IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日立建機株式会社の特許一覧

<>
  • 特開-電動作業車両 図1
  • 特開-電動作業車両 図2
  • 特開-電動作業車両 図3
  • 特開-電動作業車両 図4
  • 特開-電動作業車両 図5
  • 特開-電動作業車両 図6
  • 特開-電動作業車両 図7
  • 特開-電動作業車両 図8
  • 特開-電動作業車両 図9
  • 特開-電動作業車両 図10
  • 特開-電動作業車両 図11
  • 特開-電動作業車両 図12
  • 特開-電動作業車両 図13
  • 特開-電動作業車両 図14
  • 特開-電動作業車両 図15
  • 特開-電動作業車両 図16
  • 特開-電動作業車両 図17
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024053572
(43)【公開日】2024-04-16
(54)【発明の名称】電動作業車両
(51)【国際特許分類】
   B60L 1/00 20060101AFI20240409BHJP
   H02M 7/48 20070101ALI20240409BHJP
   H02M 3/28 20060101ALI20240409BHJP
   H02J 7/00 20060101ALI20240409BHJP
   B60L 50/13 20190101ALI20240409BHJP
【FI】
B60L1/00 L
H02M7/48 E
H02M3/28 H
H02J7/00 P
B60L50/13
【審査請求】未請求
【請求項の数】8
【出願形態】OL
(21)【出願番号】P 2022159863
(22)【出願日】2022-10-04
(71)【出願人】
【識別番号】000005522
【氏名又は名称】日立建機株式会社
(74)【代理人】
【識別番号】110001829
【氏名又は名称】弁理士法人開知
(72)【発明者】
【氏名】門田 充弘
(72)【発明者】
【氏名】北口 篤
(72)【発明者】
【氏名】高田 知範
【テーマコード(参考)】
5G503
5H125
5H730
5H770
【Fターム(参考)】
5G503AA07
5G503BA01
5G503BB01
5G503DA04
5G503FA06
5G503GB03
5H125AA12
5H125AB01
5H125AC08
5H125BB09
5H125BC01
5H125BC25
5H125BD17
5H125EE08
5H125EE13
5H125EE27
5H730AA14
5H730AA15
5H730AS05
5H730AS08
5H730AS17
5H730BB27
5H730DD03
5H730DD04
5H730EE04
5H730EE08
5H730EE57
5H730EE59
5H730FD01
5H730FD11
5H730FD21
5H730FD51
5H730FF09
5H730FG05
5H770BA02
5H770CA02
5H770CA03
5H770HA02Y
5H770HA07Z
5H770JA11W
5H770LA08W
(57)【要約】
【課題】DC/DCコンバータを小型化するとともに、補機への安定的な電力供給を確保しつつ、停止時や低速走行時に生じる損失やノイズを低減することができる電動作業車両を提供すること。
【解決手段】発電装置で生成された直流電力が供給される主機直流ラインと、主機直流ラインに供給される直流電力によって走行モータを駆動するインバータと、補機装置を駆動するための直流電力を供給する補機直流ラインと、主機直流ラインの直流電圧が予め定めた電圧閾値以上である場合に主機直流ラインの直流電圧を変換して補機直流ラインに供給可能なDC/DCコンバータと、補機直流ラインに供給可能な電力を蓄電する蓄電装置とを有する補機電源装置と、発電装置および補機電源装置を制御する制御装置とを備え、制御装置は、走行モータの回転速度および蓄電装置の蓄電残量に応じて、発電装置および補機電源装置を制御する。
【選択図】 図1
【特許請求の範囲】
【請求項1】
発電装置と、
前記発電装置で生成された直流電力が供給される主機直流ラインと、
走行モータと、
前記主機直流ラインに供給される直流電力によって前記走行モータを駆動するインバータと、
補機装置と、
前記補機装置を駆動するための直流電力を供給する補機直流ラインと、
前記主機直流ラインの直流電圧が予め定めた電圧閾値以上である場合に前記主機直流ラインの直流電圧を変換して前記補機直流ラインに供給可能なDC/DCコンバータと、前記補機直流ラインに供給可能な電力を蓄電する蓄電装置とを有する補機電源装置と、
前記発電装置および前記補機電源装置を制御する制御装置とを備え、
前記制御装置は、前記走行モータの回転速度および前記蓄電装置の蓄電残量に応じて、前記発電装置および前記補機電源装置を制御することを特徴とする電動作業車両。
【請求項2】
請求項1記載の電動作業車両において、
前記制御装置は、
前記走行モータの回転速度が予め定めた速度閾値よりも低く、かつ、前記蓄電装置の蓄電残量が予め定めた残量閾値以上であるときには、前記主機直流ラインの電圧が前記電圧閾値よりも低くなるように前記発電装置を制御し、
前記走行モータの回転速度が予め定めた前記速度閾値よりも低く、かつ、前記蓄電装置の蓄電残量が前記残量閾値よりも小さいときには、前記主機直流ラインの電圧が前記電圧閾値よりも高くなるように前記発電装置を制御しつつ、前記蓄電装置を充電するように前記補機電源装置を制御することを特徴とする電動作業車両。
【請求項3】
請求項1記載の電動作業車両において、
前記制御装置は、
前記走行モータの回転速度と、前記発電装置を制御する指令値の暫定値として生成される第一暫定電圧指令値との関係を規定した主機電圧指令テーブルと、
前記主機電圧指令テーブルに応じて生成される前記第一暫定電圧指令値と、前記第一暫定電圧指令値に電圧下限値を設定した第二暫定電圧指令値との関係を規定した主機電圧指令限定テーブルとを有し、
前記蓄電装置の蓄電残量が予め定めた残量閾値以上であるときには、前記第一暫定電圧指令値に応じて前記発電装置を制御し、前記蓄電装置の蓄電残量が前記残量閾値よりも小さい場合には、前記第二暫定電圧指令値に応じて前記発電装置を制御することを特徴とする電動作業車両。
【請求項4】
請求項3記載の電動作業車両において、
前記主機電圧指令テーブルは、前記回転速度が前記速度閾値より低いときには前記第一暫定電圧指令値が前記電圧下限値より低くなり、前記回転速度が前記速度閾値より高いときには前記第一暫定電圧指令値が前記電圧下限値よりも高くなるように規定され、
前記主機電圧指令限定テーブルは、前記電圧下限値が前記電圧閾値よりも大きい値となるように規定されたことを特徴とする電動作業車両。
【請求項5】
請求項2記載の電動作業車両において、
前記制御装置は、
前記主機直流ラインの直流電圧が予め定めた電圧閾値以上で、かつ、前記蓄電装置の蓄電残量が予め定めた残容量上限値よりも小さい場合には、
前記蓄電装置を充電するために前記補機直流ラインから前記蓄電装置に供給する電流の目標値である電流目標値を設定し、
前記蓄電装置に供給される電流値と前記電流目標値の偏差が小さくなるように前記DC/DCコンバータを制御することを特徴とする電動作業車両。
【請求項6】
請求項2記載の電動作業車両において、
前記主機直流ラインの直流電圧が予め定めた電圧閾値よりも小さい場合には、前記DC/DCコンバータによる前記主機直流ラインの直流電圧の変換および前記補機直流ラインへの供給を停止することを特徴とする電動作業車両。
【請求項7】
請求項2記載の電動作業車両において、
前記補機電源装置は、
前記主機直流ラインの直流電圧が予め定めた電圧閾値以上である場合に前記主機直流ラインの直流電圧を変換して前記補機直流ラインに供給可能なDC/DCコンバータである第一DC/DCコンバータの他に、
前記蓄電装置と前記補機直流ラインとの間で直流電圧を変換して相互に供給可能な第二DC/DCコンバータをさらに有し、
前記制御装置は、
前記主機直流ラインの電圧と前記補機直流ラインの電圧とに基づいて、前記第一DC/DCコンバータの制御信号を生成する第一DC/DCコンバータ制御部と、
前記蓄電装置の蓄電残量と放電電流とに基づいて、前記第二DC/DCコンバータの制御信号を生成する第二DC/DCコンバータ制御部とを備え、
前記第一DC/DCコンバータ制御部は、前記主機直流ラインの電圧が前記電圧閾値以上である場合には、前記補機直流ラインの電圧と予め定めた第一電圧指令値の偏差が小さくなるように、前記第一DC/DCコンバータの制御信号を生成し、
前記第二DC/DCコンバータ制御部は、
前記蓄電装置の蓄電残量が予め定めた蓄電残量上限値より小さい場合には、電流制限値として前記蓄電装置の充電方向の電流値を設定する電流制限値生成部と、
前記補機直流ラインの電圧が予め定めた第二電圧指令値より低い場合に、予め定めた第一電流指令値を増大させる電圧制御演算部と、前記第一電流指令値が前記電流制限値以上となるように前記第一電流指令値にリミッタ処理を施して第二電流指令値を生成する可変リミッタと、前記蓄電装置の充放電を制御する電流制御系とを有する電圧制御系とを備え、
前記電流制御系は、前記蓄電装置の充電方向の電流値と前記第二電流指令値の偏差が小さくなるように前記第二DC/DCコンバータの制御信号を生成し、
