に十分に纏わりつかなくなり)、分散性が十分に向上しないおそれがある。他方、セルロースナノファイバーの平均繊維径が100nmを上回ると、セルロースナノファイバーとは言えなくなる。
【0145】
セルロースナノファイバーの平均繊維径は、例えば、原料パルプP1の選定、前処理、解繊等によって調整することができる。
【0146】
なお、セルロースナノファイバーの物性に関する計測方法は、特にこれに反する記載のない限り、マイクロ繊維セルロースの場合と同様である。
【0147】
セルロースナノファイバーの平均繊維長(単繊維の長さ)は、好ましくは0.1~1,000μm、より好ましくは0.5~500μmである。セルロースナノファイバーの平均繊維長が0.1μmを下回ると、セルロースナノファイバー同士の三次元ネットワークを構築できず、補強効果が不十分となるおそれがある。他方、セルロースナノファイバーの平均繊維長が1,000μmを上回ると、繊維同士が絡み易くなり、分散性が十分に向上しないおそれがある。
【0148】
セルロースナノファイバーの平均繊維長は、例えば、原料パルプP1の選定、前処理、解繊等によって調整することができる。
【0149】
セルロースナノファイバー結晶化度は、好ましくは95~50%、より好ましくは90~60%である。セルロースナノファイバーの結晶化度が以上の範囲内であれば、樹脂の強度を確実に向上することができる。
【0150】
結晶化度は、例えば、原料パルプP1の選定、前処理、解繊等で任意に調整することができる。
【0151】
セルロースナノファイバーのパルプ粘度は、好ましくは1.0cps以上、より好ましくは2.0cps以上である。パルプ粘度は、セルロースを銅エチレンジアミン液に溶解させた後の溶解液の粘度であり、パルプ粘度が大きいほどセルロースの重合度が大きいことを示している。パルプ粘度が1.0cps以上であれば、スラリーに脱水性を付与しつつ、樹脂と混練する際にセルロースナノファイバーの分解を抑えられ、十分な補強効果を得ることができる。
【0152】
解繊して得られたセルロースナノファイバーは、必要により、他のセルロース繊維と混合するに先立って水系媒体中に分散して分散液としておくことができる。水系媒体は、全量が水であるのが特に好ましい(水分散液)。ただし、水系媒体は、一部が水と相溶性を有する他の液体であってもよい。他の液体としては、例えば、炭素数3以下の低級アルコール類等を使用することができる。
【0153】
セルロースナノファイバーの分散液(濃度1%)のB型粘度は、好ましくは10~2,000cp、より好ましくは30~1,500cpである。分散液のB型粘度を以上の範囲内にすると、他のセルロース繊維との混合が容易になり、また、セルロース繊維スラリーの脱水性が向上する。
【0154】
分散液のB型粘度(固形分濃度1%)は、JIS-Z8803(2011)の「液体の粘度測定方法」に準拠して測定した値である。B型粘度は分散液を攪拌したときの抵抗トルクであり、高いほど攪拌に必要なエネルギーが多くなることを意味する。
【0155】
カルバメート化微細繊維は、必要により、水系媒体中に分散して分散液(スラリー)にする。水系媒体は、全量が水であるのが特に好ましいが、一部が水と相溶性を有する他の液体である水系媒体も使用することができる。他の液体としては、炭素数3以下の低級アルコール類等を使用することができる。
【0156】
スラリーの固形分濃度は、好ましくは0.1~10.0質量%、より好ましくは0.5~5.0質量%である。固形分濃度が0.1質量%を下回ると、脱水や乾燥する際に過大なエネルギーが必要となるおそれがある。他方、固形分濃度が10.0質量%を上回ると、スラリー自体の流動性が低下してしまい分散剤を均一に混合できなくなるおそれがある。
【0157】
(酸変性樹脂)