前記第二電圧指令値は、前記第一電圧指令値より低く設定されたことを特徴とする電動作業車両。
【請求項8】
請求項2記載の電動作業車両において、
前記補機電源装置は、
前記主機直流ラインの直流電圧が予め定めた電圧閾値以上である場合に前記主機直流ラインの直流電圧を変換して前記補機直流ラインに供給可能なDC/DCコンバータである第一DC/DCコンバータの他に、
前記補機直流ライン上に設けられ、前記第一DC/DCコンバータ及び前記蓄電装置の直流電圧を変換して前記補機装置に供給可能な第二DC/DCコンバータをさらに有し、
前記制御装置は、
前記蓄電装置の蓄電残量と、前記主機直流ラインの電圧と、前記蓄電装置の放電方向の電流値とに基づいて、前記第一DC/DCコンバータの制御信号を生成する第一DC/DCコンバータ制御部と、
前記補機直流ラインの電圧に基づいて、前記第二DC/DCコンバータの制御信号を生成する第二DC/DCコンバータ制御部とを備え、
前記第一DC/DCコンバータ制御部は、
前記蓄電装置の蓄電残量が予め定めた蓄電残量上限値より小さい場際には、電流指令値として前記蓄電装置の充電方向の電流値を設定する電流指令生成部と、
前記主機直流ラインの電圧が前記電圧閾値以上である場合には、前記蓄電装置の充電方向の電流値と前記電流指令値の偏差が小さくなるように前記第一DC/DCコンバータの制御信号を生成する電流制御系とを備え、
前記第二DC/DCコンバータ制御部は、前記補機直流ラインの電圧と予め定めた電圧指令値の偏差が小さくなるように前記第一DC/DCコンバータの制御信号を生成することを特徴とする電動作業車両。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電動作業車両に関する。
【背景技術】
【0002】
近年、化石燃料の枯渇や地球環境問題の悪化を背景として、ハイブリッド自動車や電気自動車のように電気エネルギーを利用した電動車両の普及が進んでいる。例えば、鉱山現場においては様々な電気駆動の作業車両が用いられており、搬送用の作業車両としては、電気駆動ダンプトラックなどのような大型の電動作業車両も用いられている。
【0003】
このような電動車両の電源制御に係る技術としては、例えば、特許文献1に記載のものが知られている。特許文献1には、走行用の電力を蓄えるメインバッテリと、車両の補機に供給するための電力を蓄える補機バッテリと、前記メインバッテリと前記補機バッテリとの間で双方向の電力変換を実行することが可能なコンバータとを備えた車両の電源システムにおいて、前記メインバッテリと前記補機バッテリと前記コンバータとを制御するコントローラを備え、前記コントローラは、予め定められた所定の条件が成立する場合に前記メインバッテリから前記補機バッテリに電力を供給するように構成され、前記車両の電源システムがオフか否かを判断し、前記車両の電源システムがオフの場合に、前記メインバッテリの充電残量が予め定められた所定値以下であるか否かを更に判断し、前記メインバッテリの充電残量が前記所定値以下の場合に、前記補機の稼働を禁止するように構成されている車両の電源システムが開示されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2020-43689号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
電気駆動ダンプトラックには、エンジンに接続された主機発電機の発電電力をインバータによって変換して主機直流ラインに接続された走行モータを駆動するとともに、主機直流ラインの電力をDC/DCコンバータで変換して補機直流ラインに供給し、エアコンのコンプレッサモータシステムや冷却用のブロアモータシステムといった補機を駆動する電気駆動システムが備えられている。
【0006】
鉱山で用いられる電気駆動ダンプトラックのような大型の電動作業車両では、電気駆動システムの大容量化に伴って主機直流ラインで扱う電力も高電圧化する傾向にある。一方、電動作業車両の停止時や低速走行時には、走行モータには比較的低い電圧を印加すればよい。そこで、速度応じて主機直流ラインの電圧を変化させることが考えられる。すなわち、停止時や低速走行時に主機直流ラインの電圧を低く制御することで、主機直流ライン側の回路で発生する損失やノイズを低減することができる。
【0007】
しかしながら、主機直流ラインから補機直流ラインに供給される電力の電圧を変換するDC/DCコンバータは、主機直流ライン側の入力電圧の対応可能範囲が広くなるほど回路が大型化してしまう。すなわち、DC/DCコンバータを高電圧から低電圧までの広範な入力電圧に対応させる場合には、DC/DCコンバータの大型化を招く。
【0008】
一方、DC/DCコンバータの入力電圧の対応可能範囲を狭くすることで、DC/DCコンバータの小型化を図ることも考えられる。しかしながら、停止時や低速走行時などにおいて、主機直流ライン側の電圧がDC/DCコンバータの入力電圧の対応可能範囲よりも低くなってしまうような場合には、DC/DCコンバータが動作不可となってしまい、補機への電力供給ができなくなるおそれがある。
【0009】
本発明は上記に鑑みてなされたものであり、DC/DCコンバータを小型化するとともに、補機への安定的な電力供給を確保しつつ、停止時や低速走行時に生じる損失やノイズを低減することができる電動作業車両を提供することを目的とする。
【課題を解決するための手段】
【0010】
本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、発電装置と、前記発電装置で生成された直流電力が供給される主機直流ラインと、走行モータと、前記主機直流ラインに供給される直流電力によって前記走行モータを駆動するインバータと、補機装置と、前記補機装置を駆動するための直流電力を供給する補機直流ラインと、前記主機直流ラインの直流電圧が予め定めた電圧閾値以上である場合に前記主機直流ラインの直流電圧を変換して前記補機直流ラインに供給可能なDC/DCコンバータと、前記補機直流ラインに供給可能な電力を蓄電する蓄電装置とを有する補機電源装置と、前記発電装置および前記補機電源装置を制御する制御装置とを備え、前記制御装置は、前記走行モータの回転速度および前記蓄電装置の蓄電残量に応じて、前記発電装置および前記補機電源装置を制御するものとする。
【発明の効果】
【0011】
本発明によれば、DC/DCコンバータを小型化するとともに、補機への安定的な電力供給を確保しつつ、停止時や低速走行時に生じる損失やノイズを低減することができる。
【図面の簡単な説明】
【0012】
図1】電気駆動ダンプトラックの電気駆動システムを概略的に示す図である。
図2】補機電源装置の構成を概略的に示す図である。
図3】第一DC/DCコンバータの構成を概略的に示す図である。
図4】制御装置の処理内容を概略的に示す機能ブロック図である。
図5】主機電圧指令生成部の処理内容を概略的に示す機能ブロック図である。
図6】主機電圧指令生成部の処理内容を示すフローチャートである。
図7】発電装置制御部と電力消費装置制御部の処理内容を概略的に示す機能ブロック図である。
図8】第一DC/DCコンバータ制御部の処理内容を概略的に示す機能ブロック図である。
図9】第2の実施の形態に係る補機電源装置の構成を概略的に示す図である。
図10】第二DC/DCコンバータの構成を概略的に示す図である。
図11】第2の実施の形態に係る制御装置の処理内容を概略的に示す機能ブロック図である。
図12】第2の実施の形態に係る第一DC/DCコンバータ制御部の処理内容を概略的に示す機能ブロック図である。
図13】第二DC/DCコンバータ制御部を概略的に示す機能ブロック図である。
図14】第3の実施の形態に係る補機電源装置の構成を概略的に示す図である。
図15】第3の実施の形態に係る制御装置の処理内容を概略的に示す機能ブロック図である。
図16】第3の実施の形態に係る第二DC/DCコンバータ制御部を概略的に示す機能ブロック図である。
図17】電動作業車両の一例として示す電気駆動ダンプトラックの外観を模式的に示す側面図である。
【発明を実施するための形態】
【0013】
以下、本発明の実施の形態を図面を参照しつつ説明する。なお、本実施の形態では、電動作業車両の一例として電気駆動ダンプトラックを示して説明するが、例えば、電気駆動ホイールローダのような他の電気駆動作業車両であっても本発明の適用が可能である。
【0014】
<第1の実施の形態>
本発明の第1の実施の形態を図1図8、及び図17を参照しつつ説明する。
【0015】
図17は、本実施の形態に係る電気駆動ダンプトラックの外観を模式的に示す側面図である。また、図1は、電気駆動ダンプトラックの電気駆動システムを概略的に示す図である。なお、図17においては、従動輪、駆動輪、及び、走行モータ等は、左右一対の構成のうちの一方のみを図示して符号を付し、他方については図中に括弧書きで符号のみを示して図示を省略する。
【0016】
図17において、電気駆動ダンプトラック100は、前後方向に延在して支持構造体を形成する車体フレーム1と、車体フレーム1の上部に前後方向に延在するように配置され、その後端下部をピン結合部5aを介して車体フレーム1に傾動可能に設けられた荷台(ベッセル)5と、車体フレーム1の下方前側左右に設けられた一対の従動輪(前輪)2L,2Rと、車体の下方後側左右に設けられた一対の駆動輪(後輪)3L,3Rと、車体フレーム1の上方前側に設けられた運転室(キャブ)4と、車体フレーム1の下方に設けられた燃料タンク9と、車体フレーム1上に配置され、燃料タンク9から供給される燃料により駆動するエンジン12(図1参照)と、エンジン12に接続されて駆動される主機発電機13(図1参照)等を有し、主機発電機13で生成されて出力される電力を車輪(駆動輪3L,3R)を駆動する走行モータ10L,10Rや補機装置31等に供給する電気駆動システム(図1参照)とから概略構成されている。
【0017】
走行モータ10L,10Rは、図示しない減速機とともに駆動輪3L,3Rの回転軸部に収められており、インバータ16を介して供給される電力により駆動される。なお、図1においては、図示の簡単のために符号の一部を省略し、左右の走行モータ10L,10Rを併せて単に符号「10」で標記している。
【0018】
車体フレーム1と荷台5とはホイストシリンダ6を介して接続されており、ホイストシリンダ6の伸縮によって荷台5がピン結合部5aを中心に回動され、車体フレーム1に対して荷台5が上げ下げされる。
【0019】
車体フレーム1には、オペレータが歩行可能なデッキやステップ等が取り付けられており、オペレータはこれらのデッキやステップを介して運転室4への移動が可能である。運転室4の内部には、図示しないアクセルペダル、ブレーキペダル、ホイストペダル、ハンドルなどが設置されている。オペレータは運転室4内のアクセルペダルやブレーキペダルの踏み込み量により電気駆動ダンプトラック100の加速力や制動力を制御し、ハンドルを左右に回転させることによって油圧駆動による操舵操作を行い、ホイストペダルを踏み込むことにより油圧駆動による荷台5のダンプ操作を行う。
【0020】
運転室4の後方には、各種電力機器が収納されたコントロールキャビネット8と、余剰エネルギーを電力消費装置17(図1参照)などによって熱として放散するための複数のグリッドボックス7とが搭載されている。なお、図17には図示しないが、左右の前輪2L,2Rの間に位置する車体フレーム1上には、図1に示すエンジン12や主機発電機13などが搭載されている。
【0021】
図1において、電気駆動ダンプトラック100の電気駆動システムは、エンジン12に接続される主機発電機13と、主機発電機13に接続され、主機発電機13の出力を整流して直流電力として主機直流ライン15に出力する整流回路14と、主機直流ライン15と走行モータ10L,10Rとの間に接続される走行モータ用のインバータ16と、主機直流ライン15の電力を消費可能な電力消費装置17と、補機装置31と、補機装置31を駆動するための直流電力を供給する補機直流ライン30と、主機直流ライン15の直流電力の電圧(直流電圧)が予め定めた電圧閾値(後述)以上である場合に主機直流ライン15の直流電力の電圧(直流電圧)を変換して補機直流ライン30に供給可能なDC/DCコンバータを有する補機電源装置20と、主機発電機13や補機電源装置20などの動作を制御する制御装置40とを備えている。
【0022】
発電装置11は、エンジン12、主機発電機13、及び整流回路14により構成されており、主機直流ライン15に電力を供給することで、主機直流ライン15に主機電圧VMを生成する。
【0023】
走行モータ用のインバータ16の直流入力は、主機直流ライン15に接続される。インバータ16の交流出力は、走行モータ10に接続される。
【0024】
インバータ16と走行モータ10の間には電流検出器50が設けられており、インバータ16から走行モータ10に供給される電流IMを検出し、検出値を制御装置40に送信する。また、走行モータ10には、速度検出器51が設けられており、走行モータ10の回転速度NMを検出し、検出値を制御装置40に送信する。なお、図1においては、電流IMの検出について1個の電流検出器50及び1本の検出信号線を示したが、走行モータ10に流れる三相交流電流のうち少なくとも二相分を検出するように構成しても良い。また、走行モータが複数ある場合には、全ての走行モータについて電流と回転速度を検出するように構成しても良い。
【0025】
主機直流ライン15には、インバータ16の他に、走行モータ10の回生電力を消費するための電力消費装置17が接続されている。電力消費装置17は、スイッチング素子171及びダイオード172から成るチョッパ回路と、抵抗173と、制御装置40からの制御信号CSR(後述)に基づいてスイッチング素子171を駆動する駆動制御装置174とから構成されている。
【0026】
主機直流ライン15には、電圧検出器18が設けられており、主機直流ライン15に発生する直流電圧である主機電圧VMを検出し、検出値を制御装置40に送信する。また、主機直流ライン15には、主機電圧VMを平滑するためのコンデンサ19が設けられている。
【0027】
補機電源装置20の入力部は主機直流ライン15に接続され、出力部は補機直流ライン30に接続されている。
【0028】
補機装置31は、例えば、エアコン用のインバータ及びコンプレッサモータシステム、機器冷却用のインバータ及びブロアモータシステムなどである。本実施の形態の図1においては、説明の簡単のためにこれらの負荷を1個の等価インピーダンスにまとめ、補機装置31として示した。
【0029】
補機直流ライン30には、電圧検出器32が設けられており、補機直流ライン30に発生する直流電圧である補機電圧VAを検出し、検出値を制御装置40に送信する。また、補機直流ライン30には、補機電圧VAを平滑するためのコンデンサ33が設けられている。
【0030】
なお、図1や上記説明では省略したが、主機直流ライン15や補機直流ライン30にはコンデンサの放電抵抗、バリスタやアレスタといったサージプロテクタなどが接続されてもよい。また、各機器を主機直流ライン15や補機直流ライン30に接続する場合に、ヒューズ、リアクトル、スイッチ類(電磁接触器や遮断器など)を挿入してもよい。
【0031】
また、インバータ16や電力消費装置17のスイッチング素子としてIGBT(Insulated Gate Bipolar Transistor)を例示し、図1ではIGBTの回路記号を示したが、これに限られない。例えば、スイッチング素子としてMOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)、バイポーラトランジスタ、サイリスタなど他種の素子を用いしてもよい。
【0032】
また、整流回路14としてダイオードを用いる場合を例示し、図1ではダイオードの回路記号を示したが、これに限られない。例えば、整流回路14としてスイッチング素子を用いたAC/DCコンバータを利用してもよい。
【0033】
以下の説明においては、主機発電機13は巻線励磁型の同期発電機であり、アクチュエータである励磁装置を有する場合を例示する。ただし、上述のように整流回路14としてAC/DCコンバータを利用し、永久磁石同期発電機など他の種類の発電機を用いてもよい。
【0034】
制御装置40には、電圧検出器18の検出値(主機電圧VM)、電圧検出器32の検出値(補機電圧VA)、電流検出器50の検出値(電流IM)、及び速度検出器51の検出値(回転速度NM)入力されている。また、制御装置40には、外部の上位制御システムから車両情報信号DSVが入力されている。なお、図1においては、車両情報信号DSVを1本の信号線で示したが、車両情報信号DSVは車両の車体速度情報や、オペレータの操作入力情報(アクセルペダル操作量DSACLやブレーキペダル操作量DSBRKなど)といった複数の情報を含むものである。また、制御装置40には、補機電源装置20から検出信号DSAが入力されている。
【0035】
制御装置40は、各検出器18,32,50,51からの検出値(検出信号VM,VA,IM,NM)及び、信号DSV,DSAに基づいて各機器の制御信号を生成し送信することで、電気駆動システム内の電圧やパワーフローを制御する。制御装置40で生成され送信される制御信号には、エンジン12の制御信号CSE、インバータ16の制御信号CSI、電力消費装置17の制御信号CSR、補機電源装置20の制御信号CSA、主機発電機13の制御信号VFrefなどがある。例えば、主機発電機13の制御信号VFrefは、励磁電圧の指令値であり、主機発電機13の励磁装置は制御信号(励磁電圧)VFrefの値に従って励磁電圧を制御する。なお、図1においては、これらの制御信号等をそれぞれ1本の矢印で示したが、各信号は複数の情報を含んでいてもよい。
【0036】
制御装置40の実現方法については任意であるが、例えば、基板上にCPU(Central Processing Unit)、DSP(Digital Signal Processor)、マイクロコンピュータ、FPGA(Field-Programmable Gate Array)などのデバイスを搭載して電子回路として実現する方法がある。また、制御装置40は、複数の演算ブロックを備えるため、各演算ブロックを別々の基板またはデバイスに実装してもよい。また、一つの演算ブロックを複数の基板またはデバイスに分割して実装してもよい。
【0037】
図2は、補機電源装置の構成を概略的に示す図である。
【0038】
図2において、補機電源装置20は、第一DC/DCコンバータ21と、蓄電装置60とを備えている。
【0039】