以上のようにして得たカルバメート化微細繊維は、酸変性樹脂と混合すると好適である。酸変性樹脂は、その酸基がカルバメート基の一部又は全部とイオン結合又は共有結合する。このイオン結合又は共有結合により、樹脂の補強効果が向上する。
【0158】
酸変性樹脂としては、例えば、酸変性ポリオレフィン樹脂、酸変性エポキシ樹脂、酸変性スチレン系エラストマー樹脂等を使用することができる。ただし、酸変性ポリオレフィン樹脂を使用するのが好ましい。酸変性ポリオレフィン樹脂は、不飽和カルボン酸成分とポリオレフィン成分との共重合体である。
【0159】
ポリオレフィン成分としては、例えば、エチレン、プロピレン、ブタジエン、イソプレン等のアルケンの重合体の中から1種又は2種以上を選択して使用することができる。ただし、好適には、プロピレンの重合体であるポリプロピレン樹脂を用いることが好ましい。
【0160】
不飽和カルボン酸成分としては、例えば、無水マレイン酸類、無水フタル酸類、無水イタコン酸類、無水シトラコン酸類、無水クエン酸類等の中から1種又は2種以上を選択して使用することができる。ただし、好適には、無水マレイン酸類を使用するのが好ましい。つまり、無水マレイン酸変性ポリプロピレン樹脂を用いることが好ましい。
【0161】
酸変性樹脂の混合量は、マイクロ繊維セルロース100質量部に対して、好ましくは0.1~1000質量部、より好ましくは1~500質量部、特に好ましくは10~200質量部である。特に酸変性樹脂が無水マレイン酸変性ポリプロピレン樹脂である場合は、好ましくは1~200質量部、より好ましくは10~100質量部である。酸性変性樹脂の混合量が0.1質量部を下回ると強度の向上が十分ではない。他方、混合量が1000質量部を上回ると、過剰となり強度が低下する傾向となる。
【0162】
無水マレイン酸変性ポリプロピレンの重量平均分子量は、例えば1000~100000、好ましくは3000~50000である。
【0163】
また、無水マレイン酸変性ポリプロピレンの酸価は、0.5mgKOH/g以上、100mgKOH/g以下が好ましく、1mgKOH/g以上、50mgKOH/g以下がより好ましい。
【0164】
(分散剤)
マイクロ繊維セルロース等を含む繊維状セルロースは、分散剤と混合するとより好ましいものになる。分散剤としては、芳香族類にアミン基及び/又は水酸基を有する化合物、脂肪族類にアミン基及び/又は水酸基を有する化合物が好ましい。
【0165】
芳香族類にアミン基及び/又は水酸基を有する化合物としては、例えば、アニリン類、トルイジン類、トリメチルアニリン類、アニシジン類、チラミン類、ヒスタミン類、トリプタミン類、フェノール類、ジブチルヒドロキシトルエン類、ビスフェノールA類、クレゾール類、オイゲノール類、没食子酸類、グアイアコール類、ピクリン酸類、フェノールフタレイン類、セロトニン類、ドーパミン類、アドレナリン類、ノルアドレナリン類、チモール類、チロシン類、サリチル酸類、サリチル酸メチル類、アニスアルコール類、サリチルアルコール類、シナピルアルコール類、ジフェニドール類、ジフェニルメタノール類、シンナミルアルコール類、スコポラミン類、トリプトフォール類、バニリルアルコール類、3-フェニル‐1-プロパノール類、フェネチルアルコール類、フェノキシエタノール類、ベラトリルアルコール類、ベンジルアルコール類、ベンゾイン類、マンデル酸類、マンデロニトリル類、安息香酸類、フタル酸類、イソフタル酸類、テレフタル酸類、メリト酸類、ケイ皮酸類などが挙げられる。
【0166】