第一DC/DCコンバータ21の入力部は、主機直流ライン15に接続されており、出力部は補機直流ライン30に接続されている。また、蓄電装置60は、補機直流ライン30に接続されている。
【0040】
蓄電装置60は、蓄電デバイス61、スイッチ62,63、抵抗64、電圧検出器65、電流検出器66により構成されている。
【0041】
蓄電デバイス61は、例えば、ニッケル水素電池やリチウムイオン電池といった二次電池、または、電気二重層コンデンサやリチウムイオンキャパシタといったコンデンサがある。
【0042】
スイッチ62,63は、蓄電デバイス61と補機直流ライン30との間に直列に配置されており、スイッチ63には抵抗64が並列に接続されている。スイッチ62は、蓄電デバイス61と補機直流ライン30の間を開閉する。また、スイッチ63と抵抗64の並列体は、補機直流ライン30のコンデンサ33の初期充電回路として機能する。スイッチ62,63が開状態である場合において、まず、スイッチ62を閉じると、蓄電デバイス61からの電力が抵抗64を介してコンデンサ33が充電され、補機電圧VAは蓄電デバイス61の入出力部の直流電圧である電圧VBと同じレベルまで増大する。その後、スイッチ63を閉じると、抵抗64はバイパスされる。なお、これらのスイッチ操作は、電動作業車両である電気駆動ダンプトラック100の起動後に行われる。また、補機電圧VAは蓄電デバイス61の電圧VBと等しくなるため、電圧VBが補機装置31の動作電圧の範囲内となるように、蓄電デバイス61の電圧仕様を決定する。また、蓄電装置60を補機直流ライン30に接続する際には、ヒューズや遮断器を挿入してもよい。
【0043】
スイッチ62,63としては、例えば、電磁接触器や電磁開閉器を例示して説明するが、コイルや駆動回路等については図示を省略する。スイッチ62,63は、それぞれ、制御信号CSS1,CSS2によって開閉制御される。なお、スイッチ62,63に送信される制御信号CSS1,CSS2、及び、第一DC/DCコンバータ21に送信される制御信号CSD1(後述)は、制御装置40から補機電源装置20に送信される制御信号CSAに含まれている。
【0044】
蓄電デバイス61と補機直流ライン30との間(すなわち、蓄電デバイス61の入出力部)には、電圧検出器65および電流検出器66が設けられており、蓄電デバイス61の入出力部の直流電圧である電圧VB、及び、蓄電デバイス61と補機直流ライン30との間で授受される直流電流である充放電電流IBを検出し、これらの検出値を併せて検出信号DSAとして制御装置40に送信する。
【0045】
以上のように、補機電源装置20は、第一DC/DCコンバータ21からの出力電力によって、補機装置31を駆動するとともに、蓄電デバイス61を充電することができる。また、補機電源装置20は、蓄電デバイス61の放電によって補機装置31に電力を供給することもできる。
【0046】
図3は、第一DC/DCコンバータの構成を概略的に示す図である。
【0047】
図3において、第一DC/DCコンバータ21は、主機直流ライン15の直流電力の電圧(主機電圧VM)が予め定めた電圧閾値(後述)以上である場合に、主機直流ライン15の直流電力の電圧(主機電圧VM)を補機電圧VAに変換して補機直流ライン30に供給するものであり、4個のスイッチング素子Q1,Q2,Q3,Q4により構成されたフルブリッジインバータ211、トランス212、4個のダイオードD1,D2,D3,D4により構成されたフルブリッジ整流回路213、チョークコイル214、コンデンサ215,216、及び、駆動制御装置217により概略構成されている。
【0048】
フルブリッジインバータ211は、主機直流ライン15から入力される主機電圧VMを交流電圧VTRに変換し、トランス212の一次巻線(主機直流ライン15側)に印加する。トランス212は、第一DC/DCコンバータ21の入出力間(主機直流ライン15と補機直流ライン30の間)を絶縁しつつ、一次巻線に印加された電圧を変圧して二次巻線(補機直流ライン30側)に交流電圧を発生させる。トランス212の二次巻線に発生した交流電圧は、フルブリッジ整流回路213によって直流電圧に変換され、チョークコイル214とコンデンサ216から構成されるフィルタ回路を介して補機直流ライン30に補機電圧VAで出力される。すなわち、第一DC/DCコンバータ21は、トランス212を用いることで、主機直流ライン15と補機直流ライン30とを絶縁することができる。また、主機直流ライン15の主機電圧VMと補機直流ライン30の補機電圧VAの差が大きい場合であっても、トランス212を用いることで一次側回路に流れる電流を低減することができる。
【0049】
駆動制御装置217は、制御装置40から入力される制御信号CSD1に基づいて、第一DC/DCコンバータ21を構成する各素子の駆動電圧を出力する。例えば、第一DC/DCコンバータ21がパルス幅変調(PWM: Pulse Width Modulation)に基づいて各素子をオン・オフ制御する構成である場合、制御信号CSD1はPWMデューティまたはPWM信号となる。
【0050】
なお、図3では、スイッチング素子としてIGBTを用いた場合を例示して説明したが、これに限られず、MOSFETのような他の種類のスイッチング素子を利用してもよい。また、上記構成の他にも、スイッチ類、ヒューズやサージプロテクタなどの保護部品、ノイズフィルタなどを備えた構成としてもよい。また、図3及び上述の図2では、制御信号CSD1を1本の矢印で示したが、制御信号CSD1は複数の情報を含む場合があり、例えば、第一DC/DCコンバータ21が複数のスイッチング素子を備える場合には、制御信号CSD1は各素子に対する制御信号の集合として構成される。
【0051】
ここで、主機直流ライン15の主機電圧VMの可変範囲と第一DC/DCコンバータの入力電圧範囲について説明する。
【0052】
図1に示す本実施の形態に係る電気駆動システムにおいては、主機直流ライン15の主機電圧VMは、発電装置11または電力消費装置17によって制御される。走行モータ10の停止時や力行時においては、主機電圧VMは発電装置11によって制御される。また、走行モータ10の回生時においては、発電装置11の出力は不要であり、主機電圧VMは電力消費装置17によって制御される。
【0053】
前述のように、電気駆動ダンプトラック100が鉱山ダンプトラックのような大型の電動作業車両である場合には、主機電圧VMが高電圧化する傾向にある。一方、大型の電動作業車両であっても、停止時や低速走行時においては、インバータ16が走行モータ10に印加すべき電圧は比較的低くなる。
【0054】
そこで、本実施の形態においては、主機電圧VMの最大値および最小値がそれぞれVMmax,VMminとなるように設定し、主機電圧VMを電気駆動ダンプトラック100の速度(ここでは、走行モータ10の回転速度NM)に応じて変化させることで、停止時や低速走行時では主機電圧VMを低く制御し、インバータ16や電力消費装置17といった主機回路で発生する損失やノイズの低減を図る。
【0055】
一方、主機電圧VMを変化させる構成とした場合、第一DC/DCコンバータ21は主機電圧VMの変化範囲に対応可能な広範な入力電圧仕様とする必要がある。また、入力電圧仕様の範囲が広くなるほど、第一DC/DCコンバータ21は大型化する。具体的には、トランス212の一次側回路に流れる電流の振幅が増大するため、この電流に耐えうるようにトランス212やフルブリッジインバータ211、及び、図示しない冷却システムを大型化する必要がある。また、主機電圧VMが低い場合には、第一DC/DCコンバータ21の入力電流が増大するため、入力部の図示しないスイッチ類やヒューズを大型化する必要がある。
【0056】
本実施の形態においては、第一DC/DCコンバータ21の大型化を避けるために、第一DC/DCコンバータ21が電力変換の動作を行う範囲を主機電圧VMが所定の電圧下限値(閾値電圧)VDmin以上である場合に限定することで、第一DC/DCコンバータ21の小型化を図る。このとき、電圧下限値(閾値電圧)VDminを主機電圧VMの最小値VMminより高く設定し、その上で、電圧下限値VDminをより高く設定することで、第一DC/DCコンバータ21をより小型化することができる。また、主機電圧VMが第一DC/DCコンバータ21による主機直流ライン15から補機直流ライン30への電力供給を行わない範囲である場合(すなわち、電圧下限値VDmin>主機電圧VM≧最小値VMminである場合)には、必要に応じて蓄電デバイス61から補機装置31への電力供給を行う。以上のような本実施の形態に係る電気駆動システムの制御は、制御装置40により実現される。
【0057】
図4は、制御装置の処理内容を概略的に示す機能ブロック図である。
【0058】
図4において、制御装置40は、駆動制御部41、SoC演算部42、主機電圧指令生成部43、発電装置制御部44、電力消費装置制御部45、第一DC/DCコンバータ制御部46、及び、蓄電装置スイッチ制御部47により構成されている。
【0059】
駆動制御部41は、上位制御システムからの車両情報信号DSVに含まれるアクセルペダル操作量DSACLやブレーキペダル操作量DSBRKなどの操作入力情報にしたがって制御信号CSE,CSIを生成し、エンジン12とインバータ16にそれぞれ出力する。これにより、アクセルペダル操作量DSACLやブレーキペダル操作量DSBRKにしたがって車両を適切に加速または減速させることができる。
【0060】
SoC演算部42は、蓄電デバイス61の残容量SoC(State of Charge)を演算して主機電圧指令生成部43及び第一DC/DCコンバータ制御部46に出力する。残容量SoCの演算方式としては、蓄電デバイス61の電圧値VBと残容量SoCとの関係を利用する方式、または、蓄電デバイス61の電流値IBの積分値から残容量SoCの変化量を求める方式が用いられる。SoC演算部42では、入力された電圧値VBや電流値IBを用いて残容量SoCを演算する。
【0061】
主機電圧指令生成部43は、走行モータ10の回転速度NMと残容量SoCとにしたがって主機電圧Vmに係る指令値(主機直流電圧指令値VMref)を生成し、発電装置制御部44及び電力消費装置制御部45に出力する。なお、図4においては、主機電圧指令生成部43に入力される速度として速度検出器51によって検出される走行モータ10の回転速度NMを例示したが、これに限られず、速度検出器51以外の手段によって走行モータ10または電気駆動ダンプトラック100の速度を検出または推定できるのであれば、それらの値を回転速度NMの代わりに主機電圧指令生成部43に入力し、主機直流電圧指令値VMrefを算出するように構成してもよい。
【0062】
発電装置制御部44は、主機電圧VMが主機直流電圧指令値VMrefと一致するように演算を行い、発電装置11の操作量である制御信号VFrefを生成し、発電装置11の主機発電機13に出力する。
【0063】
電力消費装置制御部45は、発電装置制御部44と同様に、主機直流電圧指令値VMrefに基づいて主機電圧VMを制御するための演算を行い、電力消費装置17の制御信号CSRを生成し、駆動制御装置174に出力する。ただし、後述するように、主機電圧VMの指令値を主機直流電圧指令値VMrefから変更する。
【0064】
第一DC/DCコンバータ制御部46は、残容量SoC、電流値IB、及び、主機電圧VMに基づいて第一DC/DCコンバータ21の制御信号CSD1を生成し、駆動制御装置217に出力する。具体的には、残容量SoCに基づく電流値IBの指令値IBrefの生成、電流値IBを指令値IBrefにしたがって制御するための電流制御演算、主機電圧VMに基づくオン・オフ制御が行われ、これらの結果として制御信号CSD1が生成される。
【0065】
蓄電装置スイッチ制御部47は、車両情報信号DSV、補機電圧VA、蓄電デバイス61の電圧VBに基づいて、制御信号CSS1,CSS2を生成し、スイッチ62,63にそれぞれ出力する。具体的には、蓄電装置スイッチ制御部47は車両情報信号DSVに基づいて電気駆動ダンプトラック100の起動を検出すると、スイッチ62を閉じるように制御信号CSS1を生成(変更)する。その後、補機電圧VAが電圧VBとほぼ同じレベルまで増大したことを検出すると、スイッチ63を閉じるように制御信号CSS2を生成(変更)する。なお、蓄電装置スイッチ制御部47には、車両情報信号DSVに基づいて車両の異常を検出した場合には、スイッチ62を開くように制御信号CSS1を生成(変更)する機能を備えてもよい。
【0066】
図5は、主機電圧指令生成部の処理内容を概略的に示す機能ブロック図である。また、図6は、主機電圧指令生成部の処理内容を示すフローチャートである。
【0067】
図5に示すように、主機電圧指令生成部43は、主機電圧指令テーブル431、主機電圧指令リミッタ432、及び、主機電圧指令選択部433を備えている。
【0068】
主機電圧指令テーブル431は、走行モータ10の回転速度NMと主機直流電圧指令値VMrefの第一暫定値VMref1の関係が設定されたテーブルである。図5では、主機電圧指令テーブル431の縦軸に第一暫定値VMref1を、横軸に回転速度NMをそれぞれ示している。主機電圧指令テーブル431においては、回転速度NMが0から予め定めた回転速度N1になるまでは第一暫定値VMref1は最小値VMminをとり、回転速度NMが回転速度N1を超えると回転速度NMの増加に伴って第一暫定値VMref1も増加し、回転速度NMが予め定めた回転速度N2以上になると第一暫定値VMref1は最大値VMmaxをとる。ここで、回転速度NMが回転速度閾値Nthのときには第一暫定値VMref1は電圧下限値VDminをとる。すなわち、回転速度NMが回転速度閾値Nthより低いときには第一暫定値VMref1は電圧下限値VDminより低くなる。また、電圧下限値VDmin以上の値として電圧値(第一電圧値V1)を設定した。
【0069】
主機電圧指令リミッタ432は、第一暫定値VMref1と第二暫定値VMref2の関係が設定されたテーブルであり、第一暫定値VMref1をリミット処理して主機直流電圧指令値VMrefの第二暫定値VMref2を生成するものである。図5では、主機電圧指令リミッタ432の縦軸に第二暫定値VMref2を、横軸に第一暫定値VMref1をそれぞれ示している。主機電圧指令リミッタ432においては、第一暫定値VVMref1が0から第一電圧値V1になるまでは第二暫定値VMref2は電圧値V1(すなわち、第一電圧値V1)をとり、第一暫定値VMref1が電圧値V1以上になると第二暫定値VMref2は第一暫定値VMref1と同じ値をとる。すなわち、主機電圧指令リミッタ432は、第二暫定値VMref2の下限値が第一電圧値V1となるようにリミット処理を行う。これにより、回転速度NMが回転数閾値Nthよりも低く、第一暫定値VMref1が電圧下限値VDminより低かったとしても、第二暫定値VMref2は電圧下限値VDmin以上に設定された第一電圧値V1となる。
【0070】
主機電圧指令選択部433は、残容量SoCに基づいて、第一暫定値VMref1と第二暫定値VMref2の何れか一方かを選択し、主機直流電圧指令値VMrefとして出力する。具体的には、主機電圧指令選択部433は、残容量SoCが残容量閾値Sth以上である場合には、第一暫定値VMref1を主機直流電圧指令値VMrefとして選択し、また、残容量SoCが残容量閾値Sthよりも小さい場合には第二暫定値VMref2を主機直流電圧指令値VMrefとして選択する。
【0071】
図6に示すように、主機電圧指令生成部43は、走行モータ10の回転速度NMを取得すると(ステップS100)、主機電圧指令テーブル431を参照して第一暫定値VMref1し(ステップS110)、主機電圧指令リミッタ432を参照して第二暫定値VMref2を生成する(ステップS120)。
【0072】
続いて、蓄電デバイス61の残容量SoCを取得し(ステップS130)、残容量SoCが残容量閾値Sth以上であるか否かを判定する(ステップS140)。
【0073】
ステップS140での判定結果がYESの場合、すなわち、残容量SoCが残容量閾値Sth以上である場合には、蓄電デバイス61の残容量SoCが十分であると判断し、主機電圧VMが電圧下限値VDminよりも小さくなる可能性のある、すなわち、補機電源装置20による補機直流ライン30への電力供給が無い可能性のある第一暫定値VMref1を主機直流電圧指令値VMrefとして設定し(ステップS150)、処理を終了する。
【0074】
また、ステップS140での判定結果がNOの場合、すなわち、残容量SoCが残容量閾値Sthよりも小さい場合には、蓄電デバイス61の残容量SoCが十分でないと判断し、主機電圧VMが電圧下限値VDminよりも小さくなる可能性のない、すなわち、補機電源装置20による補機直流ライン30への電力供給が行われる第二暫定値VMref2を主機直流電圧指令値VMrefとして設定し(ステップS151)、処理を終了する。
【0075】
以上のように構成した主機電圧指令生成部43においては、回転速度NMが回転速度閾値Nthより低く、かつ、残容量SoCが残容量閾値Sth以上であれば主機直流電圧指令値VMrefは電圧下限値VDminより低くなる。一方、残容量SoCが残容量閾値Sthより小さければ、回転速度NMが回転速度閾値Nthより低い場合であっても主機直流電圧指令値VMrefは第一電圧値V1以上の値となる。ここで、第一電圧値V1は電圧下限値VDmin以上の値に設定されるため、主機直流電圧指令値VMrefも電圧下限値VDmin以上の値となる。
【0076】
図7は、発電装置制御部と電力消費装置制御部の処理内容を概略的に示す機能ブロック図である。
【0077】
図7において、発電装置制御部44は、電圧制御演算部441及び演算部442を備えている。
【0078】
発電装置制御部44は、演算部442において主機直流電圧指令値VMrefと主機電圧VMの偏差(VMref-VM)を計算した後、その計算結果に基づいて電圧制御演算部441において制御信号VFrefを生成する。
【0079】
電圧制御演算部441は、例えば、比例積分(PI: Proportional Integral)制御などの制御則を利用して、主機電圧VMの主機直流電圧指令値VMrefとの偏差を小さくするように制御信号VFrefを生成する(変化させる)。具体的には、主機電圧VM<主機直流電圧指令値VMrefであれば、発電装置11の出力を増大させるために制御信号VFrefを増大させる。
【0080】
また、図7において、電力消費装置制御部45は、電圧制御演算部451及び演算部452,453を備えている。
【0081】