また、脂肪族類にアミン基及び/又は水酸基を有する化合物としては、例えば、カプリルアルコール類、2-エチルヘキサノール類、ペラルゴンアルコール類、カプリンアルコール類、ウンデシルアルコール類、ラウリルアルコール類、トリデシルアルコール類、ミリスチルアルコール類、ペンタデシルアルコール類、セタノール類、ステアリルアルコール類、エライジルアルコール類、オレイルアルコール類、リノレイルアルコール類、メチルアミン類、ジメチルアミン類、トリメチルアミン類、エチルアミン類、ジエチルアミン類、エチレンジアミン類、トリエタノールアミン類、N,N-ジイソプロピルエチルアミン類、テトラメチルエチレンジアミン類、ヘキサメチレンジアミン類、スペルミジン類、スペルミン類、アマンタジン類、ギ酸類、酢酸類、プロピオン酸類、酪酸類、吉草酸類、カプロン酸類、エナント酸類、カプリル酸類、ペラルゴン酸類、カプリン酸類、ラウリン酸類、ミリスチン酸類、パルミチン酸類、マルガリン酸類、ステアリン酸類、オレイン酸類、リノール酸類、リノレン酸類、アラキドン酸類、エイコサペンタエン酸類、ドコサヘキサエン酸類、ソルビン酸類などが挙げられる。
【0167】
以上の分散剤は、マイクロ繊維セルロース同士の水素結合を阻害する。したがって、マイクロ繊維セルロース及び樹脂の混練に際してマイクロ繊維セルロースが樹脂中において確実に分散(再分散)するようになる。また、以上の分散剤は、マイクロ繊維セルロース及び樹脂の相溶性を向上させる役割も有する。この点でマイクロ繊維セルロースの樹脂中における分散性が向上する。
【0168】
なお、繊維状セルロース及び樹脂の混練に際して、別途、相溶剤(薬剤)を添加することも考えられるが、この段階で薬剤を添加するよりも、予め繊維状セルロースと分散剤(薬剤)を混合する方が、繊維状セルロースに対する薬剤の纏わりつきが均一になり、樹脂との相溶性向上効果が高くなる。
【0169】
また、例えば、ポリプロピレンは融点が160℃であり、したがって繊維状セルロース及び樹脂の混練は、180℃程度で行う。しかるに、この状態で分散剤(液)を添加すると、一瞬で乾燥してしまう。そこで、融点の低い樹脂を使用してマスターバッチ(マイクロ繊維セルロースの濃度の濃い複合樹脂)を作製し、その後に通常の樹脂で濃度を下げる方法が存在する。しかしながら、融点の低い樹脂は一般的に強度が低い。したがって、当該方法によると、複合樹脂の強度が下がるおそれがある。
【0170】
分散剤の混合量は、マイクロ繊維セルロース100質量部に対して、好ましくは0.1~1000質量部、より好ましくは1~500質量部、特に好ましくは10~200質量部である。分散剤の混合量が0.1質量部を下回ると、強度の向上が十分ではないとされるおそれがある。他方、混合量が1000質量部を上回ると、過剰となり強度が低下する傾向となる。
【0171】
この点、前述した酸変性樹脂は酸基とマイクロ繊維セルロースのカルバメート基とがイオン結合又は共有結合することで相溶性を向上し、補強効果を上げるためのものであり、分子量が大きいため樹脂とも馴染み易く、強度向上に寄与していると考えられる。一方、上記の分散剤は、マイクロ繊維セルロース同士の水酸基同士の間に介在して凝集を防ぎ、もって樹脂中での分散性を向上するものであり、また、分子量が酸変性樹脂に比べ小さいため、酸変性樹脂が入り込めないようなマイクロ繊維セルロース間の狭いスペースに入ることができ、分散性を向上して強度向上する役割を果たす。以上のような観点から、上記酸変性樹脂の分子量は、分散剤の分子量の2~2000倍、好ましくは5~1000倍であると好適である。
【0172】
この点をより詳細に説明すると、後述する樹脂粉末は物理的にマイクロ繊維セルロース同士の間に介在することで水素結合を阻害し、もってマイクロ繊維セルロースの分散性を向上する。これに対し、酸変性樹脂は、酸基とマイクロ繊維セルロースのカルバメート基とをイオン結合又は共有結合することで相溶性を向上し、もって補強効果を上げる。この点、分散剤がマイクロ繊維セルロース同士の水素結合を阻害する点は同じであるが、樹脂粉末はマイクロオーダーであるため、物理的に介在して水素結合を抑制する。したがって、分散性が分散剤にくらべ低いものの、樹脂粉末自身が溶融してマトリックスになるため物性低下に寄与しない。一方、分散剤は分子レベルであり、極めて小さいためマイクロ繊維セルロースを覆うようにして水素結合を阻害し、マイクロ繊維セルロースの分散性を向上する効果は高い。しかしながら、樹脂中に残り、物性低下に働く可能性がある。