電力消費装置制御部45は、まず、演算部452において主機直流電圧指令値VMrefに予め定めた電圧指令オフセットΔV(>0)を加算して、電力消費装置用の指令値VMrefRを生成する。続いて、演算部453において主機電圧VMと指令値VMrefRの偏差(VM-VMrefR)を計算した後、その計算結果に基づいて電圧制御演算部451において制御信号CSRを生成する。ここでは、制御信号CSRは電力消費装置17のスイッチング素子をオン・オフ制御するためのPWM信号であるとする。
【0082】
電圧制御演算部451は、例えば、PI制御などの制御則を利用して、主機電圧VMの指令値VMrefRとの偏差を小さくするように制御信号CSRのPWMデューティを変化させる。具体的には、主機電圧VM>指令値VMrefRであれば、電力消費装置17の消費電力を増大させるためにPWMデューティを増大させる。
【0083】
以上のように構成した本実施の形態における発電装置制御部44及び電力消費装置制御部45では、電圧指令オフセットΔVを利用して指令値VMrefR>主機直流電圧指令値VMrefとすることで、走行モータ10の停止時や力行時では、発電装置11が主機電圧VMを主機直流電圧指令値VMrefに制御し、電力消費装置17の消費電力はゼロとなる。また、走行モータ10の回生時では、電力消費装置17が主機電圧VMを指令値VMrefRに制御し、発電装置11は出力をゼロにする。
【0084】
図8は、第一DC/DCコンバータ制御部の処理内容を概略的に示す機能ブロック図である。
【0085】
図8において、第一DC/DCコンバータ制御部46は、電流指令生成部461と電流制御系462とを備えている。
【0086】
電流指令生成部461は、残容量SoCに基づいて電流IBの指令値(電流指令値IBref)を生成し、電流制御系462に出力する。具体的には、残容量SoCが上限値(残容量上限値Smax)よりも小さい場合には、蓄電デバイス61を充電するために電流指令値IBrefを予め定めた負の指令値I1に設定する。また、残容量SoCが残容量上限値Smax以上である場合には、蓄電デバイス61の充電を停止するために電流指令値IBrefを0(ゼロ)に設定する。なお、電流IBが負の値をとる場合は充電電流を表す。
【0087】
電流制御系462は、電流指令値IBref、電流IB、及び、主機電圧VMに基づいて制御信号CSD1を生成するものであり、電流制御演算部463、オン・オフ制御部464、及び、演算部465を備えている。
【0088】
電流制御系462は、演算部465において電流IBと電流指令値IBrefの偏差(IB-IBref)を計算した後、その計算結果に基づいて電流制御演算部463において制御信号CSD1の暫定信号CSD1tempを生成する。制御信号CSD1および暫定信号CSD1tempはそれぞれ第一DC/DCコンバータ21のスイッチング素子をオン・オフ制御するためのPWM信号である。具体的には、電流制御演算部463は、PI制御などの制御則を利用して、電流IBの電流指令値IBrefとの偏差を小さくするように暫定信号CSD1tempのPWMデューティを変化させる。例えば、電流IB>電流指令値IBrefである場合は、充電電流が不足している状態であり、電流IBを減少させる(充電電流を増大させる)必要がある場合を意味する。この場合には、第一DC/DCコンバータ21から補機直流ライン30への出力電流が増大するようにPWMデューティを変化させる。このとき、補機直流ライン30から補機装置31への入力電流が一定であると仮定すると、第一DC/DCコンバータ21からの出力電流が増大することで蓄電デバイス61へ充電電流も増大(すなわち、電流IBが減少)する。
【0089】
オン・オフ制御部464は、主機電圧VMに基づいて第一DC/DCコンバータ21のオン・オフ制御を行う。具体的には、主機電圧VMが電圧下限値VDmin以上の場合、第一DC/DCコンバータ21は主機直流ライン15の直流電力の電圧を変換して補機直流ライン30に出力可能であり、暫定信号CSD1tempをそのまま制御信号CSD1として出力する。また、主機電圧VMが電圧下限値VDminより小さい場合には、第一DC/DCコンバータ21は主機直流ライン15の直流電力の電圧を変換しない(補機直流ライン30への電力の供給ができない)。この場合には、暫定信号CSD1tempのPWMデューティによらず第一DC/DCコンバータ21の全てのスイッチング素子がオフになるように制御信号CSD1を生成して出力する。
【0090】
以上のように構成した本実施の形態における効果を説明する。
【0091】
本実施の形態においては、第一DC/DCコンバータ21は主機電圧VMが所定の電圧下限値VDminより高い場合に補機直流ライン30への電力の出力が可能である。また、このように第一DC/DCコンバータ21が出力可能な主機電圧VMの範囲を制限することで、第一DC/DCコンバータ21を小型化することができる。
【0092】
制御装置40は、走行モータ10の回転速度NMが所定の回転速度閾値Nthより低く、かつ、蓄電デバイス61の残容量SoCが所定の残容量閾値Sth以上であるときに、主機電圧VMが電圧下限値VDminより低くなるように発電装置11を制御する。すなわち、回転速度が低い場合には走行モータ10に印加すべき電圧が比較的低くてもよいことに着目して主機電圧VMを低下させることで、主機直流ライン15側の回路構成において発生する損失やノイズを低減することができる。また、主機直流ライン15側のスイッチング素子に印加される電圧が低減され、耐電圧に対して十分なマージンを確保することができる。このとき、第一DC/DCコンバータ21は補機直流ライン30への直流電力の供給はできないものの、蓄電デバイス61の残容量SoCに余裕があるため、蓄電装置60からの放電によって補機装置31を安定に駆動することができる。
【0093】
制御装置40は、蓄電デバイス61の残容量SoCが所定の残容量閾値Sthより小さいとき、主機電圧VMが第一電圧値V1以上となるように発電装置11を制御し、蓄電デバイス61を充電するように補機電源装置20を制御する。また、第一電圧値V1は電圧下限値VDmin以上の値に設定される。このとき、第一DC/DCコンバータ21は補機直流ライン30への電力の供給ができるため、第一DC/DCコンバータ21の出力によって補機装置31を安定に駆動しつつ、蓄電デバイス61を充電することができる。
【0094】
このように、蓄電デバイス61の残容量SoCが小さくなった場合には第一DC/DCコンバータ21を動作させて充電できるため、蓄電デバイス61の容量を必要最小限とすることができ、蓄電デバイス61を小型化することができる。
【0095】
すなわち、本実施の形態においては、DC/DCコンバータを小型化するとともに、補機への安定的な電力供給を確保しつつ、停止時や低速走行時に生じる損失やノイズを低減することができる。
【0096】
<第2の実施の形態>
本発明の第2の実施の形態を図9図13を参照しつつ説明する。
【0097】
本実施の形態は、第1の実施の形態の構成に加え、蓄電デバイス61とスイッチ63の間に第二DC/DCコンバータ67を配置したものである。本実施の形態において、第1の実施の形態と同様の部材には同じ符号を用い、適宜説明を省略する。
【0098】
図9は、本実施の形態に係る補機電源装置の構成を概略的に示す図である。
【0099】
図9において、補機電源装置20Aは、第一DC/DCコンバータ21と、蓄電装置60Aとを備えている。
【0100】
第一DC/DCコンバータ21の入力部は、主機直流ライン15に接続されており、出力部は補機直流ライン30に接続されている。また、蓄電装置60Aは、補機直流ライン30に接続されている。
【0101】
蓄電装置60Aは、蓄電デバイス61、スイッチ62,63、抵抗64、電圧検出器65、電流検出器66、及び、第二DC/DCコンバータ67により構成されている。
【0102】
蓄電装置60Aにおいて、第二DC/DCコンバータ67は蓄電デバイス61とスイッチ63の間に接続されている。また、制御信号CSAには、第二DC/DCコンバータ67の制御信号CSD2が含まれている。第二DC/DCコンバータ67は双方向動作が可能なDC/DCコンバータであり、蓄電デバイス61を充放電することができる。
【0103】
図10は、第二DC/DCコンバータの構成を概略的に示す図である。
【0104】
図10において、第二DC/DCコンバータ67は、2個のスイッチング素子Q5,Q6により構成された上下アーム(ハーフブリッジ回路)671、チョークコイル672、コンデンサ673,674、及び、駆動制御装置675により構成されている。
【0105】
駆動制御装置675は、制御装置40からの制御信号CSD2に基づいて各素子の駆動電圧を出力する。各素子は、例えば、PWMに基づいて制御されるものであり、制御信号CSD2はPWMデューティまたはPWM信号である。なお、第二DC/DCコンバータとしては、双方向動作が可能なDC/DCコンバータであれば他の回路構成を用いてもよい。
【0106】
第二DC/DCコンバータ67の入力側と出力側にはそれぞれコンデンサ673,674が接続されている。このとき、第二DC/DCコンバータ67の入力電圧は蓄電デバイス61の電圧VBと等しくなる。また、スイッチ62とスイッチ63が閉じた状態では、第二DC/DCコンバータ67の出力電圧は補機電圧VAと等しくなる。本実施の形態においては、第二DC/DCコンバータ67の出力電圧(補機電圧VA)は入力電圧(電圧VB)より高くなる。そのため、第二DC/DCコンバータ67の補機直流ライン30への出力電圧が補機装置31の電圧仕様を満たすように、蓄電デバイス61および電圧VBが補機電圧VAより低くなるように、蓄電デバイス61および第二DC/DCコンバータ67の電圧仕様を決定する。