【0173】
(混練等)
繊維状セルロース及び酸変性樹脂、分散剤等の混合物は、樹脂と混練するに先立って乾燥及び粉砕して粉状物にすることができる。この形態によると、樹脂との混練に際して繊維状セルロースを乾燥させる必要がなく、熱効率が良い。また、特に混合物に分散剤が混合されている場合は、当該混合物を乾燥したとしても、マイクロ繊維セルロース等の微細繊維が再分散しなくなるおそれが極めて低い。
【0174】
混合物は、必要により、乾燥するに先立って脱水して脱水物にする。この脱水は、例えば、ベルトプレス、スクリュープレス、フィルタープレス、ツインロール、ツインワイヤーフォーマ、バルブレスフィルタ、センターディスクフィルタ、膜処理、遠心分離機等の脱水装置の中から1種又は2種以上を選択使用して行うことができる。
【0175】
混合物の乾燥は、例えば、ロータリーキルン乾燥、円板式乾燥、気流式乾燥、媒体流動乾燥、スプレー乾燥、ドラム乾燥、スクリューコンベア乾燥、パドル式乾燥、一軸混練乾燥、多軸混練乾燥、真空乾燥、攪拌乾燥等の中から1種又は2種以上を選択使用して行うことができる。
【0176】
乾燥した混合物(乾燥物)は、粉砕して粉状物にする。乾燥物の粉砕は、例えば、ビーズミル、ニーダー、ディスパー、ツイストミル、カットミル、ハンマーミル等の中から1種又は2種以上を選択使用して行うことができる。
【0177】
粉状物の平均粒子径は、好ましくは1~10000μm、より好ましくは10~5000μm、特に好ましくは100~1000μmである。粉状物の平均粒子径が10000μmを上回ると、樹脂との混練性に劣るものになるおそれがある。他方、粉状物の平均粒子径が1μmを下回るものにするには大きなエネルギーが必要になるため、経済的でない。
【0178】
粉状物の平均粒子径の制御は、粉砕の程度を制御することのほか、フィルター、サイクロン等の分級装置を使用した分級によることができる。
【0179】
混合物(粉状物)の嵩比重は、好ましくは0.03~1.0、より好ましくは0.04~0.9、特に好ましくは0.05~0.8である。嵩比重が1.0を超えるということは繊維状セルロース同士の水素結合がより強固であり、樹脂中で分散させることは容易ではなくなることを意味する。他方、嵩比重が0.03を下回るものにするのは、移送コストの面から不利である。
【0180】
嵩比重は、JIS K7365に準じて測定した値である。
【0181】
混合物(粉状物)の水分率は、好ましくは50%以下、より好ましくは30%以下、特に好ましくは10%以下である。水分率が50%を上回ると、樹脂と混練する際のエネルギーが膨大になり、経済的でない。
【0182】
水分率は、定温乾燥機を用いて、試料を105℃で6時間以上保持し質量の変動が認められなくなった時点の質量を乾燥後質量とし、下記式にて算出した値である。
繊維水分率(%)=[(乾燥前質量-乾燥後質量)÷乾燥前質量]×100
【0183】
脱水・乾燥したマイクロ繊維セルロースには、樹脂が含まれていても良い。樹脂が含まれていると、脱水・乾燥したマイクロ繊維セルロース同士の水素結合が阻害され、混練の際の樹脂中での分散性を向上することができる。
【0184】
脱水・乾燥したマイクロ繊維セルロースに含まれる樹脂の形態としては、例えば、粉末状、ペレット状、シート状等が挙げられる。ただし、粉末状(粉末樹脂。なお、前述した樹脂粉末に相当。)が好ましい。
【0185】
粉末状とする場合、脱水・乾燥したマイクロ繊維セルロースに含まれる樹脂粉末の平均粒子径は、1~10000μmが好ましく、10~5000μmがより好ましく、100~1000μmが特に好ましい。平均粒子径が10000μmを超えると、粒子径が大きいために混練装置内に入らないおそれがある。他方、平均粒子径が1μm未満であると、微細なためにマイクロ繊維セルロース同士の水素結合を阻害することができないおそれがある。なお、ここで使用する粉末樹脂等の樹脂は、マイクロ繊維セルロースと混練する樹脂(主原料としての樹脂)と同種であっても異種であってもよいが、同種である方が好ましい。
【0186】
平均粒子径1~10000μmの樹脂粉末は、脱水・乾燥前の水系分散状態で混合するのが好ましい。水系分散状態で混合することで、樹脂粉末をマイクロ繊維セルロース間へ均一に分散することができ、混練後の複合樹脂中にマイクロ繊維セルロースを均一に分散できることができ、強度物性をより向上することができる。
【0187】
以上のようにして得た粉状物(樹脂の補強材)は、樹脂と混練し、繊維状セルロース複合樹脂を得る。この混練は、例えば、ペレット状の樹脂と粉状物とを混ぜ合わす方法によることのほか、樹脂をまず溶融し、この溶融物の中に粉状物を添加するという方法によることもできる。なお、酸変性樹脂や分散剤等は、この段階で添加することもできる。
【0188】
混練処理には、例えば、単軸又は二軸以上の多軸混練機、ミキシングロール、ニーダー、ロールミル、バンバリーミキサー、スクリュープレス、ディスパーザー等の中から1種又は2種以上を選択して使用することができる。それらのなかで、二軸以上の多軸混練機を使用することが好ましい。二軸以上の多軸混練機を2機以上、並列又は直列にして、使用しても良い。
【0189】
また、二軸以上の多軸混練機のスクリューの周速は、0.2~200m/分が好ましく、0.5~150m/分がさらに好ましく、1~100m/分が特に好ましい。周速が0.2m/分未満の場合は、うまく樹脂中にマイクロ繊維セルロースを分散させることができないおそれがある。他方、周速が200m/分を超える場合、マイクロ繊維セルロースへのせん断力が過多となり、補強効果が得られないおそれがある。
【0190】
本形態において使用される混練機のスクリュー径と混練部との長さの比は、15~60が好ましい。比が15未満の場合は、混練部が短く、マイクロ繊維セルロースと樹脂を混ぜることができないおそれがある。他方、比が60を超える場合は、混練部が長すぎるため、マイクロ繊維セルロースへのせん断的負荷が高くなり、補強効果が得られないおそれがある。
【0191】
混練処理の温度は、樹脂のガラス転移点以上であり、樹脂の種類によって異なるが、80~280℃とするのが好ましく、90~260℃とするのがより好ましく、100~240℃とするのが特に好ましい。
【0192】
樹脂としては、熱可塑性樹脂及び熱硬化性樹脂の少なくともいずれか一方を使用することができる。
【0193】
熱可塑性樹脂としては、例えば、ポリプロピレン(PP)、ポリエチレン(PE)等のポリオレフィン、脂肪族ポリエステル樹脂や芳香族ポリエステル樹脂等のポリエステル樹脂、ポリスチレン、メタアクリレート、アクリレート等のポリアクリル樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリアセタール樹脂等の中から1種又は2種以上を選択して使用することができる。
【0194】
ただし、ポリオレフィン及びポリエステル樹脂の少なくともいずれか一方を使用するのが好ましい。また、ポリオレフィンとしては、ポリプロピレンを使用するのが好ましい。さらに、ポリエステル樹脂としては、脂肪族ポリエステル樹脂として、例えば、ポリ乳酸、ポリカプロラクトン等を例示することができ、芳香族ポリエステル樹脂として、例えば、ポリエチレンテレフタレート等を例示することができるが、生分解性を有するポリエステル樹脂(単に「生分解性樹脂」ともいう。)を使用するのが好ましい。