【0107】
第二DC/DCコンバータ67は、各素子をスイッチング動作させると、チョッパ電圧VCHとしてパルス電圧が発生し、チョークコイル672の電流ILが増大または減少する。スイッチング素子Q6のオン期間では、チョッパ電圧VCHはほぼ0(ゼロ)となり、電流ILは蓄電デバイス61からの放電の向き(矢印の向き)に増大する。また、スイッチング素子Q5のオン期間では、チョッパ電圧VCHは出力電圧とほぼ等しくなり、電流ILは減少する。このとき、コンデンサ673の静電容量が十分に大きければ、定常状態において充放電電流IBは電流ILの直流成分(平均値)となる。PWMによって電流ILひいては電流IBの極性及び絶対値を制御することで、蓄電デバイス61の充放電電流を制御することができる。
【0108】
なお、第二DC/DCコンバータ67の出力側に蓄電デバイス61を接続し、入力側にスイッチ63を接続する構成も考えられるが、この場合には、電圧VBが補機電圧VAより高くなるように、蓄電デバイス61の電圧仕様を決定する必要がある。
【0109】
図11は、本実施の形態に係る制御装置の処理内容を概略的に示す機能ブロック図である。
【0110】
図11において、制御装置40Aは、駆動制御部41、SoC演算部42、主機電圧指令生成部43、発電装置制御部44、電力消費装置制御部45、第一DC/DCコンバータ制御部46A、蓄電装置スイッチ制御部47、及び、第二DC/DCコンバータ制御部68により構成されている。
【0111】
第一DC/DCコンバータ制御部46Aは、主機電圧VMおよび補機電圧VAに基づいて第一DC/DCコンバータ21の制御信号CSD1を生成し、駆動制御装置217に出力する。
【0112】
第二DC/DCコンバータ制御部48は、残容量SoC、補機電圧VA、電流IB、及び、蓄電装置スイッチ制御部47からの制御信号CSS1,CSS2に基づいて第二DC/DCコンバータ67の制御信号CSD2を生成し、駆動制御装置675に出力する。
【0113】
図12は、本実施の形態に係る第一DC/DCコンバータ制御部の処理内容を概略的に示す機能ブロック図である。
【0114】
図12において、第一DC/DCコンバータ制御部46Aは、オン・オフ制御部464、電圧制御演算部466、及び、演算部467を備えている。
【0115】
第一DC/DCコンバータ制御部46Aは、内部で生成される補機電圧VAの第一指令値(第一電圧指令値VAref1)にしたがって補機電圧VAを制御するように第一DC/DCコンバータ21の制御信号CSD1を生成するものである。
【0116】
第一DC/DCコンバータ制御部46Aは、まず、演算部467において第一電圧指令値VAref1(予め定めた電圧V2)と補機電圧VAの偏差(VAref1-VA)を計算し、その計算結果に基づいて電圧制御演算部466において制御信号CSD1の暫定信号CSD1tempを生成する。具体的には、電圧制御演算部466は、PI制御などの制御則を利用して、補機電圧VAの第一電圧指令値VAref1との偏差を小さくするように暫定信号CSD1temp生成する(変化させる)。なお、第一電圧指令値VAref1として設定される電圧V2は、補機装置31の動作電圧範囲の中に入るように設定される。
【0117】
オン・オフ制御部464は、主機電圧VMに基づいて第一DC/DCコンバータ21のオン・オフ制御を行う。具体的には、主機電圧VMが電圧下限値VDmin以上の場合、第一DC/DCコンバータ21は主機直流ライン15の直流電力の電圧を変換して補機直流ライン30に出力可能であり、暫定信号CSD1tempをそのまま制御信号CSD1として出力する。また、主機電圧VMが電圧下限値VDminより小さい場合には、第一DC/DCコンバータ21は主機直流ライン15の直流電力の電圧を変換しない(補機直流ライン30への電力の供給ができない)。この場合には、暫定信号CSD1tempのPWMデューティによらず第一DC/DCコンバータ21の全てのスイッチング素子がオフになるように制御信号CSD1を生成して出力する。
【0118】
図13は、第二DC/DCコンバータ制御部を概略的に示す機能ブロック図である。
【0119】
図13において、第二DC/DCコンバータ制御部48は、電流制限値生成部481と電圧制御系482とを備えている。
【0120】
また、電圧制御系482は、電圧制御演算部483、可変リミッタ484、電流制御系485、及び、演算部488を備えている。
【0121】
電流制限値生成部481は、蓄電デバイス61の残容量SoCに基づいて電流IBの下限値(電流制限値IBlim)を生成する。具体的には、電流制限値生成部481は、残容量SoCが上限値(残容量上限値Smax)より小さい場合には、電流制限値IBlimを予め定めた負の値I1に設定する。また、残容量SoCが残容量上限値Smax以上である場合には、電流制限値IBlimに0(ゼロ)を設定する。
【0122】
電圧制御系482は、内部で生成される補機電圧VAの第二指令値(第二電圧指令値VAref2)にしたがって補機電圧VAを制御するように第二DC/DCコンバータ67の制御信号CSD2を生成し、駆動制御装置675に出力する。
【0123】
電圧制御系482は、まず、演算部488によって補機電圧VAと第二電圧指令値VAref2の偏差(VAref2-VA)を計算し、この計算結果に基づいて電圧制御演算部483は電流IBの第一指令値(第一電流指令値IBref1)を生成する。具体的には、電圧制御演算部483は、PI制御などの制御則を利用して、補機電圧VAの第二電圧指令値VAref2との偏差を小さくするように第一電流指令値IBref1を変化させる。例えば、補機電圧VA<第二電圧指令値VAref2である場合には、蓄電デバイス61の放電電流を増大させるために第一電流指令値IBref1を増大させる。なお、第二電圧指令値VAref2として設定される電圧V3は、前述の電圧V2より低く、かつ、補機装置31の動作電圧範囲の中に入るように設定される。
【0124】
可変リミッタ484は、第一電流指令値IBref1にリミッタ処理を施して下限値がIBlimとなるようにしたものを電流IBの第二指令値(第二電流指令値IBref2)として生成する。
【0125】
電流制御系485は、第二電流指令値IBref2、電流IB、及び、制御信号CSS1,CSS2に基づいて制御信号CSD2を生成するものであり、電流制御演算部486、オン・オフ制御部487、及び、演算部489を備えている。
【0126】
電流制御系485は、まず、演算部489によって第二電流指令値IBref2と電流IBの偏差(IBref2-IB)を計算し、この計算結果に基づいて電流制御演算部486により制御信号CSD2の暫定信号CSD2tempを生成する。具体的には、電流制御演算部486は、PI制御などの制御則を利用して、電流IBの第二電流指令値IBref2との偏差を小さくするように暫定信号CSD2tempのPWMデューティを変化させる。なお、制御信号CSD2と暫定信号CSD2tempとはそれぞれ第二DC/DCコンバータ67のスイッチング素子をオン・オフ制御するためのPWM信号である。
【0127】
オン・オフ制御部487は、蓄電装置60のスイッチ62,63の制御信号CSS1,CSS2に基づいて第二DC/DCコンバータ67のオン・オフ制御を行う。具体的には、スイッチ62,63が共に閉じている場合、すなわち、蓄電デバイス61を充放電する準備ができている場合には、暫定信号CSD2tempをそのまま制御信号CSD2として出力する。また、スイッチ62,63の少なくともどちらか一方が開いている場合には、蓄電デバイス61を充放電できないため、暫定信号CSD2tempのPWMデューティによらず第二DC/DCコンバータ67の全てのスイッチング素子がオフになるように制御信号CSD2を生成して出力する。
【0128】
以上のように構成した本実施の形態における動作を説明する。
【0129】
制御装置40は、回転速度NMが速度閾値Nthより低く、かつ、残容量SoCが残容量閾値Sth以上である場合には、主機電圧VMが電圧下限値VDminより低くなるように発電装置11を制御する。このとき、第一DC/DCコンバータ21は補機直流ライン30への電力供給ができないため、第二DC/DCコンバータ67によって蓄電デバイス61を放電することで補機装置31を駆動する。なお、第二DC/DCコンバータ67は、補機電圧VAが電圧V3となるように制御し、また、電流IBは補機装置31の消費電力によって決まる。
【0130】
また、制御装置40は、残容量SoCがSthより小さい場合には、主機電圧VMが第一電圧値V1(≧VDmin)以上となるように発電装置11を制御する。このとき、第一DC/DCコンバータ21は、補機電圧VAが電圧V2となるように動作する。ここで、電圧V2>電圧V3であることから、第一DC/DCコンバータ21は、第二DC/DCコンバータ67の放電動作より優先して出力することができ、結果として補機電圧VAは電圧V2となるように制御される。第二DC/DCコンバータ67は、補機電圧VAを電圧V3まで低下させるように動作し、電流IBを減少させる、すなわち、充電電流を増大させる。ただし、可変リミッタ484によって電流IBは電流I1に制限される。補機装置31の消費電力と蓄電デバイス61の充電電力は全て第一DC/DCコンバータ21から供給される。ただし、残容量SoCが上限値Smaxに達すると充電電流は0(ゼロ)に制限される。