【0195】
生分解性樹脂としては、例えば、ヒドロキシカルボン酸系脂肪族ポリエステル、カプロラクトン系脂肪族ポリエステル、二塩基酸ポリエステル等の中から1種又は2種以上を選択して使用することができる。
【0196】
ヒドロキシカルボン酸系脂肪族ポリエステルとしては、例えば、乳酸、リンゴ酸、グルコース酸、3-ヒドロキシ酪酸等のヒドロキシカルボン酸の単独重合体や、これらのヒドロキシカルボン酸のうちの少なくとも1種を用いた共重合体等の中から1種又は2種以上を選択して使用することができる。ただし、ポリ乳酸、乳酸と乳酸を除く上記ヒドロキシカルボン酸との共重合体、ポリカプロラクトン、上記ヒドロキシカルボン酸のうちの少なくとも1種とカプロラクトンとの共重合体を使用するのが好ましく、ポリ乳酸を使用するのが特に好ましい。
【0197】
この乳酸としては、例えば、L-乳酸やD-乳酸等を使用することができ、これらの乳酸を単独で使用しても、2種以上を選択して使用してもよい。
【0198】
カプロラクトン系脂肪族ポリエステルとしては、例えば、ポリカプロラクトンの単独重合体や、ポリカプロラクトン等と上記ヒドロキシカルボン酸との共重合体等の中から1種又は2種以上を選択して使用することができる。
【0199】
二塩基酸ポリエステルとしては、例えば、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリブチレンアジペート等の中から1種又は2種以上を選択して使用することができる。
【0200】
生分解性樹脂は、1種を単独で使用しても、2種以上を併用してもよい。
【0201】
熱硬化性樹脂としては、例えば、フェノール樹脂、尿素樹脂、メラミン樹脂、フラン樹脂、不飽和ポリエステル、ジアリルフタレート樹脂、ビニルエステル樹脂、エポキシ樹脂、ウレタン系樹脂、シリコーン樹脂、熱硬化性ポリイミド系樹脂等を使用することができる。これらの樹脂は、単独で又は二種以上組み合わせて使用することができる。
【0202】
樹脂には、無機充填剤が、好ましくはサーマルリサイクルに支障が出ない割合で含有されていてもよい。
【0203】
無機充填剤としては、例えば、Fe、Na、K、Cu、Mg、Ca、Zn、Ba、Al、Ti、ケイ素元素等の周期律表第I族~第VIII族中の金属元素の単体、酸化物、水酸化物、炭素塩、硫酸塩、ケイ酸塩、亜硫酸塩、これらの化合物よりなる各種粘土鉱物等を例示することができる。
【0204】
具体的には、例えば、硫酸バリウム、硫酸カルシウム、硫酸マグネシウム、硫酸ナトリウム、亜硫酸カルシウム、酸化亜鉛、シリカ、重質炭酸カルシウム、軽質炭酸カルシウム、ほう酸アルミニウム、アルミナ、酸化鉄、チタン酸カルシウム、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、水酸化ナトリウム、炭酸マグネシウム、ケイ酸カルシウム、クレーワラストナイト、ガラスビーズ、ガラスパウダー、珪砂、硅石、石英粉、珪藻土、ホワイトカーボン、ガラスファイバー等を例示することができる。これらの無機充填剤は、複数が含有されていてもよい。また、古紙パルプに含まれるものであってもよい。
【0205】
繊維状セルロース及び樹脂の配合割合は、好ましくは繊維状セルロースが1質量部以上、樹脂が99質量部以下、より好ましくは繊維状セルロースが2質量部以上、樹脂が98質量部以下、特に好ましくは繊維状セルロースが3質量部以上、樹脂が97質量部以下である。また、好ましくは繊維状セルロースが50質量部以下、樹脂が50質量部以上、より好ましくは繊維状セルロースが40質量部以下、樹脂が60質量部以上、特に好ましくは繊維状セルロースが30質量部以下、樹脂が70質量部以上である。特に繊維状セルロースが10~50質量部であると、樹脂組成物の強度、特に曲げ強度及び引張り弾性率の強度を著しく向上させることができる。
【0206】
なお、最終的に得られ樹脂組成物に含まれる繊維状セルロース及び樹脂の含有割合は、通常、繊維状セルロース及び樹脂の上記配合割合と同じとなる。
【0207】
マイクロ繊維セルロース及び樹脂の溶解パラメータ(cal/cm3)1/2(SP値)の差、つまり、マイクロ繊維セルロースのSPMFC値、樹脂のSPPOL値とすると、SP値の差=SPMFC値-SPPOL値とすることができる。SP値の差は10~0.1が好ましく、8~0.5がより好ましく、5~1が特に好ましい。SP値の差が10を超えると、樹脂中でマイクロ繊維セルロースが分散せず、補強効果を得ることはできない。他方、SP値の差が0.1未満であるとマイクロ繊維セルロースが樹脂に溶解してしまい、フィラーとして機能せず、補強効果が得られない。この点、樹脂(溶媒)のSPPOL値とマイクロ繊維セルロース(溶質)のSPMFC値の差が小さい程、補強効果が大きい。なお、溶解パラメータ(cal/cm3)1/2(SP値)とは、溶媒-溶質間に作用する分子間力を表す尺度であり、SP値が近い溶媒と溶質であるほど、溶解度が増す。
【0208】
(その他の組成物)
樹脂組成物には、前述した微細繊維やパルプ等のほか、ケナフ、ジュート麻、マニラ麻、サイザル麻、雁皮、三椏、楮、バナナ、パイナップル、ココヤシ、トウモロコシ、サトウキビ、バガス、ヤシ、パピルス、葦、エスパルト、サバイグラス、麦、稲、竹、各種針葉樹(スギ及びヒノキ等)、広葉樹及び綿花などの各種植物体から得られた植物材料に由来する繊維を含ませることもでき、含まれていてもよい。
【0209】
樹脂組成物には、例えば、帯電防止剤、難燃剤、抗菌剤、着色剤、ラジカル捕捉剤、発泡剤等の中から1種又は2種以上を選択して、本発明の効果を阻害しない範囲で添加することができる。これらの原料は、繊維状セルロースの分散液に添加しても、繊維状セルロース及び樹脂の混練の際に添加しても、これらの混練物に添加しても、その他の方法で添加してもよい。ただし、製造効率の面からは、繊維状セルロース及び樹脂の混練の際に添加するのが好ましい。
【0210】
樹脂組成物には、ゴム成分として、エチレン-αオレフィン共重合エラストマー又はスチレン-ブタジエンブロック共重合体が含有されていてもよい。α-オレフィンの例としては、例えば、ブテン、イソブテン、ペンテン、ヘキセン、メチル-ペンテン、オクテン、デセン、ドデセン等が挙げられる。
【0211】
(成形処理)
繊維状セルロース及び樹脂の混練物は、必要により再度混練する等した後、所望の形状に成形することができる。この成形の大きさや厚さ、形状等は、特に限定されず、例えば、シート状、ペレット状、粉末状、繊維状等とすることができる。
【0212】
成形処理の際の温度は、樹脂のガラス転移点以上であり、樹脂の種類によって異なるが、例えば90~260℃、好ましくは100~240℃である。
【0213】
混練物の成形は、例えば、金型成形、射出成形、押出成形、中空成形、発泡成形等によることができる。また、混練物を紡糸して繊維状にし、前述した植物材料等と混繊してマット形状、ボード形状とすることもできる。混繊は、例えば、エアーレイにより同時堆積させる方法等によることができる。
【0214】
混練物を成形する装置としては、例えば、射出成形機、吹込成形機、中空成形機、ブロー成形機、圧縮成形機、押出成形機、真空成形機、圧空成形機等の中から1種又は2種以上を選択して使用することができる。
【0215】
以上の成形は、混練に続いて行うことも、混練物をいったん冷却し、破砕機等を使用してチップ化した後、このチップを押出成形機や射出成形機等の成形機に投入して行うこともできる。もちろん、成形は、本発明の必須の要件ではない。