【0131】
その他の構成は第1の実施の形態と同様である。
【0132】
以上のように構成した本実施の形態においても第1の実施の形態と同様の効果を得ることができる。
【0133】
また、本実施の形態においては、補機装置31と蓄電デバイス61の間に第二DC/DCコンバータ67を接続したので、電圧VBが補機装置31の動作電圧範囲内となるように蓄電デバイス61の電圧仕様を決定する必要がなくなり、蓄電デバイス61を電圧仕様を決定する際の自由度が高くなる。
【0134】
また、電圧VBが残容量SoCによって変化したとしても、第一DC/DCコンバータ21または第二DC/DCコンバータ67によって補機電圧VAをそれぞれ電圧V2または電圧V3に制御できるので、蓄電デバイス61の残容量SoCを広い範囲で変化させたとしても、補機装置31を安定に駆動することができる。
【0135】
<第3の実施の形態>
本発明の第3の実施の形態を図14図16を参照しつつ説明する。
【0136】
本実施の形態は、第一DC/DCコンバータ21及び蓄電デバイス61(詳細にはスイッチ62)と補機装置31の間に第二DC/DCコンバータ67を配置したものである。本実施の形態において、第1及び第2の実施の形態と同様の部材には同じ符号を用い、適宜説明を省略する。
【0137】
図14は、本実施の形態に係る補機電源装置の構成を概略的に示す図である。
【0138】
図14において、補機電源装置20Bは、第一DC/DCコンバータ21と、蓄電装置60Bとを備えている。また、蓄電装置60Bは、蓄電デバイス61、スイッチ62,63、抵抗64、電圧検出器65、電流検出器66、及び、第二DC/DCコンバータ67により構成されている。
【0139】
補機電源装置20Bにおいて、蓄電装置60Bの第二DC/DCコンバータ67は第一DC/DCコンバータ21と補機直流ライン30(すなわち、補機装置31)の間に接続されている。すなわち、第一DC/DCコンバータ21の入力部は、主機直流ライン15に接続されており、出力部は蓄電装置60Bの第二DC/DCコンバータ67の入力部に接続されている。また、蓄電デバイス61は、スイッチ62,63を介して第二DC/DCコンバータ67の入力部に接続されている。このとき、第二DC/DCコンバータ67の出力電圧は補機電圧VAとなる。また、スイッチ62,63が閉じた後では、第二DC/DCコンバータ67の入力電圧は電圧VBとなる。なお、制御信号CSAには、第二DC/DCコンバータ67の制御信号CSD2が含まれている。
【0140】
なお、本実施の形態における第二DC/DCコンバータ67は、双方向動作が可能な構成でなくともよい。したがって、第二DC/DCコンバータ67の回路構成として、第1の実施の形態で示した第一DC/DCコンバータ21(図3参照)や第2の実施の形態で示した第二DC/DCコンバータ67(図10参照)などの回路構成を用いてもよい。ただし、第2の実施の形態で示した第二DC/DCコンバータ67(図10参照)に示した回路構成を用いる場合には、蓄電デバイス61の電圧VBが補機装置31の動作電圧より高く設定されるのであれば、コンデンサ673が接続される方を出力側(補機装置31側)とする必要がある。
【0141】
図15は、本実施の形態に係る制御装置の処理内容を概略的に示す機能ブロック図である。
【0142】
図15において、制御装置40Bは、駆動制御部41、SoC演算部42、主機電圧指令生成部43、発電装置制御部44、電力消費装置制御部45、第一DC/DCコンバータ制御部46、蓄電装置スイッチ制御部47、及び、第二DC/DCコンバータ制御部68Bにより構成されている。
【0143】
図16は、本実施の形態に係る第二DC/DCコンバータ制御部を概略的に示す機能ブロック図である。
【0144】
図16において、第二DC/DCコンバータ制御部48Bは、電圧制御演算部490と、演算部491とを備えている。
【0145】
第二DC/DCコンバータ制御部48Bは、演算部491において補機電圧VAの第二指令値VAref2と補機電圧VAの偏差(VAref2-VA)を計算し、その計算結果に基づいて電圧制御演算部490において第二DC/DCコンバータ67の制御信号CSD2を生成する。具体的には、電圧制御演算部490は、PI制御などの制御則を利用して、補機電圧VAの第二電圧指令値VAref2との偏差を小さくするように制御信号CSD2を変化させる。なお、本実施の形態においては、第二電圧指令値VAref2の値は第2の実施の形態の図13と同様に電圧V3に設定したが、図12と同様に電圧V2に設定しても良い。
【0146】
以上のように構成した本実施の形態における動作を説明する。
【0147】
制御装置40Bは、走行モータ10の回転速度NMが速度閾値Nthより低く、かつ、残容量SoCが残容量閾値Sth以上である場合には、主機電圧VMが電圧下限値VDminより低くなるように発電装置11を制御する。このとき、第一DC/DCコンバータ21は補機直流ライン30側(すなわち、第二DC/DCコンバータ67の入力部)への電力供給ができないため、第二DC/DCコンバータ67によって蓄電デバイス61を放電することで補機装置31を駆動する。なお、第二DC/DCコンバータ67は、補機電圧VAが電圧V3となるように制御し、また、電流IBは補機装置31の消費電力によって決まる。
【0148】
また、制御装置40Bは、残容量SoCが残容量閾値Sthより小さい場合には、主機電圧VMが第一電圧値V1(≧VDmin)以上となるように発電装置11を制御する。このとき、第一DC/DCコンバータ21は、電流IBを電流値I1とするように動作し、蓄電デバイス61を充電する。補機装置31の消費電力と蓄電デバイス61の充電電力は全て第一DC/DCコンバータ21から供給される。ただし、蓄電デバイス61の残容量SoCが上限値Smaxに達すると充電電流は0(ゼロ)に制限される。
【0149】
その他の構成は第1及び第2の実施の形態と同様である。
【0150】
以上のように構成した本実施の形態においても第1及び第2の実施の形態と同様の効果を得ることができる。
【0151】
また、本実施の形態においては、主機直流ライン15と補機直流ライン30の間に、第一DC/DCコンバータ21と第二DC/DCコンバータ67とを直列に接続した。第2の実施の形態においては、第一DC/DCコンバータ21としてはトランスありの絶縁型DC/DCコンバータを利用し、第二DC/DCコンバータ67としてはトランスなしの非絶縁型DC/DCコンバータを利用した。しかしながら、本実施の形態においては、第一DC/DCコンバータ21に非絶縁型DC/DCコンバータを、第二DC/DCコンバータ67に絶縁型DC/DCコンバータをそれぞれ適用することができ、主機直流ライン15と補機直流ライン30の間を絶縁することができる。特に本実施の形態においては、主機電圧VMを広い範囲で変化させることを想定しているため、これらの構成の方が絶縁型DC/DCコンバータの入力電圧と出力電圧の変動をそれぞれ小さくすることができ、結果として絶縁型DC/DCコンバータの小型化を図ることができる。
【0152】
<付記>
なお、本発明は上記の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲内の様々な変形例や組み合わせが含まれる。また、本発明は、上記の実施の形態で説明した全ての構成を備えるものに限定されず、その構成の一部を削除したものも含まれる。また、上記の各構成、機能等は、それらの一部又は全部を、例えば集積回路で設計する等により実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。
【符号の説明】
【0153】
1…車体フレーム、2L,2R…従動輪(前輪)、3L,3R…駆動輪(後輪)、4…運転室、5…荷台(ベッセル)、5a…ピン結合部、6…ホイストシリンダ、7…グリッドボックス、8…コントロールキャビネット、9…燃料タンク、10L,10R…走行モータ、11…発電装置、12…エンジン、13…主機発電機、14…整流回路、15…主機直流ライン、16…インバータ、17…電力消費装置、18…電圧検出器、19…コンデンサ、20,20A,20B…補機電源装置、21…第一DC/DCコンバータ、30…補機直流ライン、31…補機装置、32…電圧検出器、33…コンデンサ、40,40A,40B…制御装置、41…駆動制御部、42…SoC演算部、43…主機電圧指令生成部、44…発電装置制御部、45…電力消費装置制御部、46,46A…第一DC/DCコンバータ制御部、47…蓄電装置スイッチ制御部、48,48B…第二DC/DCコンバータ制御部、50…電流検出器、51…速度検出器、60,60A,60B…蓄電装置、61…蓄電デバイス、62,63…スイッチ、64…抵抗、65…電圧検出器、66…電流検出器、67…第二DC/DCコンバータ、68,68B…第二DC/DCコンバータ制御部、100…電気駆動ダンプトラック
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17