【0216】
(その他)
本願の1つの特徴は、セルロース繊維のFine率Aを上げつつ、フィブリル化率を抑えることにある。このための具体的な方法は特に限定されず、例えば、解繊の条件や原料パルプ種等によって調節することができる。ただし、解繊前におけるセルロース繊維の物性が特定の前述した条件(例えば、前述したFine率A等。)を満たすものとするのが好ましく、解繊するセルロース繊維を以上で説明した方法に沿って製造するのがより好ましい。この方法によると、通常の解繊にほとんど変更を加えることなく、Fine率A及びフィブリル化率の条件が満たされることになる。
【0217】
また、本形態の複合樹脂においてカルバメート化マイクロ繊維セルロースの含有率は、好ましくは0.1~99質量%、より好ましくは0.5~95質量%、特に好ましくは1~90質量%である。含有率が0.1質量%未満であると、樹脂の補強効果が十分に得られない。他方、含有率が90質量%を超えると、樹脂成分が少なく加工が困難となる。
【実施例0218】
次に、本発明の実施例を説明する。
まず、複数種の原料パルプが所定の配合比で含まれるパルプスラリーにサイズ剤を添加したうえで、所定のコッブサイズ度、坪量となるようにパルプシートを製造した。次に、塗工設備にて、固形分濃度40%の尿素水溶液を、固形分換算の質量比でパルプ:尿素が所定の割合となるように塗工し、アフタードライヤーで乾燥させて尿素塗工シートを得た。得られた尿素塗工シートは、ロールtoロール反応装置で所定の温度・時間で反応させてカルバメート変性セルロースを素材とするシートを得た。その後、このカルバメート変性セルロースのシートを固形分濃度5%になるように水で希釈し、離解機を用いて離解した。離解したカルバメート変性セルロースを蒸留水で希釈撹拌して、脱水洗浄を複数回繰り返し、固形分濃度3.5質量%に調整することで洗浄後カルバメート変性セルロースを得た。洗浄後のカルバメート変性セルロースは、叩解機を用いて、Fine率A(FS5による繊維長分布測定で0.2mm以下の繊維の割合)が25%以上となるまで叩解して、カルバメート変性マイクロ繊維セルロースを得た。得られたカルバメート変性マイクロ繊維セルロースに無水マレイン酸変性ポリプロピレンをカルバメート変性マイクロ繊維セルロース:無水マレイン酸変性ポリプロピレンが67:33となるように添加し、140℃に加熱した接触式乾燥機を用いて加熱し、カルバメート変性マイクロセルロース含有物を得た。次に、このカルバメート変性マイクロ繊維セルロース含有物に、質量基準でカルバメート変性マイクロ繊維:その他の成分=10:90となるようにポリプロピレンのペレットを混合し、180℃、200rpmの条件で二軸混練機にて混錬し、繊維配合率10%のカルバメート変性マイクロ繊維セルロース複合樹脂を得た。この繊維配合率10%のカルバメート変性マイクロ繊維セルロース複合樹脂は、ペレッターで2mm径、2mm長の円柱状にカットし、180℃で直方体試験片(長さ59mm、幅9.6mm、厚さ3.8mm)に射出成型した。
【0219】
得られた各試験片について、曲げ弾性率及び曲げ強度、並びに夾雑面積率を調べた。結果を表1に示した。なお、各試験の方法は、以下のとおりとした。また、表中の解繊前とは、上記叩解をする直前(マイクロ繊維セルロースとする直前)を意味する。
【0220】
(夾雑面積率)
JIS P 8145:2011に準拠した夾雑物測定において、面積率が10mm2/m2未満は〇、10mm2/m2以上は×とした。
【0221】
(曲げ弾性率)
ベースPP(1.48GPa)を1.00とした場合において、1.50倍以上は〇、1.50倍未満は×とした。
【0222】
(曲げ強度)
ベースPP(53.4MPa)を1.00とした場合において、1.25倍以上は〇、1.25倍未満は×とした。
【0223】